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ABSTRACT

We have developed a two-dimensional Shack-Hartman wavefront sensor that uses binary optic lenslet
arrays to directly measure the wavefront slope (phase gradient) and amplitude of the laser beam.
This sensor uses an array of lenslets that dissects the beam into a number of samples. The focal spot
location of each of these lenslets (measured by a CCD camera) is related to the incoming wavefront slope
over the lenslet. By integrating these measurements over the laser aperture, the wavefront or phase
distribution can be determined. Since the power focused by each lenslet is also easily determined, this
allows a complete measurement of the intensity and phase distribution of the laser beam. Furthermore,
all the information is obtained in a single measurement. Knowing the complete scalar field of the
beam allows the detailed prediction of the actual beam’s characteristics along its propagation path. In
particular, the space-beamwidth product, M2, can be obtained in a single measurement. The intensity
and phase information can be used in concert with information about other elements in the optical
train to predict the beam size, shape, phase and other characteristics anywhere in the optical train.
We present preliminary measurements of an Art laser beam and associated M? calculations.

Keywords: wavefront sensor, microlens arrays, diffractive optics, binary optics, laser beam
characterization, M2, Shack-Hartmann sensor, laser beam diagnostics, beam quality.

distribution, since obtaining this is a comparably
straightforward process. However, if both the in-
tensity and phase distribution could be obtained

1 Introduction.

In many instances where a laser beam is needed,
it is important to know something about the laser
beam quality. The beam quality affects how the
beam will propagate, as well as how tightly it will
focus. Unfortunately, beam quality is a somewhat
elusive concept. Numerous attempts have been
made to define beam quality, stretching back al-
most to the invention of the laser.’? In prac-
tice, any one of these measures will have some flaw
in certain situations, and many different measures
are often used. Among these is the M2 parameter
(space-beamwidth product).}3

The intensity and phase distribution of a laser
beam are sufficient for determining how the beam
will propagate or how tightly it can be focused.
Most of the beam quality measurements rely on
characterizing the beam from only the intensity
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simultaneously, then all the information would be
available from a single measurement.

In general, phase is measured with an interfer-
ometer. Interferometers are sensitive instruments
that have been extensively developed.* They can
be used to measure laser beams by using a shear-
ing or filtered Mach-Zehnder arrangement, and can
produce the desired intensity and phase distribu-
tion. Unfortunately, these systems rapidly become
complex, and are slow and unwieldy, as well as be-
ing expensive.

A Shack-Hartmann wavefront sensor is an al-
ternative method for measuring both intensity and
phase. Such sensors have been developed by the
military for defense adaptive optics programs over
the last 25 years.48 This sensor is a simple de-
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vice that is capable of measuring both intensity
and phase distributions in a single frame of data.
The advent of micro-optics technology for mak-
ing arrays of lenses has allowed these sensors to
become much more sophisticated in recent years.
In addition, advances in CCD cameras, computers
and automated data acquisition equipment have
brought the cost of the required components down
considerably. With a Shack-Hartmann wavefront
sensor it is relatively straightforward to determine
the intensity and phase of a beam. This allows not
only the derivation of various beam quality para-
meters, but also the numerical propagation of the
sampled beam to another location, where various
parameters can then be measured.

M2 has become a commonly used parameter
to generally describe near-Gaussian laser beams.
It is especially useful in that it allows a predic-
tion of the real beam spot size and average in-
tensity at any successive plane using simple ana-
lytic expressions. This allows system designers the
ability to know critical beam parameters at arbi-
trary planes in the optical system. Unfortunately,
measuring M? is somewhat difficult. To date, ob-
taining M? has generally required measurements of
intensity distributions at multiple locations along
the beam path. Although efforts have been made
to obtain this parameter in a single measurement,’
this still suffers from the need to make simultane-
ous measurements at more than one location. The
technique presented here requires a single measure-
ment at a single location.

In succeeding sections, we will describe how a
wavefront sensor is constructed along with prelim-
inary experimental data. A method for computing
M? will be developed and applied to various sim-
ulated and real beams.

2 Wavefront sensor design
and analysis.

2.1 Beam characteristics from a sin-
gle measurement and location.

The time-independent electric field of a coher-
ent light beam directed along the 2-axis can in gen-
eral be described by its complex amplitude profile,
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Figure 1: Basic configuration of a wavefront sen-
sor.

