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Abstract

In this paper we consider forms of autonomy, forms of
semiotic systems, and any necessary relations among
them. Levels of autonomy are identified as levels of
system identity, from adiabatic closure to disintegra-
tion. Forms of autonomy or closure in systems are
also recognized, including physical, dynamical, func-
tional, and semiotic. Models and controls are canon-
ical linear and circular (closed) semiotic relations re-
spectively. We conclude that only at higher levels of
autonomy do semiotic properties become necessary.
In particular, all control systems display at least a
minimal degree of semiotic autonomy; and all systems
with sufficiently interesting functional autonomy are
semiotically related to their environments.

1 Introduction

A crucial aspect of the modern Information Sci-
ences, from robotics to self-organizing databases, is
the manner and extent to which information systems
can be said to be “autonomous”. Of course, there are
many different sense of autonomy, from mere physi-
cal separation to the establishment of complex func-
tional relations sufficient to allow the identification
of the systems as “independent actors”. But in any
event, some sense of closure of the system’s activi-
ties, or identification of processes which are closed
loops, is required. These closures can also take many
forms, including physical boundaries, dynamic self-
organization like autocatalytic chemical cycles, and
informational “boundaries” as in elementary sensor-
affector functioning loops.

For many classes of information systems, closures
are of a semiotic nature, where there is now a clo-
sure of meaning within the system through interac-
tion with the environment. Here issues arise concern-
ing the use and interpretation of symbols (“sym-
bol grounding”), representations, and/or internal
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models (whether explicit or implicit) by the sys-
tem; and the syntactic, semantic, and pragmatic re-
lations among the sign tokens, their interpretations,
and their use or function for the systems in ques-
tion. This is the case, for example, with biological
systems, whose autonomy is enabled by their own ge-
netic information as used in the context of their envi-
ronments; and with control systems, where autonomy
is enabled by the information in their engineered con-
struction and use by human operators.

In this paper, we consider various classes of au-
tonomous and semiotic systems, and consider the
question whether there is any form of mutual ne-
cessity among these classes. In particular, we will
consider the question as to whether autonomous sys-
tems of a certain class have any necessary semiotics
properties, and vice versa.

2 Autonomy and Identity

Autonomy literally means “self-governing”, and is de-
rived from the Greek for “self-law”. In linguistic his-
tory, autonomy typically refers to social governing
bodies, for example autonomous regions within na-
tions. Generally, it has implications of independence,
separatedness, and apartness. In modern scientific
usage, autonomy has come to be associated with the
self-regulation of smaller systems, and in particular
how on the one hand biologically evolved organisms,
and on the other mechanically designed robotic sys-
tems, develop and maintain autonomous functioning
in variable environments.

New classes of systems and environments, which
we can broadly classify as Distributed Information
Systems (DIS), have attracted a great deal of atten-
tion. Examples of these computer-aided virtual envi-
ronments include Nets, Webs, and Multi-User Vir-
tual Environments (MUVE’s) [9, 15]. The systems
which inhabit these spaces include humans and soft-
ware agents. The nature of the possible autonomies
in these classes of systems is therefore also of great
interest.




2.1 Autonomy as Closure and Identity

In systems science, we try to produce generalized
models of system-environment couplings in a variety
of modalities. In tracing the relations within and be-
tween systems, we can generally recognize two forms
of relations: input/output relations, where lin-
ear influences flow through systems (or components of
systems, or system-environment couplings); and clo-
sures, where circular influences flow within systems
(or components, or couplings).

We therefore recognize autonomy as a form of clo-
sure. Many types of closures are also recognized
in systems science, the most important being self-
reference (referential closure), self-orgnization
(functional closure), autopoeisis (organizationl clo-
sure), control (causal closure), autocatalytic cy-
cles (dynamic closure), etc.

Each form of closure introduces a form of hierar-
chical scaling. In particular, boundaries mark those
processes which are included in the closure (and are
therefore inside the closure), from those which are ex-
cluded from the closure (and thus outside). There is
a corresponding stability, in that processes involved
in the closure can exist at a relatively larger spatial
or temporal scaling than those outside. It is through
this hierarchy that system identity itself is estab-
lished in terms of those boundaries and stabilities.

2.2 Forms of Autonomy

Generally, we can recognize a continuum of classes
of autonomous systems. One extreme is complete
adiabatic isolation, and its corresponding complete
boundary: no energy or information can flow across
that barrier. No processes of organization or develop-
ment can occur, but rather there is only an inexorable
collapse to thermodynamic equilibrium.

