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Abstract

A computer code for gain optimization of high-gain free-electron lasers (FELSs) is
described. The electron motion is along precalculated period-averaged trajectories, and the
finite-emittance electron beam is represented by a set of thin “partial” beams. The
radidition field amplitudes are calculated at these thin beams only. The system of linear
integral equations for these field amplitudes and the Fourier harmonics of the current of

each thin beam is solved numerically.
The code is aimed for design optimization of high-gain short-wavelength FELs

with nonideal magnetic systems (breaks between undulators with quadrupoles and
magnetic bunchers; field and steering errors). Both self-amplified spontaneous emission
(SASE) and external input signal options can be treated. A typical run for a UV FEL,
several gain lengths long, takes only one minute on a Pentium II personal computer (333
MHz), which makes it possible to run the code in optimization loops. Results for the
Advanced Photon Source FEL project are presented.

Keywords: Free-electron laser, simulation

The submitted manuscript has been cre,

by the University of Chicago as Operat:rticf'
Argonne National Laboratory ("Argonne")
under Contract No. W-31-109-ENG-38 with |
the U.S. Department of Energy. The U.S. |
Govamment retains for itself, and others act: i
ing on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article, '
tg reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub- :

licly and display publicly, by or o :
the Government. » " bohalfof ;

* Corresponding author. L A .
WASTER 17

TNPIUTION OF TS DOCUMENT & A S4TED




ey

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof,
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




1. Introduction

The short-wavelength high-gain free-electron lasers [1,2] offer the possibility to
extend the FEL operation to the x-ray energy range. The advantage of such a device is
that mirrors are not needed for the operation; however, tight requirements for the quality
of the electron beam and the undulator magnetic fields are essential. An electron beam
with high peak current, low transverse emittance and small energy spread is necessary for
successful operation. The undulator needs to be very long (typically tens of meters) and
carefully aligned with respect to the magnetic elements and to the beam. To aid in the
technical design, it is useful to have a fast and versatile computer code that calculates the
signal growth for a multisectional undulator with brakes between the sections, taking into
account quadrupoles, magnetic bunchers, steering coils, undulator magnetic field errors,
and beam-steering errors at the entrance.

However there are few working codes, especially in the 3-D case. This article
describes a computer code that calculates the linear time-independent growth rate of
radiation in a single pass FEL for a multisegmented system. It was applied to the
optimization of design parameters of the FEL under construction at Argonne National
Laboratory [3,4].

2. Basic equations

* We use a mathematical model based on solving a set of integral equations to describe
the process of coherent radiation of the beam in the undulator field [5]. In this model, the
internal structure of the beam is represented by a set of NV thin beams with different initial
conditions x,(0),x,(0),y,(0),y,(0). (The point is used to denote a derivative with respect

to the longitudinal coordinate z, and g is the number of the beam.) Using these initial
conditions we calculate the trajectories x, (z),y,(z), neglecting the influence of the radiation

field. (We consider the motion averaged over the undulator period.) Thus one can consider
the motion of the electrons in the transverse direction as if they were small beans strung on a
thin rigid wire (trajectory). The problem is therefore reduced to one-dimensional motion
along precalculated trajectories. A planar undulator with a vertical magnetic field given by
B,(z)sin[k,z + ¢(z)] is considered. It is convenient to use the z coordinate as the

independent variable, the relative energy deviation A as the canonical momentum
(E = ync?(1+ A) is the electron energy, m is the mass of the electron and c is the speed of

light), and the time delay 7 =t —t, with respect to the equilibrium unperturbed particle time

: 2, 22 2.2, 2.2 ,
tl-_-j[l-{- 1 ‘xq+yq+kqu+kyyqji£i_z_,
c
0

27, | 2




2

as the canonical coordinate, where 7 = }’—2’ K= —fé"—z- is the deflection parameter,
1+K*°/2 k, mc

and k; and k? the rigidities of horizontal and vertical undulator focusing, respectively. In

these variables, the projection of the “velocity” in the phase space to the energy axis is

simply the projection of the force (caused by the radiation electric field) on the particle

velocity. The longitudinal distribution function F?(z,A,7) of each beam obeys the Liouville

equation
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where the electric field of the radiation on the g-th beam is represented by

E? = A%(z,1)e™* + complex conjugate, i—n is the wavelength near the fundamental

0
harmonic of the undulator radiation, (JJ) is the standard combination of Bessel functions,
and e is the charge of the electron.

