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SUMMARY

Time-domain solutions are obtained for 1-D nonlinear elastic wave propagation problems using a
five-constant nonlinear theory. The assumption of weak attenuation was used throughout the develop-
ment.. The strongest nonlinear effects are obtained for the case of single compressional wave propaga-
tion, for single compressional or shear wave propagation through a longitudinally pre-stressed elastic
material, and for shear wa'v-e propagation in a shear pre-stressed elastic material. Estimates of the size
of these effects indicate that nonlinear phenomena are likely to be observable in real seismic data. The
results may be useful for the measurement of nonlinear constants in elastic materials, for explaining the

frequency content of seismograms, and for monitoring strain fields in the earth’s crust.

Key words: nonlinear, elastic, wave propagation.

1. Introduction

Fundamentals of the nonlinear theory of elasticity were developed by Novozhilov (1948) and
Murnaghan (1951). This theory in its first approximation for the isotropic case introduces three ({,m,n)
nonlinear elastic moduli in addition to the Lame constants A and p to describe the elastic properties of a
material. In the literature this theory is usually refemred to as the five-constant theory of Murnaghan.
Later Landau and Lifshitz (1954) proposed an elegant method of deriving the equations of motion for
nonlinear elastic media and qualitatively described the basic wave phenomena, such as the generation of
multiple frequencies by a single harmonic wave and the generation of combination frequencies due to
the interaction of two or more harmonic waves. They developed their approach using the fact that the
internal energy of the deformed elastic body is independent of the choice of the coordinate system.
This is possible if ﬂie internal energy is a function only of the invariants of the strain tensor. Since the
strains are small, the internal energy can be exbanded in a series about the undeformed state, where the

expansion begins with the quadratic terms (undeformed state considered as equilibrium). The
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coefficients of the quadratic terms specify the second-order moduli (Lame constants), the coefficients of
the cubic terms specify three third-order constants and so on. Retaining terms other than the quadratic

ones in the internal energy results in nonlinear equations for the elastic motion.

In most applications ofl the nonlinear theory only the cubic terms in the internal energy have been
retained (first order nonlinearity). A first order nonlinear approximation was used by Gol’dberg (1960)
to obtain solutions for 1-D nonlinear propagation problems for harmonic primary signals. Since
resonant excitation of the nonlinear field sometimes takes place, it was important to involve intrinsic
attenuation in this problem (Polyakova, 1964). The relaxation mechanism of attenuation waé introduced
into the problem by Mcéall (1993). Multiple frequency generation has been detected in a number of

experimental investigations (Breazeale and Thompson, 1963; Moriamez et al, 1968; Thery et al, 1969;

Ermilin et al, 1970; Zarembo and Krasil’nikov, 1971; Carr, 1966, 1968; Gedroits and Krasil'nikov,

1962; Johnson et al, 1993). Nonlinear interaction of elastic waves may take place under certain experi-
mental conditions (Jones and Kobettz 1963; Taylor and Rollings, 1964; Zarembo and Krasil’nikov,
1971). This phenomena was observed in metals and crystals (Rollings et al, 1964; Zarembo and

Krasil'nikov, 1971) and also in rocks (Johnson et al, 1987; Johnson and Shankland, 1989) .

In previous investigations (Gol’dberg,1960;Polyakova,1964;McCall,1993) the nonlinear elastic 1-
D propagation problem was treated using the five-constant nonlinear theory of Mumaghan for the case
of harmonic primary waves. Providing the relevant laboratory conditions for verifying these results
encounters difficulties in climinating the reflection and scattering phenomena caused by the edges and
sides of the sample. The lack of purely longitudinal or transverse sour;es also causes difficulties when
separating the nonlinear effgcts. The use of finite duration signals (pulses) could alleviate some of
these difficulties by providing better conditions for avoiding the interference that causes problems in
detecting the nonlinear waves. In this paper we present the solution of the 1-D propagation problem in
the time domain. The results are illustrated with a specific application to the case where the primary
wave is the first derivative of the gaussian curve. It is shown that for such a signal, the nonlinear com-

ponent of the field can be detected in the frequency domain by isolating the real part of the spectrum.




