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Abstract

The goal of this laboratory-directed research and development (LDRD) ﬁroject was 1o
develop a new and efficient electronic structure algorithm that would scale linearly with
system size. Since the start of the program this field has received much attention in the
literature as well as in terms of focused symposia and at least one dedicated
international workshop. The major success of this program is the development of a
unique algorithm for minimization of the density functional energy which replaces the
diagonalization of the Kohn-Sham hamiltonian with block diagonalization into explicit
occupied and partially occupied (in metals) subspaces and an implicit unoccupied
subspace. The progress reported here represents an important step toward the
simultaneous goals of linear scaling, controlled accuracy, efficiency and transferability.
The method is specifically designed to deal with localized, non-orthogonal basis sets to
maximize transferability and state by state iteration to minimize any charge-sloshing
instabilities and accelerate convergence. The computational demands of the algorithm
do scale as the particle number, permitting applications to problems involving many
inequivalent atoms. Our targeted goal is at least 10,000 inequivalent atoms on a teraflop
computer. This report describes our algorithm, some proof-of-principle examples and a

state of the field at the conclusion of this LDRD.
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Linear Scaling Algorithms: Progress and Promise

I. INTRODUCTION

Meaningful simulation of the microscopic behavior of condensed matter systems requires a reli-
able description of inter-atomic forces. More than twenty years of experience have shown that
the local density functional approximation (LDA) can accurately predict structure and properties
of many classes of materials, including crystals, inter-atomic compounds, surfaces and small
molecules. Consequently LDA represents a general framework for the study of important mate-
rial science issues, e.g., crystal growth, defect properties, catalytic chemistry and materials deg-
radation and failure. Since the seminal 1985 article of Car and Parrinello [1], a great deal of ef-
fort has been devoted to making LDA calculations more efficient. However, until relatively re-
cently, all LDA algorithms scaled with N3 where N is the number of inequivalent atoms in the
system. The outlook for treating large systems changed with the publications of Yang [2] and of
Baroni and Giannozzi [3] which showed that linear scaling with N is in principle attainable in
LDA. Although there are more rigorous, and in general more accurate methods than LDA for the
solution of electronic structure problems, none clearly shows the promise of applicability to even
modestly complex systems, since they all scale rapidly with system size.

Following the papers of Yang [2] and of Baroni and Giannozzi [3], a number of new al-
gorithms have been suggested [4-21]. As a result of all these efforts it appears certain that the
LDA approach to electronic structure calculations can be implemented in a way that scales opti-
mally, i.e., almost lineaﬂy (NInN) with system size. It should be kept in mind, however, that
how much computational work is required will, and should be, strongly dependent on the degree
of accuracy that is acceptable. Our goal has been to calculate only the physically relevant infor-
mation which itself scales linearly with N. It was never our goal to achieve a linear plot of CPU
vs. system size for all N but to find an algorithm that can be used to study interesting problems
that are currently intractable, and to do this on today's computers. It is expected that to achieve
reasonable accuracy for small to modest N that the algorithm will scale faster than N. Indeed
applying linear scaling algorithms only makes sense when the electronic structure can localize

within the unit cell.




In this report we describe a new scheme for the solution of LDA problems that not only
asymptotically scales almost linearly with N, but has a reasonably small prefactor. The method is
designed to work for insulators and with suitable generalization for metals. The progress re-
ported here represents an important step toward the simultaneous goals of linear scaling, con-
trolled accuracy, efficiency and transferability. The algorithm we propose yields explicitly non-
orthogonal localized Kohn-Sham orbitals, NOLOs [11,12]. The key ingredients are (1) a gen-
eralized Jacobi rotation that yields a "state by state" iterative solution for fully occupied, non-
orthogonal localized orbitals, (2) a conjugate gradient solution for an approximate inverse of a
well-conditioned overlap matrix; this determines the complement [22] basis, and (3) for the
complement basis an update procedure that enhances the efficiency of working within a non-
orthogonal representation. The density matrix is treated so as to guarantee that the band energy is
a variational upper bound for a fixed potential. This is accomplished in a manner that is related
to the transformation employed in the work of Li, et al. [6]. It is also related to the energy func-
tional methods employed by Mauri, et al. [8] and Ordejon, et al. [9]. Additionally, the space of
unoccupied orbitals is never explicitly constructed. Nevertheless, we give a prescription for ob-
taining the energy gap by explicitly determining (with order N work) the highest (HOMO) and
lowest (LUMO) energy level of the occupied and unoccupied space, respectively, or, in a metal, a
small N—indepéndent number of eigenstates near the Fermi level. To date, no other linéar scaling
approach has suggested ways to accomplish this.

In this report, we also give another novel, untested prescription for an efficient approach
to treating metals or other open-shell systems, as well as an approach for going beyond LDA to
linear-scaling linear-response theory. Current approaches for linear response require the compu-
tation of the occupied (and sometimes unoccupied) stationary states, which are unavailable in all
linear-scaling algorithms. We show that the stationary states do not need to be constructed and
that all linear responses can be written in terms of a unperturbed operator A. Furthermore, the
operator is only needed implicitly by its operation on a vector x (which depends on the perturba-
tion).

The principal aim of what follows is not only to optimize the numerical solution of the
LDA variational problem, but also to find an algorithm that, in the course of solving for an elec-

tronic structure, will produce transferable, and thus physically meaningful "bond orbitals.” If one




knows that the bond between atoms A and B is well represented by a particular localized bond

orbital for a wide variety of materials in which atoms A and B are nearest neighbors, then making

a good first guess for the LDA density will generally be easier and the energy minimization

problem can be solved more efficiently. In addition, if our bond orbitals are physically meaning-

ful, then computations may point the way to still more efficient approximate schemes for total

energy minimization.

1.

With these ideas in mind, we focus on several issues:
Is there a way to optimize the transferability of the set of bond-orbitals that are produced by
the algorithm? For example, this concern leads us to frame the algorithm in terms of non-
orthogonal orbitals. The oscillatory behavior necessary to produce orthogonality is poorly
transferable.
Is there any meaning to the concept of optimally localized orbitals in the method, and if so,
how does one optimize? Galli and Parrinello [4] construct a set of localized occupied orbi-
tals by adding a very weak localizing potential to the hamiltonian. This "bucket” potential
has virtually no effect on the computed energy. We do not use a localizing potential, (other
than the cutoffs already built into the algorithm) having found that our iteration scheme does
not delocalize an initially localized set. The generality of these promising results remains to
be tested or proven. We have demonstrated this on silicon and calcium supercells, alkane
chains and on some organic molecules.
What are the limitations of a bond-orbital basis for an open shell system, i.e., a metal? Do we
need to include some delocalized orbitals in the occupied set for a metal? If so are there or-
der unity or order N of them, and is the work that is necessary to define them order N? Or
must we consider partial occupancy?

A related concern is:
How do we choose a starting orbital set that does not, by virtue of its symmetry, force the al-
gorithm to converge to an excited electronic state? This question is related to the nature of
bond orbitals in metals. There, choosing reasonable orbitals and occupying them symmetri-
cally can easily put the system in a state that is nearly orthogonal to the groundstate and thus
converges to an excited state. Once one abandons solving for individual Kohn-Sham eigen-

functions, or explicitly filling density up to the Fermi level (essential features of several of




the order N schemes that have appeared in the literature), then one needs to persuade oneself
that only the lowest eigenstates of the system are occupied. If there is no way to know that an
excited state orbital is occupied, the meaning of the computed total energy is in question. We
provide an order N scheme for dealing with this problem. We do not give a “black-box” pre-
scription for the starting set of orbitals. Nevertheless, in a very large class of systems, rela-
tively simple chemical arguments show unabiguously what the physically relevant localiza-
tion prescription should be. In metals, this is much less obvious and bears further investiga-
tion. Even in some closed shell systems, we expect it won’t be obvious and that some ex-
perimentation will become necessary. It is our sense that formulating the electronic structure
in terms of singly occupied orbitals would provide a lot of flexibility and eliminate much
ambiguity. Indeed this becomes essential in local spin density calculations. It also provides
an avenue to include local correlation within linear-scaling.

5. As the systems being studied get larger and more complex, self-consistency can lead to a
"charge-sloshing" problem which slows or even precludes convergence of the self-
consistency loop. This can be avoided by updating the charge density and the resulting ef-
fective potential during the iterative process for the orbitals. Thus the potential never
changes by a large amount in any update. This leads us to formulate our algorithm as a state-
by-state iteration (local relaxation and local updates) rather than global relaxation where all
orbitals change before the potential changes. This has been shown to be important to mini-
mize or even eliminate charge-sloshing instabilities [23].

