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Enhancing Environmental Restoration Predictive Modeling in
Undersampled Environments

ABSTRACT

New computational physics methods for estimating constitutive property parameterizations in
ground water aquifers were developed and demonstrated in this project. The dynamical and
statistical axioms of physics, embodied in partial differential equations (PDEs) of kinetic theory,
are employed to constrain interpolations of hydraulic head (pressure) and transmissivity
(permeability) between sparsely measured datum points. These methods can apparently be applied
in numerous approaches to parameter estimation. To demonstrate the basic concepts and techniques
developed in this work, examples are considered for steady-state, two-dimensional,
heterogeneous, ground water flow models, given (i) discrete borehole observations of hydraulic
head and transmissivity and (ii) governing kinetic equations for Darcy flow behavior. Estimations
of spatially dependent parameters from sparsely measured data are treated as mathematically ill-
posed problems because infinitely many parameter distributions (realizations) that are consistent
with the data generally exist. Potential difficulties associated with ill-posedness in mean flow
realizations are mitigated by requiring that acceptable realizations respect the observed data, are
solutions of forward and inverse PDEs for physical continuity, respect information sampling
principles, and are distributed by spatial interpolations that themselves are optimal solutions of the
governing PDEs between measured datum points.

To accomplish these requisites, adaptive numerical grid Galerkin techniques were applied in a
novel manner—one that calibrates (constrains) the forward and inverse PDE solutions to assume
the observed values of head and transmissivity at measurement locations, while also interpolating
the PDE solutions between the measurement locations with basis functions, optimizations, and
adaptive grids that are indigenous to Galerkin methods. Long-standing problems associated with
data sampling and noise were mitigated by introducing and solving additional regularizing PDEs
that, in effect, spatially filter data interpolations simultancously with the solution of data-
constrained forward and inverse flow PDEs, commensurate with information sampling and signal
processing principles.

Applications of these estimation techniques to synthetic data sets with known analytic solutions
demonstrate attainable accuracy levels of the techniques in challenging problems and, more
importantly, provide examples of the genuine effects of data undersampling, which is always an
important factor in actual practice. Finally, practical realizations of aquifer transmissivity are
computed for a field data set obtained in Superfund cleanup activities at Lawrence Livermore
National Laboratory’s Livermore Site.

1.0 INTRODUCTION

The design and fielding of ground water remediation systems is an imposing and expensive
technical problem that is being addressed in the United States and many other countries around the
world. Computer model simulations of subsurface contaminant flow and transport are used
extensively to assist in the development of these designs. They are used further to forecast and
analyze the total time and cost for remediation under alternative engineering options, risk levels,
and/or various stakeholder-driven options. Results of appropriate data-calibrated simulations can
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be pivotal in decision-making because they provide perhaps the most rational basis for estimating
future aquifer behavior, potential health risks, possible compliance alternatives, and potential
outcomes of contingency actions throughout the life of a remediation project. On the other hand,
results of simulations may be only as good (or poor) as the constitutive property parameterizations
used in the flow simulation model.

Reliability of aquifer simulations depends directly on the amount and quality of information for
hydraulic and subsurface rock properties (e.g., permeability and porosity). The great expense of
drilling and sampling fluid and rock properties nearly always result in severe undersampling of the
subsurface. So there is a considerable premium for extracting the greatest amount of information
contained in any given amount of data, as well as for gathering the right types of data at optimal
locations in the first instance. These are all tasks in the arena of parameter estimation, which
critically depends on solutions of inverse problems. The power of advanced adaptive modeling
methods employed here, to both spatially filter and interpolate measured data with rigorously
constrained forward and inverse kinetic PDE solutions, has barely been tapped in existing
parameter estimation techniques. Yet no other modeling advances—in computer speed and
memory, massively parallel performance, enhanced visualization technology, statistical methods,
etc., can overcome the shortcomings caused by constitutive parameters that fail to simulate
observed data according to underlying requisites of physics and mathematics, consistent with
signal processing principles (Bracewell, 1986; McGillem and Cooper, 1984).

Viewed broadly, inverse problems are found in all of science and engineering where
hypotheses are repeatedly tested and revised with theory and calculations in order to explain
observations or guide the collection of data in the future. This is always an iterative, or indirect,
calibration process, necessitated by fundamental uncertainties inherent in physical measurements
and conceptual parameterizations. Because spatially variable material properties, or constitutive
parameters, can never be perfectly sampled and measured, their distribution is always non-unique
and is thus estimated by a repetitive circular process, until consistency is achieved with
measurements of related dependent variables. This is good news and bad news. The bad news is
such problems are inherently ill-posed, because an indefinite number of parameter realizations that
are consistent with sparsely measured data generally exist. The good news is this ill-posedness
does not imply that the parameter estimation process is meaningless. It indicates that well-founded
concepts of mathematics and physics must be applied and executed successfully, in order to
generate multiple well-posed realizations that are suitably calibrated to available data. Parameter
estimation methods differ widely in the techniques that are used to generate realizations between
measured datum points. The multiple realizations are then processed further, either internally or a
posteriori to determine the ‘best solutions’ for satisfying specific problem objectives. The
fundamental circular process of parameter estimation is respected in the present work by
simultaneously coupling the inverse modeling of constitutive parameters with the forward
modeling of dependent variables through data calibrations. Many techniques that may be used to
measure ‘fitness’ or to select those parameter realizations that represent ‘best solutions’ can be
found in the technical literature (Menke, 1989; Parker, 1994; Datta-Gupta et al. 1997), and are not
included in the scope of this project.

Owing to the fact that subsurface media are severely undersampled by borehole measurements
on macroscopic and regional scales, hydrologists have contended for several decades with the
difficulties of non-uniqueness and ill-posedness in inverse solutions of aquifer parameters.
Parameter estimation theories of various types have been advanced and applied over that time in not
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only ground water management but also contaminant remediation, oil and gas recovery, and
mining industries. Extensive reviews and seminal articles on parameter estimation methods in
heterogeneous porous media can be found and examined in the technical literature. A small
sampling would include publications by Stallman (1958); Nelson (1961, 1962); Frind and Pinder
(1973); Gelhar (1993); Dagan (1989); Yeh (1986); Neuman (1973, 1980, 1982); Clifton and
Neuman (1982); Carrerra and Neuman (1986a, 1986b); Sun (1994); and McLaughlin and Townley
(1996).

The purpose of this project is to develop and apply new computational physics techniques for
estimating single-phase saturated flow parameters from measured data in ground water aquifers in
order to help improve forecasts of ground water flow and contaminant movement. A related goal is
to reduce unnecessarily large uncertainties by eliminating nonphysical artifacts in existing
estimation methods. The new techniques developed in this project became possible by exercising
cumulative advances that have materialized over many years in dynamic unstructured adaptive
numerical grid methods for solving nonlinear systems of partial differential equations (PDEs).
These adaptive methods have now been integrated with automated code generators so that technical
practitioners can rapidly formulate and construct complete codes with advanced self-controlled
numerical solution methods for diverse problems (Backstrom, 1994, 1998; Gelinas et al. 1995;
Nelson, 1998). More than one hundred entirely new codes (not simply incremental versions of a
previous code) were constructed and executed in this project. With this mode of modeling, many
alternative physics approaches, PDE systems, mathematical formulations, field data formulations,
and spatial filtering techniques were posed and tested over a three-year period. All of the hands-on

coding work in that time interval was performed by one scientific practitioner, at approximately
70% of full-time effort.

The parameter estimation techniques in this report were developed as an application of
fundamental kinetic theory, where aquifer parameters are directly represented stochastically
through their average properties. That is, a hierarchical system of deterministic kinetic equations
describes the evolution of mean values, average fluctuation intensities, and average cross-
correlations. (Averaged stochastic variables beyond second-order are usually truncated in ground
water applications.) The full hierarchical system of kinetic equations can sometimes be solved
simultaneously and calibrated with measured data. Or, in other instances, the hierarchy of kinetic
flow equations is decoupled into low- and higher-order equation systems, which are then solved
and calibrated with measurements using a combination of numerical PDE methods (for the low-
order forward and inverse equations) and functional analysis techniques (for the higher-order
statistical averages). Because every direct and indirect parameter estimation method depends, first
of all, on the quality of parameters estimated in the mean flow equation, the kinetic hierarchy in the
present work was truncated beyond first-order in order to keep matters as simple as possible and
describe essential advances that apply, first, at the lowest-order of kinetic hierarchies. It is expected
that these techniques will also find beneficial application in existing random field (Langevin) and
manual history-matching methods. Major differences between the techniques reported here and
those applied previously in the mean flow portion of stochastic parameter estimation methods
reside in several factors, which include advanced sparse data calibrations/interpolations, additional
mathematical and physical continuity constraints, spatial filtering, and noise-minimization
procedures. By resolving long-standing critical problems in this project, techniques for obtaining
and utilizing higher-order statistical properties from kinetic theory can be examined more cogently
in future efforts. This report is organized as follows: 1.0 Introduction; 2.0 Background and
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Problem Definition; 3.0 Description of Methods; 4.0 Application and Results; 5.0 Concluding
Remarks.