2. Basic equations

Following Gol'dberg (1960) and Polyakova (1964), we consider the nonlinear equation of motion
for the displacement field u for an isotropic elastic material with viscous dissipation -(Landau and

Lifshitz, 1954) in the form
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where F; contains all the nonlinear terms which are second order in smallness with respect to the com-

ponents of the strain tensor
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The terms x), x5, and x5 are rectangular coordinates, and subscripts appearing twice in a single term

[ n] [azu,. au, azus all,' 2 azu,- aus]

indicate summation over the values 1,2,3. The parameter p in (1) is the density of the material, and 1
and { are the coefficients of the shear and volume viscosities, respectively, Viscous terms are omitted in
(2) because they are assumed to be very small. It is obvious that the nonlinearity does not vanish even
if coefficients the {,m.,n are all equal to zero. This is the result of nonlinearity in the strain tensor
itself. Nevertheless, as measurements show (Jones and Kobett, 1963), the nonlinear constants are
several orders of magnitude larger than the Lame constants, and so the real elastic nonlinearity vanishes

together with the nonlinear constants.
In this paper we consider only plane elastic wave fields propagating along the x axis with a dis-

placement of the form

u(x,t) = wu (xR + u,(x 2§ + u(x,0)2 3)

From (1) we obtain the system of equations (Polyakova, 1964)
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where the following notation has been used

A+2 114
V2 = ——E , vs2 = -E N = ~}l—"1N 4+ , = -1-1-
P o P Xp o 3N g Xs p
Bo = 3+ 2u) +2Q2m + 1) A+2u+m
0 200 + 20 S 200 + 210

Because of the assumption about the smallness of the strain components, the nonlinear right hand sides

of eqs (4)-(6) are small and we can seek solutions of these equations in the form

u(x,t) = u(xt) + ul(x,?) )]

where the field u® represents the primary wave, satisfying reduced versions of the system (4)-(6). The
field u' therefore represents a small correction to the primary wave which is due to the presence of the

nonlinear components in the equations. Thus

lu” <

Throughout this paper we will refer to the field u! as the nonlinear field.

o

Substitating (7) into the system (4)-(6) and neglé_cting the smallest components we obtain the sys-

tem
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of linear differential equations for the determination of u!. These equations turn out to be independent
of one another in the approximation considered. The general solution of any of these equations is a
sum of a particular solution defined by the right hand side and an arbitrary combination of solutions of
~ the reduced equation. The boutidary conditions chosen for the problem must be sufficient to specify two
coefficients, anﬁ this gives uniqueness to the solution. Because solutions of the reduced equations are
trivial and there are different boundary conditions that could be imposed in various possible applica-
tions, we restrict ourselves here fo derivation of the particular solutions. This form of the solutions is

also favored by the absence of purely compressive or shear sources in practice.

From eqs (9)-(11) it follows that the compressional nonlinear wave appears in the medium when
any of compressional or shear waves is taken as the primary wave. The shear nonlinear wave is gen-
erated only in the case where both types of primary waves are present. The symmetry of equations
relative to polarization of the primary shear wave allows one to study just 6ne type of polarization, with

the results for the other case being obvious.

The eqs (9)-(11) contain products of derivatives of the primary field u’, and therefore this field
must eventually be specified in the form of a real function. On the other hand, these equations are
linear with respective to the unknown "nonlinear” field u', and thus we can use the complex Fourier
transform method to solve _them. In the next sections this method will be applied to obtain time-domain

solutions of eqs (9)-(11). In all cases it will be assumed that the attenuation is small.

3. Solutions for primary waves

Primary waves are the solutions u°(x,t) of correspondent reduced eq. (4)-(6), all of which may

be put in general form

aZuO 5 a2u0 asuo

- - 12
P e B 12

Assuming relative smallness of the third compbnent of (12) compared to other two components (weak

attenuation) we will seek a solution in the form

w(tx) = uo[t—;:—]e“""‘

up(te™ T=t-% (13)
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where o is effective attenuation coefficient. Substituting (13) in (12) we get the equation

0uo(7) 2 %uy(v)
+ o

R(tx) = —e™ [v’azuo(t) + xa? - X0~

v (14)