The remainder of this report is structured as follows: Section II contains (A) a brief
overview of linear scaling, (B) a perspective of other work in this field as reported at an interna-
tional workshop dedicated to linear scaling, (C) a qualitative discussion of localized versus delo-
calized orbitals, (D) background information for the orbital approach to LDA and (E) definitions
and conventions for working with non-orthogonal representations. Section III is subdivided into
(A) the essential ingredients of the algorithm developed in this LDRD (with details relegated to
one of four appendices), (B) the starting set of orbitals or initialization of the iterative scheme,
(C) "inversion" of a well-conditioned metric by conjugate-gradient minimization and (D) solving

for eigenvalues and eigenfunctions near the Fermi level. In Section III, periodic clusters of sili-




con in a tight-binding' representation and hydrocarbons within minimal basis self-consistent
LDA are used as concrete examples. Section IV treats a metallic system and discusses the spe-
cial issues that arise as well as a novel new approach. Section V discusses a novel approach to
linear-response. Section VI is a brief recapitulation. In four appendices we present (A) update
equations for the complement basis and relevant matrices (B) the determination of the optimum
mixing angle in the generalized Jacobi rotation (C) the update equations for the charge density

and (D) the mechanics of determining the residual vector for the generalized Jacobi rotation.

! Tight binding is a terminology for a fixed (non-selfconsistent) matrix representation of the electron structure
problem. The Hamiltonian matrix elements are either determined semi-empirically or fit to accurate self-consistent
calculations. The representation may or may not be orthogonal. If it is non-orthogonal the matrix elements of the
overlap matrix become additional fitting parameters. The fits usually include first and second neighbor and
occasionally third neighbor interactions.




II. BACKGROUND

A Overview of Linear Scaling

We distinguish between algorithms proposed in the 90’s that have the focused goal of achieving
linear scaling in accurate first principles calculations from methods proposed in the 60’s and
70’s that are in many ways very similar [24-28]. The goals of the early methods were, however,
more to justify semi-empirical calculations and to provide for fast but approximate methods.

Yang's [2] algorithm relies on the principle of "divide and conquer. Yang solves the Kohn-
Sham equations in overlapping small regions of the system using a basis set of atomic orbitals
(LCAO representation), thereby solving for local rather than global stationary functions. If each
region has M < N atoms and there are aN/M such regions (o > 1 accounts for the overlap and
scales roughly as the surface area of the region or M>? in three dimensions), the computational
effort then scales as aNM>m® or NM®*°m® where m is the number of basis functions per atom.
(The number of regions times a diagonalization of order (mM)® for each region.) Accuracy is
improved by increasing both M and «, but the variational principle is not rigorously preserved,
i.e., the total energy is not necessarily an upperbound. Global communication in the system oc-
curs only through the definition of a common Fermi energy (the energy that separates the occu-
pied from the unoccupied states). Yang [2] has some very impressive results on a large number
of molecules and is one of the very few and definitely the first to have achieved full self-
consistency while working with a linear scaling algorithm.

Baroni and Giannozzi's [3] method represents the hamiltonian on a real-space grid and solves
directly for the charge density, using a Lanczos algorithm [29] to determine <r|G(z)|r> where
G(z) is the Green's function for the Kohn-Sham hamiltonian (See Eq. 2 in Section IL.D below).
The solution at any point is independent of the solution at any other point given a fixed potential.
The charge density and band-structure energy are then determined via contour integration on z.
The hamiltonian is very sparse in this representation (provided a local approximation to the ki-
netic energy is used). The sparseness of the representation and the Lanczos algorithm allows
convergence of each <r|G(z)|r> with work that is independent of the size of the system. The

Lanczos algorithm [29] or recursion [30] is a natural way to achieve linear scaling, in that it in-




volves evaluating the repeated action of a sparse matrix on a localized vector. In a Lanczos al-
gorithm linear scaling is obtained only with an orthogonal representation, making a real space
grid most natural. It should be noted, however, that some proposals have been made that utilize
non-orthogonal tight-binding representations [31] without destroying the favorable scaling.

In both the divide and conquer and recursion methods explicit knowledge of the occupied and
the unoccupied subspaces is obtained. In particular, in Baroni and Giannozzi's approach [3], the
orthogonal representation is a real space grid and because there are so many more grid points
than occupied states, most of the information acquired concerns the unoccupied states. Since all
information about the total energy and the force is embodied in the occupied electronic states it
seems likely that excess computational effort is being expended.

A third type of approach has been proposed by Li, et al. [6] and by Daw [7], based on solving

directly for the density matrix, p, in a sparse localized orthogonal fixed representation such as in

tight-binding calculations. In this approach the idempotency constraint, 7*=p, is replaced by a
transformation that constrains the eigenvalues of the density matrix to fall between 0 and 1 con-
sequently the variational principle is preserved, i.e., the total energy is a rigorous upperbound.
Minimization of the energy then drives the eigenvalues to be all either 0 (unoccupied) or 1
(occupied), idempotency, provided the zero of energy is adjusted to lie between the occupied and
unoccupied states. Again explicit knowledge of both the occupied and unoccupied subspaces is
obtained, implying that the method's prefactor is likely to be unnecessarily large. This is an it-
erative global algorithm which is to say that all the parameters (density matrix elements) are up-
dated simultaneously. Linear scaling is obtained because the representation of the density matrix
is sparse (hence order N non-zero elements) and the algorithm involves matrix multiplications of
only sparse matrices.

Galli and Parrinello [4] introduced a localized orbital formulation of the Kohn-Sham equa-
tions which, in principle, solves for orbitals that are fully occupied. No information about unoc-
cupied states is determined. This formulation is very closely related to the chemical pseudo-
potentials and chemically invariant orbitals that were proposed by Adams [24], Gilbert [25] and
Anderson [26,28] and extensively used by Bullett [27]. This point was not recognized in the
Galli and Parrinello [4] paper. The density operator requires knowledge of the inverse overlap

matrix which is approximated as a Taylor series expansion of (1-x)’. Recent variational imple-




mentations of the localized orbital formulation by Mauri, Galli and Car [8] (in a tight-binding
representation) and by Ordejon, et al. [9] (in a non-orthogonal minimal atomic orbital basis and
no self-consistency), achieve minimization of the total energy only for orbitals that are orthogo-
nal or, in other words, for generalized Wannier orbitals [32-34]. Constraining the occupied orbi-
tals to be localized makes this class of algorithms scale linearly roughly as NMm where M is the
number of basis functions per orbital and m is the number of orbitals that physically interact.
Refs. [8,9] achieve orthogonality and energy minimization simultaneously, without imposing
“additional constraints. These iterative localized orbital algorithms, like the density matrix algo-
rithms, are global, i.e., all orbitals are updated at once. Kohn [10] has also given a prescription
for determining generalized Wannier orbitals with linear scaling.

Another approach, related to the generalized Wannier orbitals and to the chemical pseudo-
potentials, explicitly solves for non-orthogonal localized occupied orbitals. No explicit knowl-
edge of the unoccupied states is required or obtained. It can be solved either in a state-by-state
algorithm [11] (described herein) or in a global algorithm [12] much like that for the generalized
Wannier orbitals of Mauri, Galli and Car [8] and Ordejon, et al. [9]. The localized orbital ap-
proaches (orthogonal or not) could be considered algorithms in search of the ultimate minimal
basis set (a concept introduced by Frost [35]), N orbitals to represent N occupied stationary

states.




B. PERSPECTIVE

In this section, we discuss in greater detail methods now in the literature. We do this in the con-
text of a synopsis of a timely and relevant international workshop at which we presented the
work from this LDRD in an invited presentation. The overall objective of the CECAM Work-
shop, entitled “Linear Scaling Methods in Electronic Structure Theory” was to exchange techni-
cal information regarding the relatively new and exciting field of linear scaling electronic struc-
ture theory. Twenty invitéd presentations and eleven short discussion papers were presented in
three days. This international workshop was valuable in assessing the current level of algo-
rithmic development. Much progress over the preceeding three years has been realized and
enough experience has been gained. For tight-binding applications the issues are conservation of
energy and of charge and the slow convergence. In LDA applications these same issues exist
plus the additional issue of what is the best real-space basis or representation. A true basis re-
tains the variational principle. However, most real-space grid (the ultimate in localized basis
functions) methods sacrifice the variational principle. There are two themes that are pervasive in
the field of linear scaling. The first is W. Kohn’s [20] concept of “near-sightedness™ which 1s the
physical concept that allows for localization regions or finite range spheres of influence, local-
ized orbitals, finite-range density matrices, etc. Without this there would be no field of linear
scaling. The second concept is less fundamental but nevertheless quite practical and that is
“purification” which is a convenient way to handle the nasty constraint of idempotency. With
basically these two concepts an amazing array of approaches has been and continues to be devel-
oped.

