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Mobilization of Trapped Foam in Porous Media
_ David Cohenl, T.W. Patzek?2, and C.J. Radkel
Lawrence Berkeley National Laboratory, !Department of Chemical Engineering, and

2Department of Materials Science and Mineral Engineering,
University of California-Berkeley, Berkeley, CA 94720

ABSTRACT

Usually, foam in a porous medium flows through a small and spatially varying
fraction of available pores, while the bulk of it remains trapped. The trapped foam is
under a pressure gradient corresponding to the pressure gradient imposed by the flowing
foam and continuous wetting liquid fractions. The imposed pressure gradient and
coalescence of the stationary foam lamellae create periodic flow channels in the trapped
foam region. Each of these channels flows briefly, but it eventually plugs, while another
flow channel opens elsewhere, only to be plugged again by the finer bubbles pushed into
the trapped region. This results in a cycling of flow channels that open and close
thoughout the trapped foam.

The dynamic behavior of foam trapped in porous media has been modeled here
with a pore network simulator. The simulator also predicts the magnitude of the pressure
drop along a trapped foam region neccessary to generate a flow channel through it. The
mobilization pressure drop depends only on the number of lamellae in the flow path and
on the geometry of the pores that make up this path.

A predictive model of foam flow in porous media requires the knowledge of the
foam fraction that traps under “an imposed pressure gradient and for a given distribution of
pore sizes. Here we present the first analytic expression for the trapped foam fraction as
a function of the pressure gradient, and the mean and standard deviation of the pore size
distribution. This expression provides the final missing piece of the continuum foam

flow models based on the moments of the volume-averaged population balance of foam

bubbles .
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INTRODUCTION

Foam is an excellent candidate for improving oil recovery from porous media
because of its low mobility and blocking ability. A significantly greater pressure gradient
is required to mobilize foam than to maintain flow of either the gas or liquid phases in a
porous medium. When compared to continuous gas flow, foam lowers the mobility by
factors as high as 5000 (Kovscek, 1994). Experimental observations have been done
where the pressure gradient is significantly greater than 100 psi per foot in a bead pack at -
gas flow rates of meters per day (Fagan, 1992).

In applications such as enhanced oil recovery (EOR), it is important to understand
the flow properties of foam in a porous medium. Tracer studies reveal that a large
fraction of foam under flowing conditions in a porous medium remains trappesi (Holm,
1968; Gillis, 1990; Falls, 1989). In fact, as much as 80% of the foam volume may be
trapped at any time during flow (Gillis, 1990). Existing models for foam flow lack an
understanding of the physics of the trapped fraction. Population-balance models (Patzek,
1988; Falls et al, 1988; Friedmann et al.,, 1991) for foam in porous media treat the
trapped foam fraction as an adjustable constant (Kovscek and Radke, 1994; Kovscek et
al., 1995). Trapped regions exert a tremendous influence on foam mobility because they
reduce the gas-phase relative permeability.

Kovscek and Radke (1994) recognized the dynamic nature of the regions of
trapped foam. Stationary foam undergoes coarsening and eventually remobilizes while
some flowing foam becomes trapped. In this way, the fraction of trapped gas remains
nearly constant at all times and, on average, the foam texture, or number of gas bubbles
per unit volume, is approximately constant throughout the entire system. Constant foam

texture is assumed because the dynamic nature of the system results in trapped and



flowing bubbles being interchangeable. Here, we show that the texture of foam in the
trapped region does in fact change with time.

Hanssen and Dalland (1991) and Hanssen and Haugum (1991) generated foam in
a porous medium under constant pressure gradient rather than at constant flow rate.
Foams which they refer to as "strong" eventually totally plug the porous medium and
block gas flow through the porous medium. Gas flow reduces to a trickle, and this
"pseudo steady state" can remain for weeks or months. We describe here a mechanism
by which, under a constant pressure difference, foam remains in a stable configuration,
and gas transports through the system by diffusion. As the pressure drop across the
porous medium increases, different static configurations of foam are achieved, until
finally the pressure drop is high enough to mobilize the foam.

Significant effort has been directed to predict the pressure drop required to
mobilize a bubble train in a porous medium. This mobilization pressure drop is important
because an extremely high mobilization pressure gradient limits the success of foam in
EOR applications. If the required mobilization pressure gradient is too large, the foam is
not an effective drive fluid for EOR, because there is a limit to what injection pressures
can be used in the field, especially in places where the well-to-well distance is very long
(Rossen and Gauglitz, 1990; Friedmann et al., 1991).

Different predictions for required mobilization pressure drop are presented in the
literature. The highest estimate was given by Falls et al. (1989). They assumed that all
lamellae start in the pore throats; it takes a large mobilization pressure gradient to move
them out of the throats. Their estimates for the mobilization pressure gradient are on the
order of several MPa/m. Flumerfelt and Prieditis (1988) assume an initial random
distribution of lamella positions, some curved in the direction of the pressure gradient and
some curved against the pressure gradient. Thus, on average, they concluded that the
mobilization pressure drop of a foam in a porous medium approaches zero for long

bubble trains.




Rossen (1990): predicted a mobilization pressure gradient between the values of
Falls et al. and Flumerfelt and Prieditis. He correctly asserts that most lamellae are
curved in the direction that resists flow, and therefore there is not a complete balance of
curvatures that results in a mobilization pressure drop of zero. Rossen defines pores to be
conical and derives the pressure drop which must be exceeded in order for a lamella to
mobilize. This value is greater than zero solely because of the discontinuity that occurs at
the pore bodies, where there are corners. He concludes that if the pores were rounded
into sinusoidal shapes, the mobilization pressure drop would approach zero. In water-wet
porous media the aqueous phase congregates in any corners, smoothing the edges. Thus,
according to Rossen's argument, foams mobilize at pressures drops that are very close to
Zero.

Only the analysis of Falls ez al. (1989) explains why such a high fraction of foam
is trapped in porous media under flow conditions with -significant imposed pressure
gradients. None of these available theories can explain the dynamic nature of foam
trapping; i.e., why foam that is stationary in some channels eventually mobilizes while
foam in other channels remains trapped. Here we examine the time evolution of trapped
foam, and discuss the conditions which lead to the mobilization of foam through specific
channels.

Percolation models have employed the theories described above to predict the
propagation of foams in porous media. Rossen and Gauglitz (1990) hypothesized that
gas flow begins in the channel with the fewest blocking lamellae. Out of all possible
pathways, the one with the minimum mobilization pressure drop must be found. The
mobilization pressure gradient is the maximum pressure drop an individual lamella can
withstand divided by the average distance between lamellae in the direction of flow along
the particular path. de Gennes (1992) considered a train of lamellae resting in the pore
throats and roughly defined percolation regimes for mobilization as a function of foam

density and pressure gradient. He speculated that the system remains close to the



mobilization threshold because trapped regimes coarsen while bubble density increases in
flowing regimes as more lamellae are formed.

All the above theories conceptually impose a pressure gradient across a region
containing trapped lamellae and increase that pressure gradient until flow begins.
However, as a pressure gradient is imposed, foam lamellae must continually realign so
that every channel sustains the pressure drop. In other words, the Young-Laplace
equation dictates which configurations of lamellae are admissable for a given imposed
pressure gradient. Thus, the premise of Flumerfelt and Prieditis (1988) that lamellae are
randomly distributed, is only possible when there is no pressure gradient across the
channel. On average, the lamellae are in positions to resist flow, as conjectured by
Rossen.

More importantly, when foam is trapped under a pressure gradient, gas does in
fact ﬂow,‘but by diffusion. As long as there is a net curvature of lamellae in a foam
channel, which is true under an imposed pressure gradient, a gas flux occurs through the
channel. The flow rate of gas resulting from diffusion is a small fraction of the total flow
of gas in mobilized channels, but can be predicted using the techniques we present here.