3
auaofc) N _3% d ;:SC)]
Since o is a constant the residual function R (t,x) can’t stay equal to zero for arbitrary waveform uy(T)
. However, approximate character of the whole approach and condition (8) require just keeping function
(14) being much smaller than correspondent nonlinear left hand sides N(t,x) of (5)-(11) in absolute
values. We assume that spectrum S(w) of the function ug(t) has a limited frequency band, and for

each single frequency from that band the usual condition of the small attenuation
o « 2 : (15)
v

is satisfied. Condition (15) means that amplitude difference between two consequent cycles is small
compare to the amplitude itself, and will be used throughout the whole paper. When condition (15)

applied to (14) the three first terms vanish

Ju (1) . X Puo(t)
ot v: ot

R(rzx) = —e™ [a,,Zv

The best estimation of ¢, may be found as a value which delivers a minimum to the function

oo

!R Ytx)dt

¢ Puym |’
-20x
e ﬂ—-———a 3 } dt

This problem has the least square solution
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which is proportional to viscosity factor 3 . The narrower the frequency band around the central fre-

quency @, the closer becomes the estimation (18) to the formula

(D2
a = 2‘2-v—§ 19)

for the harmonical primary wave (Polyakova,1964).

To estimate the quality of the solution (13) we must compare the residue function R (t,x) with

nonlinear part N(t,x) of the equations (9)-(11) , which for the case of single primary wave has a form

2 2
ST I I Vil T N N -7k oW
N(T’x). B "Bax[ax ¢ vat| ot ¢ (20)
Value of quality ratio
( oo \l
2
!Nz(r,x) dv
C = |— @1
JRz(t,x)dt_
L J

should remain large for chosen set of paraméters, and condition C > 1 together with (8) may be con-
sidered as necessary for taking primary wave in the form (13). The results of numerical examples in
section 8 show good quality of estimation (18) for reasonable sets of parameters. This justifies the usage
of the form (13) for. primary waves representation in following sections , where we discuss different

cases of solutions of the system (9)-(11) for nonlinear field u' .,

4. Single P-wave propagation

Let the primary field u® be a single plane P-wave

It

Cex) = ug{t - ;"—}e*‘ﬂ‘ % = ugme "x T =12 (22)
f4

The system (9)-(11) in this case reduces to the single equation

2, 1 1 3,1
d%u, ., P, du,]

- vz _ x Y% 200 x ‘
or? P ox? P ot ax?

2
0
- vszo—a-a;{%} e = fa) @3)
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This can be solved by taking the spatial Fourier transform w(k,r) of the ficld .. Noting that the spa-
tial Fourier transformation of f (x,t) is

2
. duo(t—2-)
2 0
wo(k,t) = —é_EJ‘f(x,t)e"k"dx = 'B"‘Q’f_:"j axv" ¢ 2% gk gy

4o 4o

- .
. 2
iBokv, o k420X J‘ [auo(f)} RACA

2r ot

eq. (23) becomes the following ordinary differential equation of the second order

d*w 20w 2 _
% + Xk il viktw = c(k)e
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Equation (25) has a solution

%k L
C(k) e—(ZaHVP-—-éL)t _ l]e—-(vplk+ »

2
iv,,k[4ocv,, ~x,,k2]

wik,t) =

An inverse Fourier transform then yields an expréssion for the nonlinear comrection

bl

u(x,t) m_&w(k,t) e™dk %

too ; , +°°[ ke, J 2, k2
U o(T v ? L 2 _ - t ik(x—v_t4v )
%I[ ;‘f )} e’ P“Ptj ) 40, v, — X,k U 77 e %9 gq & (28)
< ! r ~ Ap 4

The function in the integral over the & obviously contains no singularities. In the low attenuation limit,
when x, — 0 eq.(28) gives

)2
dult - T)

Bo
1 = ey P
u(xt) = —x 2 -
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The solution (29) shows that the nonlinear component of the primary field (22) is also a plane P-
wave with the same wavefront. The amplitude of this wave is proportional to the square of the strain
level and to the distance of propagation x . The sign of the displacement of the nonlinear wave is oppo-
site to that of the coefficient B, . For harmonical primary wave solution (29) gives the result of

Polyakova (1964).

Consider the case where a constant longitudinal strain §, is present in the material, in which the

primary field is

W x) = u(,(r—;x—)e""i‘i + Sax% (30)
P

The nonlinear part of the field then becomes

Bo_|} due(® 9uo(T) x :
1 = - —_ 2¢2) = - 31
w(x,t) x2vp2 = 20,8, 3%tV S|k, t=t % G

The presence of the constant strain S, in the elastic material causes, in addition to the nonlinear field
(29), the appearance of dynamic and static componenis connected with this constant strain. The
dynamic component is proportional to S, and the waveform is the first derivative of the primary signal,

whereas the static component is proportional to the square of 5, .