The specific purpose of the workshop was to discuss: (1) strengths and weaknesses of
existing methods; (2) relationships among existing methods; (3) new approaches and methods;
(4) progress towards practical and flexible linear-scaling LDA (local density approximation) cal-
culations; (5) Choice of localized basis sets; (6) treatment of screening self-consistency; (7) con-
vergence rates and (8) parallel computing implementations. The intended emphasis was to be
more on methods than on applications.

R. Haydock, who probably has the longest history of using and promoting the local nature
of electronic structure [30], presented work entitled “Electronic Structure Calculations for Infi-




nite Systems: Problems and Some Solutions”. He introduced an error theory analysis. He ex-

plained that the error should be an exponentially decreasing function of the number of machine

cycles with a theoretical limiting value that goes as 7—%[— where N is a measure of the memory of

the computer. To achieve this ideal performance, one needs a problem with sparse coupling, lo-
calized basis sets and one must also use a dynamic basis, that is a basis which changes during the
course of the calculation. The elementary operation in the recursion method is v = Hu, with u
and v vectors and H an operator. Sparsity implies that each component of u affects only a finite
(few) number of components of v. The way to look at this is to use graph theory, beginning with
one (or a small number) element in u. Then one needs a growth rule (for v) and a way of killing
off elements of u so v does not grow too large. In essence the idea is very simple but very pow-
erful. He explained that, despite killing elements off, errors do not accumulate. The error is al-
ways determined only by the largest element ignored. Several types of problems lend themselves
to this Wé.y of thinking. Local density of states in tight-binding electronic structure is perfectly
suited. Other applications include classical Liouvillian, functional derivative on an energy func-
tional, and commutation of the hamiltonian with an operator.

S. Goedecker [13] introduced a method based on a Chebychev polynomial expansion of
the finite temperature density matrix. This is one of a class of methods which could be consid-
ered moment methods. Reference [21] describes a related method. In Goedecker’s method [13],
the order of the polynomial expansion goes as (emax-emin)/de. However, if the basis is such that
emax >> Ef which is likely to lead to an unphysical scaling. A similar problem arises for similar
reasons in the method of Ref. [3] (see below). Goedecker introduces a localization region and
emphasizes that the size of the region and the degree of the polynomial are independent quanti-
ties. The size of the localization region is proportional to the electronic correlation length and is
physically determined, a point that is often overlooked. Goedecker’s localization region seems
closely related to the buffer region used in Yang’s [2] method (see below). Apparent advantages
of this approach include: (1) intrinsically parallel, (2) low crossover with existing N methods,
(3) perfect energy conservation in molecular dynamics, (4) dividable - basic quantities are sum of

local ones, (5) can handle finite electronic temperature naturally and (6) numerically stable.
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Baroni and Giannozzi's [3] method represents the hamiltonian on a real-space grid and
solves directly for the charge density, using a Lanczos algorithm [29] to determine <r|G(z)r>
where G(z) is the Green's function. The charge density and band-structure energy are then de-
termined via contour integration on z. The hamiltonian is very sparse in this representation
(provided a local approximation to the kinetic energy is used). The sparseness of the representa-
tion and the Lanczos algorithm allows convergence of each <r|G(z){r> with work that is inde-
pendent of the size of the system. The Lanczos [29] algorithm or recursion [30] is a natural way
to achieve linear scaling, in that it involves evaluating the repeated action of a sparse matrix on a
localized vector. In a Lanczos algorithm linear scaling is obtained only with an orthogonal repre-
sentation, making a real space grid most natural. It should be noted, however, that some propos-
als have been made that utilize non-orthogonal representations {31]. Baroni gave a short pres-
entation on his method entitled “what is good; what is (still) bad”. While, as his title suggests,
there are some short-comings to the method, it is fair to say that his method did create a lot of
excitement and could be credited with getting the field started. The largest problem that I see
with a simplistic implementation is the unphysical scaling. As in the graph theory approach that
Haydock talked about, the first vector starts off with one element (basically a delta function at a
point r). At each successive iteration the radius of elements grows as h (the spacing between
points). Hence for L iterations the work goes as L ~ (1/h)*! where d is the dimension of
space, and this is for each point. L goes as 1/h because the range that needs to be spanned is de-
termined by the physics. Furthermore the total number of points goes as (1/h)°, hence the method
scales as (1/h)***! which is unphysical. This unphysical scaling is related to that in Goedecker’s
[13] method. It has more to do with emax (the maximum energy which depends sensitively on
the choice of basis). As h is decreased, emax increases without bound. Some of this is physical
but much of it is not. The Green’s function being computed involves the entire energy spectrum
but the charge density only “cares” about the energy spectrum below the Fermi level. As h de-
creases, the useful information becomes a smaller and smaller fraction of the total computed in-
formation. Baroni also talked about embedding in a free particle space outside of some radius
Ry. This effectively mitigates a problem of oscillatory convergence. The embedding also pro-
vides for faster convergence; but curious enough, embedding after 40 iterations was only mar-

ginally better than after 20 iterations. In other words, improving the accuracy is difficult. In




conclusion Baroni noted that (1) real-space local implementation of LDA is good - needed for
O(N) (2) O(N) scaling is trivially achieved - not great crossover but okay (3) independent points
are calculated independently - good for-parallelization but a large waste of information; i.e., no
communication but no intelligence (4) short-sightedness is automatically accounted for (5) too
much detail; i.e., should be able to put in different levels of accuracy for different distances and
(6) it is not variational. He emphasized the need in most methods to take advantage of different
levels of accuracy, in this case for different distances. This concept is also valuable in the local-
ized orbital methods and in Yang’s [2,18] method (in the buffer region).

- W. Yang’s [2,18] approach relies on the principle of "divide and conquer”. It solves the
Kohn-Sham equations in overlapping small regions of the system using an LCAO representation,
thereby solving for local rather than global eigenfunctions. If each region has M atoms and there

are alN/M such regions (o > 1 accounts for the overlap and scales roughly as the surface area of

the region or MZB); the method then scales as oN M2. Accuracy is improved by increasing
both M and a. Within density functional theory, this is the first true linear scaling approach; it
dates back to 1991. Yang introduces his method with the relationship to Thomas-Fermi Theory,
which is clearly O(N). Originally he introduced a partitioning of real space (no approximation).
Within each partition he approximates the hamiltonian with a local cluster hamiltonian. He
shows that this is accurate as long as the “cluster” is large enough (has enough buffer atoms); i.e.,
the charge density is only used far enough from the surface region. This again is the near-sighted
nature of electronic structure and this buffer region is closely related to the localization region
that Goedecker uses. In .his new approach he still partitions space but partitions the density ma-
trix. p(r,r’) = @i(T)p;i;(r’) (summed over repeated indices). The partitioning is such that P%=1 (i
ga), 1/2 (1 € o but j not € o or vice-versa), and 0 (i not € o, j not € a,). The o region is tYpically
an atom. He points out that the original method with the real space partitioning is a Hirshfeld-
type population analysis while the second method with the density matrix partitioning is more
like a Mulliken population analysis. The advantages of the second method are no integrals over
the partition function. Furthermore it can be used in other applications such as tight-binding,
Hartree-Fock and semi-empirical methods. He also showed that his method can obtain forces.
One curious thing was: he tried “purifying” the density matrix. However, this made the results

worse. One final point that I would like to note is that one diagonalization is replaced by N
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smaller diagonalizations. The one scales as (mN)® (where m is the number of basis functions per
atom and N is the number of atoms). Each of the N diagonalizations scale as (mM)® where M is
independent of the size of the system and is the number of atoms in the localization region. The
cross-over should then be roughly N> = M°. For M=25, N=125 but for M=100, N=1000. If Ba-
roni’s point of using different levels of accuracy at different distances were used, however, this
cross-over could be improved. For example less basis functions per atom could be used in the
region further than one neighbor away.

