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Comparing PRAs with Operating Experience

Richard R. Picard and Harry F. Martz
Los Alamos National Laboratory
Los Alamos, NM

Abstract
Probabilistic Risk Assessment is widely used to estimate the
frequencies of rare events, such as nuclear power plant accidents.
An obvious question concerns the extent to which PRAs conform to
operating experience -- that is, do PRAs agree with reality? We
discuss a formal methodology to address this issue and examine its
performance using plant-specific data.

1 Introduction and Background

Probabilistic Risk Assessment (PRA) is a well known procedure for estimating the
reliability of complex systems. As with any assessment, evaluating its performance
is important. One way to address this issue is to compare PRA results with relevant
data not used in performing the PRA. If the data are inconsistent with what would
be expected under the PRA, then this indicates possible shortcomings in the PRA
or, possibly, shortcomings in the relevant data.

The purpose of this paper is to present a method for quantifying the consistency
between PRA results and subsequent demand/failure data, while simultaneously
reflecting the underlying uncertainties. The method is based on Bayes p-values and
is described in Section 2. In Section 3, we apply the method to data in Grant et al
[1] on comumercial nuclear reactors. Finally, a brief summary is given in Section 4.

2 Predictive Distributions and Bayes p-values

For clarity, consider the probability q associated with a system failure under
prescribed conditions. We assume that the PRA analysis produces a posterior
distribution for q given the information y considered in the PRA, denoted p(q | y).
Typically, the PRA information y includes data accumulated prior to the PRA.
Often, as for the high-pressure coolant injection (HPCI) system in Section 3,
interest lies in comparing a PRA distribution with subsequent operating data.

The philosophy here is in the vein of model validation. That is, if the validation
indicates an inconsistency between PRA-based predictions and subsequent data,
then the underlying premises of the PRA (such as the structure of their fault or
event trees, or the uncertainty distributions on their constituent probabilities) would
be reexamined and perhaps updated. While the concept of validation is by no means
new, it has not been fully exploited for PRAs.

Because such updating of the PRA does not strictly evolve via Bayes' theorem, it
is not Bayesian, almost by definition. Moreover, Bayesian puritanism (e.g., [2])
argues that Bayes' theorem is nothing more than the rational way to update
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subjective belief, and need not have anything to do with whether that belief is
consistent with reality. Frequentist checks of Bayesian predictions, the argument
goes, are simply a part of an incoherent procedure. The importance of the PRA
being credible to neutral observers, however, dictates a break from Bayesian
puritanism and motivates consistency checks of the PRA. Indeed, a lack of
consistency could also help identify problems (if they exist) in the validation data.

To that end, consider a fault tree top event, such as a system failure.
Corresponding (binomial) validation data consist of the number x, of occurrences
of the top event in n, trials, where q is the probability that the event occurs per trial.
For the HPCI system example discussed later, x, is the number of failures to
complete the mission in n, demands.

The PRA distribution p(q | y) may be expressed in a variety of ways. It is
common to obtain p{(q | y) in histogram form, perhaps via Monte Carlo simulation.
Sometimes, a parametric distribution, such as a beta or lognormal, is fitted to the
empirical distribution and presented as p(q | y). In any case, we require that p(q | y)
be given either (1) empirically (as either a histogram or empirical cumulative
distribution function), or (2) parametrically (such as a beta distribution).

The principle underlying the method is simple: if the PRA is valid (in the sense
that it represents reality), then subsequent operating data should not differ
statistically from what would be anticipated based on the PRA. Such an analysis
follows from use of the predictive distribution [3,4,5,6], which allows inference
about an observable quantity (usually, a future event of interest). Here, the PRA is
assessed relative to subsequent validation data x,, distributed as p(x, | q); where p(x,
1 q) is binomial with parameters n, and q.

Based on the PRA-produced posterior p(q | y), the predictive distribution of the
anticipated PRA validation data xpg, is

P(Xpra 1Y) = f p(Xpra | @) P(q!y) dq )

where, given q, Xpr, is independent of y. Thus, p(xpra | ¥) is the average of the
conditional predictions from the sampling distribution with respect to the PRA-
based posterior of q. As noted above, the validation data x, must not be included in
the information y used in the PRA; otherwise, there is not an independent
assessment of conformance and Eq. (1) does not hold; such independence is
essential to proper validation in more general settings [7].

Disagreement between the validation data and the predictive distribution is
measured by the so-called Bayes p-value [5]. The Bayes p-value, an idea presented
by Guttman [8] for noninformative priors and later discussed by Rubin [9], is a tail-
area probability. By analogy with classical p-values, the Bayes p-value is the
probability that a test statistic T computed using predicted data xpg, iS more
extreme than that calculated from the validation data x,. That is,

Bayes p-value = Pr[T(Xpga, @) = T(x,, )], )

where Pr[-] is the probability calculated with respect to the distribution of (xpg4, Q)
given y and, per Bayesian doctrine, x, is considered fixed at its observed value.