5. Single S-wave propagation

Now let the primary field u® be a single plane S-wave

Ex) = uo[t - -f—]e-a‘x § = _uo('t)e-_a’xj" , T=t- ;x_ 32
Substituting this into the system (4)-(6) yields the equation
o, ou,! u,! o [au0)? -
X 2 53 x . u° 0.x
- -y —E = == = N 33
ar? o T Mo e fo) @3

It is obvious that in the approximation being considered, a single S-wave does not excite nonlinear
shear waves, but does generate a nonlinear compressional component. The structure of eq. (33) is very

similar to that of eq. (23) for the single P-wave case. Using the same approach and notation of section
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4, the following spectrum of the nonlinear field is obtained

oo

; . a 2 .
tY )k e-(zkv}+ﬂ+2a,v,)xj[ uo('t)] ev,(zk+2ap)tdt

wikt) = ——— —_—
i V2rv, (v2-vt

ot

—-e

Taking the inverse Fourier transform of (28) results in

oo oo

2

i i i dugt | v

ul(x,t) - ____'Y(;__ le (rkv_,+B+2asv’)r+xlch. __()E_l ¢ ,(zk+2ap)tdtdk %
2mv, (v—vs) J K ot

2

+oo
2 P 2 o
= Llid .” uo(T)} > sign t—-:——t dti % . (3%)

v, (v v ) at 3

which is a compressionz;] wave propagatiné with the shear velocity. The amplitude of this wave is rela-
tively small compared to the casé of single P-wave propagation, but it is impbrtant to note that in this
case the polarization of the nonlinear field is orthogonal to the polarization of the primary wave, which
may simplify their 'separation. For the case of harmonic primary S-waves some authors
(Polyakova,1964; Zarembo and Krasil’nikov,1967) emphasize an additional nonlinear P-wave propagat-
ing with the P velocity, which causes the phenomena of spatial modulation for the combined nonlinear
field. This second wave appears in the solution because of specific boundary conditions (for instance
_for the point x = () imposed on-the reduced equation. The generation of this wave occurs at the point

x =0 and is not conpected with the nonlinear propagation of the primary wave itself.

6. Cross-through propagaition of two P-pulses

In this section we consider the nonlinear interaction of two plane P-waves propagating along the

same axis in opposite directions. Taking the primary field in the form

W@ x) = ul{t - —-)g—-]e_u‘x £ + uz[t + —x—]eu" % (36)

Yp Vp

and substituting it into the system (9)-(11), we obtain an equation of the form (23) where the right hand

side mow includes three components. Two -of these components correspond to nonlinear waves
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generated directly by the two parts of (36), and the solutions for these waves were discussed earlier in
section 3. Here we will be interested in the nonlinear wave arising due to mutual interaction of the

components of (36). The equation of motion for this wave is

R R
Taking the aouble Fourier transform of (37) over space and time variables, we have
[—coz + vk + ix,,mkz] Rk, = Rok,0) . (38)
where'
Rk = ——IJ Wx,t) e =i dy dt 39
Ry = - -XBo J. f ouy auz ¢TI kit gy gy (40)
Introducing functions F,(®) and F,(0) as
+o
Fi@) = —\I_;—_;:;—a—%ﬂe""’"dt : @1
+oo
Fyo) = ‘J%;E%Qe'imdt “2)
and using the convolution theorem, it is possible to obtain
Rk = - ikBOVpFl[m —Zv”k]Fz[m +2v”k} @3

The solution for nonlinear component therefore has the form

Hootoo. co—vka o+v,k
L)

ll = % } :kx+xmtkdkdm 44
W) = % 2:: jj — v - iy, ok @0
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The denominator in (44) has two roots in the upper half of the complex @ plane located at

o = kv +ix7"vp2 . 0 = —kv +i%vp2 @5

Let us assume that the functions F(®) and Fy(®) contain no poles and that both signals in (36) are

different from zero in the time interval between zero and some finite duration of the signal
y;x) = 0, fort<0 and fort>7T; , (i=1,2) 46)

Then for ¢ < 0 we take a contour consisting of the real axis and a semicircle in the lower half plane in
evaluating the © integral in (44). In this case the integral and therefore the nonlinear component of the
field is equal to zero. Physically, this means that the two waves from (36) have not yet started t0

interact.