The other extreme can never actually be reached.
As a system becomes less closed from its environ-
ment, it becomes more involved in linear flows, and
has weaker boundaries. In the limit, it actually loses
all identity, and ceases to exist as a distinct system.

It is clear that real, complex systems (the sys-
tems which are of most interest to us, like organisms,
complex mechanisms, and DIS), cannot exist at ei-
ther extreme of autonomy. Rather, they are all both
autonomous in certain modes with respect to their
environments, and simultaneously involved, in other
modes, in throughput relations with their environ-
ments.

For example, common objects have a form of phys-
ical autonomy, maintaining their identity by physi-
cal closure and separation, but interacting through

energetic exchanges. Classical self-organizing sys-
tems have a form of dynamic autonomy, maintain-
ing their identity by closures of flows and structures,
but interacting through input/output flows of matter
and energy. Organisms have a form of functional
autonomy, where their identity is maintained by a
constantly shifting organizational closure, but inter-
acting through informational flows.

We introduce here the concept of semiotic auton-
omy. Semiotically autonomous systems (similar to
what Pattee calls semantically or semiotically closed
systems [11]) maintain cyclic relations of perception,
interpretation, decision, and action with their envi-
ronments. These are semiotic processes, involving
the reference and interpretation of sign tokens main-
tained in coding relations with their interpretants.

Semiotic closures produce corresponding inten-
tional closures and boundaries of meaning, allowing
complex functional relations to exist within and be-
tween them and their environments. These are suf-
ficient to establish forms of identity based on self-
reference, allowing the identification of these systems
as “independent actors”. It has been hypothesized
that these systems are equivalent to the class of or-
ganisms [7]. It is the nature of these semiotic rela-
tions, and therefore the nature of semiotic autonomy,
which we wish to consider below.

3 Models and Controls
Semiotic Systems

as

In systems theory and cybernetics the modeling rela-
tion and the control relation serve as two fundamental
and distinct classes of relations between a system and
its environment, or “the world”.

3.1 Simple Models and Controls

Consider first a classical control system. All knowl-
edge of the environment by the system is medi-
ated through the measurement (perception) process,
which provides a (partial) representation of the en-
vironment to the system. Based on this, the system
then chooses a particular action to take in the world,
which has consequences for the change in state of the
world and thereby states measured in the future.

To be in good control, the overall system must
form a negative feedback loop, so that disturbances
and other external forces from “reality” (noise or the
actions of other external control systems) are coun-
teracted by compensating actions so as to make the
measured state (the representation) as close as pos-
sible to some desired state, or at least stable within




some region of its state space. If rather a positive
feedback relation holds, then such fluctuations will
be amplified, ultimately bringing some critical inter-
nal parameters beyond tolerable limits, or otherwise
exhausting some critical system resource, and leading
to the destruction of the system as a viable entity.

The left side of Fig. 1 is a functional view of a
simple control system, representing the logical rela-
tions among certain components of the system and
the world: the nodes are logical constructs and the
arrows are labeled by the kind of relations which hold
between them, or the nature of the constraint one
places on the other.

Alternatively, a structural version of the same di-
agram is shown in the right side of Fig. 1, repre-
senting now the physical entities in the system and
the world and how they are structurally related: the
nodes are subsystems which perform certain physical
processes, and the arrows are labeled by how they
interact. Thus the physical sensors interact with the
state of affairs in the world to produce a representa-
tion (token), which is passed to the agent, which ex-
ecutes a decision to choose a particular action taken
in the world. Note how generally the functional and
structural views are dual: nodes in one are generally
arrows in the other, and vice versa.

Now consider the canonical modeling relation as
shown in the left side of Fig. 2. As with the control
relation, the processes of the world are still repre-
sented to the system only in virtue of measurement
processes. But now the decision relation is replaced
by a prediction relation, whose responsibility is to
produce a new representation which is hypothesized
to be equivalent (in some sense) to some future ob-
served state of the world. To be a good model, the
overall diagram must commute, so that this equiva-
lence is maintained.

As with the control system, this is a functional rep-
resentation, and a structural version is also shown on
the right side of Fig. 2. Here as well the sensors enter
into relations with states of affairs in the world and
create representations, but these are now sent only
to a comparator. There is no relation back from the
system to the world.