E(z,y;2) = |E (=¥ Z)I exp [i¢ (z,9; 2)] , where ¢
is referenced to the wavefront phase on the 2-axis.
Due to rapid temporal oscillations at optical fre-
quencies, it is not possible to directly measure the
electric field. However, by using a Shack-Hartmann
wavefront sensor, one can indirectly reconstruct a
discrete approximation to the electric field at a
given plane normal to the z-axis.

A Shack-Hartmann sensor provides a method
for measuring the phase and intensity of an inci-
dent light beam. The sensor is based on a lenslet
array that splits the incoming light into a series of
subapertures, each of which creates a focus on a
detector (usually a CCD camera). (See Figure 1.)
The wavefront of the incoming beam is defined as
a surface that is normal to the propagation direc-
tion of the light. Hence distorted light will have a
wide collection of propagation directions and the
separate lenslets will focus the light into different
positions on the detector. By determining the po-
sition of each of these focal spots the wavefront
slope over the lenslet can be measured. The wave-
front itself must be reconstructed by integrating
these wavefront slope measurements.

There are several steps in wavefront sensor data
reduction. First the sensor is placed in a reference
beam and data is acquired with a camera for cal-
ibration. Since there are a large number of focal
spots in the field, the image must be divided into
a set of small windows, each centered on a focal
spot peak, with one window per lenslet. Once the
windows have been found, a centroid is computed
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Figure 2: Image of data from Shack-Hartmann
sensor. Centroid positions calculated from image.
The light gray spots are the centroid positions of
the calibration beam.

using a center-of-mass algorithm:
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With pixels indicated by the 7,7 indices, a sum is
made over the pixels in each window (W}, where
! indicates a particular lenslet) of the intensity-
weighted locations. (When not mentioned explic-
itly, similar equations hold for the y-axis.) This
results in a calibration set of centroids, p. |4,
and py,ll car - The sensor has now been com-
pletely calibrated and is ready for acquisition and
measurement of actual data. Note that the cali-
bration beam need not be a collimated beam, as
long as its characteristics are known; results are
then deviations from this reference.

The first step in analyzing real data is the same
as that for the calibration data. The data is ac-
quired and digitized and then centroids are com-
puted using the windows calculated in the calibra-
tion step. A typical image is shown in Figure 2.
Once these centroids have been obtained, and with
the lenslet to CCD distance, L, known, the wave-
front slopes can be calculated:

0, = _% — Pzl — pz,lchL .

' T (2

Figure 3 displays an example of this calculation for
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Figure 3: Vector plot displaying wavefront slopes
of an expanding beam.

an expanding beam.

The final step is the wavefront reconstruction.
This is the solution of the gradient equation,

op ., 99
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where the data provides sampled values for the
wavefront gradient,

Vé= 3)

4)

Here 8, and 8, are the measured slope data. The
reconstruction proceeds by finding a set of ¢, val-
ues that obey the above equations. Commonly
used methods include least-squares procedures and
marching methods.®

One method that has advantages in that it takes
account of the intensity distribution as well as the
phase slopes is known as the modal reconstruc-
tor method. In this method the data is fit to the
derivatives of an analytical surface described by an
expansion in terms of a set of basis functions. One
simple case is the use of a polynomial expansion.
Thus the phase ¢ might be described by

¢ = a0+ 8102 + 01y + enzy + -+ -+ a7y . (5)

This description uses normal polynomials in z and
7. We have also used different basis sets, such as
Hermite and Zernike functions. The derivatives of
the phase are then easily determined by

8 S S g st
.£ = a10+ 11y + 20007 + -~z 'y, (6)




Figure 4: Phase map for Ar+laser beam, with tilt
removed. Curvature dominates the phase struc-
ture.

Figure 5: Intensity map for an Ar+ laser.

with a similar expression for the y-derivative. Equa-
tion 6 is then fit to the wavefront slope data us-

ing a least-squares method. Since equation (5)

determines the wavefront phase in terms of these

ai;j (with an arbitrary constant of integration, aqq,

which is set equal to zero), the complete wavefront

has been determined. Figures 4 and 5 illustrate a

typical phase and intensity distribution obtained

by this method.

The above provides a complete measurement
of the beam intensity and phase, sampled by the
lenslets. This mesasure is from a single time and
location. It can be used for calculation of other
parameters of interest, such as M? as shown in the
next section. In addition, the reconstructed wave-
front can be propagated to another location using
a standard propagation code (e.g., LightPip&s©8
or GLAD©9).