F. Mauri discussed a variant [15] on localized orbitals[8]. He indicated that the open
problems involved local minima and slow convergence. While the original algorithm [8] solved
only for occupied states, the newer algorithm [15] uses more orbitals than occupied states. In
other words, it includes some empty states. They find that the additional freedom solves the
“local minimum” problem and improves convergence. By adding Fermi surface smoothing they
also find that the convergence rate is improved slightly. In their method they replace the inverse
of the overlap matrix by a Taylor’s series expansion of (1+x)"!. Mauri showed results for a 256
atom carbon slab with a reconstructed C(111)-2x! surface on each side. With a localization re-
gion up to 2nd neighbor, (presumably nearest-neighbor orthogonal tight-binding hamiltonian),
random input, the system gets stuck in a local minimum with charge transferred between the sur-
faces. The claim is this is a bad feature in that one supposedly needs to know something about
the solution. Actually I would argue that random starts are not a good idea., especially when
knowing nothing more than very simple chemistry, reasonable starts are trivial. This is not to say
that one will not get stuck in a local minima. However, it is easy to determine if this is the case.
We show below that in a local minimum state the lowest unoccupied level falls below the highest
occupied level. We also show below that the energies of these two levels are easily determined
in O(N). One could then simply try a different starting point. This is not unlike the problem of
trying to find the minimum energy geometric structure. However, for atomic positions, it is typi-
cally impossible to distinguish between a local and a global minimum, except by trial-and-error.
Mauri and his coworkers see the local minima problem as a lemon. Nevertheless, that lemon is
easily turned into lemonade. Mauri also discussed the slow convergence of the iterative methods

for localized orbitals and made some conjectures but unfortunately could not offer real solutions.




W.M.C. Foulkes [36] discussed the Chemical Pseudopotential approach, an idea that dates back
to the early 1970’s [28]. The only person to do anything with the concept, to my knowledge was
Bullett [27] and it never quite caught on. Foulkes points out that the problem with LCAO (linear
combination of atomic orbitals) is that the basis is not fundamental, it is overcomplete, system-
atic improvement is difficult and on top of that one has to do lots of “boring” integrals. He sug-
gests that useful criteria for a basis set might be (1) simple (2) fundamental, general and (3) ca-
pable of systematic improvement to completeness. A “clever” basis set is efficient, fundamental
but maybe not simple. He then introduced what he called the “perfect” basis set that is (1) local-
ized, (2) “perfect” or minimal, (3) not overcomplete. With such a basis one could achieve O(N)
by using a grid to determine the “Wannier” (his “perfect”) basis to form the tight-binding hamil-
tonian and then use one of the O(N) methods being developed for tight-binding. _

D. Vanderbilt, also relatively early on, developed an O(N) method (Li, et al. [6]). The
method is a density matrix variational approach that is closely related to one developed by Mur-
ray Daw [7] while he was at Sandia Livermore. Vanderbilt showed the generalization to non-
orthogonal tight-binding and indicated that it is about 4x slower than for orthogonal tight-
binding. For LCAO calculations he pointed out that with the overlap matrix typically being
nearly singular this could be a problem. He also talked about the scaling of the convergence. He
pointed out that his method has the advantage over Daw’s that one can use a previous solution
whereas Daw has to always start over from “infinite” temperature. However, he also pointed out
that Daw’s method seems to have the advantage that finite temperature can he handled naturally.
Being able to work at finite temperature is considered valuable. With regards to the “local mini-
mum” problem in orbital based methods, he pointed out that Q(y) is a quartic function of the de-
grees of freedom whereas Q(p) is cubic. A quartic function can have multiple minimum. He
also pointed out that local minima are not necessarily bad (as I indicated above). Local minima
could be indicative of metastable states. In comparison to Mauri, Galli and Car (MGC) [8] (1)
both methods are variational (2) the number of variational degrees of freedom in Li, et al [6] is
m’NM versus mN.M in MGC, where as above (Yang [2,18]) M is the number of atoms in the
localization region (near-sightedness). N. < mN is the number of electron orbitals (3) Li, et al.
[6] has no k-points where in MGC [8] each k-point is treated independently (this is not neces-

sary). (4) There is a danger of run-away solutions in the density matrix approach but no danger




in MGC [8] (5) Li, et al. [6] works at a given chemical potential whereas MGC [8] does not (the
new version [15] does) and finally (6) no local minima in Li, et al.[6] and there is in MGC [8]
(but not in the new method [1 5]).

K-M Ho reported on tight-binding Molecular dynamics using the variational density ma-
trix approach that Vanderbilt discussed. The substantial development work of this Iowa group
on this method should not be underestimated just because the basic method was introduced else-
where. This group has extensive amount of results on nanovoids, grain boundaries, dislocations,
impurities, polymers and bio-molecular systems. Ho showed that the cross-over from traditional
methods varied substantially with type of system. (This was a point that would also be empha-
sized by Mauri, Galli and coworkers). For crystalline carbon the cross-over occurs at about 60
atoms (where only 2-3 iterations per time step are needed); for amorphous carbon at about 120
atoms and for liquid carbon at about 230 atoms. The biggest problem with the liquid is that be-
cause the system moves so quickly, information from the previous time step is of no value. He
also emphasized that the slope for the linear scaling depends on the localization radius (which is
typically about 5th neighbor) and also on the number of iterations (which is very system depend-
ent). He also finds that working at constant chemical potential does not work well, but it is nec-
essary to work at constant N (number of electrons). On a 512 node Intel Paragon on amorphous
carbon (a problem of interest at Sandia) the calculations run about 200 steps/hr for 20 at-
oms/node. One additional, very interesting part of his presentation, was a linear-scaling solution
to the problem of defining the electronic entropy. The electronic entropy formally involves the
logarithm of the density matrix. The functional form has infinite slope at both p—0 and p—1.
This is problematic. But he showed that a quartic function of the density matrix can reproduce
the Fermi-Dirac function quite well. In fact, the minimum free energy reproduces the infinite
slope at p=0 and p=1.

P. Ordejon discussed a linear scaling method to obtain phonons with 3N computations
each scaling with N. Hence an N? method to compute the dynamical matrix. He indicated that
this would be advantageous over a method using the vibrational power spectrum especially if one
wanted to get the low frequency modes. To get O(N) one could restrict the relaxation to only a
few orbitals; this would make each of the 3N calculations O(1). One also would truncate the dy-

namical matrix (this is typical) and finally one could use the Maximum Entropy method. He




showed a calculation of a 216 atom cube of diamond and only the q=0 phonons. He used a 4A
cutoff and noted that the cutoff primarily affects the highest frequencies.
R. Martin then talked about how to put finite temperature into linear scaling; this was

similar to what K-M. Ho discussed. One of the motivations behind finite temperature is that the

density matrix localizes even in metals at finite temperature. The essence of linear scaling is in
the locality of the density matrix; near sightedness. Metals become near-sighted only at finite
temperature. He did point out that conductivity is inherently a non-local phenomenon and argued
that maybe one needs to deal explicitly with some states near the Fermi level. This is a view-
point also taken herein.

G. Galli discussed the strengths and weaknesses of the orbital based O(N) methods [8,15]
within tight-binding. In the newer method [15] they include some empty orbitals (this is to be
distinguished from partially occupied orbitals in Gillan’s method [16] below). Hence one solves
for M > N¢/2 orbitals. At solution N¢/2 are occupied and M-N,/2 are empty. They explicitly
showed that in 2D graphite with 31 atoms in the localization range, the number of iterations to
converge is independent of size. They solved for three orbitals per atom and found that the num-
ber of iterations needed decreased as they increased the localization range. They do not get per-
fect energy conservation and finite electronic temperature does not make for a dramatic im-
provement. They systematically loose energy from the system with time.

M. Gillan [16] talked about practical considerations in taking linear scaling algorithms to
LDA. Most of the work in linear scaling has dealt with tight-binding. It is not often recognized
that this is not true of the work at Sandia [12] or of the work of Yang [2,18], both of which have
used LCAO-LDA. Gillan’s method is the most general of all the orbital and variational density
matrix approaches. It is the generalization of the density matrix approach [6] to a variationally
determined minimal basis. It is also the generalization of Hierse/Stechel [12] to partially occu-
pied orbitals. Like Li, et al.[6], Gillan uses a cubic purification of the density matrix. Gillan
centers his localization regions on the atoms and he uses a real-space finite difference method.