Lamellae in regions of trapped foam translate somewhat due to gas diffusion. In
fact, diffusion causes coarsening of foam with time. As foam coarsens, the pressure
required to mobilize it decreases. This effect confirms the hypothesis of Rossen and
Gauglitz (1990) that the mobilization pressure is a function of the number of lamellac in a
channel in the direction of flow. This also confirms the conclusion of de Gennes (1992)
that coarsening of lamellae leads to mobilization of higher fractions of foam.

In this paper, we model stationary foam in a porous medium under an imposed
pressure gradient. We predict the flux of gas that passes through the trapped region in
order for the pressure gradient to remain constant. The gas flux varies with time
reflecting rearrangements of lamella configurations. For pressure gradients below the

mobilization pressure gradient at all times, the system settles at a steady state




configuration. For higher pressure gradients, the model predicts.how long it takes for the
stationary foam to mobilize and through what path that mobilization occurs. We
- illustrate the-process of foam coarsening under an imposed pressure gradient. Coarsening
results in configurations that withstand different pressure gradients and, therefore, may
result in the mobilization of foam.

The model here is a variation on our earlier network simulation (Cohen, Patzek,
and Radke, 1996) where much of the physics involved in the rearrangement of lamellae
and change in pressures as a result of diffusion is presented. However, that model was
subject to nearly random initial conditions and a pressure drop could not be imposed
initially. In fact, previously, the pressures were nearly uniform in all the pore bodies,
with slight variations. Thus, we first present a technique for finding an initial lamella
configuration that sustains a pressure difference imposed across a region of a porous
medium. Then, a model is discussed which assures that this pressure drop remains the
same at all times during the diffusion process, by allowing gas to flow through the

system.

MODEL FRAMEWORK

The current model is similar to a two-dimensional network model described
elsewhere (Cohen, Patzek, and Radke, 1996). Each size network is specified by a pair of
integers describing the number of pore bodies in each dimension of the network, myXm;.
The current model uses a coordination number of 4, where 4 pores connect to each pore
body. The pores are hourglass shapes with adjustable characteristic lengths, Rg, and pore
throat diameters, It A 5X2 network and the number scheme are illustrated in Figure 1.
The "upstream" and "downstream" pressures correspond to the leftmost and rightmost
pores in the network, respectively. The "downstream" side of the network, which is at

lower pressure, has pore bodies represented by the index (k-1)my+1, where k represents

the row of the network. The "upstream" side pore bodies are represented by the index



kmy. The pressures in the pore bodies decrease as one moves from left to right in the
network.

The initial pressure conditions are specified by two input values. One is the
equilibrinm pressure, Peg, which is the pressure achieved if the pressure gradient is
allowed to relax to the equilibrium configuration, in which all the lamellae sit in pore
throats and pressure is uniform everywhere (Cohen, Patzek, and Radke, 1996). The
second input value is the pressure gradient. This is the difference between the "upstream"”
and "downstream" pressures. In the 52 network illustrated in Figure 1, the pressure
gradient defines the identical difference in pressure between pores (5,1) and (1,4) and
between pores (10,1) and (6,4).

A configuration of lamellae must be found so that the pressure gradient is satisfied
and the upstream pressures are the same in every row. The initial lamella configuration is
reported as a vector of individual lamella positions. Each half-pore in the system is
identified by a pair of indices (i,j), where i is the pore body number and j represents the
specific half-pore in question. An individual lamella position is defined as xj;,
representing the fraction of the way the lamella sits between the pore throat and the pore
body. So x;=0 when the lamella is at the pore throat. If the lamella is located on the
opposite side of the pore throat from pore body i, its position is negative in sign, by
definition.

An acceptable initial configuration is one in which the sum of the pressure drop
across all the lamellae in every row sum to the imposed system pressure drop. There is a
maximum pressure drop that any lamella can withstand. It is defined from the Young-

Laplace equation to be

APmax=_7 [1]




where et is the radius of curvature of a lamella sitting at the critical position. The
critical position is the position in a pore with curved walls at which the radius of
curvature of a lamella is a minimum, and the lamella correspondingly sustains a
- maximum pressure drop (Cohen, Patzek, and Radke, 1996). When there is one lamella
on each side of a pore throat, the maximum pressure increase allowed between adjacent
pore bodies occurs when the lamella on the lower pressure (downstream) side of the pore
throat is at the critical position and the other lamella (upstream) sits at the pore throat.

The maximum pressure drop across the entire network is then

(APm>mm=(%n%)(m,,+1). . 2]

If the pressure drop desired by the initial conditions exceeds (APmax)total, then some
porés must have both lamellae on the same side of the pore throat. Figure 2 shows an
example of a pore with both lamellae on the same side of the pore throat. The actual
upper bound for the maximum pressure drop between adjacent pore bodies is double the
value of (APmax)wtal given in Eq. [2], because this is where all lamellae sit at the
downstream critical positioh. However, if this pressure difference were achieved, each
pair of lamellae would quickly merge together into one, and the resulting configuration
could no longer withstand the imposed pressure drop. At this pressure drop or higher, the
foam is mobilized. As we discuss in the next section, for foam to remain trapped in a
porous medium, it must approach a configuration where there is only one lamella
between pore bodies.

Equation [2].assumes that rer is a constant. The network model allows for each
pore to have its own unique geometry. Therefore, 1¢rj is function of the critical lamella

position Xcri; and the pore shape parameter Bjj, defined as



Lt i,j
B;;=|1+—=— 3

for an hourglass pore, where 1¢jj is the pore throat radius of the pore in question, and
Rg,ij is the characteristic length of that pore. Both Bjj and Xcri¢ are functions of the
individual pore geometry. So the more accurate expression for the maximum pressure

drop across a row of hourglass pores with one lamella between each pair of pore bodies is

y+l1 Zo‘(x . ).
APy, =y, mtgl'luz . 4]
=\ Big — (A= (Xerie)in) ™ “IRgin

The pressure drop defined by Eq. [4] is known as the limiting mobilization pressure drop
for a channel in a porous medium filled with foam.

The technique used to find an acceptable initial configuration is discussed in
Appendix A. Once the initial configuration has been established, a constant pressure
drop is imposed across the network, allowing us to find how much gas diffuses through
the network in order to maintain the imposed pressure gradient. At a high enough
pressure gradient, bubble coalescence eventually leads to configurations that can no
longer withstand the imposed pressure gradient, and hydrodynamic flow begins, i.e.

mobilization occurs.

FOAM COARSENING
A lamella residing in a pore with curved walls is always curved so that the gas
pressure is higher on the throat side than on the body side. As a result, gas diffuses
across the lamella, with the pressure difference acting as the driving force. Gas in the
bubbles on each side of a lamella is assumed to be well mixed, and thus has a uniform

pressure. The only resistance to mass transfer from one bubble to another is the lamella.




Mass transfer through a lamella is limited by the diffusion of gas through the film, and
not by the initial rate of dissolution into the film (de Vries, 1958)'. The rate of gas
diffusion is described by the mass transfer equation,

dn__ . =SD
at = k AAP; k h [3]

where A is the surface area of one interface of the lamella, AP is the pressure drop across
the lamella, defined by the Young-Laplace equation, and k is the mass transfer
coefficient, which is a function of the gas solubility S, its liquid phase diffusivity D, and
the lamella thickness h.

As gas diffuses through a lamella, the lamella slowly translates towards the pore
throat (Cohen, Patzek, and Radke, 1996). With no imposed pressure gradient on the
system, the lamellae continue to move until they all rest in the pore throats. This is a
stable equilibrium configuration.