As noted, the procedure requires specifying a test statistic T. Because model
validation is inherently two-sided (for example, if x, were either much too large or




much too small, questions would be raised regarding the PRA), Eq. (2) is
implemented using the test statistic T(x, q) = x in a two-sided vein, i.e.:

Bayes p-value: min [Pr(xpg, < X,), PriXpgs 2 %,)] 3

where Pr[-] in Eq. (3) refers to the predictive distribution of xpg, and we condition
on x,. For completeness, it is noted that other test statistics, such as the likelihood
ratio and the usual chi-square have been proposed [3,5] for use in this setting,
though care is sometimes needed in implementation (e.g., [3], pp. 106-107).

Ideally, information used in a PRA would be perfect, so that the fault tree and
constituent probabilities were completely free from error. In this case, the PRA
distribution p(q | y) would be concentrated at a single point g, the actual
probability. The corresponding predictive distribution p(xpg, | y) would then be
binomial with parameter q,, while validation data x, would consist of a single
realization from the same distribution. In this limiting case, the Bayes p-value is
equivalent to the frequentist hypothesis test that q = q,.

Of course, uncertainties do exist in PRA results, formally described by p(q | y),
and the PRA-based predictive distribution p(xpg, | y) reflects these uncertainties. In
most such cases it is impractical to calculate the Bayes p-value analytically. We
can, however, estimate the Bayes p-value using simulation in a procedure similar to
a parametric bootstrap. This is done as follows. First, suppose that we either already
have available or can obtain a random sample from the posterior p(q | y). We then
simulate one xpg, from the binomial distribution specific to each sampled q. The set
of pairs ((q;, Xpray)» i = 1, ..., N} is a random sample from the joint conditional
distribution p(q, Xpra | ¥), while the N values of xpz, represent a random sample
from the predictive distribution of xpg,. The estimated Bayes p-value is then simply
the proportion of the {Xpg,;} that are more extreme than x,.

3 Application to a Coolant Injection System

Consider data presented in Grant et al [1] for the HPCI system at 23 U.S.
commercial boiling water reactors. That study compared HPCI system
unreliabilities based on operating experience from 1987 through 1993, reported in
the Licensece Event Reports (LERs) and monthly operating reports as per the PRA-
based Individual Plant Examinations (PRA/IPEs) in [10].

In [1], it was found that the mean HPCI system unreliability for a single
injection (excluding recovery actions) differed by less than a factor of 2 from the
mean PRA/IPE value in 12 of the 23 plants. Ten of the remaining 11 plants had
observed mean unreliabilities at least a factor of 3 higher than the plant-specific
PRAJ/IPE HPCI system unreliabilities. The one remaining plant had insufficient
information in the PRA/IPE to permit a comparison. Note that none of these
comparisons formally considers the uncertainties in the data.

In practice, above validation frequently cannot be applied in a straightforward
manner. This happens when the events actually observed do not map perfectly onto
the events whose probabilities have been calculated in the PRA. For example,
PRAs are likely to compute a failure probability for the HPCI system as a whole. In
practice, however, we may not have observed a single, uncomplicated HPCI failure.
Rather, the actual data generally include one or more of: "partial” failures (i.e., one
or more trains fail, but not the entire system); nominal failures (i.e., the system fails




but is restored to service so quickly that the consequences postulated in the PRA do
not occur); and events that would have been failures had they occurred when the
plant was in a different configuration (e.g., operating versus shutdown).

For the data in [1], neither the PRA results nor the validation data are in an ideal
form. As described above, this is not unusual. Here, PRA results are expressed in
terms of 90% credibility intervals for HPCI system unreliability q, as opposed to a
complete posterior p(q | y). For each of the 11 plants, a beta distribution for p(q | y)
was imputed by matching the 5th and 95th percentiles of each 90% credibility
interval to those of a corresponding B(q; a, b) distribution (see Table 1).

Table 1: Plant-specific Results

Plant PRA/IPE Beta Distribution Equivalent Operating  Bayes
Data p-value
a b . X, n,

Browns Ferry 2 346 48.93 3 24 0.23
Brunswick 1 1.93 7.55 3 24 0.42
Brunswick 2 2.16 11.28 2 16 0.56

Cooper 299 29.95 4 41 0.46
Fermi 2 3.54 27.33 4 34 0.50
FitzPatrick 414 66.72 4 22 0.06
Hatch 1 12.27 139.43 6 26 0.02
Hatch 2 12.27 139.43 4 42 0.44
Peach Bottom 2 143 11.55 3 24 0.42
Peach Bottom 3 143 11.55 4 27 0.34
Vermont Yankee 8.73 106.41 4 34 0.27

Validation data allowing for direct comparison with the PRA are not available.
This is because most PRA/IPEs model recovery at the event tree rather than the
fault tree level. Thus, the recovery basic events are ignored and plant-specific HPCI
data are considered for only four basic failure modes: failure of the injection valve
to open; failure to start due to components other than the injection valve; failure of
the turbine-driven pump to run given that it started; and system-out-of-service due
to testing/maintenance. Tables 2, C-3 and C-4 in [1] provided plant-specific
probabilities for each basic failure event in the form of a beta distribution
determined using either Bayes or empirical Bayes methods. For present purposes,
these LER-based failure probabilities are assumed independent of the
corresponding plant-specific validation data.