0. Sankey talked about getting the total energy for a large system by using what he intro-
duced as the “impartial” vector which has equal amplitude (up to a phase) on each eigenvector of
the system. A random vector satisfies this statistically, hence a suitable average will work. Since

only the occupied spectrum is of interest he biases his random vectors to fit exactly the first few




moments. He uses maximum entropy with some number of moments, L, to get the full spectrum.
The test system that he used was 64 atoms of GaAs in tight-binding. He was able to achieve
ImeV accuracy with 200-300 random vectors and L.=40-50 moments. However, he indicated
that getting forces with such a method is problematic. '

W. Kohn (one of the fathers of density functional theory) began his presentation with
several disclaimers (1) no physics (2) no numerical results - yet and (3) no claims for practical
usefulness. Despite these disclaimers his presentation was, as anyone might expect, quite
thought provoking. The goal and the challenge is to calculate a density matrix that is hermitian,
normalized (for constant N, but could be constant chemical potential) and idempotent (at T=0).
If not for the criterion of idempotency, the problem would be easy. The orbital- density matrix-
based methods already talked about (and yet to be talked about) use some form of “purification”
and functional minimization to achieve idempotency. In contrast Kohn defined a “Penalized”
Energy Functional which adds a term P[n] that vanishes for an idempotent density matrix, n, and
increases as the matrix deviates from idempotency. He then proceeded to show that the varia-
tional functional minimum, with respect to n, of the Functional Q[n,a] = E[n] +aP[n] is equal to
Ej (the energy minimum of E[n]) for o > o.. o must be real and positive, n must be non-negative
and it may not matter if the spectrum is bounded. He proceeded to describe the proof.

In my own presentation, my focus was on the full scaling of the problem not just the
scaling with the size. I defined complexity scaling as an algorithm for which the computational
effort scales with the “useful, unknown information” in the system. One point that has come up
repeatedly is the “near-sightedness™ of electronic structure. This, of course, is what makes linear
scaling even a possiblility. However, I suggest that there are really two length scales in the
problem. One is the range of the density matrix (this is closely related to the localization range in
several of the above talked about methods) and the other is how localized can an occupied orbital
be. If one demands that the orbitals be orthogonal then these two ranges are one and the same.
For reasonable accuracy this localization range can easily incorporate 100 atoms. Using less at-
oms begins to seriously degrade the accuracy. By going to non-orthogonal orbitals one can solve
for very localized (one or two neighbors) orbitals and a relatively long range (still independent of
N) without giving up any accuracy and without a large cost in efficiency. This method easily

achieves constant N, which can be a problem in other methods. Another viewpoint taken was




that possibly more important than the linear scaling is the possibility of attaching physical sig-
nificance to_the orbitals. Since they are very localized it seems they should be able to be trans-
ferred between chemically similar systems. In fact in self-consistent LDA calculations with
Hierse using Sandia’s parallelized LCAO- QUEST code, localized orbitals were computed in
heptane (a hydrocarbon with 7 carbons). In full diagonalization the variational degrees of free-
dom scale with the square of the number of atoms. With localized orbitals, the number of varia-
tional degrees of freedom scale only linearly with the number of atoms. As a consequence, we
were able to reduce the number of degrees of freedom by an order of magnitude with no sacrifice
in accuracy. For a longer hydrocarbon (decane, 10 carbon atoms) the variational degrees of free-
dom were reduced to NONE by using the results from heptane. Again there was no sacrifice in
accuracy. I went on to talk some about our original algorithm which to date still is the only one
without the slow convergence problem. In conclusion I emphasized that the density matrix is
only quasi-localized but the occupied orbitals can be truly localized if one goes to non-orthogonal
orbitals. This is not 6 of 1, 1/2 dozen of the other since it is the total number of degrees of free-
dom that matter. This becomes more important in LDA calculations than in tight-binding calcu-
lations and especially if one is solving on a grid. I re-emphasized that more attention needs to be
given to the problem of slow convergence and the solution probably lies with a good pre-
conditioner. For the lowest overall complexity algorithm I placed my bet on non-orthogonal lo-
calized orbitals on a real space, variable spaced mesh with either the state-by-state updates or
with a pre-conditioned global update of all the orbitals. One final point I tried to make was that
there is no obvious answer to balance of complexities especially since it will be system depend-
ent..

P. Ordejon presented his LCAO approach to self-consistent LDA calculations with linear
scaling. It is based on Sankey’s minimal basis set approach, but replaces the Harris functional
with a FFT Poisson solver and true self-consistency. The matrix elements are calculated in O(N)
and account for 90% of the work. The Poisson solver is O(Ngln Ng) and accounts for 10% of the
work. The “virtues” of this approach include (1) the tight-binding language is retained, the
hamiltonian and overlap matrices are sparse and the extra work involves the determination of the
Hartree potential and matrix elements of the Hartree potential and the exchange-correlation po-

tential. (2) the matrices are small (minimal basis) (3) except for the FFT all operations on the




grid are local and (4) the kinetic energy and non-local pseudo-potentials are handled exactly. The
problems have to do with convergence. An MD calculation on 64 atoms with a time-step of 2 fs.
With a 5 A cutoff for the orbitals, the number of CG (conjugate gradient) iterations was 30 and
the number of self-consistent (SCF) cycles was 6. In contrast with a 20 A cutoff only 6 CG it-
erations and 3 SCF cycles were needed. As a measure of accuracy the O(N) 5 A (20 A) cutoff
got a bulk modulus of 94 (96) GPa. A PW-PP calculation got 98 GPa. Experiment is 99 Gpa
and the Harris-Functional Sankey approach gets 91 GPa.

D. Vanderbilt also presented a short discussion paper on the relationships between several
of the variational linear-scaling electronic structure algorithms. The ones under discussion all
express a trial density matrix as ¢ = Lj; [p><qj| where {i,j=1.....,M). The density matrix is ex-
pressed as a polynomial in . The polynomial acts as a “purification” which constrains p to have
eigenvalues between 0 and 1. The minimization then drives them to be 0 and 1, thereby achiev-
ing idempotency. InLi, et al (LNV) [6] the L;; are varied and the {¢;} are fixed. The purification
is cubic p= 36°-26°. M is greater than the number of occupied orbitals; it is equal to the number
of basis orbitals in the problem. In Gillan’s [16] method the L;; are varied and the {;} are also
varied. The purification is again cubic p= 36°-2c°. M is greater than the number of occupied
orbitals but less than the number of basis orbitals in the problem. In Kim, et al. [15] the L;; are
fixed and equal to &; but the {@;} are varied. The purification is quadradic p= 26-6°. The
quadradic is possible because o is positive definite which assures that 6=0 is a minimum without
going to the cubic. Like in Gillan’s [16] method M is greater than the number of occupied orbi-
tals but less than the number of basis orbitals in the problem. The NOLO [11,12] method doesn’t
fix Lj; but it isn’t freely varied. It is effectively a dependent quantity. The {¢;} are varied. The
purification is again quadradic p= 26-6% and M is equal to the number of occupied orbitals.
Vanderbilt talked then about the relationship between the purification and the approaches to fi-

nite temperature by looking at the inverse of the purification operation.




C. Qualitative Discussion: Localized versus Delocalized Solutions

Stationary states will transform as irreducible representations of the total symmetry group. In
contrast, in real space methods, such as localized orbitals the solutions transform as reducible‘
representations in which a symmetry operation of the group will transform one real-space orbital
into another. As an example consider the methane molecule, CHy. Carbon has six electrons and
each hydrogen has one. Thus methane has 10 electrons and five occupied states. Each state can
be doubly occupied, with a spin up and a spin down electron. One of the occupied levels is the
1s core level of carbon. For the purposes here it is sufficient to describe the electronic structure
of this molecule as the occupied core atomic state and four occupied valence states, described as
linear combinations of 2s and 2p orbitals on carbon and s orbitals on each hydrogen®. The

molecule has tetrahedral symmetry and the four stationary states transform as an A; and a triply

degenerate T. We can write these functions schematically as follows:
| 41)= & /| Cas)+ B4l Hi)+| Ho)+| Ha)+| Ha)]
T =ar|Cap )+ Bl )+ Ho) = )= | H)
T,)= \CZP>+ﬁTUHI>_|H2>+!H3>_1H4>]
172 = ar|Cap)+ Brll F) = | Fo) - H)+ | )

where the positions of C, H;, H,, H3 and Hy are at (0,0,0), (1,1,1), (1,-1,-1), (-1,1,-1) and (-1,-
1,1), respectively. These positions are in units of 7/ J/3 where 7 is the CH bond length. Two

normalization conditions determine two of the parameters {a 4 ﬂA,aT, ﬂT} and energy

minimization determines the other two.
Chemically, however, we think of this molecule as four equivalent C-H bonds. No one bond
has the symmetry of the molecule; the symmetry operations of the tetrahedral point group trans-

form one bond into another. But where is the bond orbital in the above denumerated stationary