If t > T, + T, the waves have already interacted and separated, and the contour of integration
includes the real axis and a semicircle in the upper half plane. Evaluating the residues at the poles
given by (455, we have

dut - duy(t + =
ul(t,x) - ,’g@el&v"% F (i—Lv 2)_3_(.___1’1 - F (i—-g-v 2)_ui(___"__)_ 7))
2 Mar ot T ot
The result (47) shows that after interaction each signal travels together with a nonlinear wave having
the shape of the first derivative of the interacting wave. The amplitudes of these nonlinear fields are
rather small because F;(®) = 0 when ® = 0, except in the case of a prestressed material similar to that
discussed earlier in section 3. It is important to note that for this case of a prestressed material, one of

the functions in (44) possesses an additional pole in the upper half of the ® plane which must be taken

into account.

. 7. Generation of nonlinear shear waves

- The generation of nonlinear shear waves becomes possible when we have the simultaneous pres-
ence of shear and compressional primary waves in the nonlinear elastic material, which can be seen in

(10) and (11). The propagation of each of thesec waves also causes the excitation of compressional
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waves, which was considered in the previous sections. Therefore, in the present section we consider
only the shear part of the total nonlinear field, which satisfies (10). Three cases are examined: 1)
compressionally pre-stressed material; 2) shear pre-stressed material; 3) compressional pulse passing
through a shear pulse.

1) Compressionally pre-stressed material We take the primary field in the form

W x) = ult - ;’Y—)e—a’x § + Sax%, S, = const. 43)
s

Then (10) becomes

2 -

&uy P uy &u) ’ u({t Vs]
2

ar Yoz T Xega T 25 WS ax? “9)

This equation has the same structure as (23). Following the same approach used in section 4, we obtain

the solution
B 1 ' Yo . ou’(t) . x 50
wix,t) = x———Vs Sx 3 ¥, 1 =1¢- _Vs (30

which is similar to the dynamic component from (31). The wave (50) propagates along with the shear
primary wave and has the same polarization. The amplitude of the nonlinear field grows proportionally
to the distance x of propagation.

2) Shear pre-stressed material

Now the primary field has the form

O x) = uo(t——‘-j-‘—)e*‘l”‘ﬁ + 8,19 1))
14

where S, is the constant shear strain in the material arising due to the presense of the transverse stress

and the equation of motion is

azuo{l - ‘vi'} ’
N SN § (52)

ox?

a2uyl , 32 uyl a3uyl

¥ " e

= 20,5,

This problem is similar to that considered in section 5 and the solution is
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oo
3 3 .
1 _ o YoY% due(t) X N (1) e
wxt) = ¥ (v,,z—vf) S,,:[ o signlt , tldt = y——-——v 2,7 Syuolt o (53)

(p s 14

This wave has shear polarization, propagates along with the primary dynamic field at the P-wave velo-
city, and has the same waveform as the dynamic component u(t) from (51).

3) Compressional pulse passing through a shear pulse

Consider the general case of both a P-wave and an S-wave propagating in the same direction

Wi x) = uwolet)® = u,{t—;"—]e"‘"‘ﬁ + uz[z—vi}e*‘f‘y 54
4 - s

Following the approach of section 6, we have for the double Fourier transform of (10)

[—m2 + vk + ix,,mk2] Rk, =

+‘."maul(l - “)‘c—) du(t - i)

n ox ox -

-0

Introducing the spectra F(®) and F,(w) as in (41) and (42), -we obtain the solution

V, V m+m F . '
von = 3% ” Jrie] ey ado 0
N(Vp—vs vk — iy, ok
where
A PR
o = Vv, [k + v, (o, + (xs)] 63)]

The denominator in (56) has the same roots (45) as in section 6, and, assuming that F,(®) and F,(®)
have no poles, we can take the contour of integration with a semicircle in the upper half plane when the

interaction is completed.

After calculating the residues we have the result

ulgx) =




y vy dua(t — ;x_)
- I YoVp Fl[i s Xs ) —a, _as)]___sx_L_ (58)

vp—v) 2(vp—vs

which includes a wave propagating along with the primary S-wave and a backscattering disturbance of

the same polarization. The field (58) is obviously very small for most real elastic pulses.