The initial configuration in our model has two lamellae in each pore, usually on
opposite sides of the pore throat. Diffus:ion drives the two lamellae closer and closer
together until they merge, leaving just one lamella in the pore. Hence, the bubble density
of foam (texture) in the porous medium decreases. As the total number of lamellae
decreases, so does the total number of bubbles, and the foam coarsens.

Figure 3 shows the sequence of two lamellae merging together in a pore with a
pressure drop from left to right. As gas diffuses from the bubble that spans the pore
throat across the two lamellae into the two pore bodies, the lamellae move toward one
another. The lamella on the right continues to move past the pore throat and has a
negative position just before the merge. Our model assumes that the lamella with the
negative position ruptures as the two lamellae merge together.

The minimum allowable distance between two lamellae before they coalesce is a

parameter set as the input to the model. Merging causes a disturbance to the system, as
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there must be a sudden redistribution of gas. Any gas that remains between the two
lamellae expands into the pore body. In Figure 3, the gas between the two lamellae
expands to the right of the remaining lamella. This causes the remaining lamella to jump
away from the pore throat as the pressures equilibrate. In frame d of Figure 3, the
resulting single lamella is to the right of the pair of lamellae in frame c.

The sudden jump during the merge can be explained mathematically by analyzing
the Young-Laplace equation. Before the merge, there are two lamellae and the pressure
difference between pore bodies 1 and 2 is the sum of the two corresponding Young-
Laplace equations. Since the lamellae have almost the same curvature, we approximate

this pressure difference in the two-dimensional system as

AP=4¢/rx,.. (6]

After the merge, there is only one lamella remaining, so the pressure difference between

pore bodies 1 and 2 is now

AP=26/14. (71

Since the two AP values are nearly the same, the radius of curvature after the merge rq
must be smaller than the radius of curvature before the merge re. Near the pore throat,
the radius of curvature decreases as the lamella moves away from the throat. Hence the
lamella is farther from the throat after the merge.

The mathematical argument shows why making the merge distance smaller and
thus forcing fewer moles to be displaced by the merge does not necessarily reduce the
magnitude of the disturbance to the system. In addition, the merge can not be ignored by
allowing the two lamellae to come vanishingly close together for two reasons, one

physical and the other mathematical.
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As two lamellae get very close together, their Plateau borders overlap and the
lamellae come in contact with one another. This draws the films together. Also, as the
number of moles of gis in the bubble between the lamellae approaches zero, the
numerical system approaches a singularity because the pressure is calculated by dividing
by the number of moles.

In a system with an initial distribution of lamellae, each pair of lamellae
undergoes a merge until each pore contains only one lamella, This is the irreducible foam
texture; no further coarsening occurs. When there is an imposed pressure gradient, the
steady-state configuration of lamellae is for all of them to be away from the pore throat
towards the downstream side of the system. In this manner, the imposed pressure

gradient is sustained, and gas continues to migrate through the trapped foam by diffusion.

CONSTANT PRESSURE GRADIENT

When a pressure gradient is imposed across a region of trapped foam, the foam
lamellae either mobilize or configure themselves in a way that resists bulk flow. If the
latter occurs and there is a source of gas upstream of the region, gas diffuses through the
system from bubble to bubble toward the downstream end of the system. If the region
containing trapped foam is adjacent to a mobilized channel, the flowing gés has an
associated pressure drop, and this pressure drop must also be satisfied across the region of
stationary foam. Nearby ﬁowing gas bubbles are a source and sink for gas, which seeps
through the stationary foam by diffusion. It is also possible that the entire medium
contains only stationary foam, as in the constant-pressure-drop experiments of Hanssen
and Haugum (1991). |

Figure 4 is:l schematic diagram showing foam flowing through one channel and
foam trapped in the other channels. Not shown is the aqueous wetting phase occupying
the smallest flow channels. The pressure difference across the diagram is the same in all

the pore channels, and the pressure difference is determined by the flow conditions of the
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foam bubbles in the larger channels. The prediction of the pressure difference has been
addressed by other investigators (Kovscek and Radke, 1994).

The result of a pressure gradient imposed across the network of Figure 1 is a
diffusive flux of gas through the system from left to right, with gas flowing in through
pores (5,1) and (10,1) and leaving through pores (1,4) and (6,4). The net curvature of
lamellae is in the direction of the pressure gradient. This means that on average, the
lamellae must be concave to the left. This is why the pores on the right side of the
network in Figure 1 are extended past their pore throats; all of the lamellae finally reside
on the downstream side of the pore throats.

There are two ways to handle the top and bottom boundaries of the network. One
is to assume that they consist of dead-end pores, with no loss or addition of gas across the
pore throats. In this case, the lamellae in these pores always end up at the pore throat.
We can also demand periodic boundary conditions, so that the pore throats on the bottom
of the network connect to the ones on the top. Doing this does not change the
fundamental result or time scales, but it does allow one to approximate the behavior of
larger porous media without requiring extremely large networks.

To start a network simulation, the initial conditions must be satisfied as described
in the previous section. Once found, the pressure drop across in the system is held

constant at all times,
AP =P(y,1) - P(1,4) = PQ2y,1) - P(y+1,4). (81

The goal of the simulation is to track the evolution of tlie lamellac-ensemble from an
initial configuration to its steady-state configuration under the influence of the imposed
pressure drop AP, which remains constant at all times during the process. As a result of
diffusion, the foam texture coarsens, and one of two things happens. Either there is a

steady-state configuration in which the lamellae no longer move and gas continues to
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diffuse through the stationary region, or one of the channels mobilizes before steady-state
can be reached. The variables that must be found at each time step are the lamella
positions (x), the number of moles of gas in each bubble (n), the number of moles of gas
entering each row on the left per unit time (1jn), and the amount of gas leaving each row
on the right per unit time (fioyy). Each of these quantities is a vector array of variables.
The dimension of x is the number of lamellae in the system. The dimension of n is the
total number of half-pores and pore bodies in the system, and the dimension of the two
flow rate i vectors is the number of rows z in the network.

For each cluster, a pore body and the four half-pores that surround it, there are 9
equations that must be satisfied (Cohen, Patzek, and Radke, 1996). All governing
equations are nondimensionalized by using Ry as the characteristic length, 6/Rg as the
charac.terisﬁc pressure, and cﬁgzlxl‘ is the characteristic number of moles, where & is
the gas constant and T is temperature. Each lamella (i,j) must satisfy the Young-Laplace

equation,

My 0 2
¥ij(ij)  ViCix=14) Pi;jXi;)

(9]

where pressures have been expressed using the ideal gas law. Dimensionless volumes are
indicated by ¥; m represents the dimensionless number of moles; and p is the
dimensionless radius of curvature of a lamella. Single subscripts refer to a pore body and
double subscripts refer to a particular half-pore. The volume of a pore body is a function
of the positions of all the lamellae around it.

In addition'to Eq. [9], each pair of lamellae must satisfy a pair of constraints. The
first constraint ensures conservation of mass in each bubble spanning a pore throat. Since
each one of these bubbles, other than those on a boundary, is surrounded by two lamellae,

the equation of mass conservation is made up of the sum of two mass transfer relations,

Eq. [5],
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dng; M, Ay dng,y

2 _
It at + 4arccos(l — x;

lJ)”2+4arccos(l -x2)) 0, [10]

which have been nondimensionalized after substituting expressions for A and AP as a

function of x. Two adjacent half-pores are also related by the second constraint:

N, TNk,1
’Yl,_](xl,]) Yk, (xk,l)

[11]

which guarantees that their pressures are equal. In Egs. [10-11], half-pore (k,1) is the one
that connects to half-pore (i,j).