2.2 M?2 from a single measurement
point.

One commonly used parameter for character-
izing laser beam quality is the space-beamwidth
product, or M? parameter.! Let the complex elec-
trical field distribution of a beam directed along
the z-axis be given by E (z,y, 2), with the corre-
sponding spatial frequency domain description of
the beam, P (sz,8y,2) given by its Fourier trans-

form, P (sz,8y,2) =S {E‘ (z,v, z)} Beam inten-
sities in each domain are then defined by I (z,y,z)
EIE’ (z,v, z)|2 and by I (sz,8y,2) EII3 (8z,8y» z)|2.
The M? parameter is then defined by:

(7)

where o, is intensity standard deviation at the
beam waist (2z,) in the z-direction, defined by

_ [ (@—%)*I (z,y,2) dady
- J[1I(z,y,2)dzdy

and o,_ the spatial-frequency standard deviation
of the beam along the z-axis

= JJ (52 = 82)* I (sz,8y) dszdsy
* [ I(z,y,2)ds.ds,
Note that 02_ is not a function of z, and can be

obtained using the Fourier transform of the electric
field.

2 __
M = 4n0,,0,,

(®)

oz (2)

(9)
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(The first moments of the beam along the z-
axis and the s;-axis are indicated by T and 3.,
respectively. The spot size of the beam is w, (z) =
20. The corresponding y-axis quantities hold for
Oy, Os,, €tc., mulatis mutandis, throughout this
paper. In addition, the normalizing factor in the
denominators shall be indicated by P = f f I(z,y,2)

dzdy = [[ I(z,y,2)ds.ds,.))

In the case of a paraxial beam in the 2-direction,
with an arbitrary reference plane (2;), it has been
shown by Siegman?!® that the intensity standard
deviation will have an axial distribution given by,

02 (2) 0% (z1) —Aza X (z—2) (10)
+>\f=¢72

8z

x (z2—2)%

where A1 is given by the function




Ale) = 25 /°° dzdy @ (12)
IEl (mny:zl) a¢($,y,ZI)

(We have followed Siegman in suppressing the phase
tilt term.) The beam waist, or location of mini-
mum intensity variance, is obtained from equation
(10):

A:z: 1
g 3 . (12)

Substituting back into Equation (10) yields the re-
lationship

(Zzo - zl)

A2
2 _ 2 — 2 1
0% =02 (2z,) =0° (21) - 2232 . (13)

M2 follows immediately from equation (7).

It should be noted that equations (13) and (11)
are not derived from series expansions in the vicin-
ity of the beam waist, but are analytical deriva-
tions dependent only upon the paraxial wave equa-
tion, the paraxial propagation assumption, and the
Fourier transform relationships between the com-
plex electric field amplitude (E (z,7,2)) and the
spatial-frequency beam description (P (sz, 5y, 2))-

As shown in section 2.1, it is possible to obtain
a discrete description of the beam electric field am-
plitude and phase in a given plane normal to the
z-axis. As gaart of the measuring process, discrete
values for and 2¢ 8y are also obtained. By means
of the above formulze and standard numerical inte-
gration techniques one can then obtain values for
M? and the waist locations, 20z,y-

The sequence is as follows. (See Figure 6.)
From the Shack-Hartmann sensor, the distribution
of intensity, I (z,y,#) and wavefront slope, %
and %3 are obtained. From these, the electric field,
E(z,y,21) = E(z,y,z1)expli¢ (z,y, 21)] is calcu-
lated. The spatial-frequency electric field distribu-
tion, P(8z,8y, 21), is derived using a Fourier trans-
form algorithm, such as the fast Fourier transform
(FFT). From these the intensity distributions in
both domains, I (z,y, 1) and I (s, 8y,21), are ob-
tained, whence numerical values for the variances,
o? (zl) and 02_, are calculated. Concurrently, the

mtegral of equatlon (11) is computed, with the
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Figure 6: Computing waist location and M? in a
single measurement. The Shack-Hartmann sensor
gives a set of wavefront slopes and intensities; these
are used to reconstruct an electric field wavefront
(normalized to zero phase on the 2-axis). The spa-
tial frequency field is obtained by Fourier trans-
form. Application of other relationships described
in the text yield waist location and the M2 para-
meter.

results being used in equations (13) and (12) to
produce the waist location and intensity variance.
The waist intensity standard deviation and the
spatial-frequency standard deviations immediately
yield the M? parameter per equation (7).