2.0 BACKGROUND AND PROBLEM DEFINITION

To emphasize basic concepts without a significant loss of generality, steady-state ground water
flow in a confined aquifer is modeled according to Darcy’s law over regional scales. The steady
ground water flow equation in three spatial dimensions (3-D) can be written as:

Ve(KVh)+Q =0, (2.1)

where K is the hydraulic conductivity of the aquifer, Vh is the hydraulic head gradient, and Q
represents internal source and sink rates. When the aquifer thickness is substantially smaller than
the horizontal scale of the flow domain, the two-dimensional (2-D) flow equation

Ve (TVh)+Q =0, (2.2)

is a reasonable approximation for many aquifers. The transmissivity T is defined as the product of
K and the aquifer thickness, b. (Unless otherwise noted, we exercise an understood convention in
subsurface flow articles of using scalar notation for tensor quantities, e.g., K and T in this report.)
A site characterized by borehole measurements of hydraulic head and transmissivity is depicted
schematically in Figure 1. There are measurements of hydraulic head and transmissivity at discrete
locations in the domain, €, and on its boundaries dQ. The thickness of the aquifer is assumed to
be known from measurements, as are pumping sources and sink rates in equations (2.1) and (2.2).
Transmissivity data are usually more sparse than head data. Head measurements are usually much
more accurate and localized at the borehole than are transmissivity values. For convenience in this
initial work, Q is henceforth taken to be zero.
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O Borehole measurements of h at M locations
denoted by # = {h; = h(x; y;),i = 1, .. M}

Borehole measurements of T at n locations
denoted by 7= {T; = T(x;, y;), i =1, .. N}

ERD-1.SR-98-0042

Figure I: = Remediation site domain Q with boundary 0Q,
characterized by discrete borehole meausrements of h and
T.

The principal problem that faces remediation analysts is, How to construct h(x,y) and T(x,y)
solutions everywhere in a domain from sparse, discrete, noisy measurements in order to best
calibrate, forecast, and otherwise interpret flow behavior according to the PDE of Equation (2.2)?

A specific physics formulation of the forward and inverse problem is a first pre-requisite in
parameter estimation. Several formulations are possible. For example, one may ask, is h(x,y) in
equations (2.1) and (2.2) a random statistical variable, a mean (ensemble) flow variable, or a tacitly
undefined variable? Also, is the flow equation (2.2) to be taken as a stochastic (Langevin)
equation, a mean flow equation, or an unspecified deterministic equation? All of these optional
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formulations have been investigated to various extents over the past forty years of aquifer
parameter estimation research. Although a comprehensive review of previous work is not feasible
here, it is useful to sketch some of the major eras and trends of inverse problem developments for
aquifer parameter estimation, in more or less chronological order.

Early efforts (in the 1950s-1970s) to estimate hydraulic properties of an aquifer focused
largely upon the mathematical problem of solving the inverse flow equations (2.1) and (2.2)
(Stallman, 1958; Nelson, 1961, 1962; Frind and Pinder, 1973; Emsellem and deMarsily, 1971;
Haddamard, 1952; and many others); also see discussions in texts by Dagan (1989) and Gelhar
(1993). The flow equation was tacitly considered to be a PDE for mean variables in a physical
continuum, usually without explicit mention of its kinetic physics context. For the forward (elliptic
PDE) problem T, Q, and boundary conditions are known, and h is unknown. It is a direct, well-
posed problem. The inverse (first-order hyperbolic PDE) problem seeks to solve the same mean
flow equation but with h and Q given and with T the unknown. This is usually a much more
difficult problem to solve because of its tendency to become ill-posed. That is, when h(x,y) is
known in a domain, one value of T on each streamline defines all other values of T on that
streamline. Transmissivity values on different streamlines are mathematically independent because
T on one streamline is not related to T on any other streamline. Transmissivities on different
streamlines are however interrelated by a boundary condition on so-called Cauchy curves (I's),
which intersect every streamline in a 2-D domain. Solution of the inverse flow PDE on streamlines
with Cauchy datum points is a direct, well-posed problem. But, Nelson (1961) noted that, when
an average value of T is used in some sub-region to represent what is really a transmissivity
distribution on a continuum of streamlines, inconsistencies can be expected because a single
permeability value cannot be completely descriptive of a nonuniform distribution. General
solutions for T(x,y) on an (infinite) continuum of streamlines were not practically attainable, given
transmissivity data on Cauchy curves and noisy head data over the entire problem domain during
that era. The difficulties associated with such mathematical inconsistencies/instabilities when
attempting to fill physical space with either continuum or zonally averaged transmissivities,
exacerbated by noisy undersampled head data and fixed numerical grid methods for solving flow
PDEs, were well recognized but pursued nonetheless for many years with limited success. From a
physics standpoint, the inverse problem was addressed primarily as a dynamics problem because
mode] and data calibrations seeking to respect both dynamical and statistical axioms in a coherent
kinetic physics context were generally lacking in this early era of ground water modeling
investigations.

Recognition that more effective statistical techniques were needed led next to applications of
least-squares optimization techniques from control theory. Objective function minimizations that
respected sparsely measured data according to methods from control theory were implemented in
user-ready codes (Doherty, 1990, among others). These techniques, referred to as indirect
methods, were driven primarily by multiple forward model solutions. The forward flow equation
was most often tacitly considered to be a PDE for mean variables in a physical continuum. With
few exceptions (e.g., Zhu, 1992) the inverse flow PDE was not solved, or otherwise respected
mathematically, in conjunction with the forward solutions used in objective function
minimizations. Incrementations of forward model simulations sufficed to generate Jacobians that
are used in the functional minimizations, without respecting the Cauchy conditions of the inverse
PDE. Practical difficulties were encountered in numerical robustness, stability, and economy. But

6
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the principal shortcoming was that, by failing to satisfy Cauchy criteria of the inverse PDE,
transmissivity parameter realizations failed to respect physical continuity.

It became widely recognized by the 1980s that it is expedient to represent aquifer parameters
stochastically through their average properties, which include mean values, average intensity of
fluctuations, and correlations. (Kitinades and Vomvoris, 1983; Newman and Yakowitz, 1979;
Newman, 1980; Clifton and Neuman, 1982, and many others.) Two major stochastic approaches
are available and have been used extensively in diverse technical disciplines for several decades.
One approach is probabilistic characterization, which determines the joint probability distribution
function (pdf) of any set of spatially dependent random variables (e.g., head, permeability, and
other hydrogeologic parameters). Master equations (Carle and Fogg, 1996; Carle, 1996), as well
as Liouville equations of classical and quantum physics, describe the dynamic evolution of pdf’s.
These types of pdf methods are not considered in the present work. The other major stochastic
approach is kinetic theory. It may either develop and solve systems of deterministic PDEs in a
physical continuum for statistical properties (which include mean values, average intensity of
fluctuations, and average cross-correlations) or determine the statistical properties by employing
functional techniques for random fields in conjunction with the mean PDE. The random field
functional techniques have apparently predominated over the kinetic PDE techniques in subsurface
flow parameter estimation problems to date. A recent article by McLaughlin and Townley (1996)
presents a well-balanced analysis that shows how some of the various functional concepts and
methods, which frequently use ‘most probable’ or maximum a posteriori estimates, are
interrelated.

The functional approaches that are applied in subsurface parameter estimations can be classified
broadly as Langevin methods. (See for example, articles by Lax, 1966; Akcasu and Osborn,
1966). The basic premise in ground water systems is that the flow equation (2.2) is a stochastic
equation, with stochastic variables defined by:

h(x,y) = (h(x,y)) + I’ (x,y) (2.3)
T(x,y) =(Tx,y) +T'(x,y) (2.4)
q(x,y) ={qx. y»+q' (x,y). (2.5)

The variables denoted with angular brackets are mean moments, and the primed variables
account for fluctuations from wvarious possible sources, including measurement errors,
unaccounted physical processes (e.g., diurnal stresses) and undersampling errors in a physical
system. Ensemble averages of the primed random variables in equations (2.3)—(2.5) are zero.
Numerical PDE solution errors have sometimes been included as fluctuation sources in parameter
estimation methods. They are not considered in the present work because dynamic adaptive grid
methods are designed to yield user-specified accuracy levels that can be quite high, relative to the
fixed-grid solution methods that have been used so widely in ground water models to date.

When equations (2.3)—(2.5) are substituted into the stochastic equation (2.2) and the resulting
equation is averaged, a type of Langevin equation is obtained. Its terms can be assembled into two
groupings of variables: one grouping is composed of only mean variables; and the second
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grouping is composed of only terms that contain averages of products of primed variables. The
first grouping is the conventional mean flow PDE; and the remaining fluctuation terms are
sometimes referred to as ‘equivalent noise sources.” It is here where Langevin and kinetic PDE
approaches usually part ways and use somewhat different mathematical representations and
solution techniques to estimate ground water parameters. Both approaches must replace an ill-
posed problem by schemas that solve well-posed problems. Kinetic PDE methods solve a well-
posed hierarchy of PDEs for multiple realizations that respect measured data for averaged moments
of h, T, and various products (e.g., h®, T? hT, etc.). Langevin methods employ either
phenomenological analyses or well-posed ‘estimator’ operators with functional analysis techniques
to determine statistical properties of h, T, and Q for ‘most probable’ property distributions that are
consistent with experimental observations. The estimators replace a theoretical inverse operator,
which generally doesn’t exist due to non-uniqueness, for the mapping of hydraulic head
measurements to estimates of transmissivities (McLaughlin and Townley, 1996). Although
constrained by the forward mean flow equation, randomly distributed transmissivity realizations
are unconstrained by solutions of the inverse mean flow equation in practice. As a result, most
geostatistical (including kriging, co-kriging, etc.) and Langevin methods of parameter estimation
fill space with randomly distributed transmissivities that are evidently not conditioned to respect
physical continuity requisites at the lowest order of the kinetic hierarchy of averaged moments.
(The work of Neuman and Orr (1993) in non-Darcy flow models, and possibly some other
investigators, can apparently accommodate the conditioning of randomly prescribed transmissivity
distributions with the inverse mean PDE constraint applied compatibly with the forward mean
PDE.) Some of the techniques developed in the present work may thus find additional application
in random field approaches that can accommodate conditioning of parameter realizations with both
forward and inverse mean flow PDEs.