In our case, the radiation field may be calculated in the paraxial approximation. As
the relativistic electron emits in the forward direction, one can neglect the backward
radiation. This allows us to rewrite the system of N partial differential equations as
integral equations in which the integration is carried out from the undulator entrance to the
current longitudinal point in z, like in the Volterra equations. This feature allows us to
construct a simple explicit numerical algorithm. The obtained equations are nonlinear as
the radiation field depends on the beam current, which is derived from integration of the
distribution function. To simplify the calculations, we consider only the linear regime
when the distribution function can be written as a sum of a time-independent part and a
small perturbation. By making a Fourier transformation and carrying out integration by
energy, we obtain the equations for the beam current harmonics

2= I jF 2¢=*®) gA g7 for all N thin beams. The final system of 2NV equations can

be written as,
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where f](A,0) is the harmonic of the initial distribution function, / is the beam current,
Ad, (D)= J Al(z,t)e' dt describes the external wave (input signal), and

3Fo

P (x)= J. ““dA, where F?(A) is the unperturbed distribution function.

3. Description of the code

To solve the system of integral equations, we use a trapezoidal estimation for the
integrals. This leads to the following set of equations for the discrete values of J(g, n) and

n=1
A(g, n) at z= 2 h(m), where A is the step length,

m=1

AGn =3 G, J(p.m)+ Ag(g,m)

m=1 p
n-1
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where 4, and J; corresponds to the inhomogeneous terms of Eq. (2). To calculate J(g, n),
we need only the preceding values of A(g, m) (1< m <n). Thus, solving this system
becomes trivial.

The magnetic system is described by the following input parameters: the
deflection parameter K, the phase ¢ of the undulator field, the sextupole focusing
parameter along each step, the optical strength of the thin quadrupole lens, and the
vertical and horizontal angle deflections (kicks) at the entrance of each step.

We use a unit monoenergetic excitation of one of the thin beams to calculate the
self-amplified spontaneous emission case, which corresponds to the situation of a single
particle moving into the beam without initial density fluctuations. The output intensity
will be the sum of the contributions from the different particles because we consider only
the linear regime and the initial noise is random.




4. Results

The code has been used for optimization of the UV FEL at Argonne National
Laboratory. The dashed curve in Fig. 1 shows the results for a homogeneous undulator
with sextupole focusing. The normalized growth rate is
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is clear that after approximately two gain lengths L, the growth rate becomes constant
indicating that only one eigenmode is prevalent. The normalization was chosen such that

Fe)=

2% DL will be equal to the scaling factor for this eigenmode, which was
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calculated earlier (see e.g., [2,5,6]). It was seen from many different runs, that this
steady-state growth rate did not depend on the initial noise.

The solid curve in Fig. 1 shows the results for the real project with breaks and
horizontally focusing quadrupoles [7]. The lower but nonzero growth rate in the breaks
corresponds to the rudimental bunching that take place there. The small growth rate
reduction in undulators in comparison with the homogeneous case is, probably, due to
beating of beta-functions, caused by the inhomogeneity of the focusing. '

5. ‘Discussion

According to Eq. (3), the calculation time is proportional to the square of the
number of the partial beams NV and to the square of the longitudinal number of steps #,
which makes it feasible to quickly study very long systems (a typical run for the APS
UV FEL takes only one minute on a 333 MHz Pentium II personal computer).
Commonly, it is sufficient to use about 10 steps per undulator and 3 steps for the breaks
with the quadrupole inside, however, for simulations using magnetic field errors from
magnetic measurements the number of steps tends to be larger - typically one step per
period.

The typical number of the partial beams for the APS runs was 49, which proved
to be sufficient. We also found that the results for the APS project parameters were
insensitive to different initial distributions of the partial beams. For shorter wavelengths
(x-rays), when the diffraction is less significant, the number of partial beams needs to be
increased, and more attention to the actual initial beam distributions must be given. The
code was used to define tolerances for the undulator alignments and to optimize the break
length and focusing strength for the APS project [7,8]. .

In spite of the fact that the general integral equation [5] is nonlinear and time
dependent, the corresponding extension of this code for nonlinear phenomena seems
unrealistic because it uses linearity and stationarity in several places. However, since the




major part of the length of a SASE FEL operates with a small signal, the code is a
convenient design tool to make an optimal system for beam bunching. The last section of
the superradiant FEL has to be considered separately from both theoretical and
engineering points of view.

The angle distribution of the radiation intensity was added recently but has not
yet been extensively tested. The calculation of the spectrum of the radiation intensity is
underway and will be tested in the near future.
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Figure Caption

Fig. 1. The dimensionless scaling factor versus distance along the undulator fora
homogeneous undulator (dashed curve) and for an inhomogeneous undulator (solid curve).
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