Each pore body in the network also obeys conservation of mass,

& 24arccos(1 xZ)V? = [12]

m=1

which ensures that the amount of gas transferred into a pore body is equal to the amount

of gas leaving each of the pores around it.
Equations [9-12] are grouped together to constitute a residual vector R,

Ru()]=0, [13]

where u is the solution vector made up of all the x and 1} values. Dimensionless time T is

defined as

T==. [14]
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The parameter B is equal to the film thickness divided the product of the gas constant,
temperature, solubility, and characteristic length. Its inverse is the conductivity of the
lamella to gas transport.

Tn addition to the equations summarized above, there is one equation for each row

in the network defining the constant pressure drop;

Myl Ni-1y+1,4

—-AIl=0, . . [15]
YigaXig1)  Ya-ny+1,4Ka-1y+1,4) .

where i is the row number, and IT is dimensionless pressure. Also, all upstream pores

must have equal pressures at all times, so

Miy1 NG-1)y,4

=0, i>1. [16]
Viga&Eig)  Y-1y.4F-yy.e)

There are two unknown 1 variables per row. All but one of these flow rate variables are
linearly independent. We find fiou,1 by recognizing that the total amount of gas

transferring out of all the right hand pores must be equal to the total inflow on the left,

Zﬁin,i =D flout,- [17]
i i

The inflow and outflow of gas are taken into account by altering the mass transfer
equations for the pores at the ends of each channel. In addition to gas transferred by
diffusion across each lamella, gas is removed from the pores on the far right, and gas is
added to the pores on the far left. For example, the equation for pore (1,4) in Figure 1
becomes

d
W+ darcoos(l—x2e)! /2 + gy =0 - [18]
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When all the proper equations are collected together, the unknown variables (x, 11, n) are
found at incremental times by marching forward using a finite difference approximation

and solving at each time step using Newton-Raphson iteration. The computer code which

solves the problem is listed elsewhere (Cohen, 1996).

MOBILIZATION PRESSURES

Foam in a porous medium can remain stationary under an impos'ed pressure
gradient. The more lamellae there are in a potential flow channel, the higher the pressure
drop that the channel can withstand. Once the imposed pressure gradient is higher than
the maximum allowable gradient, foam lamellae begin to flow. The path of the flow is
the one of least resistance. So foam may not mobilize through a straight channel, but
may take a tortuous path. Which path is taken depends on the size of the pores along all
possible paths and the texture of foam, or lamella density, along these paths.

The size of the pores is an important consideration in determining when foam
mobilizes in a channel. In smaller pores, lamellae resist higher pressure drops. This can
be seen from Eq [1], which shows that the maximum pressure a lamella can resist is
inversely proportional to the radius of curvature of a lamella at the critical position. The
radius of curvature of a lamella at a given value of x is smaller in a smaller pore, so the
maximum allowable pressure is larger for these pores.

In addition to pore size, foam texture is an important consideration in determining
the path of least resistance for foam. The fewer lamellae there are in a particular channel,
the easier is the mobilization of the bubble train. Thus, prediction of mobilization
depends on both the size of the pores in a channel and the number of lamellae in the
channel.

The term mobilization pressure drop describes the maximum allowable pressure

drop prior to initiation of hydrodynamic flow through a path filled with stationary foam.
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Above the mobilization pressure drop, a lamella train translates. For one lamella to flow,
all lamellae around it must mobilize as well. Thus, unless the imposed pressure drop is
high enough to mobilize all the lamellae in a path, the entire train of lamellae remains
stationary. For a given flow path, the mobilization pressure drop, Allpop, can be

calculated from

£ 2Ry .
AH”“"=§([Bi—(1—(xmo?)“21Rg,i ’ | tol

where (Xx.;); and Bj are pore; geometry values for the pore which correspbnds to a
particular lamella and the summation is over the total number of lamellae, ¢, in the path.

‘To illustrate the dependence of Allmop On the numbe; of lamellae in a channel, we
investigate a single, S-cluster long channel with uniform pore sizes. Table 1 shows the
mobilization pressure drop as a function of the number of lamellae in the channel. The
mobilization pressure drops are scaled by surface tension divided by the characteristic
pore size (G/_R-g). Starting with 2 lamellae per pore; there are 10 lamellae initially. After
all coalescence events are complete, 6 lamellae remain. Assuming that the limiting
capiﬁary pressure for lamglla coalescence is not exceeded in the system (Khatib et al.,
1988), these 6 lamellae remain indefinitely in their steady-state positions. Diffusion
continues along the channel, but as long as the mobilization pressure drop is not
exceeded, the 6 lamellae are stationary. |

Table 1. Dimensionless mobilization pressure drop in a
S-cluster channel as a function of number of lamellae.

no. of lamellae mobilization
pressure drop

10 30.15

9 27.14

8 24.12

7 21.11

6 18.09
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Clearly, for a system with a uniform pore-size distribution, the mobilization pressure drop
is simply the number of lamellae multiplied by the mobilization pressure drop per
lamella. The dimensionless mobilization pressure drop per lamella in Table 1 is 3.015.
The magnitude of this limiting mobilization pressure drop in pores with Rg=23 pum
throats is about 0.045 atm per pore. So when there are 1000 pores in a row, the foam
remains trapped until the applied pressure difference is 45 atm! But when Rg=100 pm,
the limiting mobilization pressure drop is only 10 atm for 1000 pores.

The discrete mobilization pressure drops shown in Table 1 are analogous to
‘energy levels; we call them mobilization levels. For a given number of lamellae in a
channel, there is a mobilization level which, if exceeded, results in flow through the
channel. For example, if the imposed pressure drop across the 5-cluster channel in Table
1 is AI1=22, the channel does not mobilize at the initial configuration of 10 lamellae,
because the mobilization level is 30.15. But as diffusion proceeds, the lamellae translate
toward the throats and eventually two lamellae in a single pore approach one another and
coalesce. After each merge, the mobilization level decreases. When there are 8 lamellae
remaining, the mobilization level is 24.12. The imposed pressure drop of 22 is still below
this level, so the system does not mobilize yet. As diffusion continues, another pair of
lamellae merge together. Now, the mobilization level drops to 21.11, which is below the
hﬁposcd pressure drop. Immediately, the lamella train in the channel mobilizes.

This process is illustrated graphically in Figure 4, as a history of dimensionless
pressure drop versus dimensionless time. The heavy dashed line delineates the imposed
pressure drop, which remains constant at all times. The remaining lines show the
mobilization levels as a function of time. This level is constant for a constant number of
lamellae, but decreases each time a lamella merges with its neighbor. Each mobilization

level is labeled with the number of lamellae that remain in the channel. When the system
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goes from 8 to 7 lamellae, the mobilization level drops below the imposed pressure
gradient, and hydrodynamic flow results.

Of course, different imposed pressure 'drops result in different behavior. For
example, Figure 6 shows the 5-cluster, equal-pore size channel as it behaves under an
imposed pressure drop of 19 instead of 22. Not only does this change the number of
- lamellae which must merge before flow' begins, but it changes the time scales of the
events during the process. This is because the different imposed pressure drop results in a
different initial configuration, so the lamellae do not merge together at the same time, and
* the diffusion rates are changed. Note that the length of the lines which represent the
. lifetimes of the lamellae in Figure 6 are different than the corresponding ones of Figure 5.

The coalescence events happen fairly quickly in these systems. For a porous
medium with a characteristic length of 100 pm, it takes 484 s for the first merge to occur,

correspoﬂding to a dimensionless time of 600 in Figure 6. The second merge occurs less

". than 60 s later. So, the channel remains stationary for about 650 s, or just over 10

minutes, before mobilizing.