2.3 Algorithm sensitivity.

In order to determine the sensitivity of the al-
gorithms developed in Section 2.2, a number of
different modelled beams were created. This al-
lowed for a check on the algorithm with known
conditions, without having to consider the effects
of noise or experiment errors. To this end, the
laser beam was modelled with either a Gaussian
or sech? intensity profile, and the effect of various
parameters was considered. The modelled beam
was broken into the appropriate samples to model
the lenslet array and detector, and the equations
of section 2.1and 2.2 were used to determine M2.
For calculations to obtain beam characteristics,
the integrals in Equations (8), (9), and (11) are
replaced with discrete sums over validly measured
values. All Fourier transforms are performed using
standard discrete Fourier transform methods, and
the fast Fourier transform' (FFT) algorithm when




Beam Size and Calcufated M 2 Parameter
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Figure 7: For both modeled beams, the calculated
M? parameter is unity throughout the range of
propagation.

possible. All calculations were performed using a
standard numerical computation software package
(MATLAB') on standard desktop computers.

Initial results with modeled Gaussian beams
have been very encouraging. Elliptical Gaussian
beams were modeled, adjusted in piston by setting
the phase equal to zero on the z-axis. Figure 7 de-
tails the results of modeling two Gaussian beams
of differing waist size. For these beams, the M?
parameter is unity. The smaller beam was propa-
gated over several Rayleigh ranges, and the larger
over a full Rayleigh range. In each case the algo-
rithm correctly calculated the M2 parameter based
solely on a sampling of the wavefront at a given
(but unknown to the algorithm) distance from the
waist, A similar computation was conducted with
a Gaussian beam with a constant 1.3 milliradian
tilt, or roughly one wave across the beam diam-
eter. Again the algorithm correctly calculated a
value of unity for the M? parameter throughout
the range tested.

The model was also tested on non-Gaussian
beam profiles. Figure 8 depicts the results for a
beam with a hyperbolic secant squared intensity
profile, which has a theoretical M? of 1.058. The
beam was modeled with a flat phase front at 2 =0,
simulating a beam waist, and then propagated over
the distance shown (roughly one Rayleigh range)
using LightPipes'® 8

As another check on the algorithm, beams with
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Figure 8: Algorithm performance for with hyper-
bolic secant squared beam. Modeled beam propa-
gated using LightPip&s©.
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Figure 9: Effect on M? for various levels of selected
aberrations.

various levels and types of aberration were exam-
ined, as shown in Figure 9 (M2 values are shown).
Four types of aberration were examined, based
upon four Zernike polynomial aberration functions*:
astigmatism with axis at +45° (Ugg), astigmatism
with axis at 0° or 90° (Us); triangular astigma-
tism with base on z-axis (Usp); and triangular
astigmatism with base on y-axis (Uss). The algo-
rithm correctly calculated an M2 value near unity
for Uz (or y? — z2) astigmatism, as well as show-
ing increasing values of M? for increased Ugg (2zy),
Usg (3zy? —z°), and Uss (y® —3z%) astigmatism.

Of concern in the use of this method is the
granularity of the reconstructed wavefront and the
effect this would have on the computation of M2.
This was tested by examining the results of the al-
gorithm when sampling & modeled Gaussian beéam
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Figure 10: Gaussian beam modeled at waist; M?
calculation for a detector consisting of a 40 x 32
array of lenslets, each 250um on a side. Once de-
tectable beam energy no longer falls on the detec-
tor, there is a loss of intensity in the higher spatial
frequencies, resulting in a decrease in the M? pa-
rameter.

at the waist. The algorithm correctly calculated
the M2 parameter once information was available
from several lenslets. Accuracy remained within a
few percent until the beam size (20) reached about
45% of the total aperture. (See Figure 10.) At this
point, in a zero noise environment, detectable en-
ergy from the beam just reaches to the edge of the
aperture. Thus all beam energy outside the aper-
ture is below the sensitivity threshold of the detec-
tor. However, once energy which would otherwise
be detectable fell outside of the detector aperture,
the value of the M? parameter determined by the
algorithm drops. We also found, as shown in Fig-
ure 11, that there was no need to go to an extreme
number of lenslets in order to obtain good results
in a low-noise environment. It is important to note
that this set of results are for a Gaussian beam
at the waist, and as a result there were no beam
aberrations. Further analysis is needed to examine
the behavior of the algorithm for other conditions.
We expect that the algorithm should correctly cal-
culate M? as long as the spatial structure of the
aberration is larger than twice the lenslet spacing.
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Figure 11: Effect of increasing the number of
lenslets across the aperture.

