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ABSTRACT

A g-vector of responses, y, is rélated to a p-vector of explanatory variables, x, through a
causal linear model. In analytical chemistry, y and x might represent the spectrum and
associated set of constituent concen_trailfxcions of a multicomponent sample which are »
related through Beer’s Law. The model parameters are estimated during a calibration
process in which both x and y are available fbr a number of observations
(samples/specimens) which are collectively referred to as the calibration set. For new
observations, the fitted calibration model is then used as the basis for predicting the
unknown values of the new x’s (concentrations) from the associated new y’s (spectra) in
the prediction set. This prediction procedure can be viewed as parameter estimation in an
errors-in-variables (EIV) framework. In addition to providing a basis for simultaneous
inference about the new x’s, consideration of the EIV framework yields a number of
insighté relating to the design and execution of calibration studies. A particularly
interesting result is that predictions of the new x’s for individual samples can be
improved by using seemingly unrelyate‘d information contained in the y’s from the other -
members 6f the prediction set. Furthermore, motivated by this EIV analysis, this result
can be extended beyond the causal fnodeling context to a broader range of applications of

multivariate calibration which involve the use of principal components regression.
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L INTRODUCTION

Recently, calibration involving a multidimensional response has received significant
attention. Two significant references covering multivariate calibration are: Martens and
Naes (1989) from a practical perspective, and Brown (1993) from a theoretical viewpoint.
Multivariate calibration is used in a number of applications, often in analytical chemistry.
Many of these applications involve specialized instrumentation (e.g., spectrometers) that
result in response variables of a very high dimension (e.g., spectra). The discussion
presented here is particularly relevant for this situation. Martens and Naes (1989) and

references therein provide a number of relevant examples.

Specifically in the case of spectroscopic applications, measurements such as absorbance
and reflectance, are taken at one'or:itioré spectral wavelengths. These measurements are
obtained from a number of specimens in which the amount of the analyte of interest has
been determined by some independent assay (e.g., wet chemistry). Together, the spectral
measurements and results from the independent assays are used to construct a model that
relates the amount of the analyte of interest to the spectral measurements. This step is
referred to as calibration. Then in the prediction step, the model is used to predict analyte
concentrations of future samples solely on the basis of the spectral measurements.
Quantitative analysis based on spectral data has advantages over some of the more
traditional methods of analysis because it is often much quicker, less labor intensive

(hence cheaper), and can be nondestructive/noninvasive.

Y I
The basis for the many calibration models using absorbance spectroscopy is Beer’s Law.
That is, in the limiting case of dilute component concentrations in a nonabsorbing
medium, the absorbance of a sample at wavelength A, y(A), depends upon the

concentration of the multiple (p) chemical species in the sample through the equation

y(A) = ay + xlkl().) + x2k2(7\,) + ...+ xpkp(?\.) +8&, 1

NI




where a, is a spectral intercept (or baseline), x, is the concentration of the i™ chemical
species, k; is the product of the optical pathlength with the absorptivity of the i™ chemical

species, and & is the measurement error of the absorbance at wavelength A.

Because of the cost of developing a calibration model, a single fitted calibration model is
often used repeatedly on a number of new observations to predict some characteristic of
interest. For example, in analytical chemistry a calibration model is often constructed to
predict some characteristic (e.g., chemical concentration) in a batch or stream comprising
a number of new specimens (prediction set). A natural ordering in this stream can be
developed from the sequence in which the specimens are measured by the appropriate
analytical instrument (e.g., spectrometer). Prediction follows the acquisition of the
instrumental measurements. Traditionally, predictions are developed sequentially for
each new specimen. Itis also tradifional that each prediction is developed through
consideration of only the model and the instrumental measurements associated with that
single new specimen. Thus, instrumental measurements from other new specimens, a
source of information regarding the péttem of variation among the various instrumental

measurements, are ignored.

