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Isotopic Methods

Samples of groundwater were collected in the spring of 1996 for 13C and 14C 

determinations of dissolved inorganic carbon (DIC). A sample of the FHC collected 

during steam injection was also analyzed. Groundwater was collected after appropriate 

pumping times in I-CHEM® 125ml amber glass bottles fitted with 1/8 inch teflon-coated 

rubber septa inserted into threaded caps. Bottles were filled leaving approximately a two 

inch head space, treated with 4 drops of saturated HgCl% solution, and stored upside-

down refrigerated until analyses. Analyses were performed within 48 hours of collection. 

Two duplicates were collected using evacuated glass cylinders equipped with greased 

stopcocks and a 1/4 inch rubber septa plug. Results of these duplicate samples were 

identical to those collected in the septa bottles (see Table 1).

Groundwater DIC was extracted and quantitatively measured by conversion to CO% 

using orthophosphoric acid and purifying by vacuum cryogenic methods (McNichol, et 

al., 1994). The DIC is reported in milligrams of HCO3 per liter H2O and has an

uncertainty of -5%. The FHC was combusted in sealed quartz tubing with CuO at 900°C 

for 3 hours. The CO2 gases were split for 13C and 14C determinations. The 13C was 

measured by a VG-Prism stable isotope ratio mass spectrometer and results are reported 

in 5 (del) notation,



where values are reported in per mil deviations from the standard NBS PD-Belemnite. 

Normally, field reproducibility of the 813C of DIC is ±0.1 per mil. For 14C, the CO2

sample was converted to graphite and analyzed on the accelerator mass spectrometer at 

LLNL (Vogel et al., 1987). Results are reported as percent modem carbon (pmc), where 

100 pmc represents one-hundred times the 14C/12C ratio of atmospheric CO2 in 1950 as

characterized by the NBS Oxalic Acid standard. Reproducibility of the 14C analyses are 

±1.0 pmc.
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Isotopic Analyses

For decades 14C and 13C have been measured in natural groundwater systems for age 

dating purposes (Mook, 1980), but only recently have the measurement of this isotope 

couple been used effectively as a tracer (e.g. Rose and Davisson, 1996). Dual 

measurements of 13C and 14C are ideally suited for subsurface environments under the 

influence of biodegradation of FHCs. In particular, the absence of 14C in the FHCs and 

their low 813C (see Deines, 1980) relative to natural groundwater DIC isotopic values 

provides a means to quantify the extent of biodegradation of an FHC spill independent of 

the DIC concentration. Previous work using only 813C measurements of CO2 soil gas

helped validate biodegradation processes in FHC spills, but suffered from large 

quantitative uncertainty (Aggarwal and Hinchee, 1991). The isotopic measurement of 

14C and 13C in DIC of groundwater, particularly in the unsaturated zone groundwater, is 

superior over direct measurement of CO2 soil gas since diurnal atmospheric diffusion and

mixing may disturb the latter (e.g. Severinghaus et al., 1996). The isotopic values of DIC 

should dampen and average any transient isotopic values in the CO2 gas since the rate of 

isotopic exchange between CO2 and DIC is slow (Broecker et al., 1959).

In this particular study, only saturated zone groundwaters were measured for 14C and 

13C. These groundwaters were collected after the dynamic stripping experiment located



on the south side of LLNL. No isotopic information was generated prior to steam 

injection. Figure 1 defines a near linear trend between the 14C and 13C of the DIG in 

these groundwaters. Direct measurement of the 813C and 14C in the FHC yielded -25.8 

per mil and <1 pmc, respectively. DIG concentrations show a proportional increase 

toward the low isotopic end member (see Table 1). Note that the three samples with 

isotopic values closest to the FHC also have elevated temperatures. The highest 513C and 

14C groundwater (GSW-326) was sampled upgradient from the spill site (Fig. 1) and is 

consistent with young (between 50 and 1500 yrs) natural groundwater in California 

(Davisson and Criss, 1995). .

A linear extrapolation from the FHC to the three samples with ambient temperatures 

should delineate a mixing line between natural DIG and the DIG derived from 

biodegradation, that is the CO2 derived from the break down of the FHC that is assumed 

to completely dissolve in these saturated zone conditions. The three high temperature 

samples lie below this mixing line. Their positions can be explained by a shift in 513C 

resulting from closed-system precipitation of CaCOg during the steam injection. With 

increased temperature during steam injection the CaCOg solubility decreases and

precipitation results. There is a net isotopic fractionation with respect to 13C between 

DIG and the CaCOg precipitate, where the 13C is isotopically enriched in the solid phase.

Therefore it is assumed that before the steam injection these three groundwater sampling 

points had higher DIG concentrations and 813C values. We can predict the change in 

813C of the DIG during a close-system precipitation of CaCOg using a simple Raleigh 

model
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where 813C0 is the initial isotopic value of the DIC before CaCOg precipitation, a is the 

isotopic fractionation factor between DIC and CaCOg, and/varies from 0 to 1. The 

fractionation factor a will depend on the pH and the resulting speciation of the DIC, and 

in this case those values provided by Mook et al. (1974) were used. Under these model 

conditions, the total 513C shift from the mixing line for samples HW-GP-104 and W- 

1115 (approximately 1.2 per mil) can be explained by precipitation of 10-15% of the DIC 

into CaCOg at a pH range between ~6.0 and 7.0. For sample HW-GP-105, the ~2.0 per 

mil shift from the mixing line would require 30-50% precipitation of the DIC into CaCOg 

for the same pH range. ,, •

Assuming that the isotopic values of the natural DIC has been adequately defined by 

sample GSW-326, the contribution of biodegraded DIC to each sample can be calculated 

by a simple mass balance using the 14C results, which is independent of the DIC 

concentration:

C FHC

CM
= 100-

14
14

Cm

CN

where Cfhc/Cm ratio is the percent FHC contribution to the DIC of the sample, and the 

subscripts M and N designate "measured" and "natural" abundances, respectively. The 

results from the six samples in this study are tabulated in Table 1. The FHC component 

contributed to the DIC ranges from 12 to 79%. Because only a small set of analyses are 

completed at this time, an inventory of total FHC degradation from these isotopic results 

would be premature. Generation of a statistically significant isotopic data base over the 

entire effected area could provide a means to calculate the total mineralized FHC in the 

groundwater, that is a total extent of biodegradation.
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