Kinetic equations can be derived from both axiomatic physics foundations (Ono, 1954, 1959;
Osborn, 1963; Osborn and Natelson, 1965; Gelinas, 1966, 1967) and phenomenologically with
Langevin techniques (Akcasu, 1966; Osborn, 1967; Gelinas, 1976). Diverse technical applications
of these two basic kinetic approaches have ranged over atomic to astrophysical scales in space and
time. The kinetic theory represented by average moment equation hierarchies makes no
assumptions about the statistical distributions of h and T. The evolution equations for averaged
moments (of various h and T products) are derived directly from the underlying dynamical
equation for the probability distribution function without having to know or estimate the pdf itself.
The statistical properties of h and T are then the dependent variables in a hierarchy of deterministic
kinetic equations. Whereas the lowest-order (mean) equations are solved more or less routinely in
practical applications, simultaneous solutions of the extended hierarchical system of first- and
second-order average moment equations are generally more difficult to solve. If the full hierarchical
system is not solved simultaneously, the higher-order average moments may nonetheless be used

to constrain and select, a posteriori, the ‘best solutions’ generated from data-calibrated kinetic
PDE:s.

The mean kinetic PDE that corresponds to equation (2.2) for flow in porous media with no
sources or sinks can be written as:

Ve (T)V(h) +(T'Vh' ) = 0 (2.6)




Final LDRD Report UCRL-ID-129568 March 1998

A kinetic PDE in which the cross-correlation term, (T'Vh'), is the dependent variable can be
written functionally as:

L,(T'Vh')) = f,((T), (h), (T"T'), (h'h')). (2.7)
Similarly the PDEs for variances that complete the hierarchy at second-order are written as:

L,(T'T')) = £,((T), (h), (T"h'), ¢h'h')), 2.8)

Ly((h'h')) = KT, <), (T '), (T"T")), (2.9)

where the operators L, L,, and L, represent the left-hand sides of the higher-order moment
equations (2.7 — 2.9); and the right-hand sides of these PDEs are represented by the functions f,,
f), and f,.

When transmissivity depends significantly upon hydraulic head, as in partially saturated media,
simultaneous solution and calibration of the coupled equations (2.6)—(2.9) to field data is generally
required for best results. When the cross-correlation term in equations (2.6) is Fickian, the kinetic
hierarchy is separable in the sense that the mean flow equation (2.6) reduces to the following
expression, which resembles the original form of equation (2.2),

V e ((T)V(h)) = 0. (2.10)

In this instance, the higher-order moments may depend on mean variables, but the mean
variables do not depend on the higher-order moments. The mean and higher-order moments can
then be calibrated to measured data by separate techniques without loss of generality. For example,
the forward and inverse mean PDE solutions can be calibrated to h and T data in multiple
realizations over plausible ranges of uncertainty, on the one hand; and higher statistical moments
from mean realizations can be calibrated to the measured data as an additional constraint for
selecting realizations that best meet problem objectives, on the other hand.

In other cases, where the cross-correlation term in equation (2.6) is either sufficiently small
(e.g., steady Darcy flow conditions in saturated media where transmissivity is assumed to be a
function of only rock properties, independent of hydraulic head) or is known independently from
other analyses (e.g., other functional approaches), the hierarchy may again be solved in a separable
manner. The developments in the remainder of this report apply to equation (2.10) to illustrate
essential principles, which can then be extended to more general cases in future efforts.

3.0 DESCRIPTION OF METHODS

The main task in this section is to present some practical methodologies that are capable of
constructing transmissivity distributions everywhere in a domain Q, based on knowledge of
measured hydraulic head and transmissivity at a discrete and finite subset of € (see Figure 1).
Such reference data is assumed to fairly conform with the model assumptions of a steady-state
condition of an aquifer region with no internal ground water sources or sinks. The case with non-
zero sources/sinks is being investigated in separate work; and it is a substantially more difficult
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problem to solve numerically, especially when the given Q-term contains a collection of ‘point
sources/sinks.” Because the present work focuses on the mathematical model for the lowest-order
(mean) equations of the kinetic hierarchy, the angle brackets for statistical averages in Section 2.0
will henceforth be dropped for convenience. Also, to facilitate subsequent discussions, the
following definitions are introduced here, referring to Figure 1.

S A finite set of 2-D cartesian coordinates {(x,,y),1=1, 2, ...} at which measurements of
hydraulic head are collected. This ‘fixed point set’ becomes part of the nodal assembly
in the finite element solution of the governing PDEs.

H The set of measured head values on the set .

H' Is constructed from % by replacing all elements of # by those obtained from the
somewhat smoothed solution h, in equation (3.7).

A A set of transmissivities inferred from other well tests at some subset of S. These will be
referred to as transmissivity measurements.

Q A domain in the x-y plane over which one attempts to solve for h and T and whose
boundary dQ is a polygon consisting of those linear segments joining the ‘outermost’
points of the set S.

S All points of $ which are not included in 0Q; §'= - dQ.
Q' The entire domain excluding the set 5; Q'=Q - 8.

C"(Q) The class of all continuously differentiable functions in £2 up to order n.

Notice that it is always possible to construct £ so that it is the convex hull of 5. However, such
smallest convex set containing the set S could be inadequate in two main respects: First, highly
acute boundary corners are generated when some of the outermost points of § are very remote in
relation to the bulk of the remaining points; this is usually fixed by simply eliminating those remote
points from Sthat would seriously degrade the solution in more important regions of the domain.
Second, the number of boundary segments may be too small to allow for a reasonably accurate
prescription of boundary conditions for h. More refinement of the boundary can frequently be
attained by slightly relaxing the convexity condition on € and incorporating nearby points of S in
the prescription of dQ. The proximity of nearby points of S to d€ is usually measured relative to
the diameter of &.

Starting from the mean flow equation (2.10) for porous media with Q =0,
Ve (TVh) =0, (3.1)

and assuming that h(x,y) is known everywhere in €2, then equation (3.1) can in principle be solved
for T(x,y) as the unknown dependent variable. This is the inverse solution process and is to be
contrasted with the familiar usage of equation (3.1) to solve a forward problem for h when T is
given everywhere in Q. Frequently, equation (3.1) is referred to as the inverse equation when the
inverse solution process is being considered; its solution, T, is then referred to as the inverse
solution. Being a first order PDE in T, equation (3.1) can be solved by the method of
characteristics provided that its coefficients satisfy some reasonable smoothness conditions.

10
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Although the classic characteristic approach is not employed in this work; the latent wealth of
information pertaining to the theory of first order partial differential equations (Courant and
Hilbert, 1953; John, 1982) is nonetheless employed extensively and implicitly in the present work.

Sparsely measured head data (as well as sparse transmissivity data) present both the major
problem and the reason for transmissivity parameter estimation. Because of the lack of complete
knowledge of h everywhere in €, it follows, that head gradients are not defined in all of €2; and
thus a PDE simply does not exist from which T can be determined. An immediate way to proceed,
then, is to find an interpolating surface that passes through all of the head datum points. Because a
vast number of such surfaces often exist, one finds that, unless further constraints are imposed, the
inverse solution (if found) will often yield unphysical transmissivity distributions. The cause of
this difficulty is readily explained: most trial interpolating surfaces that pass through the measured
head datum points form relative maxima or minima ‘spikes’ on the set S, thereby violating the
maximum-principle for elliptic differential equations. See, for example, Protter and Weinberger
(1984). The interpolating surfaces must therefore be selected judiciously—which is the starting
point for the developments in this work.

Before forging ahead with the issue of how to construct and solve the inverse PDE, it is
constructive to review briefly the method of characteristics for first-order quasi-linear differential
equations. In order to write equation (3.1) in standard form, one assumes, momentarily, that the
head, h, belongs to the class of functions C*(). The theory of characteristics then leads one to
solve the following set of autonomous ordinary differential equations (ODEs):

95 = a—h (3.2)
ds dx
dy _oh (3.3)
ds dy
d—T = —TAh 3.4)
ds

where s is a parameter measured from some given ‘initial’ point (x,y,.T,), and A denotes the
laplacian operator. The first two ODEs (3.2) and (3.3) easily map the geometry of characteristic
curves (or more precisely, the projection of the characteristic curves on the x-y plane) based solely
on knowledge of head gradients. The third ODE determines T uniquely along the entire
characteristic which passes through (x,,y,) and such that T=T, at s=0. In fact, if the parametric
solutions: x=X(8,Xq,¥)» Y=Y(5,X,,Y,) obtained from equations (3.2) and (3.3) are substituted into
equation (3.4), the solution to equation (3.4) is obtained readily in the form

T =T, exp{- J{Ah(”[) dr}, (3.5)
0

which incidentally guarantees that T will always remain positive, as expected. It is assumed in
equation (3.5) that the functional form of Ah is known at least along the characteristic curve
through (x,,y,). Transmissivities would be completely determined everywhere in € once T is
given values along an entire non-characteristic initial curve I", provided that all of the characteristic
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curves emanating from I" sweep the entire domain Q. If not, one can only solve for T on the
subdomain that is swept out by the characteristic curves.

Turning attention to the reality of dealing with non-smooth h, several daunting problems and
concerns must be addressed at this stage. The first problem, the satisfactory resolution of head
laplacians from sparse data, is in practice intractable because the head gradients are often
discontinuous on Q; and the head laplacian is therefore undefined on all of Q. A second concern is
that only one transmissivity value is needed on a characteristic curve in order to determine all other
transmissivity values along that curve uniquely. If additional inconsistent values were to be
assigned somehow on the same characteristic curve, as is frequently done in stochastic
transmissivity parametrizations, zonation schemes, and history matching techniques, fundamental
ODE solution requirements for the inverse equation are contradicted and physical continuity is not
respected.