The model presented in eqn. 1 is an-example of an idealized causal model in which all
deterministic factors are explicitly:accounted for. The successful use of this or any other
causal model depends on a complete knowledge of the factors that affect the response, y.
This requirement greatly restricts the applicability of such models in complex chemical
problems where, often, only an incomplete knowledge of the causal factors is available.
However, when a causal model is applicable, an analytical assessment of the uncertainty
of predictions based on the model is possible. Furthermore, as will be demonstrated in
this paper, insights developed from the causal situation may be extended to more
commonly used soft-modeling, empirically-based calibration methods such as principal

components regression (PCR).




In the soft-modeling approach, the characteristic of interest (e.g., analyte concentration) is
modeled directly as a linear combination of the instrumental measurement(s). For

example in spectroscopic applications,
X= bO + bly(ll) + b2y(7L2) +..+b qy(?u q) +&, 2)
where, x denotes the concentration of the analyte of interest , y(?»q) is the measured

intensity of the qth wavelength, and the bi are parameters. In contrast to methods which

are based on an explicit causal model, these methods do not require a complete
knowledge of the chemical system involved and are thus applicable to a great variety of
problems in science and industry. For example, the various soft-modeling approaches are
used in combination with spectral data to estimate the amount of protein in wheat (e.g.,
see Fearn 1983), composition of thin films used in semiconductor manufacturing (e.g.,
see Haaland 1988), and in various medical applications such as the noninvasive

measurement of blood components (e.g., see Robinson et al. 1992).

The remainder of this paper consists of the following. Section 2 explains how, in the
causal modeling context, the prediction procedure can be viewed as parameter estimation
in an EIV setting. Given this EIV analogy (and by assuming normally distributed
measurement errors), standard results from the EIV literature are used in Section 3 to
obtain the joint maximum likelihood estimates (MLE’s) of the new x’s. It is observed
that this joint estimation procedure, which uses the responses (e.g., spectral
measurements) from all available members of the prediction set, can outperform an
analogous individual estimation procedure which uses only the response from the current
member of the prediction set. Motivated by this result, in Section 4 it is demonstrated
how the concept of improving the prediction of a single new specimen by using the
instrumental measurements from the other new specimens can be extended to a soft-

modeling approach using PCR. A short conclusion follows.




2. EIV CONNECTION IN CAUSAL MODELING CONTEXT

In the case of a multivariate linear causal model, the calibration step consists of

estimating the (p+I) by g parameter matrix B0 in the model [1; XO] BO = YO’ where Y0 is
the n by g matrix of the true, but unobservable responses and XO denotes the n by p
matrix of causal factors (see Thomas 1991). The observables, Y = YO +AY and X = XO
are used to estimate BO (note that it is assumed AX = 0). Here, g is the number of

response variables (e.g., wavelengths), » is the number of calibration samples, and p is the
number of explanatory variables (e.g., chemical components). Note that this model
represents controlled calibration, as X is assumed to be fixed (see Brown 1982). For
notational simplicity it is also assumed that the columns of X have mean zero. Further, it

will be assumed that the matrix of random errors, AY, is multivariate normal with
. . . 2 .
independent elements having mean zero and variance, 6. Note that the assumption of

independent elements can be relaxed somewhat (see Thomas 1991).

By using least-squares regression, an estimate of BO is
T -1 T
B = [b}; by; .3 by ] =(IX,]" [X,]) [X,] Y. (3)
It follows that the columns of AB =B - B, are independent and normally distributed with

-1
mean zero and variance ([1; XO]T [1; XO]) 62.

In the prediction step, measurements from =1 new samples are obtained. Note that this
generalizes the setup in Thomas (1991) from r = 1 to a general r (see Thomas 1994).
These measurements will be denoted by the r by g matrix W = WO + AW = [wl; Wo3 wess

T
LA ] . The measurement errors, AW, are assumed to be independent of Y, but have the

same distribution as AY. The unobservable entity W0 is assumed to be related to the




underlying r by p matrix of causal factors Vy = [vo1 sV0y 3 «++ 3V0, ]T through the model
[1; VO] B0= WO‘ Note that VO and W0 are analogous to X0 and Y0 in the calibration
step. Here, however, the objective is to predict A\ given B and the measurements W
Here, no distribution of VO will be assumed. Note that there are two sources of error

when predicting V;, AB and AW.