Controls and models, as systems, have fundamen-
tally different topological relations with their environ-
ments, and these map to the previous discussion of
fundamental processes in systems science. Consider
a system S in relation to its environment E. Natu-
rally there are two sets of relations g: E + S from the
environment to the system and f:S +— E back from
the system to the environment. In the modeling re-
lation, only g is present as a measurement function,
and thus the structure of a model is fundamentally

linear, from the world to the model. But in a control
relation, g is present as measurement, but f is also
present as the action relation from the system back
to the world. Thus control is fundamentally circular,
from the system to the world and back again.

3.2 Complex Modeling and Control
Relations

Of course, the relations described here are a great
deal more complex in real control systems. In general,
modeling and control are combined in real systems in
a variety of complex ways [6].

Computation in Control: It is possible to aug-
ment the control system with a computation re-
lation between the representation of the mea-
sured state and another which is then passed to
the decider. This “computation” plays the role
of cognition, information processing, or knowl-
edge development. Typically, extra or external
knowledge about the state of the world or the de-
sired state of affairs is brought to bear, and pro-
vided to the agent in some processed form, for
example as an error condition or distance from
optimal state. In real systems computations take
such forms as the more abstract or combined per-
ceptions in neural organisms or the results of a
real computation in machines.

Hierarchical Control: Classical linear control sys-
tems theory for hierarchical control emerges here
Fig. 3 [13, 14].} The computer is viewed as a
comparator between the measured state and a
hypothetical set point or reference level (goal).
This then sends the second representation of an
error signal to the agent. Such systems are hi-
erarchically scalable, in that representations can
be combined to form higher level representations,
and actions of one control system can be the
determination of the set-point of another, thus
allowing goals to decomposed as a hierarchy of
sub-goals. While ultimately the lower level is
responsible for taking action in the world, it is
doing so under the control of the comparison of
a high-level goals against a high-level represen-
tation.

3.3 Hybrid Modeling and Control

It is clear that control can be done without compu-
tation, modeling, or planning, based strictly on feed-
back. The difference is that in control the representa-
tion of what is is compared to what is wanted, while
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in modeling it is compared to what is ezpected (based
on the model’s predictions). Ashby called this form
of prediction-less control “error control” [1, 3], which
he distinguished from “cause control”, which involved
the prediction of future events to guide actions. We
also know cause control as anticipatory {16] or feed-
forward [8] control. Ashby actually favored cause con-
trol, since in principle it could be made perfect (with
a perfect model of the world), while error control can
only be improved in the limit at infinitesimal lag.
Various hybrid control architectures are possible.

Mixtures: The simplest is to modify computation
to include a further measurement, used corrobo-
rate the results of the computational step. The
world is now the source of both the initial sen-
sory input and the corroboratory measurement,
but these steps are separated in time. This al-
lows the introduction of the relation between the
agent and the representation, and it becomes ap-
parent that functionally this relation actually is
the control relation itself. Thus we notice, with
Powers, that it is not, in fact, the state of the
world which is being controlled, but rather the
perception of the state of the world by the sys-
tem. This fundamental result of constructivism
falls out naturally from our descriptions here.

Anticipatory: Usually when we think about cause
or anticipatory control there is an embedded
model which is used to make a decision as to
which action to take, acting in the role of the
agent. Thus we replace the agent with an inner
system which is both a model and a control sys-
tem. This inner system is a control system in
the sense that there are states of its “world”, its
“dynamics”, and an “agent” making decisions.
However, it is also a model in that the states
of its “world” are in fact representations, and
its “dynamics” is actually a prediction function.
The inner system is totally contained within the
outer system, and runs at a much faster time
scale in a kind of modeling “imagination”. The
representation from the sensors is used to instan-
tiate this model, which takes imaginary actions
resulting in imaginary stability within the model.
Once this stability is achieved, then that action
is exported to the real world.

3.4 Semiotic Relations in Controls

and Models

Models and control systems are frequently both cast
in the semiotic context, thereby evoking the distinc-

tions among three distinct classes of semiotic con-
cepts [2, 4]:

Syntactic: Concerning the formal properties of
symbol tokens as used in symbol systems.

Semantic: Concerning the interpretation of tokens
as their meanings.

Pragmatic: Concerning the use of symbol tokens
and their meanings for the overall purposes or
survivability of the system.

We can identify the forms of relations present in
models and control, and distinguish them in virtue of
the fundamental concepts of variety and constraint.