3 Experimental
measurement.

3.1 Wavefront sensor design.

Shack-Hartmann wavefront sensors have been
used for many years as sensors for adaptive optics
in military high energy laser and atmospheric com-
pensation. However, recently they have been ap-
plied to measurement applications in thermal flow,
turbulence and surface measurement.!! While these
early sensors were one dimensional in order to make
high bandwidth measurements, recently fully two
dimensional sensors have been developed.5'?

One of the chief limitations on making wave-
front sensors is the fabrication of an appropriate
lenslet array. Early lenslet arrays were either in-
dividually ground and polished lens segments that
were assembled together, or were fabricated with
step and repeat processes. With the advent of dif-
fractive (or binary) optics technology, the meth-
ods for fabricating lenslet arrays have greatly im-
proved.

Diffractive optics technology is the application
of integrated circuit manufacturing technology to
the fabrication of optics. Photolithography and
etching are used to create the desired lens surface
profile as described in Figure 12. The basic steps
are as follows:

1. The design of the opt;ic is -(i‘Q\/»éloped using a




Fabrication Sequence for Binary Optic
with 4 Phase Levels

N mask steps = N Phase Levels

Figure 12: Fabrication sequence for binary optics.

series of computer programs to describe the
desired lenslet shape and profile. These in-
clude a code to define the shape and place-
ment that solves the exact Huygens-Fresnel
equations, a diffractive analysis code, and a
photomask layout tool for lens array place-
ment.

2. Photomasks are fabricated that discretize the
desired surface profile into a number of lev-
els, With four masks, this will result in six-
teen levels (2V). These masks are typically
e-beam written directly from the data.

3. A thin layer of photoresist is spun onto the
fused silica substrate.. The mask pattern is
transferred to this layer by uv contact or pro-
jection lithography. Once the photoresist is
developed this results in the desired pattern
in photoresist on the substrate.

4. Thesubstrate is etched in an anisotropic etch
system to a precise depth. Thus the mask
pattern is transferred into the substrate.

5. The process of steps 2-4 is repeated for each
mask with each successive etch being twice
the depth of the preceding etch. This will
build up the profile to the required shape.

With this technology extremely high precision
lens arrays can be made. They have an extremely
precise surface profile, with features down to 1 mi-

crometer and 100% fill factor. Furthermore, they -

can be arranged in many different configurations
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Figure 13: Test setup for calibrating wavefront
sensor. The second lens, L2, is adjusted to pro-
vide different amounts of wavefront curvature to
the sensor.

to compensate for other effects in the optical sys-
tem.13

The only other needed equipment to make a
wavefront sensor is a CCD camera. We have used
off-the-shelf cameras because of their low cost, and
have found that they yield excellent results. The
camera is interfaced to a frame grabber for data ac-
quisition into the computer. Once data is acquired,
the analysis proceeds along the lines described in
section 2.1.

3.2 Lenslet positioning procedure.

In addition to the wavefront calibration dis-
cussed in Section 2.1, the lenslet-to-CCD distance,
L in equation (2), must be determined experimen-
tally. To accomplish this objective, we used an
optical system as shown in Figure 13 to introduce
various amounts of wavefront curvature in a known
fashion. In this arrangement we used a pair of
Spindler and Hoyer 250 mm focal length achro-
mats space 2f apart. By adjusting the position
of the second achromat slightly (with a microme-
ter driven translation stage) we were able to ob-
tain data with known curvature as shown in Fig-
ure 14. It is important to note that, even though
we used high quality achromats, there was signifi-
cant residual wavefront error on the resulting im-
age due to the finite aberrations of the lens pair.
Ray-tracing analysis and experiment verified that
about 2.5 waves of error were expected. This error
was dealt with by conducting the wavefront sensor
calibration (Section 2.1) with light that had pass
through the same lenses at exactly 2f spacing.