A third problem is one of managing logistics; i.e., the bookkeeping of all generated
characteristic curves emanating from some finite set of points traversing I" for the eventuality of
constructing the integral surface containing these characteristic curves. Thoughts concerning these
problems motivated the present quest for more viable parameter estimation techniques—techniques
that can solve simultaneous forward and inverse flow PDEs, augmented by spatial filtering PDEs
for data smoothing, in a true physical continuum according to kinetic theory.

The process developed here for heading off some of the classic difficulties mentioned above is
composed of four basic steps. Each step can be described and verified separately before merging
them finally into a simultaneous, iterative process for sparse, noisy data in field applications. The
basic steps are:

1. Form a trial interpolating surface h(x,y) in Q such that, on the discrete subset S' of £, h, is
forced to take on the corresponding measured values in the set #. The interpolator
employed here is a variant of the flow equation.

2. Introduce and solve an additional PDE for smoothing h, in €. The amount of smoothing of
spikes in h_at measurement points is controlled by user-selected parameters. This produces
spatially filtered distributions h_ that can deviate from # on the set S ' by any preset
amount.

3. Introduce and solve two additional PDEs that produce smoothed head gradient
components, u and v, from h, obtained above. It is extremely important to smooth head
gradients prior to using them as coefficients in the inverse equation.

4. Solve a regularized variant of the inverse equation using a spatially filtered head gradient
(u,v) in lieu of Vh.

The first step is a ‘rough’ interpolation of the hydraulic head data. The key idea is to bring a
stronger influence of physical dynamics to bear on the interpolation, than is usually applied in
statistical interpolation methods. An obvious choice is to use a variant of the mean flow PDE,
itself, as the interpolator. Letting T be a constant average value (or any constant value), the
interpolating equation is

Ve(TVh) = 0. (3.6)
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It is important to note that equation (3.6) is to be satisfied in Q', rather than in the entire
domain €. The solution h, is ‘pinned,” or clamped, to the set # on the remaining set §'. In other
words, h is constrained to both respect the values of measured head and to satisfy the flow
equation everywhere else in Q. This is directly analogous to solving mechanical stress problems
with fixed loads at given coordinates. Galerkin numerical solution methods are especially well-
suited for solving these types of PDEs because they can respect the data at fixed points and yield
optimized solutions that minimize PDE residuals over the rest of the problem domain. On 0,
Dirichlet boundary conditions are assigned to h; these are calculated by linearly interpolating
between the values of h at the known end-points of cach boundary segment. Linear interpolation is
expedient but other methods of assignment may be used when they are more appropriate.

This first trial interpolating surface is calculated in this work by employing a dynamic adaptive
grid finite element code toolkit, PDEase, which enables the user to solve equation (3.6) in Q',
subject to the pinning constraints. (This feature was implemented in our version of the PDEase
toolkit by its author, R.G. Nelson, specifically for this project. See the texts of Backstrom (1994,
1998) for not only specific information about using such advanced toolkits as PDEase but also new
modes of thinking and posing computational models with these emerging tools that will
increasingly respect and enforce essential mathematical requisites in complex physical problems.)

The solution h, in this step is expected to possess relative maxima or minima that may be
associated with several possible origins. First to come to mind is the sweeping approximation of
replacing T by its average value on . While this might seem to be the major cause for such
extraneous behavior, it is seldom the case. Other possible causes include: data errors or noise,
ground water sources/sinks that were previously unknown, absence of a perfect steady-state in
nature, and local/non-Darcy effects (equivalent sources).

The second step performs an additional smoothing process on h, over £ in order to damp or
completely diminish spurious spikes. It is necessitated because complete clamping of h, to # on §'
created a corresponding set of local spikes, which cannot exist anywhere in €2, in the absence of
physical sources or sinks. (When such spikes actuaily turn out to be previously unknown physical
sources or sinks, the presently described techniques turn out to be useful ‘source-finders,” which
is another subject that will be considered as part of ‘data-mining’ in future work.) Looking ahead
to the next (third) step, much of the important information content from hydraulic head
measurements, no matter how sparse or devoid of high spatial frequency information they may be,
resides in the gradients and laplacians of the head, as was indicated in previous discussion. The
objective in the second and third steps is to extract as much information as possible by performing
spatial filtering that is commensurate with the spatial frequencies of the measured data. Such
filtering is also required to produce a smoothed h, that effectively satisfies the maximum principle
for elliptic differential equations. The clamping imposed on h, is therefore relaxed at the
measurement points by solving the following PDE for h_on €:

Ah, + (b, -h) =0 in 3.7

The laplacian operation in the first term of equation (3.7) is recognized to be a bandpass filter
function (McGillem and Cooper, 1984). It does not have a sharp cut-off at any spatial frequency;
so some latitude can be exercised in laplacian smoothing with this factor in mind. The second term
in equation (3.7) can be viewed as a penalty function that controls the amount of smoothing of h,
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through proper choices of the parameter o. Clearly, very large o yields an h_ that hardly differs
from h;; that is, very little smoothing is done. And vice versa, as o approaches zero, h_ approaches
a harmonic solution in €. But too much smoothing is obviously undesirable when it loses (by
aliasing) significant amounts of information about the set # on S '. So one must ask, how
much/little smoothing should be applied at measured points? Simply stated, spikes in h_ at
measurement points must be damped sufficiently so that only mild relative maxima and minima
may still persist at this stage. (Recall that the average transmissivity assumed in the first step is not
the final distribution that is sought.) The solution h, is then used to construct a new set H ' of
smoothed heads on §', and ' replaces # in subsequent steps.

The rationale for step three is built on the fact that the gradient of h_, and not h_ per se, is the
critical determinant in solving for T in step four. Because small deviations of h, from a
correspondingly true head produce large deviations in calculated head gradient, this smoothing step
is mandatory. The principle applied in the third step is similar to that in step two. Defining (u,v) to
be the desired smoothed head gradients, relative to less-smooth gradients (dh/dx,0h/dy), the
following two PDEs are introduced and solved for on Q:

oh,
d

Au + B(—=-uw) =0 in Q (3.8)
X

ave iy -0 i o (3.9
dy

Several options are plausible for assigning boundary conditions (BCs) for u and v on Q. A
straightforward option is to let (u,v) take on the gradient of h, on dQ. This option will generally
produce solutions that behave unrealistically in the vicinity of d€). This can easily be explained,
since Vh, is generally discontinuous on 0. If Vh, is first smoothed prior to employing it as given
Dirichlet data, then a more realistic filtered solution (u,v) everywhere in Q is expected. Another
option that also tends to damp such peculiar behavior is a Neumann condition of the third type.
This is the option used in present work.

The fourth step attempts to determine T based on knowledge of spatially filtered head gradient
(u,v) obtained in step three. As part of a procedure that deals mainly with solutions of boundary
value problems (BVPs) in steps 1-3, it is both desirable and advantageous to recast the inverse
cquation so that a BVP can be prescribed here as well. This is accomplished by solving a
regularized version of equation (3.1) through the addition of the regularizing term €AT, for
sufficiently small €,

Ve(Tu, Tv)+eAT = 0 in Q. (3.10)

This modified equation (3.10) is in principle an elliptic equation. But in practice it is essentially
a hyperbolic PDE. The solution to equation (3.10) can then be completely determined, provided
that T is given along some non-characteristic curve I' in the closure of Q and such that the
continuum of characteristics emanating from I" span the entire domain Q. For brevity, a I curve
that satisfies these conditions will be referred to as an admissible T" curve. If no admissible T" curve
exists for the entire domain €2, then one must partition € into two or more subdomains, each of
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which possesses its own admissible I" curve. Fortunately, in the absence of sources and sinks in
ground water flow problems the geometry of characteristic curves is usually simple enough (but
not trivial!) that it only requires the specification of a single admissible I' curve. No further
specification of T along the remainder of dQ is required. Such a ‘no specification’ boundary
condition is exacted by recycling integrands in all boundary integrals that are produced from
integration by parts in the numerical solution process. That is, whatever expression appears in a
boundary integral, it is reused, as is, in forming the mass matrix of the Galerkin equations.

It appears, so far, that knowledge about the projection of the characteristic curves on the x-y
plane (or simply characteristics) for equation (3.10) with € = 0, enters in this analysis for the end
purpose of determining admissible curves I'. Such a purpose could just as well be accomplished
quickly by graphically investigating the normalized spatially filtered head gradient (u/s, v/s),
s=(u" +v*)?’ (i.e., vector field plot). Knowledge about the characteristics, and more importantly
how stably and efficiently they are determined, serve a much wider goal in this work. Consider,
then, the solution y of the following first order PDE:

T 3.11)

Jx dy

and suppose I' is an admissible curve in €, which could be a part of dQ. For simplicity, let y take
on any monotonically increasing set of values along T', say for instance y = s, s being some
parameterization of T" such that 0 <'s < | (see Figure 2). One can conclude from the theory of
characteristics that the continuum of curves {y = C, 0 < C < 1} is precisely the set of all
characteristic curves for equation (3.11). That is, if one can solve equation (3.11) ‘directly’ in Q in
lieu of actually solving the standard ODE:s for the characteristic curves, namely,

EKon Yoy, (3.12)

the entire geometry of characteristics is then obtained, all at once, from the knowledge of . Such
direct solution of equation (3.11) can be accomplished by regularization with the term €AWy,
paralleling the previous discussion. The essential BC required here is that which is given along T,
namely W = s; and ‘no specification’ BC is required along the remainder of dQ. The function
should not be confused with the classical stream function ¢. The latter is defined as a solution to
the Cauchy-Reimann equations,

3 _ on

= — = 3.13
o0x dy Y (3.132)
a—¢ = —a—h = -u (3.13b)
ay ox
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and is usually obtained as the solution to the harmonic equation A¢ = 0 along with proper choices
of BC for ¢ on d€2. The solution ¢ obtained this way is identical to y only for constant T. Notice
further that, since equations (3.13) also yield an equation similar to (3.11), namely,

u é? +v % = 0, (3.14)

ox dy

it follows that ¢ obtained from equation (3.14) will be identical to y under similar 9p601flcat10ns
along T, regardless of the spatial distribution of T.

