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Toughening of fiber-reinforced ceramic composites by fiber pullout relies on debonding at
the fiber/matrix interface prior to fiber fracture when composites are subjected to tensile
loading. The criterion of interfacial debonding versus crack penetration has been analyzed
for two semi-infinite elastic plates bonded at their interface. When a crack reaches the
interface, the crack either deflects along the interface or penetrates into the next layer
depending upon the ratio of the energy release rate for debonding versus that for crack
penetration. This criterion has been used extensively to predict interfacial debonding versus
fiber fracture for a crack propagating in a fiber-reinforced ceramic composite. Two
modifications were considered in the present study to address the debonding/fracture problem.
First, we derived the analysis for a strip of fiber, which had a finite width and was sandwiched
between two semi-infinite plates of matrix. It was found that the criterion of interfacial
debonding versus fiber fracture depended on the fiber width. Second, a bridging fiber behind
the crack tip was considered where the crack tip initially circumvented the fiber. Subsequent to
this, either the interface debonded or the fiber fractured. In this case, we have considered a
bridging-fiber geometry to establish a new criterion.

1. INTRODUCTION

The tendency of a wedge-loaded crack
meeting a bimaterial interface to either
deflect into the interface or penetrate
through the interface into the next layer has
been analyzed earlier {1]. The analysis was
conducted in terms of the energy release
rate ratio of crack deflecting into the
interface, G4, to crack penetrating the
_ interface, Gp. The criterion of deflection
versus penetration was then established
depending on whether G4/Gp was greater or
less than the fracture energy ratio of the
interface I3 to the adjoining layer, I't. This
criterion has been adopted extensively to
predict interfacial debonding versus
reinforcement fracture for fiber- (whisker-
and self-) reinforced ceramic composites.
However, due to the assumptions made in
the asymptotic analysis [1], in which
integral equation methods were used, two
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limitations should be noted before the
criterion is applied. First, the results were
obtained based on the condition that the
branch crack (i.e., the branched section of
the crack emanating from the main crack)
was very small compared with all other
lengths in the problem. Second, the
analysis was for two semi-infinite elastic
materials bonded at the interface. For the
two-dimensional crack initiation problem,
the branch crack can be treated as an
infinitely small crack; therefore, these two
assumptions are satisfied. However, in
some cases (e.g., for a wedge-loaded crack
[2,3], or in the presence of residual stress),
the length of the branch crack and the width
of reinforcement become important, and
these two conditions are not satisfied. Also,
the crack propagation problem in fiber-
reinforced composites is three-
dimensional. For an embedded fiber of a
finite radius, there are three options when a

MASTEK

royalty-free iicense to publish or reproduce the
published form of this contribution, or allow others
to do so, for U.S. Government purposes.”




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




matrix crack reaches the interface:
interface debonding, fiber fracture, or crack
circumventing the fiber. The two-
dimensional analysis [1] focuses on the
case that the crack does not circumvent the
fiber. However, when the crack
circumvents the fiber, the crack is bridged
by intact fibers, and the bridging-fiber (or
fiber-pullout) geometry can be used to
analyze this problem.

The purpose of the present study was to
modify the two-dimensional bimaterial
model [1] by considering two different
geometries: (1) a strip of fiber sandwiched
between two semi-infinite plates of matrix,
and (2) a bridging-fiber geometry.

2. THE SANDWICH GEOMETRY

Schematic drawings of crack penetration
and deflection for an oblique wedge-loaded
crack used in the two-dimensional
bimaterial model [1] are shown in Figs. 1
(a) and (b), respectively. Two semi-infinite
elastic materials, material 1 and material
2, are bonded at the interface. The main
crack in material 2 is subjected to opening
wedge loads, P, at a distance, L, from the
interface along the crack line. The crack
intersects the interface at an oblique angle,
w2, and can either penetrate the interface
into material 1 or deflect at the interface.
The branch crack has a length a. For the
case of a penetrating crack (Fig. 1a), the
angle between the branch crack and the
interface is w1. To examine effects of a
finite width of material 1, a layer of
material 1 with a width, A, sandwiched
between two semi-infinite material 2 was
considered, and the schematic drawings for
crack penetration and deflection are shown
respectively in Figs. 1 (c) and (d).