Clearly, foam mobilization is not as simple as some of the previous works imply
-(Falls et al., 1989; Flumerfelt and Prieditis, 1988; Rossen and Gauglitz, 1990). If the
imposed pressure drop is above the mobilization pressure drop for the number of lamellae
in a path, then flow begins immediately. Otherwise, it is possible that flow starts after a
period of diffusion-driven coarsening. Mobilization cannot be thought of as a sudden
on/off switch. There is a period of time under an imposed pressure gradient when the
foam remains trapped until its coarsening texture results in the next discrete mobilization
level being exceed_ed. At this time, foam flows out of the mobilized channel and is
replaced by flowing foam from upstream. Depending on its texture, this new foam
becomes trapped, and the process begins again. In this way, the trapped region undergoes
intermittent pulses, with foam flowing out in bursts and then trapping again as the

inflowing bubble size decreases and the mobilization pressure is no longer exceeded.
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In addition, there are imposed pressure drops below all mobilization pressure
drops, and the foam never mobilizes. For the 5-cluster systems of Figures S and 6, the
pressure drop below which foam remains trapped in a channel is AII=18. . This is the
limiting mobilization pressure drop as defined in Eq. [4]. The foam undergoes diffusion-
driven coarsening until there are 6 lamellae, and then the system remains at steady-state
with a net diffusive flow of gas through the channel. Figure 7 shows a system of lamellae
at steady-state under a pressure gradient in a system with uniform pore sizes. All of the
lamellae are at the same position in their corresponding pores, and are curved to
withstand the pressure gradient and to allow gas to diffuse through. In a single row
network, njp and ngy are the same at steady state.

Changing the imposed préssure gradient across the channel in Figure 7 results in
different steady-state lamella positions. As the pressure drop increases, the steady-state
lamella [Sositions approach the critical position. At AIlyep for 6 lamellae, the lamellae all
reside at the critical positions. Above Allyop, the lamella train mobilizes. Conversely,
increasing the molar diffusion flow rate i through the channel results in steady-state
lamella positions that are farther away from the pore throat. In fact, the diffusive flow
through the channel can continue to increase above the value corresponding to the
lamellae at their critical positions. But the pressure drop that is required across the
system decreases above this flow rate. Flow through a lamella, as defined by Eq. [5],is a
function of the product of the curvature of the lamella and its surface area. The surface
area is a stronger function of lamella position than is curvature, and thus the diffusion
flow rate continues to increase as the lamella moves away from the pore throat. The
maximum diffusive flow that can pass through a lamella in this geometry occurs when
the lamella is at x=1, which is where the pore intersects the pore body.

Table 2 shows the how steady state depends on the diffusive flow rate of gas
through the channel. The table gives the steady-state lamella positions and the pressure

drop in a S-cluster channel as a function of diffusive gas flow. Remember that the
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mobilization pressure drop for this system is 18.09, so all the diffusive flow rates in Table
2 result in a stable stationary foam. In the table, a diffusive flow of 2.35 is the
dimensionless flow rate which occurs when all the lamellae are at the critical position and
the steady-state pressure drop equals the mobilization pressure drop.

TaBle 2. Steady-state lamella positions and actual pressure drops
for increasing values of diffusive gas flux through a 5-cluster channel.

it (dimensionless Steady-state )
diffusive flow rate) lamella positions Channel AT
0.5 125 7.20
1.0 247 12.85
1.5 366 16.31
2.0 479 17.84
2.35 554 18.09
2.5 585 18.05
3.0 635 17.83
3.5 768 16.48
4.0 841 15.31
4.5 902 14.08
5.0 949 12.87
55 981 11.71
. 6.0 997 10.60

Table 2 emphasizes the fact that there are two steady-state lamella configurations
possible for many imposed pressure gradients. As diffusion proceeds in a real system,
the lamellae migrate toward the pore throats, and neighboring lamellae coalesce near the
throats. Therefore, the more likely steady-state configurations are ones where x is
smaller than the critical value. Therefore, the steady-state lamella positions are assumed
to be a monotonically increasing function of pressure drop.

The fraction of the total gas flow through a porous medium due to diffusion
through stationary foam depends on the magnitude- of all the system variables.
Converting n=1.0 in Table 2 to typical flow rate units in a porous medium with an
average préssure of 1 atm and at ambient temperature gives diffusive flow rates ranging
from 0.15 m/day for pores with Rg=23 pim to 0.025 ft/day for Rg=500 pm. The flow

rates for the smaller pores seem high, but in reality, the average pressure in these systems
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is on the order of 10 atm or more. A factor of 10 in pressure lowers the dimensional flow ‘
rate by a factor of 10. So at 10 atm average pressure, the diffusive flow rate in pores with
Rg=23 um is 0.015 m/day. Thus the magnitude of gas flow resulting from diffusion
through stationary pores can be significant under specific conditions, but is most often
small compared to gas convection. For better comparison, Kovscek and Radke (1994)
reported a Darcy velocity for gas of 0.43 m/day at an exit pressure of 47.4 atm. Using
that pressure as the average pressure in the system, which is a conservative estimate, the
gas flow velocity resulting from diffusion through a pore with a 5 pum throat is about
0.003 m/day.

- After completing the discussion of mobilization of lamellae in a single channel, it
is important to study the behayior of systems described by multiple row networks, which
model more realistically the behavior of foam in porous media. We start with two-row
networks. The only interesting behavior occurs when all the pores in the network have
different dimensions. For example, if a 5x2 network has 10 clusters of the same size, the
behavior of stationary foam is the same in each row as it would be for a single channel
system with the same dimensions.

Figure 8 shows a two-row network where each row is made up of uniform pore
sizes, but the pores connecting the pore bodies in the top row are smaller than the pores in
the bottom row. The pressure drop across each row is the same, and as a result the
diffusive gas flow into it is different in general. The same is true for the flow out of each
row. The flow through the narrower channel has to be smaller in order for it to have the
same pressure drop as in the wider channel. Figure 8 illustrates the behavior of the
system when the imposed pressure drop is below the mobilization pressure drop for either
channel. This system results in the solution vectors nj; and gy being the same at
steady state. The lamellae in the pores connecting the two rows merge together and
situate themselves in the pore throats. Thus, the five pore bodies in the top row have the

same pressures as those in the bottom row, there is no gas flow between the rows, and the
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pressure drop across each lamella in the system is the same. The lamellae in the bottom
row are farther from the throats than those in the top row, and the lamellae in neither row
exceed the critical position. Since a lamella residing in a smaller pore has a smaller
radius of curvature than one at the same position in a larger pore, a lamella in a larger
pore must be farther away from the throat in order to achieve the same curvature.

As the imposed pressure drop across the system in Figure 8 increases,
mobilization eventually occurs. -Clearly, the mobilization pressure for the narrower
channel is higher than that for the wider channel, so it would seem that the wider channel
always mobilizes first. However, initially the lamellae in the narrower channel are closer
to the pore throats in order to maintain the.same pressure gradient as that across the wider
channel. Therefore, they may merge together sooner and cause mobilization in the
narrower channel before it occurs in the wider one. In order to determine when and
where the lamellae mobilize, two effects must be balanced. Which channel mobilizes
depends first on the relative sizes of the two channels and second on the imposed pressure
drop. Figure 9 gives a history of mobilization levels for the two rows of the network,
similar to the analysis done in Figures 5 and 6, for a system whe;e the pores in the
narrower channel are 56% as big as those in the wider channel. The problem is scaled
based on the larger pore size, and the dimensionless mobilization pressure drop is 32.06
in the narrow channel as opposed to 18.09 in the wider channel. For a pressure drop
ATIT=22 across the system, the wider channel mobilizes after 2 lamellae have merged with
their neighbors in the system.