Returning to equation (3.10), it is of interest to note its relationship to equation (3.11). For
simplicity assume that both u and v are differentiable. Equation (3.10) can then be written for €= 0
as,

oT oT Ju
— — + T(—+—) = 0. 3.15
Yo T V% Ot y) (3.15)

In the absence of the last term (which is essentially TAh), equation (3.15) is identical to
equation (3.11) with y replaced by T. The point to be made here is that the behavior of the solution
process in (3.11) is expected to reflect on how the solution process to (3.15) will develop. In fact,
it was found that it is often convenient to represent T in (3.10) as the product of two functions,

T=®T,, (3.16)

where T, is a general or generic solution to equation (3.10) with T,=1onT; and ® is a particular
solutlon to equation (3.11) with ® =T, along I'. It is clear from thls specification that T = T, on .
That the factorized form of T in equat1on (3.16) formally satisfies (3.10) is also st1a1ghtforward to
deduce. One can further notice that (u,v) only needs to be continuous along I in order for the
representation (3.16) to make sense. Also notice that, if T is either a portion of the domain
boundary dQ or if it is an isocontour h(x,y) = constant, then no assumptions about the smoothness
of (u,v) along I" are required. The additional rationale for the T factorization will be addressed
shortly.

The foregoing analysis of the four main steps was presented as sequential steps so that each
succeeding step builds on the results of the preceding one, but not vice-versa. The core algorithm
presented in this work, however, consists of merging, with slight modification, the equations
studied in these steps into a full-fledged system of coupled nonlinear equations. The purpose of the
sequential presentation was to: (i) better understand the motivations and rationale leading to the
creation and execution of each step; (ii) derive a new set of head values # ' that are more
compatible with prospective transmissivity distributions than #; and (iii) obtain a reasonably good
starting set of trial values for the quartic {h, u, v, T}.

The system of equations employed for the final determination of T is derived with few minor
modifications from the four steps discussed previously. The system solved in this final stage
consists of four PDEs in four unknowns {h, u, v, T} expressed as:

VeTVh=0, (3.17a)
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Au+a(§2—u)=0, (3.17b)
ox

AV+OC(§E—V)=O, (3.17¢)
dy

Ve(Tu,Tv )+ﬁAT =0. (3.17d)

The main distinction between equations (3.17) and the previous individual steps is that
equation (3.6) with constant average T in step 1 is replaced by equation (3.17a), with both T and h
unknown. A similar distinction holds between equation (3.17d) and equation (3.10). Whereas
equation (3.17d) treats T, u, and v as unknowns, equation (3.10) was solved only for T with u
and v assumed known. Notice that no further smoothing of h, itself, is performed here. The
smoothing of head gradients is however, retained. Discussions related to boundary conditions in
the previous steps carry over to this system of coupled equations, with one exception. Namely, the
set #in step one is replaced by the set #' here. Taken as a whole, the system of PDEs (3.17) is
obviously nonlinear in the unknown variables {h, u, v, T}. As such, it is important to start with
good initial trial estimates according to the procedures developed in this work for starting the
Newton-Raphson linearization process employed in the numerical PDE solver.

As discussed previously for equation (3.16), one can factorize T as T =®T, and solve the
system (3.17) with T, in place of T, obtaining solutions for u, v, and T,. One can then obtain O by
solving separately, the following regularized PDE:

u@+v§2+gA¢=O. (3.18)
ox ay

The system (3.17) with T replaced by T, is devoid of any particular assignment of
transmissivity data along I'. (Recall that T, = 1 along I under this factorization.) The system (3.17)
therefore needs to be solved only once; and many different possible realizations of T along I" can
then be tested quickly by solving the simpler, single equation (3.18). The facility of T, = 1 on I'
implies that a reasonable initial guess for the Newton-Raphson linearization could be taken as T, =
1 everywhere in Q. On the other hand, an assignment of highly varying T along I" when solving
the original unfactorized T can lead to instabilities and outright divergence of the numerical solution
process.

In concluding this section we note that, in general, the set 7 of transmissivity values is usually
given on a set of points scattered all over the domain €. This leads to the question of how to
translate the scattered information about 7to a more ordered representation along some admissible
I" curve, as required in the above solution process. The answer to this question is fairly simple.
Given the fact that the characteristic curves and the general Tg solution are available to us, these
scattered T values can simply be propagated, or back-projected, along their corresponding
characteristic curves up to the curve I (see Figure 2). It follows from the definition of T, and the
expression for T in equation (3.5) that the value of transmissivity at the point of intersection,
(X,¥,), Of the characteristic curve starting from a point of measurement, (X,',y,"), and the curve I'
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is the ratio Ty(X,,¥o) = Tpeus(X0'5¥0 ) To(X4'Y,)» Where T (X,',y,) is the transmissivity measured
(or otherwise assigned from ‘soft data’ etc.) at (x,,y,") belonging to the set T.

= constant

meas

Tmeas (XOI’ yOl)
ERD-LSR-98-0051 Tg (xo‘, yo')

Figure 2:  Schematic representation of an admissible I" curve in a
domain Q. Transmissivity values measured at (x,', y,) can
be projected to the " curve by procedures developed in later
sections of the report,

4.0 APPLICATION AND RESULTS

This section considers three example problems, with numerous cases to illustrate specific
features. Two examples were constructed with synthetic data sets and have known distributions of
h and T. These examples are solved and compared with the ‘true’ solutions in order to better
understand the capabilities and limitations of the present approach. A third example was
constructed from the Livermore Site Environmental Restoration data base for the Superfund
cleanup of contaminated ground water at Lawrence Livermore National Laboratory (LLNL).
Extensive analysis was carried out on the synthetic cases because they enable one to verify code
algorithms and logic against known solutions. They also enable one to evaluate the behavior of the
method when arbitrary under-sampling conditions are imposed computationally.

18
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The first example problem consists of a pair of compatible functions T(x,y) and h(x,y) that are
analytic everywhere. In a second example problem, T is selected to be a discontinuous staircase-
like function, and h is then constructed as the solution of a forward BVP with the staircase-like
function T for the transmissivity. A fuller description of these simulations follows.

Example problem 1: The pair (T,h) is given by the following hyperbolic functions (see Figures
3and 4):

h(x,y) = a+b sinh(n (x’-y*)) (4.1a)

T(x,y) = c/cosh(n (x*—y*)) cosh(m(xy—d)). (4.1b)

Figure 3:  Plot of synthetic head h, as given by expression (4.1a) for
a=20,n=2,and b =10/sinh(n) in example 1.
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Figure 4:  Plot of synthetic transmissivity T, as given by expression
(4.1b) forc =100, n =2, m =12 and d = 1/4 in example 1.

The domain Q is taken as the unit square (0 < x < 1) by (0 <y < 1); and the parameters a, b, c,
d, n and m are given the values 20, 10/sinh(2), 1000, 1/4, 2 and 12, respectively. This chosen set
of parameter values allows h to vary from a low of 10 to a high value of 30. The corresponding
limits for T are .25 and 1000, respectively.

If units of ft and ft*/day were to be assigned to the ranges of h, 20 ft, and T, nearly 1000
ftzfday, then these ranges would resemble those found in field measurements. It can also be noted
that, besides choosing T so that it is always positive and bounded away from 0, its shape could
well represent a geologic feature of say a braided-stream sand deposit embedded in a fine-grained
over-bank deposit. The smooth and symmetrical shape of the function is ordinarily not a natural
occurrence.

Example problem 2: A domain 2 consisting of the square (-4 < x < 4) by (-4 <y <4) is
selected. As shown in Figure 5, Q is partitioned into 64 equal blocks, or zones, of unit squares;
and T is assigned a constant value on each of these 64 zones.

The constant zonal values of T alternate several times between increasing and decreasing
geometrically, giving rise to a haphazard staircase-like shape with a range of T between 1 and
about 75. Given this distribution for transmissivity in €, the following BVP for h is solved
numerically: Ve(TVh) = 0 in Q, along with the BCs h = 100 on the side x = -4; h = 10 on the
opposite side, x = 4, and zero flux condition along the remaining sides y = +4. The solution to this
BVP was obtained to a very high accuracy for the pair (T, h) and is shown in Figure 6 as head
isocontours. This solution pair is used shortly to test the present approach for the effects of data
undersampling in parameter estimation. This example is intended to be an extreme opposite to
example 1.