*These atomic orbitals are not necessarily identical to the free atom but in the most accurate representation would be
chemically modified by the presence of other atoms. An even more accurate treatment would include p orbitals on
hydrogen and d orbitals on carbon.




states? The bond orbitals are defined to be that linear combination of the four occupied station-
ary states (and therefore is not, itself, a stationary state) that most localizes along one bond. For
this system we can completely eliminate any weight on the three hydrogens not participating in

the bond. That is we can write four equivalent localized occupied orbitals as follows:

#)=arlCas)+ p1|Cap,, )+ 7 1| )
> aL'C25>+ﬂL}C2pH_l>+7L'H2>

> aLlC2s>+ﬂLlC2p_u_l>+}/L|H3>

> aL!C2s +ﬂL‘C2p_”]> 7LIH4>

The subscript on the p orbitals indicates the direction. (It points directly at the hydrogen atom in

the corresponding bond). These orbitals are determined by a set of three parameters
{a L-BL-Y L} one of which is arbitrarily determined by normalization, the others by minimiz-
ing the energy. We should point out that these orbitals are necessarily ron-orthogonal,
s,~j=<¢il¢ j>¢5ij and nonstationary; H;; = <¢i‘ H\ ¢ j> # g;6;5. However, because the set of four bond
orbitals are linearly independent, the four “bond” orbitals span the same Hilbert space as the oc-

cupied stationary states. The bandstructure minimum energy is 73 r{S‘lH} . The relationship

between the two sets of parameters is:

_ZL____EA ._‘/5714.=£Z 'BL J‘aTlBA

4da; a4 4ﬁ1, ar ar aAﬂT

Consequently, the stationary state representation or the bond orbital representation are equiva-
lent, are equally valid and carry the same information content. For this simple system, both sets
are described by the same number of independent parameters. For this molecule, being as small
as it is, there is no obvious advantage to either solution. We presented it here to illustrate the dif-

ference in the types of solution.

We now consider the hydrocarbon molecule, decane. This is a case in which the “bond” orbi-

tals have an obvious advantage over the stationary states. The “bond” orbitals are localized over




a relatively small fraction of the total system. For example, the total information content in de-
cane, C10H2; with 62 valence electrons, 62 atomic orbitals in the basis and 31 occupied states re-
quires approximately 930 parameters to describe the electronic system in terms of delocalized
stationary states. This is after taking ‘account of symmetry and normalization. In contrast the
bond orbital description has three chemically inequivalent CC bonds and four chemically in-
equivalent CH bonds. Each bond orbital is described by 8-15 parameters depending on the or-
bital. The total parameter set thus has less than 105 parameters. More importantly, this same set
of parameters can describe CyHan+, for all n27. Quantitatively, the same set of “bond” orbitals
can describe heptane and decane with a precision error of 102 meV and an accuracy (within LDA
and the chosen basis) of 2 meV. These calculations are described below. The intrinsic accuracy
limit is determined by the chosen range for the “bond” orbitals (nearest neighbor to the bond be-
ing formed). Thus, when chemically invariant subunits exist on length scales smaller than the
system size (or the unit éell for periodic systems), a formulation of the electronic structure in real
space localized terms can be very advantageous. Naturally, this approach relates well to chemi-
cal thinking. The benefits of a real space approach to condensed matter systems has been em-
phasized in the works of Haydock, Heine and Kelly beginning in the 1970’s [30]. The emphasis
in those works, however, are on obtaining local density of states of atomic valence orbitals within
non-self consistent tight-binding representations. In contrast, the emphasis here is on chemically
invariant subunits that are smaller than the size of the system and on solving for bond-orbitals
that depend only on the local chemical environment not on the global system and to do this
within an accurate, self-consistent formulation. The two advantages in changing how we repre-
sent the electronic structure of a system from a delocalized to a localized representation are: (1)
by determining localized orbitals directly (i.e., not first determining delocalized stationary func-

tions®) we compute the electronic structure with an algorithm that scales linearly with the size of

3Localized orbitals in the framework of HF theory have been obtained, typically as a unitary transformation of the
already computed delocalized eigenfunctions (or molecular orbitals). See for example, Refs. [37,38]. The method
of Edmiston and Rudenberg [37] is the method most often used.
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the system (see Section 4.2 and 4.3 below) and (2) by determining localized orbitals we can get
very accurate first guesses for the electronic structure of large systems by breaking it into chemi-
cally invariant subsystems for which a smaller calculation can be performed. As the above ex-
ample illustrated, the electronic structure of any C,Hayo (n>7) could be guessed by doing one
calculation on a smaller (C;7H;¢) system. In essence this latter point is sublinear scaling.

Cast in this form localized orbital theories can be thought of as rigorously bridging the gap
between the intuitive chemical “building block™ picture of a molecule, surface or solid (well es-
tablished chemical concepts) and the delocalized nature of the quantum mechanical solution of
the Schroedinger-like equation in the independent-electron approximation. While stationary
states are sensitive to perturbations anywhere in the system, localized orbitals, in contrast, are
sensitive to perturbations only within its range of localization and insensitive to perturbations far
away. In localized orbital formulations, we seek a solution in which analogous chemical envi-
ronments have similar bond orbitals (e.g., if two different molecules contain parts that for chemi-
cal or physical reasons are considered similar in character, then the quantities defined should also
look similar). Hydrocarbon chains of different lengths should have terminal carbon-carbon
bonds that look alike and internal carbon-carbon bonds that also look alike. These type of results
are exactly what we look for in a localized orbital formulation. They are invariant in going be-
tween chemical environments that are similar even if not rigorously related by symmetry. In es-
sence, having solved for the electronic structure of heptane, we can accurately “guess” the elec-
tronic structure of decane as is consistent with chemical intuition but inconsistent with traditional
delocalized molecular orbital solutions.

While not used extensively in large scale computations the concept of the Wannier [32-34]
and generalized Wannier orbitals are fairly well-known. These are linear combinations of differ-
ent k-stationary states or Bloch waves (in a translationally invariant system) that are localized in
real space. They have the property that a Wannier function localized in one unit cell is orthogo-
nal to its translational replica in another unit cell. For our purposes we define generalized Wan-

nier functions as real space, localized, orthogonal, occupied (i.e., linear combinations of the oc-
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cupied stationary states of a system) functions. Thus they are related to the occupied stationary
state representation by a unitary transformation.

The asymptotic behavior of the Wannier orbitals at large distances, r is determined by
exp(—zc blr[) where K}, is a branch point in complex k space, and is, in magnitude, of the order of
the smallest gap involving the given band [32,33]. Because the range is related to the gap it is
clearly physically significant. However, in real systems this range can be rather large (semi-
global) precluding chemical invariance for all practical purposes. As pointed out by Anderson
[26], it is trivial to show that the Wannier functions are not the most localized linear combination
of the Bloch waves. However, since the range is physical it cannot be removed by making a
qualitative change. It is our contention that this semi-global behavior should not be ignored. It
is, however, a property of fermions and Pauli exclusion and thus does not necessarily enter the
definition of chemically invariant localized orbitals that are non-orthogonal. All the relatively
long-range information, that is sensitive to fairly distant perturbations in the system can be em-
bodied in the density matrix of the bond-orbital representation. In an orthogonal occupied repre-
sentation the density matrix is unity. Thus all physical content must be contained in the orbitals.
For non-orthogonal occupied representations, however, the density matrix D is formally the in-
verse of the overlap matrix and thus can carry relatively long range information that is sensitive
to semi-global aspects of the system while the individual bond orbitals are insensitive. At this

point, this is largely conjecture. Nevertheless, the significance of this point seems to have been

missed in the early literature.