When the narrower channel contains pores which are 75% of the size of the pores
in the wider channgl and the imposed pressure drop is the same, the narrower channel
mobilizes first, after the fourth merge occurs. This is because the lamellae in the wider
channel are farther from the pore throats and take longer to merge than the ones in the
narrow channel. This result is illustrated in Figure 10, in which the channels have

limiting mobilization pressure drops of 23.94 and 18.09, respectively. So an applied
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pressure drop between 18 and 24 results in mobilization of only the wider channel, while
any pressure drop above 24 results in the narrow channel mobilizing first.

The most important system to study is one with a distribution of pore sizes. To
illustrate the effect of a pore-size distribution, a 5x3 network simulation has been
performed with a Gaussian distribution used to define the characteristic size of each pore.

The average pore size is §8=500 pm, with a standard deviation, std=50 pm. In the
simulation, the pore-size distribution is defined by the parameter
_ Ry +std

=8 2
¥ R, [20]

where \ =1 for a uniform pore size distribution. The distribution used here is y = 1.1.

After the initial pore configuration has been defined, the system is subjected to a
dimensionless pressure drop of 10, which is well below the limiting mobilization pressure
drop for any row of the network. The system reaches steady state when all the lamellae
have coalesced with their neighbors and the foam has reached its minimum texture. The
steady-state configuration for this 5X3 system is shown in Figuré 11. Due to the
nonuniformity of pore sizes in each row, there now is cross-flow between the rows. This
is evidenced by the stcady-st‘ate curvatures of the lamellae in the pores that are not
directly in the line of flow.

In Figure 11, all pores are drawn to be the same size, even though they are not.
The bottom row has a dimensionless limiting mobilization pressure drop of 18.25; the
middle row 17.22, and the top row 20.10. In this situation, the rate of gas diffusing out of
each row is not the same as that diffusing in. In fact, the bottom row has more gas
diffusing out the right than in the left, while the middle row has more diffusing in the left
than out the right. The pressure drop across each entire row is the same, but the pressure

drop across each pore is not uniform.
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If the imposed pressure drop in the above 53 system is increased so that it is
above at least one of the limiting mobilization pressure drops, we can learn much about
the mobilization of real systems.- For.example, we can find out whether or not
mobilization always occur in straight channels, through a minimal number of pores, or
perhaps some systems mobilize through more tortuous paths. Figure 12 shows a plot of
mobilization levels during the coalescence process for the network of Figure 11 under an
imposed pressure drop of 20. This type of analysis only takes into consideration the
mobilization pressures through horizontal channels. If the mobilization level for any of
these channels falls below the imposed pressure drop, the lamellae in the horizontal row
mobilize. Vertical spacing between mobilization levels is not uniform anymore because
each pore is of a different size and thus adds a unique contribution to the mobilization
pressure drop.

In the case illustrated by Figure 12, the sy'stcm mobilizes after the merge of
lamella (10,4) with its neighbor at T=1530. But the mobilization level of the second
straight channel is still above the imposed pressure drop. The plot of mobilization levels
does not take into account more tortuous flow paths. Here, a path which contains pore
(10,4) is mobilized, but not simply along the second row of the network. In order to
determine which path mobilizes, it is necessary to calculate the mobilization levels for all
possible paths containing pore (10,4). Thisis done by adding the mobilization pressure
drops of all lamellae that are in the flow direction. In other words, there is no
contribution from lamellae in the vertical pores. If one of these paths has a level below
the imposed pressure drop, then it mobilizes. In this particular example, the path is found
by summing up the contributions of pores (10,1), (9,1), (13,1), (12,1), (11,1), and (11,4).
At the point of mobilization, the mobilization level of this path is 19.09, which is below
the imposed pressure drop of 20. The channel also includes pore (9,2), but this pore is
perpendicular to the flow direction, so it is not included when summing up the

contributions to the mobilization level. Figure 13 shows the lamella configuration at the
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time of mobilization. The figure only indicates the presence of two or one lamellae in a
pore; it does not reflect the exact positions of the lamellae. The long arrow shows the
channel which opens up when the foam mobilizes. The location of the final event which

triggers flow is also marked.

FOAM TRAPPING

The physical understanding gained here into the mobilization of foam in porous
media is useful in completing the effort to model foam flow. In their continuum models,
Patzek (1988), Kovscek and Radke (1994), Friedmann et al. (1991), and Kovscek et al.
(1995) did not describe accurately the trapping characteristics of foam under varying
conditions. The previous discussion describes the conditions that need to be met in order
for foam to remain stationary in a region of a porous medium. If the pressure drop across
a region is below the limiting mobilization pressure drop, the foam does not undergo
hydrodynamic flow. The network simulator used here investigates the transient behavior
of foam of a given texture in a finite size region of pores of a particular geometry and
under a fixed pressure gradient. If the limiting mobilization pressure drop is exceeded,
foam eventually mobilizes. When mobilization occurs, the simulation run is complete,
and it is possible to determine which channel opens to flow.

Under a given pressure drop, foam of a given texture flows through a certain
fraction of pores. Other channels contain foam which is trapped and intermittently flows
as its texture coarsens to below the critical texture, corresponding to the limiting
mobilization pressure drop. Finally, there is a fraction of the pores which contain foam
that is trapped at all times. Given the information presented earlier, it is possible to
calculate this fraction as a function of applied pressure gradient and for various pore size
distributions and entry capillary pressures.

Since the mobilization pressure drop is calculated by adding up the pressure drop

sustained by each lamella were it located at the critical position, there is a critical number
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of lamellae, corresponding to a critical foam texture, below which foam mobilizes
through a channel. For any single channel, the critical texture depends on the geometry
of each of the pores between the two ends. If the initial texture is above the critical
texture, but the equilibrium texture, where all lamellae sit at the pore throats, is below the
critical texture, foam mobilizes through the channel after a period of diffusion-driven
.coarsening. |

If the equilibrium texture is above the critical texture for the given pressure drop,
foam remains trapped in the channel at all times. Our goal is to predict the fraction of
foam that remains trapped at any given pressure drop. To do this, a porous medium is
defined as a collection of flow channels connecting one end of the medium with the
other. Each channel is made up of a linear combination of pores of various sizes and has
about the same total length. Each channel then has a corresponding pressure drop which
would be required to move foam of a given texture through it. Some channels, those with
more large pores, mobilize at relatively low pressure drops, while others require higher
pressure drops. By sampling a sufficiently large number -of these channels, a
representative fraction of channels that are mobilized at any given pressure gradient can
be calculated.

The maximum equilibrium foam texture has one lamella in each pore. Any
denser texture eventually coarsens to this one as a result of diffusion. This equilibrium
texture results in the highest mobilization pressure and thus the smallest mobilized
fraction for a given pressure. This is the texmi'e';x}e use in our su}isequent calculations.

The result of this calculation depends on the pore size distribution selected. It is
generally accepted that a skewed distribution, such as the lognormal distribution
(Aitchison, 1957) or the Weibull distribution (Mohanty, 1982) well describes pore-size
distributions in a porous medium. For simplicity; we choose the lognormal distribution
here, with a mean characteristic pore size, ﬁg, and a given standard deviation. Randomly

generated pores are placed in a row until the predetermined length is exceeded. Each
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pore and surrounding pore body is assumed to have a length of 4§g. The predetermined
length of the channel is the length taken up by 20 pores with the average characteristic
length. Therefore, the minimum channel length is SOEg. Some channels are made up of
fewer than 20 pores, and some have more than 20 pores.

Each channel has an entry capillary pressure. This is the pressure that must be
exceeded for gas to displace completely the liquid in the channel, and open it for a foam
lamella. Liquid drainage out of a pore is controlled by the pore throats (Wardlaw, 1987).
Therefore, in order for foam to occupy a channel, the capillary pressure must overcome

that required to displace water from the smallest pore in the channel or

Pc = ’ ’ [21]

where 1y min is the radius of the smallest pore throat. In our geometry, the pore throats are
one-fifth of the characteristic pore size, r=0.2Rg.