20
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Figure 5:  Plot of synthetic transmissivity used in example 2.
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Figure 6:  Isocontour plot of the solution h(x,y) in example 2. The
contours a, b..., q correspond to h = 15, 20, .., 95
respectively.
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Example problem 3: In contrast to the previous two cases, this example employs a genuine set
of measured head and transmissivity data. The data involved were collected in the month of April,
1989, and are found in the archival data base (EPD Data) of LLNL, Livermore Site, Superfund,
Environmental Restoration Division. The particular choice of the month of April is favored because
the recorded head data is traditionally known to be nearest to its mean seasonal values in April.
Also, measurements collected during the year of 1989 were not impacted by internal sources and
sinks due to remedial pumping from environmental restoration wells in the aquifer. In later years,
during cleanup operations, hundreds of extraction wells were installed; and the head data were
locally perturbed from ambient values. (Data as recent as February 1998 are presently available.)
Hydrologically speaking, the data considered in this example are a subset corresponding. to
hydrostratigraphic unit 2 or HSU2, which was extracted from the original larger set (See Figures 7
and 8) (Blake et al., 1995). This hydrostratigraphic unit HSU2 is the predominant contaminant
bearing subsurface unit at the Livermore Site. Once more, a subset of this latter set was extracted
by removing some anomalous data points for a variety of reasons such as, very close proximity of
points, unrealistic values due to errors of interpretation, data base errors, etc. In all, 82 head data
points remained to form the set # (see Figure 7), 19 of which were used to form a closed boundary
that contained the remaining 63 data points. Likewise the transmissivity data used here are sampled
from a larger data set that includes all the tests done in HSU2. This data was determined by using
industry standard test model inversion techniques (Theis, 1935; Cooper and Jacob, 1946; Hantush
and Jacob, 1955; Hantush, 1960). Quality ratings ‘excellent’ to ‘poor’ were assigned to each test.
Only excellent and good values of T were used in this example problem. Median values of T were
used when multiple observations were made at a single well. In all, 32 points for inferred
transmissivity data were retained to form the set 7 (see Figure 8). All members of 7 and ¥ are
listed in Tables 1 and 2, respectively, in the Appendix, along with their corresponding (xX,y)
location (referred to with the state of California coordinate system) and well ID. For ease of
reference, these tables retain the original ordering of entered data; but they do not list omitted
values. Also note that the numerical results presented here were carried out in a domain Q
contained in the unit square (0, 1) x (0,1), which was obtained by a simple translation followed by
a scaling of the axes.
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Scale: Feet "
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Figure 72 Map of the LLNL, Livermore Site area. The Livermore Site
is a Superfund site and is about 1 mi. square (see outline
shape). Open circles (blue) are monitor wells where h has
been measured monthly since 1989. This data set is from
April of 1989, prior to the initiation of remediation well

pumping.
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Figure 8: Closed triangles (red) are the well locations where
hydraulic tests were conducted from 1989 to present. Only
the highest quality tests were used. The values range from
about 20 to 6,100 ft*/day.

Six cases are considered to demonstrate various aspects of this parameter estimation technique.
The first four cases use the analytic functions for h and T from equation (4.1). Case 5 is the second
example problem with a synthetic data set for 64 discontinuous zonal transmissivities. This
transmissivity model is analogous to many conceptual models that use zonal transmissivities in
practical applications. Case 6 is actual field data of h and T from LLNL’s ground water restoration
project. This is a real test of the technique because an exact answer can never be obtained, which
suggests that the answers attained will always depend on the amount, location, and distribution of
available data. These various cases are discussed in greater detail in the remainder of this report.

Accuracy measures in the PDEase toolkit are controlled by a few input parameters. In addition
to global error minimization, which is inherent in Galerkin methods, additional measures of local
error control the unstructured grid refinement process during problem solutions. For evaluating
PDE solution accuracy in our results, two different error measures for a solution f are evaluated
and graphed: the maximum relative error norm MREN = max I(}E“k - foxac)! foxact |, and the L'
relative error norm, or average relative error (ARE), defined by

s J.[I (fcalc B jt-?xac:()/j-exw) IdA. (42)
Q
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With the exception of nonlinear problems, all initial trial solutions required by the conjugate
gradient methods in the PDE solver were arbitrarily chosen to be 1. An orthemin norm (Jea and
Young, 1983) conjugate gradient method is used in the toolkit for symmetric differential operators
and a Lanczos/orthomin biconjugate method is applied for asymmetric operators. A normalized CG
method due to Vandenberg (1988) was incorporated in the toolkit for solution of highly
asymmetric problems.

Synthetic Examples. Cases 1 and 2: Verification of purely forward and inverse
solution techniques

Two cases are verified using the analytic functions in equation (4.1). In Case 1 exact values are
known for T in € and for h 9Q. The forward problem is solved for h. In Case 2 exact values are
known for h everywhere and T is given only on I'. These two cases are a test of the numerical
proficiency of the adaptive Galerkin techniques employed by PDEase on the forward and inverse
aspects of the problem independently. Traditionally, fixed numerical grid methods are employed to
solve these PDE problems; they are known to generate numerical errors that would be problematic
in the present work.

Case 1 Results: The exact and the numerical solution obtained are virtually indistinguishable.
Calculated head isocontours are shown in Figure 9. These results demonstrate that, given a true
BVP, the dynamic adaptive grid Galerkin technique employed in PDEase is capable of calculating h
everywhere in €2 to a very high accuracy. For a PDE error criteria (used in PDEase) of 1.E-6 the
resulting errors in the h solution were MREN < 0.1% and ARE < 0.01%.
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Figure 9:  Isocontours of h in Case 1. MREN < 0.1% and ARE < 0.01%.
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Figure 10 shows the adaptive grid configuration, which contained 4800 cells (triangles), at the
conclusion of this problem’s execution. At the start of the problem, there were approximately 100
cells in the initial grid that was constructed automatically by the toolkit.

Case 2a: Solve the pure inverse problem for T where transmissivity is given by equation (4.1b)
along T, chosen here to be the 45-degree diagonal. This case seeks to verify the following
proposition: A parameter estimation method that is expected to solve real-world problems with
undersampled data, where a ‘true solution’ can never be known, should also be expected to solve a
well-posed problem for unique T(x,y) when given a ‘perfect’ data set for h on € and T on I".
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Figure 10: The grid at conclusion of the case 1 solution has 4,800
individual cells. The density of cells highlights regions in
€2, where the technique had to subdivide in order to meet
the local error criterion.

The calculated results (Figure 11) demonstrate that, the PDEase solution techniques are capable
of calculating the solution to any desirable accuracy within practical limits. The final grid in this
case incorporated over 7,600 cells and demonstrated the difficulty of accurate numerical
integrations of the PDE in regions of Q where transmissivity gradients are large. The adaptive
solver is essential in solving this type of problem, where the gradients of T in nature can be highly
disparate.
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Figure 11: Contour plot of absolutely relative error in Case 2a. MREN
< 2.5% and ARE < 0.05%.

The maximum relative error is < 2.5%, and the ARE is < 0.05% (see Figure 11). The relative
error is maximum along the left and bottom boundaries, which together form a degenerate
characteristic curve. Also, Figure 11 shows an area in the neighborhood of (1,1) with significant
relative cell error. Errors in this neighborhood are due to the diminishing values of T there, which
in turn cause larger absolute relative errors.

Case 2b: Solve the pure inverse problem for T, where transmissivity is known only on T,
which is now taken as the side boundary x = | and 0 <y < 1. It is expected that the solution in this
case will be degraded only slightly relative to the previous Case 2a, where the T information given
on I" propagated equally about the diagonal. In contrast, the information along I'" in Case 2b is
propagated twice as far as before and is thus subjected to more degradation as it traverses the
domain along the characteristic curves. The fact that the head gradient vanishes at (0,0) is likely to
contribute to the increase in relative error that is seen in this region.
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Figure 12: Contour plot of absolute relative error. MREN < 3.5% and ARE <
0.08%. The choice of T is significant but not critical in this
synthetic example.

Case 2c: Solve the transmissivity problem as posed in Case 2b with the factorization method
described by equations (3.16)-(3.18), using T, = 1 on I'. The results are presented for the
component factors ® and T, in Figures 13 and 14 and for T, in Figure 15. The results for T, are
visually indistinguishable from the analytic solution in equation (4.1b) and Figure 4. The errors in
the calculated transmissivity are MREN < 3.5% and ARE < 0.08%. As in previous cases, the
maximum errors occur near degenerate streamlines along the left and bottom axes and where very
small values of T occur near (1,1).

28




Final LDRD Report UCRL-1D-129568 March 1998

T1 CL is SB=1
_Vol= 2 495978

L N ; ———e oo max | 3.7626
; B : 3.7000
0.9 — ) . EAD
) ¥ o 3.4000
B — AN w 3.2000
- NN v 3 1000
Nl RAATRL Y - 3 Q000
0.7 —~q.. W t : 2 8000
a6 N N I‘_L ‘ ;{ c 2 Ab‘c(]‘l)r;;
i o : 2.4000
“ \ | ! . 5 3000
> 0.5 S \'[ vl | m 2.2000
Y 11 ! | i - 2 1400
0.4 l ‘i! 1 G000
} i i 1 i 1.8000
| | . ' q 1. 8000
o IJ ‘ | H ( | ? 1.58Q00
1] H ( e 1.4000
0-2 | I | d i 1.2000
SRR Hf |
[ I | i | a - 1 0000
o t’ } [H‘ | ml ! | min 0 9999
oo L 1 ‘ ‘ | | Il | |
0.9 041 02 0.3 0.4 0.5 a.6 0.7 0.8 0.9 10
X |

Figure 13: Isocontours of T, , for case 2c. Values of Tg range from 1.0 along the
curve I to 3.76 at the origin.

The T, surface shown in Figure 13 has the shape of a plateau with a ridge oriented along I"
from (0,0) to (1,1). A possible interpretation of this surface is that T, reflects the information
contained in the h data about transmissivity when very little is known about T. The @ solution is
shown in Figure 15. The ® surface evidently parallels the streamline function. The intersection of
® with I coincides with the maximum ridge in the T, surface (Figure 13) and takes the appropriate
value of T, in order to reproduce the maximum value of T of 1,000 shown in Figure 4.
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Synthetic Examples. Case 3: Analyze undersampling in head data from example
problem 1.