For the plane-strain bimaterial problem,
the solution variables of interest depend on
two non-dimensional elastic mismatch
parameters; i.e., the Dundurs' parameters
{4] which are

Figure. 1. Schematic drawings showing (a)
a penetrating crack, and (b) a deflected
crack for two semi-infinite dissimilar
materials bonded at the interface, and (c) a
penetrating crack, and (d) a deflected crack
for material 1 with a width, 2, sandwiched
between two semi-infinite material 2.
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where E, 4 and v are Young's modulus,
shear modulus and Poisson's ratio,
respectively, E =E/(1-v2), and the subscripts
1 and 2 denote materials 1 and 2,
respectively. Since experience with related
problems suggests that ais the much more
important one of the two parameters, the role
of ais emphasized and B=0 is taken in the
present study.

2.1. Analysis

Because of the complication of the
problem, integral equation methods were
not feasible, and a finite element method
was used in the present study to analyze the
energy release rates for a deflected crack
and a penetrating crack.

The solutions for the stress intensity
factors for the problem of a penetrating
crack can be written as (1]

K1 +iKy] =cla,01,02,a/ LypL V2 (3)

where ¢ is a dimensionless complex-valued
function of the arguments indicated. The
corresponding energy release rate, Gp, is
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It is noted that Gy is a function of @), and the
maximum value of Gp with respect to ) for

fixed a/L is dencted by Grr)nax'

The stress intensity factors for a
deflected crack can be expressed by [1]

Ky +iKg = d(a,wq,a/ L)PL™ Y2 (5)

where d is a dimensionless complex-valued
function of the arguments indicated. The

corresponding energy release rate of the
deflected crack, G, is given by
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where E#* is given by
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The ratio of the competing energy release
rates is hence
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The numerical results presented in this
paper were computed using a finite element
code, ABAQUS [5], with eight node
isoparametric elements. A quarter-point
crack tip element served to model the
inverse square root stress singularity at the
crack tip. The detailed discussion about the
numerical method can be found elsewhere
[6], and the J-integral was calculated by the
domain integral method [7] for ten contours
to obtain strain energy release rates. The
model employed in the finite element
calculation was a circular region r<R. In
order to obtain the asymptotic solution, R
should be much larger than both the length of
the branch crack, a, and the distance from
the wedge load to the crack tip, L. The
convergence of the finite element solutions
was examined, and it was found that the
ratio R/L=1000 is sufficient to obtain the
asymptotic solutions. Hence, R/L21000 was
used in the present finite element analysis.

2.2. Results

The energy release rate ratio, G4/ G;r’nax’
as a function of a is plotted in Fig. 2 at



different widths of the sandwiched layer
(i.e., material 1) for wg =30°, 45°, 60° and

75° and a/L=0.01 [8]. The curve for L/A=0
(i.e., h—oo) is also included which was the
result presented in the earlier work [1). The
results in Fig. 2 show that the curve becomes
flatter as the width of material 1 decreases
(i.e., L/h increases).
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Figure. 2. The energy release rate ratio,

Ggq/ Glx)nax’ as a function of the Dundurs'

parameter, «, for a/L=0.01 at different
values of L/h and w3 .

3. A BRIDGING-FIBER GEOMETRY

When the crack circumvents the fiber,
the crack surfaces are bridged by the intact
fiber, and the applied tensile load is
supported by the fiber. An idealized
bridging-fiber (i.e., fiber-pullout) geometry
{9] is shown in Fig. 3, in which one crack
surface with the bridging fiber is shown. A
fiber with a radius, ¢, is embedded in a
coaxial cylindrical shell of matrix with a
radius, b, and is subjected to a tensile stress
in its axial direction.

.