Figure 14: Curved wavefront measured with wave-
front sensor for a 60m radius of curvature wave-
front.
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Figure 15: Position of lenslet array using both
white light and laser light sources. The slope error
reprents a displacement of the lenslet array by 4
mm from the nominal focal plane.

Data was acquired with different lens pair spac-
ing as a function of the position of lens 2. A sum-
mary of this data is presented in Figure 15, as a
plot of measured wavefront curvature verses input
curvature. This plot is not exactly linear: the vari-
ations are due to variations in the real wavefront
caused by the finite aberrations of the lens pair.
The slope of this line is related to the exact dis-
tance between the lenslet array and the detector.
Using this information, this distance was adjusted
to produce an exact match between nominal lens
focal length and camera to lens spacing. Setting
L = f (where f is the lenslet focal length) pro-
duces the smallest spot size, allowing the largest
dynamic range on the sensor. This positioning pro-
cedure allowed for an accurate determination of L.
The post-positioning data is shown on Figure 16.

WFS 2D calibration

Wessured Curvature (1/m)
: S

Curvsture {LUm)}

Figure 16: The lenslet position after adjustment.
The slope of near unity indicates the lenslet array
is positioned one focal length from the detector.

(a)

Figure 17: Display of Ar+ beam measured with
wavefront sensor. (a) Beam intensity. (b) Beam
phase.

3.3 Laser beam measurement

Once the wavefront sensor was calibrated, a se-
ries of laser beams were measured to experimen-
tally determine M2. The reference beam was an
expanded, collimated HeNe laser. The laser source
was an Ar+ laser that was approximately 2 m away
from the detector. This laser was chosen because
it had intracavity aperture and alignment adjust-
ments that would allow us to produce aberrated
beams. Figure 17 is an example of an aberrated
beam intensity and phase distribution measured
with the wavefront sensor. In this case the laser
was deliberately misaligned. The algorithms de-
veloped previously predicts an M2 of 3.73 and an
M2 of 5.09; the RMS wavefront error is 0.11 um.
A number of data sets were taken where the laser
current, beam power, and cavity alignment were
varied to produce various quality beams. Repre-
sentative data is tabulated in Figure 18.

In this table, the M? values are calculated in




Laser Parameters My

Aperture 204
Current: 20A

Aperture 204
Current: 20A

Aperture 355 (full open)
Current: 25A

Horizontal misalignment
Aperture 355 (full open)
Current: 25A
More misalignment

Aperture 150
Current; 25A

Misaligned as above

297 3.94

2.99 3.88

2.64 4.02

3.29 5.47

3.73 5.09

Figure 18: Calculated M2 obtained from various
Ar+ laser beams.

both the z and y directions. The initial entries
are for relatively good beams, but with a large in-
tracavity aperture setting. The two separate cal-
culations of the M2 parameters of the laser under
the same operating conditions are consistent with
each other, indicating the repeatability of the mea-
surements, For the last three entries, the beam
was deliberately misaligned to produce an aber-
rated beam. The M? values reflect this, and show
the evolution of the misalignment compared to the
initial settings.

In all cases, the M? parameters are higher than
expected based upon the smooth spatial profiles of
the beams. No independent method of M? mea-
surement was available when the data were taken.
The higher than expected values are most likely
due to noise in the wings, which have a large ef-
fect on second moment calculations. Addition-
ally, noise in the spatial domain affects the Fourier
transform, and can result in increased values at the
higher spatial frequencies in the spatial-frequency
domain. Analysis of these problems is in the initial
stages; current results are discussed in section 2.3.

4 Conclusions

‘We have developed a 2D wavefront sensor that
is capable of obtaining detailed intensity and phase
values from a single measurement. This sensor
is based on a microlens array that is built using
binary optics technology to provide fine sampling
and good resolution. We have developed a method
for calculating M2. Since the full beam intensity
and phase distribution is known, a complete beam
intensity and phase distribution can be predicted
anywhere along the beam.

We have used this sensor to analyze various
laser beams, calculate M?, and propagate a beam.
Calculated values of M? are believed to be high
for unestablished reasons. Further work includes
determination of the noise characteristics of the
sensor, and an evaluation of the effects of noise and
other errors for both real and simulated beams.

Using this sensor a laser can be completely
characterized and aligned. The user can imme-
diately tell if the beam is single or multimode,
and can predict the spot size and full intensity and
phase distribution at any plane in the optical sys-
tem. The sensor is easy to use, simple, robust and
low cost.
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