Case 3: The analytic or numerical solutions from problem 1 can now be sampled with varying
degrees of sparsity in order to obtain an undersampled data set for a new problem that resembles
the practical circumstances that are encountered in the field. Figure 16 depicts head measurement
locations in an undersampled data set with 81 h ‘measurements’ given at ((i-1)/8, (j-1)/8; i, j = 1,
..., 9. Transmissivity is given along the curve I, which is taken here to be the 45° diagonal. Head
values were linearly interpolated between the data points on dQ. Using the full, factorized
parameter estimation approach described with equations (3.16)—(3.18), the results retained much
of the essential character of the original problem (Figures 3 and 4). The MREN < 40% for

transmissivity occurred along the axes, as shown in Figure 17, and is less that 2% on the interior.
The ARE < 3.2%.

Spatial filtering of the head gradients in equations (3.17b and c) was crucial for attaining these
error levels. (Without filtering, numerical gradients can be very unstable and seriously degrade
parameter estimates.) That maximum errors occurred near the axis is probably attributable in part to
the fact that errors/noise in head gradients are largest near boundaries where there is little support.
This factor may further suggest practical considerations of the relative worth of measurements at
boundaries versus interior points. To gain a sense of the significance of interpolation errors at €2,
this problem was solved using the ‘true’ head values on dQ with a 7x7 stencil of interior data

points. We found that the MREN dropped to 19% and ARE < 2.2%, supporting the above
suggestions.
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Figure 16: Schematic representation of case 3. The data set from h
solutions in example 1 (Figures 3 and 4) was sampled at 81
discrete points including the boundary. Boundary h values
are linearly interpolated along the boundary. T is known
only on I" along the 45° diagonal.
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Figure 17: Error isocontours for the 9x9 undersampled h problem. Maximum
error occurs on the edges along the axes and does not exceed 40%.
However, the average relative error is < 3.2%.

Synthetic Examples. Case 4: Undersampling in head and transmissivity data for
example problem 1.

Case 4: Solve the (9x9) undersampled data set considered above, but with transmissivity
values at the 49 interior locations ((i-1)/8, (j-1)/8; 1, j =2, ..., 8 and at the corners (0,0) and (1,1).
This is the general situation that is encountered in the field, except that a ‘true solution’ is available
in the present instance. As in the previous case, the given 32 head values on 0Q were linearly
interpolated to construct the boundary data for h. The 45° diagonal was selected as I', and all the 51
given transmissivity values (‘measured data’) were back-projected along characteristics onto T,
with T, being evaluated on I as described previously. But what to do about values of T, between
the discrete points that were projected from T, ? Several alternatives are possible: (i) interpolate
(or extrapolate) between ‘measured’ T, values along I', (ii) use additional soft-data (including
human judgment for transmissivity to generate additional T, (iii) or use other techniques (e.g.,
stochastic models) to generate additional T, prior to interpolations and/or spatial filtering of T,
along T'. In the present example, the T, values were declustered, interpolated, and smoothed by
spatial filtering analogous to u and v. Figure 18 plots the T, (red curve) projected from the discrete
datum points on the same graph as the ‘true’ T, used in problem 1. The errors in the calculated
transmissivity (Figure 19) were MREN < 136% and ARE < 8% (Figure 19). When testing the
significance of not having ‘measured’ T data at the extremity of I" in the corners (0,0) and (1,1),
we found that MREN = 2500% at those corners and ARE < 11%. This result raises significant
questions regarding the relative worth of various data types, locations, and information content
when designing field measurement strategies for effective subsurface characterizations.
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Figure 18: Plot of smoothed T, (red curve) that was back-projected from
undersampled h and T data and also the ‘true’ T, (orange).

Maximum error < 1%.
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Figure 19: Plot of MREN for the undersampled h and T problem in case 4.
Maximum error occurs in the corner of Q where T is small.

MREN < 136% and ARE < 8%.
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Synthetic Examples. Case 5: Undersampling in head and transmissivity data
from example problem 2.

Case 5: Solve transmissivity with undersampled data from problem 2 (Figure 5). ‘Measured’ h
data are given at the center of each of the 64 blocks (shown in Figure 5), and T is given along the
side x = -4; (-4 < y < 4). Exact transmissivity values were assigned along I in the calculation of
the particular solution @ equation (3.17). Using the factorized methods described previously, the
discontinuous transmissivity features of the ‘true’ solution (Figure 5) are resolved as shown in
Figure 20 for T, and in Figure 21 for T,,.. As expected, sharp discontinuities in T are smoothed by
the undersampling. The general features have however been reproduced with surprisingly good
fidelity from the information contained in such few observation points, in our opinion. The MREN
< 245% and ARE < 19%. Maximum errors, as seen in Figure 22, occur at the T discontinuities, as
anticipated. It is here that adaptive grid PDE solvers apparently demonstrate their worth for
calculating gradients with the maximum fidelity that is compatible with supporting measured data.
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Figure 20: Isocontour of T, for case 5 with T,=1along I'.
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Figure 21: T, for case 5. This estimated transmissivity has the overall shape
of the ‘true’ solution shown in Figure 5.
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Figure 22: Plot of MREN for the undersampled h and T problem in case 5.
Maximum error occurs along horizontal lines between large
changes in T and does not exceed 245%. The ARE is <19%.
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LLNL HSUZ2 data set, undersampling in both head and transmissivity data for
example problem 3

Case 6: Estimate lateral transmissivity distribution in HSU2 using the LLNL, Livermore Site,
head data from April 1989 and T data from 1989 to present. (It is reasonable to assume that the
aquifer thickness is known and the transmissivity is a function of only rock properties in the
saturated porous medium at LLNL). In the present case, the true transmissivity is unknown; and
professional judgment is used to select the smoothing parameters. A slightly non-convex domain
was constructed from this data set and is displayed in Figure 7. Transmissivity was determined
using standard analysis of pumping tests in wells, with test durations ranging from 4 to 72 hours
and with wide variations in quality. Taking into consideration all relevant aquifer information, a
data quality value was assigned for each test result. Only ‘excellent’ and ‘good’ measurements
were used in this analysis. In some well locations, several T estimates have been made over the
years and vary in value. In such cases the median values were selected. The effect of data
uncertainties will be considered in multiple realizations in conjunction with sensitivity analyses in
future work. Applying the criteria indicated above, the retained T data set is displayed in Figure 8.
The original estimates for T accounted for the thickness of HSU2. The estimates for T range from
15 to 6370 ft*/day.
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Figure 23: Plot of head isocontours for h, in step 1 for the LLNL/HSU2
domain. Head values range from 558.5 ft in the northeast to
523.4 ft in the west.

Assuming T = | throughout the domain, a preliminary estimate of head isocontours (Figure 23)
and characteristic map were calculated in order to select I'. The characteristic map calculated with
equation (3.11) is shown in Figure 24. The western boundary was selected as I" and is highlighted
on Figure 23. Values of h measured in the domain range from 558.5 ft in the northeast to 523.4 ft
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in the west. In step 2, the smoothing of h, produced h_ values that matched measured h values at
observation points to within 0.5 ft (consistent with measurement errors). T, was calculated with
different values for the gradient smoothing parameter o and the regularization parameter €.
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Figure 24: Map of characteristics (equation 3.11) emanating from I', which
is parameterized by the independent variable y. (See Figure 23
for I location.) These characteristics correspond to the final
calculated head distribution.

Spatially filtered head gradients were somewhat sensitive to boundary conditions, consistent
with previous discussion. To examine the effect of that sensitivity, two solutions of T, are plotted
in Figures 25a and 25b for more- and less-smoothed head gradients, respectively. The same
general information content is apparent in T, and thus T, for both head gradient representations.
A rigorous quantitative rationale for this spatial filtering in the general non-linear systems solved
here has not yet been developed.
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Figure 25: T, is plotted for two degrees of head gradient smoothing The
dynamic range of the values for T, is greater for the less-
smoothed solution relative to the more-smoothed version
(approximately 50%). The general structure of T is similar in
both versions.

All “‘measured’ transmissivities are projected along the characteristics (Figure 24) parametrized
by y to I (see Figure 26). Large variations in the T, on T" occur over short spatial intervals. A
simple interpolation and smoothing procedure was employed and different degrees of smoothing
were examined. Each T, thus produced represents a potentially valid realization with varying
degrees of matching to the original transmissivity measurements and to any other ‘soft data’ that
may be brought to bear. The 2-D lateral transmissivity calculated for HSU2 at LLNL’s Livermore
Site (with no additional soft data applied) with smoothed T, (in Figure 26) is presented in Figure
27.

38




Final LDRD Report UCRL-ID-129568 March 1998

Smooth Back Prajected T1 Cn CL

E3
8.0
5.0 W
4.0 | ‘
= 3.0 !