Thus, it is straightforward to cast the prediction of the r new observations represented by

VO into the framework of a linear functional model (e.g., see Fuller 1987) where
BY [1; Vy1T = Wy . Let [ay; Cyl = B whereayisgby 1, and Z,= W —ag 1r.
Then, COVOT = ZO . Denoting the observables of ZO and CO byZ= wl_a 1., and
C=[cy; €95 .3 Cq ]T respectively, define

T .
€= (e85 5 sq] =[Z2-Z,;C- Col = [AZ; AC].

From earlier assumptions, we have that the g = [8t1’ 8t2’ .. lfort=1,2,...,q

"gt,r+p

.. . . . . 2
are i.i.d. multivariate normal with mean zero and covariance > = 6~ £, where

3. MAXIMUM LIKELIHOOD ESTIMATION
Given the knowledge of the distribution of the & the maximum likelihood estimates
(MLEs) of VO and CO are obtained by maximizing the log likelihood,

T

_%-log |21r, G2 Ql - (202)—15‘,1((%;@)"(ZOt-;COt)) o1 ((Zﬁct)—(ZOt;cOt )) s




. th
with respect to V, and C, where z;, ¢;, g, , and ¢, are thet rows of Z, C,Z, and

C, respectively (see e.g., Fuller 1987, Chapter4). Let A 12X 2 ... 2A ., bethe
eigenvalues of Q2 MQ™V2 andlet G = (Gl’ Gz) be the matrix of corresponding
orthonormal eigenvectors such that Q2 ql? G, = G3R, where

1 4 .
M = g 3SST, St =(ZuZigs . Ziprc)Ts R=diag(h ps1.Apszsee sApyr), and
t=1

0™ is the matrix square root of o™, Further, let D= Q~1/2 Gy. Thenthe MLE of V|,
is Vy = —D}%DT , where D__ consists of the first 7 rows of D, while D__ consists of the
pr Ir pr

last p rows of D.

In the context of the limit g — co, ¥V is a consistent estimator of V, and has a limiting

normal distribution (see e.g., Fuller 1987, Chapter 4). That is,

F 12y (V(r)r —V(;r )L Normal (0,I),as g — =, where

62

q
=2—yo('+ec? -L'0-L"), L= g7 3 cfco,
q t=1

T )"
W= (I; -V)Q(L; -Vp) s and ©@= {(v(',r; 1,) Q7 (Vg 1) } . The limiting

distribution of ¥ can be used as a basis for statistical inference for V, (see Thomas

1994). Furthermore, the form of the limiting distribution can provide a number of useful
insights relating to the design and execution of calibration studies. For example, one can
evaluate the effect on the asymptotic covariance matrix, F, by varying the set of response
variables that are used in the model. Clearly, the sensitivity and selectivity of response

variables affect L and therefore F. Other factors that affect F are: 1. the measurement

error variance (62), 2. the design matrix defined by the calibration set (XO) through its

influence on €2, and 3. the underlying levels of causal factors in the prediction set (VO).




_The joint estimation of the r rows of Yo by \70 involves using the responses from all

members of the prediction set. That is, each row of ¥} is influenced by all rows of W.

This differs from traditional calibration practice where the prediction of the jth specimen
is developed through consideration of only the model (e.g., B) and the instrumental

measurements associated with that single new specimen (e.g., Wj)'

Thus, it is interesting to compare \70 with the sequence of estimators that result from

individual maximum likelihood estimation of each row of VO' In this case, which is

consistent with traditional calibration practice, the individual MLEs of Cyandthej row

of Vé) are obtained by maximizing the log likelihood

T
-1 g
q 2 2 -1
~2.10g pro? @, - (202 El((ztj,ct)-(zotj,cot)) Q; ((th,c,)—(zotj,cot)) ,
n+l! 0
- 1
where Q.a= “n"":""""—i . Thomas (1994) shows through analysis of the
0 i[x3%o]

respective asymptotic covariances of the individual and joint MLEs and through

simulation that the variability of the individual MLE of a given row of VO can be much
greater than that of the corresponding row of V() when: 1. the noise-to-signal ratio,

- -1
O'?'L l; is poor (large), 2. n is small, implying that [X(")r Xo] is relatively large, 3. the

specificity of the response variables is poor (i.e., L is poorly conditioned), and 4. r is large

and the rows of VO are well dispersed.