7. Discussion and numerical results

The results of the previous sections show that we should expect the strongest nonlinear effects to
occur in four cases: 1) Propagation of a single compressional pulse; 2) Propagation of a single compres-
sional pulse in a longitudinally pre-stressed material; 3) Propagation of a single shear pulse in a longitu-
dinally pre-stressed material; 4) Propagation of a single compressional pulse in a shear pre-stressed
material. In the last .case the polarization of the nonlinear component is orthogonal to the polarization
of the primary wave. For first three cases the amplitude of the nonlinear field is proportional to the dis-
tance of propagation for distances which are not too large. The case of single shear wave propagation
gives weaker interaction, but here the nonlinear field has polarization orthogonal to the polarization of
the primary wave, which may have advantages for the detection of the nonlinearity. When two pulses
propagate in opposite directions or pulses propagate in the same direction with different velocities, the

results show a very weak nonlinear interaction which is unlikely to be observed in real experiments.

As it follows from obtained results the nonlinear effect depends on values of nonlinear
constants,strain levels and attenuation. Using data from Huges and Kelly (1953) for solid materials we
have: By = —6.5 , ¥, = —0.7 for polystyrene, B, =-7.3 , v, = —1.4 for armco iron, Bo =44,y =12 for
pyrex. Observations in rocks showed much higher nqnlinear coefficients. For sandstone §, can be as
high as 7000 (Johnson et al.,1993). The strain level of the propagating signal is usually a value of the
order of 107° for body waves and it can reach the level of 10~* — 107> in the regions of strong earth-
quakes and explosion sources. The constant straih always exists in the earth’s crust, generally increas-
ing with depth. Areas with a high strain level also surround fault zones that are potential sites for
earthquakes. A level of the strain = 107 — 10”3 is quite common in such areas. The same level of

strain can also be produced in laboratory measurements. The quality factor Q due to intrinsic




-16 -

attenuation in seismic experiment varies basically in the range 10 — 1000 , and therefore propagation
distance may reach and exceed a value of many of wavelengths before dissipation processes begin to

dominate.

To demonstrate how the nonlinear phenomena affects a propagating signal, we we created a set of
numerical calculations of the nonlinear response of a material representing a rock sample with P-wave
velocity of 4km/sec , S-wave velocity of 2km/sec and with nonlinear coefficients

Bo =500, v, =500 . The dominant frequency in the primary wave was taken 100 Hz. Attenuation

coefficient was taken equal to o = 1.6:10° m ! whichcorresponds (Q = 50) .

First we illustrate the validity of the form (13) of the primary wave applying the Berlage

impulse,as a commonly used synthetic waveform in seismic numerical simulations
u® = we™sinw) , w =t >0 (59)

On the Fig.1 the comparison between nonlincar component N (t,x) from (20) and residual R (t.x) from
(14) for the primary signal (59) is shown, where propagation distance x = 200 m. and maximum strain
level wo = 107~ were used. The quality ratio C from (21) for this example is equal to 43 , which is
more than enough for high accuracy. Nevertheless, for nonlinear distortion computations for propagating

single P-pulse we use broadband signal

o = i%(t - =)e e v A = const. ©60)

since its simple analitical structure allows us to obtain proper and observable formulas. On Fig.2 the
comparison between N(T,x) and R(t,x) is shown for the signal (60), for the same set of parameters.
The quality ratio C here is equal to 12, which is still good enough agreement with condition C > 1 .

The attenuation coefficient for this wave has analitical expression

0, = %X” | 61

The parameter 7 in (60) and (61) is a characteristic duration of the signal, which has a spectrum




-17 -

4oo
1 .jf.m ..221‘.2_
Fol@) = —Ejuoe—“"‘dt = -iAT?0e * e ? ™ 62)
with 2 maximum at @p,, = T

Considering the case of a single propa;gating P-wave and using (29), the total solution has the

form
7 2 72 2
. . BA” "h 72
u(x,t) = the a2, xxzﬂTzvze T [l— —13} 63)
The spectrum of the nonlinear component u' is
B -ite _ofT?
Si@) = eV e 4 [m“T“ - 40’T? + 12] 64)
. (2 '

Extracting the phase factor exp(— i @x/v,) from (64) and (62), we see that the spectrum of the nonlinear
signal is a real function, Whereas the spectrum of the primary signal (62) is a purely imaginary> function,
the latter result coming from the fact that (60) is an odd function with respect to the argument
T=1=xV,.