____________________ :

2.0 \L A ‘
J T
|

1.0 L

0.0
0.0 0.1 0.2 0.3 0.4 C.5 0B 0.7 C.8

Figure 26: Calculated T, versus distance along T for all transmissivities
projected from measurement locations (curve a) and linearly
interpolated between intersection points on I'. Curve a is a
smoothed version of the data on I', which is used in the final T
estimate.
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Finding the PSI Factor for HSUZWES
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Figure 27: Estimated transmissivity for HSU2 at LLNL's Livermore Site,
using smoothed versions of Tyand T,

5.0 CONCLUDING REMARKS

We have seen in the foregoing text that subsurface parameter estimation techniques have two
general modes of application and that basic signal processing techniques are essential for
successful outcomes in each. In the first mode, sparse data is interpreted at face value. That is, the
scale of spatial resolution attained in coupled estimates of transmissivity and interpolated head
distributions turns out to be whatever scale is supported by the sampling of subsurface data. Since
subsurface measurements are always sparse, the extent of smoothing may be greater than desired,
or hoped for, in specific applications; and well-known aliasing effects of coarse-sampling are
unavoidable (see Bracewell, 1986, and McGillem and Cooper, 1984). Aliasing effects occur when
information that has high spatial frequency components in the actual physical system is observed
via a band-limited function derived from coarse sampling. As noted by Bracewell (1986), high-
frequency signal components shift down and ‘masquerade’ at low frequencies inside the band
limits of the coarse sampling function. When this high frequency tail is not too important, coarse
sampling can give reasonable results in estimated parameter distributions. When that is not the
case, high-frequency information can neither be retrieved nor created reliably from the physical
system without finer sampling. It is here that the second mode of parameter estimation comes into
play, as either an alternative to additional sampling or perhaps as support for new sampling
proposals. In this second mode of application, hypothetical transmissivities are fabricated (non-
uniquely) to contain high-frequency components from finely sampled simulated ‘data’; and the
created transmissivity realizations are then calibrated to the existing hydraulic data with forward
model calculations. With the methods developed in this project, such transmissivities with
surrogate high-frequency components would be additionally constrained to respect both existing
hydraulic measurements of head and transmissivity and the coupled forward and inverse PDEs of
kinetic physics, as described previously. But the amount of additional head data that would be
required from the actual physical system in order to ‘support’ such hypothetical transmissivities is
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generally unknown. Nonetheless, multiple realizations of surrogate transmissivities may then be
processed by various formal or informal techniques in order to posit ‘best solutions’. We have
found that, if the first mode of parameter estimation application cannot be executed appropriately
for sparse measured data, the second mode of application which attempts to generate hypothetical
transmissivities with unmeasured high-frequency components becomes all the more problematic.
The present project has thus focused initially on advancement of the first mode of applications,
while also developing advanced tools and scientific techniques for extended investigations of sub-
scale physical properties in future work.

In summary, this project has created and applied new computational physics tools and
techniques for practical application in both existing and newly advanced parameter estimation
methods. The objective in these broadened parameter estimation techniques is to produce model
calibrations and interpolations of hydraulic head and transmissivity data for flow in porous media,
subject to multiple constraints that help to mitigate adverse effects of non-uniqueness. Such data-
calibrated estimations must respect not only all pertinent physical observations but also the forward
and inverse PDEs that govern physical and mathematical continuity. They should additionally
minimize ad hoc or purely statistical interpolations that are not themselves solutions of the
governing kinetic PDEs. And they should apply signal processing techniques that can mine
maximum information content from sparse, noisy data consistently with data sampling principles in
non-linear systems. Many technical questions, issues, and directions for additional research have
of course been left open in the conduct of this project. We believe however that the ambitious
objectives set out initially have been achieved, and surpassed. Ensuing developments over time,
which would build upon both the scientific formulations and the computational physics tools and
paradigms incorporated in this research, will provide the ultimate judgement of that belief.
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Table 1. Transmissivity Data from HSU2

# X position Y position Conductivity  Transmissivity  Well
(ft) (ft) (gal/ft*- day) (gal/ft-day) Name
1 7479.17 10143.18 200.00 12600.00 W-022A
2 6745.90 8731.70 53.00 3869.00 W-102
3 5073.90 9644.20 270.00 15120.00 W-109
4 6848.52 9362.30 240.00 15360.00 W-118
5 10666.28 11386.06 100.00 5500.00 W-119
7 4583.80 10344.70 16.00 880.00 W-149
8 6379.33 9730.17 86.00 5074.00 W-201
10 9444.46 8684.27 110.00 6292.00 W-223
11 10684.81 10723.38 400.00 19880.00 W-224
12 6383.65 9052.80 22.00 1364.00 W-260
14 9133.52 10368.12 100.00 5800.00 W-301
15 9113.88 11003.47 70.00 4060.00 W-303
16 10039.60 10109.00 72.00 4392.00 W-305
17 8291.22 11254.94 68.00 3808.00 W-306
18 7931.70 10457.20 5.40 334.80 W-308
19 10599.00 12696.70 280.00 16940.00 W-316
20 6321.13 8306.25 15.00 930.00 W-322
21 6437.23 11691.87 59.00 3304.00 W-323
22 9913.37 10431.15 17.00 1059.10 W-353
23 7455.20 10645.40 110.00 6820.00 W-357
24 10129.60 11808.80 96.00 6240.00 W-369
25 4411.70 10110.20 530.00 29680.00 W-404
27 9948.48 12179.87 83.00 4731.00 W-411
28 6461.63 11160.69 42.00 2688.00 W-422
29 10186.56 12772.32 130.00 7930.00 W-423
30 7056.85 8746.98 600.00 45600.00 W-448
31 7390.99 8237.85 16.00 1120.00 W-451
32 5691.93 9385.83 24.00 1416.00 W-457
33 8452.06 8843.66 53.00 4028.00 W-464
34 9172.52 13185.18 30.00 1830.00 W-486
35 8916.54 9336.88 88.00 4928.00 W-551
36 5072.25 9525.37 150.00 8400.00 W-544
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Table 2. Head Data from HSU2

# X position Y position Head (h) Well
(ft) (ft) (ft) Name
1 7526.00 9120.70 532.30 W-001
3 7479.20 10143.20 536.20 W-002A
4 7588.20 13841.20 537.90 W-005A
5 10820.90 13421.60 551.90 W-007
6 10186.00 11268.00 546.50 W-010A
7 10164.70 9285.40 541.00 W-012
8 6745.90 8731.70 530.10 W-102
9 5073.90 9644.20 527.40 W-109
10 8466.90 8745.50 534.60 W-111
11 6848.50 9362.30 530.80 W-118
12 10666.30 11386.10 549.60 W-119
13 4538.90 9680.20 526.40 W-120
14 4200.60 9114.70 525.50 W-121
15 11400.30 11438.00 551.20 W-142
17 8353.00 9406.00 535.50 W-146
18 4583.80 10344.70 526.30 W-149
19 4593.90 11573.40 525.60 W-150
20 3493.60 10826.80 523.40 W-151
21 6379.30 9730.20 530.20 W-201
22 8961.10 7661.90 535.70 W-202
23 11401.50 10143.50 574.80 W-204
24 11335.60 10897.60 550.60 W-207
27 11287.50 11815.20 551.40 W-222
28 9444.50 8684.30 537.70 W-223
29 10684.80 10723.40 546.90 W-224
30 7967.40 8783.30 533.40 W-252
31 8661.20 8017.30 534.50 W-253
32 10922.40 10170.90 545.80 W-257
33 10954.30 9755.40 545.50 W-259
34 6383.60 9052.80 529.80 W-260
35 7208.60 8927.60 531.60 W-263
37 10572.70 10126.90 544.20 W-271
38 10517.20 9687.30 543.10 W-272
39 11213.60 12165.90 551.70 W-273
40 11154.30 9382.50 546.30 W-274
41 9133.50 10368.10 539.30 W-301
42 9113.90 11003.50 540.30 W-303
43 10039.60 10109.00 542.00 W-305
44 8291.20 11254.90 538.20 W-306
45 7931.70 10457.20 535.50 W-308
46 10629.40 12349.10 549.70 W-313
47 10599.00 12696.70 549.70 W-316

47




Final LDRD Report UCRL-ID-129568 March 1998

Table 2. Head Data from HSU2 (Continued)

# X position Y position Head (h) Well

(ft) (ft) (ft) Name
48 9331.90 11817.40 543.20 W-317
49 11183.40 12586.60 553.50 W-318
50 9149.40 12573.20 543.40 W-320
51 6321.10 8306.20 529.60 W-322
52 6437.20 11691.90 532.10 W-323
53 9913.40 10431.20 542.90 W-353
54 10665.70 12056.80 549.60 W-355
55 7455.20 10645.40 534.20 W-357
56 7057.90 11051.40 533.50 W-365
57 10129.60 11808.80 547.10 W-369
58 9624.80 12960.40 545.50 W-375
59 7570.70 8701.80 532.30 W-376
60 4734.70 9695.60 526.80 W-377
61 4904.10 9641.50 527.20 W-378
62 4907.00 9491.30 527.50 W-379
63 2925.40 10356.90 523.80 W-401
64 4411.70 10110.20 525.80 W-404
65 3241.90 9650.00 524.60 W-405
66 9948.50 12179.90 546.40 W-411
67 8619.10 11966.90 540.70 W-413
70 7482.80 10474.10 534.10 W-420
71 6461.60 11160.70 531.20 W-422
72 10186.60 12772.30 548.20 W-423
73 7056.90 8747.00 530.20 W-448
75 7391.00 8237.80 531.70 W-451
76 7512.50 12423.10 537.50 W-453
78 5691.90 9385.80 528.50 W-457
79 7423.50 10991.20 534.40 W-458
80 5689.90 8762.70 528.30 W-460
81 8452.10 8843.70 534.70 W-464
82 7356.90 8734.60 530.80 W-482
84 7159.00 8513.10 530.90 W-485
85 9172.50 13185.20 544.10 W-486
87 6833.40 11909.50 533.60 W-507
88 8916.50 9336.90 537.00 W-551
89 5072.50 9525.40 527.30 W-554
90 7655.50 6992.90 532.00 W-557
91 7926.30 7075.80 532.50 W-591
92 8177.10 7233.40 533.10 W-592
93 11359.30 13373.70 556.50 W-594
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