The basis for the superiority of the joint MLE over the individual MLE is the common
relationship among the response variables (i.e. model parameters) which exists whether
or not the associated values of the explanatory variables are known. To illustrate,

consider the following synthetic example (which meets the above conditions) in a




-1
spectroscopic context where 6 =.1, ([1; XO]T[l; Xo]) =diag (2, 1, 1), p=2, g =50,
r=20, Vo, = (0,0), and the 38 elements of last -1 rows of V0 were independently

sampled from the uniform distribution on [-.9, .9]. Figures 1 and 2 display the MLEs of

C, (4’s for column 1 of C, and +’s for column 2) obtained by independent and joint

estimation, respectively. Superimposed for comparison are the solid and dashed

Gaussian-shaped lines representing the two columns of C,. Clearly joint estimation
provides superior estimates of the elements of C,. Because the estimation of V, is

connected to the implicit estimation of C through the estimation procedure, the

superiority of VO over the individual estimator of VO follows.

4. EXTENSION TO PRINCIPAL COMPONENTS REGRESSION

From the previous section, in the case of an underlying causal linear model, it is observed
that there can be some benefit associated with using the responses from all members of
the prediction set to predict an individual sample. As mentioned earlier, however, the
applicability of such causal models may be significantly limited in practice. Thus, it is
interesting to consider whether a similar benefit can be realized when using a soft-

modeling approach.

Motivated by the results presented in the previous section, Thomas (1995) demonstrates
that in the case of PCR a similar benefit can be realized. Here, we will assume that both
the calibration and prediction set specimens are drawn at random from some population

of specimens. Briefly, the idealized PCR model is x =bg + by - Ty +by - To+...4by - Ty,
where the b, are parameters, and T, is the latent variable obtained by projecting the g-

dimensional idealized noise-free response variable on the i population eigenvector
which represents the i™ largest source of response variation. Only the % largest sources of

variation are used to define the model. In practice, the model prediction is given by




= 50 + 61 . 'i‘l + 132 -’f‘2+...+13h »Th, where Bi denotes an estimate of the model

parameters, and ’f‘i denotes the projection of the measured g-dimensional response

variable onto the i sample eigenvector. Given that the model form is appropriate, the

prediction error (i.e., X —x) is due to: 1. errors in the estimated model parameters,
(Bi —b; ), and 2. errors in the latent variables ("I“i —T;) which are due to the combined

effects of measurement errors of the response variable and differences between the

sample and population eigenvectors.

Traditionally, the basis set of sample eigenvectors is based exclusively on the responses
associated with the calibration set. Alternately, if the sample eigenvectors are based on
the combined calibration and prediction sets, the resulting sample eigenvectors will tend
to be closer to the population eigenvectors than those based only on the calibration set.
The reduction, in magnitude, of the resulting prediction errors can be substantial if the

differences between the sample and population eigenvectors is a significant source of

T, . — .
error and — is large, where » is the number of calibration samples and r is the number of
n

prediction samples (see Thomas 1995). Again, the basis for improvement is the common
relationship among the response variables that exists throughout the the calibration and

prediction sets and which defines the basis set that is used for modeling.

5. CONCLUSIONS

This paper has demonstrated the usefulness of an EIV model as a device for providing
insights into the multivariate calibration problem. By using the EIV model in the context
of an underlying causal model, analysis of the asymptotic distribution of prediction errors
and subsequent simulation established the value of a nontraditional concept for
prediction. This concept uses the responses from all available specimens of the
prediction set to improve the prediction of individual specimens. Motivated by this result,
this concept was extended to PCR, which is a soft-modeling approach and therefore

generally more applicable than a causal modeling approach. In practice, this new concept

10




could be useful in the analytical chemistry laboratory, where measurements of the
prediction set specimens are often obtained close in time so as to be available to assist in

the prediction of an individual specimen.
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