The calculations that follow are for a lognormal distribution with ﬁg = 100 pum
and a standard deviation of 50 um. The complete pore-size distribution is shown in
Figure 14. We proceed by creating 1000 channels, just over 8 mm in length, consisting
of a random sample of the pores. For all the pores to be occupied by foam, a capillary
entry pressure of 0.182 atm must be exceeded. The limiting mobilization pressure drop
of each channel is calculated and divided by the length of the channel, in order to
represent a pressure gradient. The computer program used to calculate these mobilization
pressure gradients is reproduced in Cohen's thesis (1996). Then a plot is made which
presents the percentage of pores that are mobilized at increasing imposed pressure
gradients. The result is shown in Figure 15 as a normal probability plot. The shape of
the plot indicates that at low mobilization pressures, an increase in pressure only
generates a small increase in the number of channels mobilized. The same is true at high

mobilization pressures. Most of the channels make the transition from trapped to flowing
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at intermediate values of mobilization pressure. Half of the foam is mobilized at an
imposed pressure gradient of 26 atm/m.

The data in Figure 15 are for a system which is at a capillary entry pressure such
that all the pores are invaded by foam. If the capillary entry pressure is below this value,
only those pores with pore throats above a corresponding value can by invaded by gas.
Therefore, to find out how the mobilization curve varies as a function of capillary entry
pressure, only channels which contain pores that are large enough to be invaded at the
particular capillary pressure can be used. As pores are randomly selected to be placed in
channels, a pore is only selected if it can be i;lvaded under the capillary pressure
conditions. The same pore size distribution (Fig. 14) is used, but only pores above a
given cutoff are used to make the channels. Figure' 16 shows the same data as Figure 15,
but for 5 different values of capillary entry pressure. These values correspond to using
pores larger than 250 pm, 200 um, 150 pm, 100 pm, 50 pm, and 0 pm, respectively,
ordered from left to right on the plot. The 0 pm case is the situation when all pore sizes
are allowed.

It is clear that for lower capillary entry pressures, the mobilization pressure
gradient needed to overcome trapping is reduced. From Figure 16, we see that for a
capillary entry pressure of 0.011 atm, all the channels that contain foam are mobilized
under a pressure gradient of 2.5 atm/m, as compared to about 50 atm/m needed to
mobilize all the channels at the highest capillary entry pressure. In order to mobilize
foam in a porous medium when a limited pressure driving force is available, either a
small fraction of the total porous medium must be invaded, i.e., capillary entry pressure is
low, or the foam texture must be very coarse, i.e., only one lamella exists for every 10 or
more pores in the system. The results in Figure 16 are for the highést equilibrium foam
texture, which is one lamella per pore.

It is possible to represent the mobilization curves such as the ones in Figures 15

and 16 analytically. To do this, we need to know the mean pressure gradient, a, at which
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half of the channels in the system are mobilized and the standard deviation, b, of the
calculated pressure gradients. The plot gives flowing fraction, Xg, as a function of

mobilization pressure gradient,

X, =%eﬁc(iijm4)' 22]

b2
Thé expression
' a-|VP
X, =1- —;-erfc( . ﬁ’m‘J) [23]

gives the fraction of foam which is trapped, X (=1-Xf), and can be used in modeling
foam flow in porous media. Given the pore size distribution and pore geometry, a simple
program finds the mean and standard deviation of mobilization pressure gradients, which
then can be used in Eq. [23] to find the fraction of foam which is trapped under a given
pressure gradient. This result can in turn be used in existing continuum models.

Figure 17 shows the same information as Figure 15, but plotted on a linear scale.
Shown are the data and the fit using Eq. [22]. The data for the 0.182 atm capillary
pressure case have a mean mobilization pressure gradient of 26 atm/m and a standard

deviation of 4.9 atm/m.

SUMMARY
A network model, first developed elsewhere (Cohen, Patzek, and Radke, 1996),
has been used here to show how stationary foam in a porous medium adjusts under the
influence of a constant pressure gradient. At a constant pressure drop across a pore
network, gas diffuses through the network. Ultimately, the lamellae arrange themselves

S0 as to resist the imposed pressure drop and allow only a net diffusive flow of gas from
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the -high pressure side of the network to the low pressure side. Our results can be

summarized as follows:

There is a maximum pressure drop that a train of lamellae can withstand in a
channel of pores, called the mobilization pressure drop. This maximum pressure
drop is a function of the number of lamellae in the channel and is calculated by
noting that each lamella can withstand a pressure drop limited by its critical
position. All possible flow paths must have mobilization pressure drops that are
not exceeded in order for the entire region to remain trapped.

Our model assumes a minimum lamella density of one lamella per pore. The
initial lamella density is twice this value, but diffusion leads to coarsening,
leaving one lamella near each pore throat. The mobilization pressure drop
corresponding to the minimum lamella density is called the limiting mobilization
pressure drop. For pressure drops below this value, mobilization cannot occur.
The steady-state configuration in this case is one which has a constant diffusive
flow rate of gas passing through the stationary foam region and lamellae which
remain at positions away from the pore throats. This steady-state behavior was
observed experimentally in the constant-pressure foam flow experiments of
Hanssen and Haugum (1991).

Above the limiting mobilization pressure drop, foam eventually mobilizes through
a particular path in the porous medium after a series of lamella merges. As each
lamella merges with its neighbor, the mobilization level for each path which
contained the lamella decreases, and if one of these levels falls below the imposed
pressure drop, mobilization begins. This process is illustrated by mobilization
level history plots.

When the mobilization level is exceeded and mobilization begins through a
particular channel, foam flows out of that channel and is replaced by finer-

textured foam from upstream. This foam then becomes trapped in the open
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channel and the process begins again until another channel, or possibly the same
one, has its mobilization level decrease below the imposed pressure drop. For

systems with average pore sizes of about 100 pum, this entire cycle occurs in about

10 minutes.

. Based on the conclusions of this model, it is possible to predict the fraction of
foam which is trapped in a porous medium under a given pressure gradient, and
given a representation of the pore size distribution. We present an analytic
expression for the fraction of foam which is trapped at any imposed pressure

gradient. Such information is necessary for predictive modeling of foam flow in

porous media.
Symbols
a - pressure gradient at which half the channels are mobilized (atm/m)
A - lamellar surface area (m2)
b - standard deviation of calculated mobilization pressure gradients (atm/m)
B - pore characteristic [1+r/Rg]
D - diffusivity of gas through liquid phase (m2/s)
h - lamella thickness (m)
k - mass transfer coefficient (mol / N s)
my - number of clusters in the network in the flow direction
my - number of clusters in the second dimension of the network
n - moles of gas (mol)
Nin - dimel;lsionless moles of gas entering the network per unit time
(nondimensionalized by the same factor as 1)
Nout - dimensionless moles of gas leaving the network per unit time

. ———— e —————— = -

(nondimensionalized by the same factor as 1))
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Greek letters

B

Y
n
I1

gas pressure (Pa)

capillary pressure (Pa)

equilibrium gas pressure (Pa); pressure if all lamellae were at pore throat
upstream pressure (Pa)

downstream pressure (Pa)

radius of curvature of a lamella at the critical position (m)

radius of curvature (m)

pore throat radius (m)

residual vector

radius of cylinder used to generate an hourglass pore [grain radius] (m)
characteristic length [average grain radius] (m)

gas constant (8.314 N m / mol K)

solubility of gas in liquid phase (mol / N m)

time (s)

temperature (K)

solution vector made up of all lamella positions and mole values
bubble volume (m3)

dimensionless distance of a lamella from the pore throat [0<x<1]
critical position

fraction of foam which is flowing

fraction of foam which is trapped

solubility parameter [/ RTSRg]
dimensionless volume [V/Rg3]
dimensionless number of moles of gas [n!l(I/oﬁgZ]

dimensionless pressure [PRg/0]
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Allmob dimensionless mobilization pressure