The constant A may be related to the maximum strain level of the signal (60)

du 0
ox

A

WO = ~ —
= Ty,

65

Defining the nonlinear ratio g as the ratio of the maximum of the nonlinear field u® to the maximum of

the primary field, we obtain the expression

[ e Bo x
qg = !uolm 2 A

W, | | ©6)

where A9 = v, T is the dominant wavelength.

The treatment of the prestressed case is obvious and follows directly from (31). Here we assume
for simplicity that the constant strain S, in the material is much larger than the strain W, in the pulse.

The total field for this case is




u(x,t)

and the nonlinear ratio is

g = Ve BO%S, : (68)

The expressions (66) and (68) allow one to estimatc the nbnlinear ratio, if the nonlinear
coefficient of the material and the strain level are known. Taking the maximum strain level W, equal
to 5:107° and the distance of observation x = 500 m. , we see that nonlinear ratios from (66) and (68)
may reach the levels of tens of percent, providing a strong implication fof nonlinear effects in the

phenomena of elastic wave propagation in the earth.

Shown in Figure 3 is the total field together with both the primary and nonlinear components of
the field for the case of .'single P-wave propagation in an unstressed material. The results for P-wave
propagation in a pre-stressed medium with a strain level of S, = 2:107% are presented in Figure 4. The
spectra of all components of the field in the prestressed material are presented in Figure 5, which shows

that the spectrum of the total field in the presence of the nonlinearity becomes broader, increasing the

level of both low-frequency and high-frequency parts. The signal for S-wave propagation in a pre-

stressed medium with a strain level S, = 2107 is shown in Figqre 6. As can be observed in these
figures, the nonlinear coxr.xponent of the field for a chosen set of parameters is large enough to violate
the assumption (8). This means that nonline_ar phenomena should be taken into account for even smaller
values of s&ains and nonlinear coefficients and that the theoretical development involving the next ord-

ers of nonlinearity is necessary.

8. Conclusions

Time-domain solutions for 1-D nonlinear elastic propagation problems have been obtained.
Numerical estimates suggest significant contributions from the nonlinear component to the total field in
rocks when strain level of the primary signal is of the order of 10~° and greater, The strongest non-

linear effects are obtained for single compressional wave propagation with or without compressional
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stress in the elastic material, and for single shear wave propagation through a pre-stressed elastic
material. - The values of parameters of strain levels, nonlinear elastic constants and quality factor Q0
used for computations are far from exceeding their really possible limits , which suggests the existence
of more profound nonlinear elastic phenomena. These results may be uvseful for the measurement of
nonlinear constants of elastic materials, for explaining the frequency content of seismograms, and for

monitoring the strain field in the earth’s crust.
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Figure Captions

Figure 1 Comparison between nonliner term N (tT,x) (solid line) and residue
function R(t,x) ( dashed line ) for Berlage impulse. Attenuation coefficient
o = 1610%m™, (Q = 50) ,propagation distance x = 200 m. , maximum
strain level W, = 107 . The quality ratio C = 43 .

Figure 2 Comparison between nonliner term N(t,x) (solid line) and residue
function R(t,x) ( dashed line ) for the signal from (60). Attenuation
coefficient a0 = 1.6107°m™, (Q = 50) ,propagation distance x = 200 m. ,
maximum strain level Wy = 107 . The quality ratio C = 12 .

Figure 3 Nonlinear single P-wave propagation. Solid line - the total field,
dashed line - primary wave, dotted line - nonlinear component.

Figure 4 Nonlinear single P-wave propagation in a pre-stressed material.
Solid line - the total field, dashed line - primary wave, dotted line - nonlinear
component.

Figure 5 Spectra of the components of the total field for single P-wave pro-
pagation in a pre-stressed material. Solid line - primary wave, dashed line -
nonlinear component of the primary wave itself, dotted line - dynamic non-
linear component due to the constant strain level.

Figure 6 Nonlinear single S-wave propagation in pre-stressed material. Solid
line - the total field, dashed line - primary wave, dotted line - nonlinear com-
ponent.
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