D. DENSITY FUNCTIONAL THEORY

In density functional theory (DFT) the basic independent element is the density operator, p

which itself is a trace over the outer product of occupied orbitals { l//k };

b=zkllﬂk>< Wki‘ (l)

The diagonal element of the density matrix in a spatial representation is the charge density, p(r) =
<t|plr>.
For a paramagnetic ground state with 2N electrons, the occupied orbitals are the N lowest

energy eigenfunctions of the one-electron, self-consistent Kohn-Sham equation:

h2

- V2 +VDF + VN | W, ) =k | v,) @

HKs ‘ ‘//k> =

where VpF includes the local potential and the self-consistent Coulomb and exchange-
correlation potentials. VN, if used, is the non-local (but short-range) pseudo-potential used to
eliminate the core electrons from the calculation. The solution of this Schroedinger-like equa-
tion, whether it is achieved by direct diagonalization or by an iterative method, is the source of
the "N3" scaling. In the iterative methods this scaling arises from orthogonality constraints [23].
The density operator is, however, a projection operator onto the occupied subspace of
Hgs. No physical quantities in the density functional formalism depend on individual occupied

orbitals but only on a trace over the occupied subspace. The trace operation is invariant to all

¢j> such that

similarity transformations. Hence, any set of

[¢j>=Zijk“//k> 3




can equally well represent the occupied subspace, provided the inverse of T exists. We exploit

this freedom to overcome the N3 computational bottleneck. The

¢j>’ in general are non-
orthogonal, with an overlap matrix § =7 T T Thus only a unitary T implies an orthogonal set

of

¢j>' Orthogonal or not, the density operator can always be written as

p=3lp,><4) @

where the ¢ > are the bi-orthogonal complement of the

J

¢j> as explained further below.

The basic non-linear equation that each

¢j> must satisfy is

(-p)H\p )-0. | ©)

To cast Eq. 5 in a projection operator language, we refer to the occupied and unoccupied sub-

spaces as P and Q, respectively where Q=1-P. The basic equation for the

¢j> is then QHP = 0.

In other words, it is only necessary for the hamiltonian to be dlock diagonalized into two blocks

(occupied and unoccupied) subject to the criterion that the band structure energy 77 r{PI:I } is an

absolute minimum (for a fixed one-electron potential).
Tr{PH}= Zj<¢j’H’¢j> =2 ek ©

This essentially defines the problem. It is both necessary and sufficient that Eq. 5 is satisfied and

Eq. 6 is an absolute minimum for a fixed potential. This follows because of the invariance of the




trace. The only way to minimize the sum of the one electron energies is to be a representation of
the lowest N eigenfunctions of Eq. 2. We emphasize, however, that Eq. 5 while minimizizing

Eq. 6 does not have a unique solution. Indeed our aim is to use the freedom corresponding to

fhis non-uniqueness to try to find a set of ¢J> that not only solves Eq. 5 but which is also opti-

mally "localized", or equivalently, that makes the matrix representations of H and S optimally

sparse. In the work reported here we find a solution which is localized but is not necessarily op-

timally localized.




E. CONVENTIONS AND NOMENCLATURE

Here we set forth definitions and conventions that are convenient when working with non-

orthogonal basis sets. (cf. Ref 22 & 39 for more information) Consider a finite Hilbert space, 2,

of dimension N, spanned by a linearly independent set {¢ k} , k=1,2,.N. The inner product of

the functions in this set defines a matrix S
Sjk = <¢]! ¢k> (7a)

which is the metric for the space. Without loss of generality, assume that the {¢ k} are normal-

ized to unity. The metric is a positive definite, hermitian matrix. This means that all its eigen-

*
values are greater than zero and that S jk= S k- There also exists a uniquely determined set,

{_¢? } , j=1,2,...N called the "bi-orthogonal complement” which satisfies the bi-orthogonality re-
J .

lationship,

<5jl¢k> = Sk (7b)

The two sets are related by the inverse of the metric; i.e.,

@ik 80157, ®)

The inverse of the metric is the metric in the complement space. We define
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For an efficient algorithm, it is convenient to approximate the matrix D and thus in general we
will not know the inverse of S. When the D we use is identically S-1 we will refer to it as "full"

inversion, although we note that this matrix cannot generally be computed in order N.

On ~ the unit operator is defined as:

L =5,/3,) (0} w

One way to see this is to substitute Eq. 9 into Eq. 8. When operating on a general function, 1%
projects that function onto .

We will refer to the condition number of the metric. It can be defined in several ways, for
example as the ratio of the lé:rgest to the smallest eigenvalue of S. We find it more useful to de-
fine it as the largest diagonal element of D. The better the condition of the metric the closer
(from above) the diagonal elements will be to one. (Without loss of generality, we assume that
the diagonal elements of S are unity.) Another definition is the norm of the metric or of the

complement metric where the norm of a matrix, A, of dimension N is defined as

Tr[AA]

Norm(A) = +—" (11)

The smaller the norm, the better the condition.
In addition to defining the metrics in ~, it is also necessary to define matrix representa-
tions of the hamiltonian. We adhere to the convention that the hermitian matrix of an operator in

the basis {¢k} is the "standard" representation, denoted with a tilde, for example,




~

H = <¢j

H

¢k>. (12a)

A "proper” [39] matrix is one represented in the dual basis as follows:

ij - <&J|H‘ ¢k>. (12b)

The relationships between the two representations are

[ja=

=D

[[==t
[ja=t

and H=S

[j==

. (13).

As mentioned, we choose representations for these matrices that render them sparse. For
sparse matrices we refer to an X-range, where X can be any one of the five relevant matrices,
S,H,D,H or HT. The set of elements in the range of k is the non-zero matrix elements in the

kth column. Each of the five matrices will, in general, have different, but comparable, ranges.




III. TECHNICAL APPROACH

A. ESSENTIAL INGREDIENTS OF THE ALGORITHM

We describe here an iterative solution for a set of "occupied" orbitals 1

¢(n)> . As the iterations

(n) proceed, the quantity [1 - P(n)} A

n
.(k)> approaches zero for k=1,..N. Thus at conver-
gence, n -, Q(n) }A[ P(n) — () where Q(n) = [] - P(n):|. P is the projection operator

onto the subspace spanned by the

¢(]:l)> and converges to the density operator. In each "¢-

update" exactly one

¢k> changes [16]. However, all

—&j> in a D-range of k also change.

(Recall that "D-range" of k means all j such that Djx # 0.) With a full inversion or a poorly
conditioned metric, the D-range of k would be essentially all j. However, in a later section we
show that it is sufficient for the D-range of k to be comparable to that defined by the metric (the
S-range), provided the metric is well~conditioned. We return to this below. With "¢-update” de-
fined this way, we have a non-standard iterative scheme in which the number of ¢-updates is lin-
ear in N, but the work per each ¢-update is N-independent. Reference below to the number of
"iterations" means to the number of ¢-updates divided by N.

Our algorithm is a sequence of ¢-updates. First we describe the "in principle" algorithm,
by which we mean no approximations. We try to indicate where the in principle will differ from

the in practice by explicitly including the phrase "in principle". An orbital is updated by opti-

mally mixing in the residual, | X Evcn)> which is defined as

et




The mixing is a "generalized Jacobi rotation” (where "generalized" will be defined momentarily);

1.e.,

‘ ¢£cn)(9)>=cos(9)’ ¢£€n—1)>_sin(¢9)( ch)> B

The 77k is chosen so that Zin)> is normed to unity. At convergence the 77k vanish, and the

’ Zin)> are undefined. Prior to convergence, the residual is orthogonal (at least in principle) to all

the '¢(jn—1)>’ i.e., <zin)

space. Furthermore, it can be shown that any other direction in Q(n‘l), that is orthogonal to the

¢("'1)> =0, for j = 1,2,.,N. In other words, it is an element in Q(1-1)

residual, has no hamiltonian matrix element with the orbital being updated. The mixing angle 6

is chosen to minimize the total band structure energy F’ () (H) % where

E0=HS(0) + T (4] (0f]#7)  ow

We have left the (n-1) superscript label on '¢,> (j#k) to emphasize that it does not change during

the update. We define the kth state contribution to the band structure energy, as the real part of

the diagonal element in the proper representation, H(kz) (9) s

4 Generalizing the energy minimization to that of the total energy rather than the total band-structure energy; i.e.,
eliminating the double counting of the coulomb energy and including the exchange-correlation energy can be ac-

complished in a similar manner to that described in Ref. 23.
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H ¢(:)(9)> (16b)

We make this definition to point out the analogy to the band-by-band conjugate-gradient iterative
schemes [23] wherein a band refers to a specific type of occupied orbital, i.e., an eigenstate.

Here a state refers to a general "occupied” orbital.