‘p - dimensionless radius of curvature [rlﬁg]

c - liquid/gas interfacial tension (N/m)

T - dimensionless time [{D/Rg2f]

1 - grain size distribution factor [(§g+std)/§g]
Subscripts-

i - cluster index {ie (1,mym;)}

j - pore index {je (1,4)}

Pressure Drops

AP - imposed pressure drop on network (Pa)

ATl - dimensionless imposed pressure drop on network
APpax - maximum pressure drop allowed across a single lamella (Pa)
APl - limiting mobilization pressure drop (Pa)

Allpop - dimensionless mobilization pressure drop

VP, mob

mobilization pressure gradient (Pa/m)

APPENDIX A. INITIAL CONDITIONS _
The first challenge in solving the constant pressure-drop problem is to find an
initial lamella configuration that satisfies the initial condition parameters. Imposing a
specific pressure drop on the network severely restricts the possible lamella positions. A
robust algorithm has been devleoped (Cohen, 1996) to find an acceptable initial
configuration, given the imposed preséure drop on the network.
Given the upstream and downstream pressures and the lamella positions in the

upstream and downstream pores, the pore body pressures on the upstream and

35




downstream sides of network are found. Then the initial condition generator sweeps the
network one pore body at a time and finds acceptable lamella positions assuming that
there are two lamellae between each pair of bodies.

The first row of the network has a uniform decrease in pressure from one pore
body to the next. After calculating the pressures in the upstream and downstream pore
bodies, the remaining pressure drop is divided into equal portions to find the uniform
decrease. The fact that the pore body pressures are set puts constraints on the positions of
the two lamellae in the pore connecting the adjacent bodies. Given the pore body
pressures and the position of one of the lamellae between them, the position of the other
lamella is fixed. The radius of curvature of this lamella is calculated from the Young-

Laplace equation and the corresponding lamella position is calculated from

2 o2
o Bi,jpi,jRg.u —\/igij "B' i 811 +PI,JR311R
1,
! (plr.] Rg + RZJ'])

) [A.1]

where Bjj is the pore shape parameter, pjj is the dimensionléss radius of curvature of the
lamella, Rgj;j is the characteristic length of the pore in question, and Eg is the average
characteristic pore length for the network. It is possible that there is no solution to Eq.
[A.1] for a given set of conditions. In this case, the other lamella must be moved around
until a solution is found.

Subsequent rows in the network are set so that the upstream and downstream
pressures are the same in every row. In each row, other than the first, the pore bodies do
not have uniform pressure differences between them. The initial configuration in each
row is calculated one pore body at a time. For each pore body, there are four lamellae
that must be positioned, two between the current pore body and the one in the row below
and two between the current pore body and the upstream pore body. These lamellae are

placed so as to give an appropriate value of the pore body pressure. The only constraint

36



for this pressure is that the remaining lamellaec must be able to withstand enough of a
pressure gradient so that the last downstream pore body has the proper pressure.

Once a satisfactory configuration of lamellae has been achieved to handle the
desired pressure drop, the pressures and mole contents of each bubble are calculated.
First, the pressure in one bubble is arbitrarily set and all the other pressures are calculated
from the ~Young-Laplace equation. For these pressures, the number of moles in each
bubble is calculated, given the volume of each bubble. The moles and pressures are then
adjusted in order to satisfy the prescribed equilibrium pressure. This is aone by
calculating from the equilibrium pressure, Peg, the number of moles, N,

P

—_ &
N= T [A.2]

<

where V¢ is the total volume of the system. The number of moles of gas in bubble i is
adjusted by the equation
Djnew = Nj,old + € Vi, [A.3]

where V; is the volume of the bubbleiand N = Zn jnew+ Lhe constant c is

j
N- z Ny o1d
k

Vi

c= [A.4]

The initial configuration so obtained is one of the allowable configurations for the
network under the-imposed pressure gradient. The initial conditions are much less
random than they were for the systems.studied in the previous work (Cohen, Patzek, and
Radke, 1996). The lamella configuration portrays a net curvature that is convex toward
the downstream side of the network. In other words, lamellae arrange themselves to

sustain an imposed pressure drop. The convex configuration resists flow under the
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imposed pressure drop until the foam in the channels coalesces and fewer lamellae

remain to resist flow.
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Figure 1. A 5%2 network has 2 channels for flow from left to right. The indexing

system is illustrated here. The variables my=5 and mz=2.
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such that x<0

Figure 2. Pore with a pressure drop across it larger than AP given by Eq. [1]. The
lamella on the right is at the critical position and the lamella on the left is at a position
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Figure 3.

Figure 3. Schematic of the sequence of two lamellae merging into one. Two lamellae are
moving together as a result of diffusion from the interior to the pore bodies. When they

get close enough together, they merge into one. The resulting single lamella is slightly

farther away from the pore throat than either "parent” immediately before the merge.
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Figure 5. Mobilization levels in a 5-cluster, single channel system. After 3 of the
lamellae merge with their neighbors, flow begins, because the imposed pressure drop is

greater than the mobilization pressure drop for 7 lamellae in the channel.
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Figure 6. Mobilization levels in a.5-cluster, single channel system for lower imposed

pressure drop than in Figure 4. Flow begins after 4 lamellae merge with their neighbors.
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Figure 7. A 5-cluster channel under an imposed pressure gradient less than the
mobilization pressure drop for 6 lamellae. At steady state, there is a diffusive flux of gas

through the channel, but no hydrodynamic flow.
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Figure 8. Steady-state configuration of a system with two 5-cluster rows under an
imposed pressure gradient less than the mobilization pressure drop for either row. The
top row is narrower than the bottom one, so the lamellae in the bottom row are farther

away from the pore throats.
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Figure 9. Mobilization levels in a 5X2 system under an imposed pressure drop of 25.

Flow begins after 2 lamellae in the wider channel merge with their neighbors.
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Figure 10. Mobilization levels in a 5x2 system under an imposed pressure drop of 25.

Flow begins after 4 lamellae in the narrower channel merge with their neighbors. '
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Figure 11. Steady-state configuration of a 5X3 system with y=1.1 under an imposed
pressure gradient less than the mobilization pressure drop for any channel. There is a

diffusive flux of gas between the rows.
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Figure 12. Mobilization levels in a 53 system with y=1.1. In this case, mobilization

occurs when the mobilization levels in all three straight channels are higher than the

imposed pressure drop.
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Figure 13. Lamella configuration at the point of mobilization in a 5x3 network with

y=1.1. Upon the coalescence of two lamellae at the labeled position, the path marked

with a long arrow mobilizes through the system.

53




5000 LI} LI} LR

4000

3000

Number

2000

1000

o 2 . 1 9 2 1 1 1
0 50 100 150 200 250 300 350 400
Pore Size (um)
Figure 14.

Figure 14. Lognormal pore size distribution used for trapped fraction calculated. The

mean characteristic pore size is 100 um.
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Figure 15.
Figure 15. Percentage of flowing foam as a function of mobilization pressure gradient

with a capillary entry pressure of 0.182 atm in a porous medium made up of pores

distributed as in Figure 14.
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Figure 16.

Figure 16. Percentage of foam in porous media that is mobilized as a function of

mobilization pressure gradient for various capillary entry pressures. A fraction of the

total number of pores is occupied by foam at a given capillary pressure. All of the pores

are occupied by foam at P=0.182 atm.
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Figure 17.

Figure 17. Flowing foam fraction as a function of mobilization pressure gradient with a
capillary entry pressure of 0.182 atm, plotted using a linear scale. Also included is the
model curve; a=26.141 and b=4.94.
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