Bl
a g

> — P
TN N

Figure. 3. A schematic drawing showing
the bridging-fiber (i.e., pullout ) geometry.

3.1. Analysis

Using the energy-based criterion, the
relation between the tensile loading stress
on the fiber to debond the interface, o4, and
the interface debond energy, Ij, has been
defined, such that (10,11]
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When o is greater than the fiber strength,
Og, fiber fracture occurs before interfacial
debonding. However, construction of the
diagram of interfacial debonding versus
fiber fracture needs not only the interface
debond energy, I3, but also the fiber fracture
energy, I'f [(1]. To achieve this, the relation
between og and It is required which is
derived as follows.




The relation between og and I'fis a
function of the shape and the size of the
defect in the fiber. When the fiber has a
small (compared to the fiber radius) defect
of size ¢ and is subjected to a tensile stress,
o, the stress intensity factor at the crack tip,
K7, can be expressed by a general equation,
such that

Ky=Aovm . 11

where A is a defect-geometry factor (= 1.122

for a circumferential crack where c is the
crack depth {12], = 0.637 for an internal
penny-shaped crack where ¢ is the crack
radius {12}, and = 0.34 for a thumb-nail flaw
extending from the surface to the interior
where ¢ is the crack radius {13]). The
corresponding strain energy release rate,
Gf, is
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Fiber fracture occurs when oreaches og and
the corresponding Gf reaches IF.

Combination of equations (11) and (12)
gives

__@illf_ (13)
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Substitution of equation (13) into equation
(9) yields a critical ratio for I}/I¥, such that
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Interfacial debonding and fiber fracture
occur when [i/I'f is smaller and greater
than the critical ratio, respectively.

3.2. Results

Using Eq. (14), the diagram of
interfacial debonding versus fiber fracture
is constructed in Fig. 4 [14], in which the
Dundurs' parameter, «, is defined by Eq.
(1), where the subscripts, 1 and 2, denote the
fiber and the matrix, respectively.

It is noted that both the relative defect size,
c/a, in the fiber and the defect-geometry
factor, A, are involved in defining the
diagram. Interfacial debonding and fiber
fracture occur when c2.21"i/aI‘f is below and
above the curve, respectively, in Fig. 4.
This ecritical ratio decreases with the
increase in a. Also, the curve in Fig. 4
becomes flatter as b/a increases.
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Fig. 4. The diagram of interfacial
debonding versus fiber fracture for the
bridging-fiber geometry.

4. CONCLUDING REMARKS

Considering a two-dimensional
geometry, a diagram of interfacial
debonding versus fiber fracture has been
constructed previously based on the ratio of
the interface debond energy to the fiber
fracture energy, Ii/I't [1]. The fiber and the




matrix are represented by two semi-infinite
planes. Hence, when the matrix crack
reaches the interface, it will either deflect
into the interface or penetrate the fiber. One
modification of this two-dimensional
approach is to consider a finite width for the
fiber, which is sandwiched between two
semi-infinite planes of matrix. It was
found that the critical ratio of Ijy/I'f in
defining the condition of interfacial
debonding versus fiber fracture is a
function of not only the Dundurs' parameter
but also the fiber width. Specifically, the
curve in the diagram of interfacial
debonding versus fiber fracture becomes
flatter when the fiber width decreases (Fig.
2).

Considering a bridging fiber behind the
crack tip, the critical ratio of I3/I't was also
derived in the present study. It was found
that this critical ratio decreases with the
increase in the Dundurs' parameter, a.
Also, the curve in the diagram of interfacial
debonding versus fiber fracture becomes
flatter when the radius ratio of matrix to
fiber, b/a, increases (Fig. 4). It is noted that
the two-dimensional bimaterial model
considers the case where the crack reaches
the interface, and the crack either deflects
along the interface or penetrates the fiber.
The bridging-fiber model considers the case
where the crack reaches the interface,
circumvents the fiber leaving an intact
bridging fiber, and is then followed by
either interface debonding or fiber fracture.
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