Computation: The constraint placed on tokens by
themselves. Codings are an expression of syntax,
and are usually deterministic string replacement.
As Pattee has commented at length [12], cod-
ing substitutions are computational, memory-
dependent, and rate-independent.

Measurement: The constraint placed on tokens by
the world. In sharp contrast to coding or compu-
tation, measurement provides the “grounding” of
the symbol tokens.

Decision: The constraint placed on actions by to-
kens. Given the presence of a certain represen-
tation, either as the result of measurement or of
computation, a particular action results.

Dynamics: The constraint placed on the world by
itself. The rate-dependent dynamical structure
of the universe, deterministic at some level.

Each of these relations is a form of constraint.
Given a particular model or control system, there is
then very little freedom: a given state of affairs in
the world will result in specific representations, pre-
dictions, decisions, and actions.

But that is not to say that all these relations are
the same kind of constraint. In particular, we can dis-
tinguish lews from rules [11, 15, 7). Laws are wholly
{ontologically) necessary at all levels of analysis, but
rules are necessary at one level, and contingent at
another: once a particular rule or coding (set of in-
terpretations) is established, then it must be followed,
but in general from a perspective outside the system
many such interpretations are possible.

This property of rules is the halimark of seman-
tic systems: that the coding of their symbol tokens
act as contingent functional entailments, and are thus
dually contingent and necessary at complementary
levels of analysis. From within the symbol system,




the token must necessarily be interpreted according
to the code, but from without we are (or “evolution
is”) free to choose any coding we please. They are
conventional, constructed and interpretable by a cer-
tain closed “linguistic community” [10]. The school
of biosemiotics [5] is dedicated, in some sense, to the
proposition that the classes of semiotic systems and
living systems are equivalent, or at least coextensive
[5, 7).

Thus the presence of rules (contingent functional
entailments) in a “good” system, whether an “accu-
rate” model or a “good” control system, implies a
level of meta-constraint in addition to those identified
above, namely the constraint on which rules them-
selves are viable. The making of appropriate choices
is exactly the semantic function in a semiotic system.
It is on this required “appropriateness” of the choice
of the agent that the “intelligence” of the semiotic
system rests: a certain action is “correct” in a given
context, while another is not. It is only on this basis
that meaning or semantics can be said to be present
in a control system or a model.

This additional level of constraint is what Pattee
calls selection [12].

Selection: The constraint on measurement, compu-
tation, and decision by the world. This new level
of constraint is the constraint within the space
of all possible rules, in particular of all possible
measurements, all possible computations, and all
possible actions.

Selection is an example of the pragmatic aspect
of semiotic systems, and must be provided by a
force acting outside of the system (control system or
model) itself. The typical agents of this selection are
either natural selection or the decisions provided by
the designer. Thus in a system which has contingent
entailments (rules) the pragmatics of the selection
of those rules invokes semantic relations of meaning
among the components.

4 Levels of Semiotic Autonomy

Finally we are able to consider the questions which
are actually motivating us here: to what extent do
semiotic relations imply autonomy, and vice versa?
First, it is clear that control systems are forms of
closure, and thus imply boundaries and identity in
virtue of that closure. Furthermore, that closure rests
on exactly the pragmatic selection (whether by natu-
ral selection or by an engineer) and semantic decision-
making which makes them semiotic systems. There-
fore it is safe to assert that all viable control systems

of the form shown in Fig. 1 have a form of semiotic
autonomy.

However, pure models of the form shown in Fig. 2
do not necessary show any form of closure. Of course,
“naked” models never exist in isolation. Rather, they
are built by humans or have evolved in organisms
in order to serve the purposes of some embedding
control system, as in Fig. 4.

This is actually a very important point: just by
building models or representations of some part of
the world, I do not become semiotically autonomous
with respect to that environment. Rather, that model
must be used, those symbols must be interpreted, in a
cyclic process of interaction with that environment,
in order to achieve some pragmatic purpose. Some
would say that that system

The converse question then becomes, given a sys-
tem which is autonomous in some aspects, need it
be semiotic? The obvious general answer is no: cer-
tainly mere physical autonomy, and even the kinds
of dynamical autonomous shown by complex self-
organizing physical system, do not imply any form
of rule-following semiotic phenomena.

However, consider that I observe a system which
has autonomy of action. That is, it is able to pro-
duce behavior which is in some sense “contrary” to
my expectations of a physically law-following system.
For example, a ball does not roll off a hill, but tries to
climb up it. This is evidence that rule-following, and
thus semiotic, relations are present in that system.
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