For each of the 11 plants, these four beta distributions are propagated through a
simple "OR-gated” fault tree by means of Monte Carlo simulation to produce a
plant-specific distribution on the HPCI system unreliability (the top event). A beta
distribution is fitted to approximate the HPCI system unreliability by matching the
first two moments. For each plant, the fitted beta distribution is in excellent
agreement with the Monte Carlo-produced uncertainty distribution, and the beta-
binomial is used to numerically obtain Bayes p-values. Alternatively, the simulated
{q;} could be used directly, as discussed above.




The plant-specific beta distributions are converted to (roughly) equivalent HPCI
validation data. It is well known that the beta parameters a and b can be loosely
interpreted as "failures” and "successes”, respectively, in a + b "demands". Thus,
we interpret the beta parameters a and a + b as equivalent binomial HPCI system
unreliability operating data with x, = a and n, = a + b (when rounded to integer
values). Table 1 gives the equivalent operating data for each of the 11 plants.

Thus, using an approximating beta distribution for p(q | y) to describe the PRA
results and the "equivalent" validation data as if observed, an approximate Bayes p-
value is obtained for each plant. The quality of these approximate p-values is
dependent on the assumptions that PRA-based p(q | y) is in fact roughly beta
distributed and that "equivalent” validation data are in fact equivalent. When
information necessary for a clean comparison of PRA results to subsequent data
does not exist, accommodations of this sort must be made.

Table 1 gives Bayes p-values for all 11 plants. Note that the p-value for
Brunswick 2 exceeds 0.5, which happens because the observed x, is equal to the
median of the predictive distribution. Also note that Hatch 1 has the greatest
individual inconsistency between its PRA results and equivalent operating data,
although the corresponding p-value is not unusual for the extreme of 11 multiple
comparisons. Consequently, the validation data are consistent with the PRA.
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Figure 1. HPCI system unreliabilities from PRA/IPEs and Bayes p-values.




The corresponding PRA/IPE and operating data HPCI system interval estimates
are plotted in Fig. 1 for each of the 11 plants along with their corresponding Bayes
p-values from Table 1. Although the qualitative comparisons in Fig. 1 are easy to
display, such graphs can be misleading to the untrained eye. The probability that
two independent intervals will overlap need not be strongly tied to the respective
probability levels associated with the intervals. The significance level of a "visual
hypothesis test” which looks for an overlap in the PRA-based credibility interval
and the validation-based confidence interval is highly problem-dependent and may
not be apparent to an analyst. When this problem is combined with the issue of
multiple comparisons (i.e., what is the probability that none of 11 pairs of intervals
will overlap?), the need for quantitative methods becomes even more apparent.

4 Summary

A procedure has been presented to quantify the consistency of PRA results with
subsequent operating data. Use of the method requires the existence of either a
specified posterior on the probability of interest or a random sample from same.
The basis for the method lies in Bayes p-values, which are easily calculated for
demand/failure data and can be extended (as in the example) to other contexts. The
end result is a formal measure of the predictive probability that validation data as
extreme as that observed would have been produced by the PRA distribution.

Acknowledgment
This work was supported by the U.S. Nuclear Regulatory Commission,

References

1. Grant, G. M., Roesener, W. S., Hall, D. G., Atwood, C. L., Gentillon, C. D., & Wolf, T.
R., High-pressure coolant injection (HPCI) system performance, 1987-1993. INEL-
94/0158, Idaho National Engineering Laboratory, 1995.

Dawid, A. P., The well-calibrated Bayesian (with comments). I. of the American
Statistical Association; 77 (1982) 605-613.

Geisser, S., Predictive inference: an introduction. Chapman & Hall, London, 1993.

Berger, J. O, Statistical decision theory and Bayesian analysis (2nd ed.). Springer-Verlag,
New York, 1985.

. Gelman, A., Carlin, J. B,, Stern, H. S., & Rubin, D. B,, Bayesian Data analysis. Chapman
& Hall, London, 1995.

Press, S. I., Bayesian statistics: principles, models, and applications. John Wiley, New
York, 1989.

Picard, R. R. & Cook, R. D., Cross validation of regression models. J. of the American
Statistical Association; 79 (1984) 575-583.

8. Guttman, 1., The use of the concept of a future observation in goodness-of-fit problems. I.

Royal Statistical Society B; 29 (1967) 83-100.
9. Rubin, D. B., Bayesianly justifiable and relevant frequency calculations for the dpphed
statistician. Annals of Statistics; 12 (1984) 1151-1172.

10. U.S. Nuclear Regulatory Commission, Individual plant examination program:

perspectives on reactor safety and plant performance, Vols. 1 and 2 (draft report for

comment). NUREG-1560, Washington, DC, 1996.

L

I

~