At first glance, approximations to minimize E®) (9) may appear necessary, because

(n-1) —~(n-1)
#7) g

less, algebra shows that no approximations are necessary. Appendix B gives the details for de-

with an update to in the D-range of k must also be updated. Neverthe-

termining Oy, the optimal mixing angle. It involves evaluating a 2x2 standard hamiltonian ma-

—(n-1
trix with the functions ¢§{n ) (note this is the complement function) and ¥ Ecn) However, 6

k is not the rotation angle for diagonalizing this 2x2 matrix, nor is it the rotation angle for di-

agonalizing the standard hamiltonian matrix for the two directions (¢(kn—l) and chn)) that

are being rotated (Eq. 15). Because Oy is not the diagonalizing rotation angle, we refer to Eq. 15
a "generalized Jacobi rotation”. Nevertheless, despite the change in many of the complement
functions - and hence many individual state energies - the change in the fotal band structure en-
ergy depends only on matrix elements involving the residual and the current complement func-

tion. ‘
After determining 6y the kth row and column of S and I:_! are trivially updated. Updat-

ing the standard representation of the hamiltonian, E, involves determining the inner product of

H Z§Cn)> with the ¢(Jn_l)> for all j in the H-range of k, as follows:

T A T 1)*Slﬂ(@k)[008(9k)hi”)—SIH(Hk)(h(m T ”)] (172)




ﬁg.') =[ﬁ§’]?] =[cds(@k)ﬁg-’-l)—sin(é’k)hg-”)] for j#k (17b)

ﬁg'? = ﬁ(j,;_l) for Jl#k (17¢)
where
A _1 ~
=) =)o

In principle the metric would update as follows: without loss of generality, we move the

kth function to the top of the basis, and define the remaining (N-1)x(N-1) states as g-space, then

.}.
n-D1" |
s
(18a)

(n-1)

g@-D =
(n-1)
Sq Sqq

where S(n—l) is a vector of length N-1 and Sg;_l) is a matrix of dimension (N-1) x (N-1).

Because the residual 1s ofthogonal to all the "occupied" orbitals, the update to the metric is

1 cos(0, )[Sq (HT (18b)

S(n)=
cos(8;)s,"” r-D
k/Pq Sqq

: o . i . (n- :
The important implication of this result is that matrix elements of S , which are zero, stay

zero, and any non-zero off-diagonal elements can only decrease in magnitude, because
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lcos(8)|< . Hence, the norm of S decreases, which implies that its condition improves. Further-
more, the metric is updated trivially and involves only m multiplications, where m is the number
of non-zero elements in the kth row of S. In addition, due to this form as the update of S, the up-
date of D is also relatively simple. More important, the complement basis can be updated di-
rectly. Conséquently, the proper representation of the hamiltonian can be updated without mul-
tiplying D and H together, which would be order m3. The key step in making our algorithm
scale linearly with a relatively small pre-factor is the non-obvious, non-trivial update of the set of
{;fi_")} in the D-range of k and the direct update of the order m2 elements (where m is inde-
pendent of N) of D and H that change. We show this in Appendix A. The total number of op-
erations to accomplish this update is order m2.

We emphasize that (1) the "inversion" of the metric is not necessary at every ¢-update -
in principle it is necessary only at the first step; and (2) the norm of D and S decrease; therefore
the condition of the metric improves with each ¢-update. Actually it is not very significant that
the condition improves, but it is meaningful that the condition cannot get worse, thus assuring
stability of the algorithm. Note that, while the metric approaches unity (orthogonality), it does
not, in general, become unity. Hence, our algorithm does not iterate to orthogonal or generalized
Wannier orbitals as in the methods of Mauri, et al [8] or Ordejon, et al [9]. Additionally we em-
phasize that the algebra of the updates relies only on the residual vector being orthogonal to the

current set of "occupied" orbitals.

After updating

¢§n) > and the relevant matrices, a new k is chosen. It would be most

natural to choose the orbital with the largest residual (largest M ). However, since many M

change with each update, to literally do this would take order N work. Instead, one approach is:

at the beginning of each iteration a set of M 's are calculated to fix the order. In other words, for

the purpose of ordering the updates the change in a 77j with an update to a ¢§:Z)> is ignored.

Other orderings are possible including highest or lowest state energies, Re{Hi’,’c' D} , Or ran-

dom.




In practice, after each iteration (or few iterations), we recompute all the matrices given

the

¢(T1)> to eliminate cumulative errors due to (1) round-off, (2) D not identically S-1, and ?3)
J

‘ ZE:‘)> restricted to be more spatially localized than dictated by Eq. 14. We should note that this

localization is imposed with cutoff functions as opposed to using bucket potentials [4]. We are
investigating other methods of assuring localization with the goal to approach optimal localiza-
tion by a quantitative measure; i.e., to minimize the ranges of the relevant matrices and maximize
transferability.

One final point is: as noted, D as computed is not identically S-1; consequently TrH
(where Tr is the sum of the diagonal elements) is not necessarily a variational upper bound to the
band structure energy. In principle, this is a problem. However, Tr{(2-DS)H} can be shown to
be an upper bound, provided the zero of energy is taken so that H is negative definite. With this
formulation, the effective density matrix is 2D-DSD; thus, the particle number is
Tr{(2-DS)DS}, which can be shown to be less than or equal to N. The transformation to the
effective density matrix guarantees that its eigenvalues are all nearly - but less than or equal to -
one. Equality arises if D is identically S-1. The correction term to the band structure energy,
Tr{(1-DS)H}, is similar to that used in Refs. [6,8,9].




B. INITIALIZATION

The goal of our algorithm is to determine a final set of fully occupied orbitals. This means that if
we energy resolve or determine a local density of states for each orbital, the local state density
will fall entirely below the Fermi level. It is advantageous to start as close to the final answer as
feasible. For a system such as silicon with directional bonds, a natural starting point exists. We
believe that this will be the case for most closed shell molecules and insulating solids. We pro-
ceed here as if silicon is the rule rather than the exception. In a later section, we use fcc calcium
as an example, and find that for metallic systems a natural starting point is less obvious. How-
ever, this is only an issue at the first geometry or the first time step of a MD simulation. Pro-
vided we have good transferability then the result at one geometry will be a good starting point
for another geometry. This will similarly be the case for any system made up of subunits that are

the same as a system for which we have a solution from a prior calculation.

We assume that we have a LCAO or some other spatially localized representation of our
system. Here we use a minimal basis set, non-orthogonal tight-binding representation. For con-
creteness we use silicon as an example. Silicon has four valence electrons; this means the mini-
mal basis consists of four orbitals, an s and three p's for each atom. For a supercell with n Si's,
the basis has 4n functions and the number of occupied orbitals is N=2n. We first transform from
the s, and three p basis at each silicon site to a sp3 basis, where each sp3 orbital points directly at
another silicon atoni. In the diamond lattice structure the four sp3 orbitals per silicon are or-
thogonal to each other bﬁt not to the orbitals at the neighboring Si atom. In fact, in general, the
overlap between two nearest neighbor orbitals pointing directly at each other (along a Si-Si bond
direction) is rather large. This is typical of an ab initio LCAO calculation. If we energy resolve
each sp3 orbital, then by symmetry half the spectral weight falls below the Fermi level and half
falls above. However, making a transformation to symmetric ("bonding") and anti-symmetric
("anti-bonding") combinations of two nearest neighbor sp3 orbitals pointing along a Si-Si bond
not only eliminates the largest overlap in the metric but also places the spectral weight of the

symmetric combination (a valence bond orbital) primarily below the Fermi level. For example,




using the non-orthogonal tight-binding parameters with up to third neighbor interactions of Mat-
theis and Pattel [MP] [40], the nearest-neighbor overlap of directed sp3 orbitals is ~0.6 and the
spectral weight of the symmetric combination that falls below the Fermi level is ~0.95. Hence,
the iterative procedure needs only to refine out the remaining 5%. This 5% reflects itself in the
average energy. For example, with the MP tight-binding parameters, a valence bond orbital in a
96 atom Si cluster has an average energy (determined with a full inversion of S and sampling the
Brillouin zone at the [-point only) of -4.726 €V (see Figure 1). This energy is in error by only

0.3 eV or 6%, at the zeroth iteration.

Convergence
-4700 —
%‘ ——Silicon
E ~4800 - -=Vacancy
> -4900 + —+— Scrambled
(]
ﬁ -5000 —t &
—— —n
-5100 : : : |
-1 1 3 5 7
Iteration

Fig. 1. Convergence of the average energy per occupied orbital for a supercell (96
atoms) of crystalline silicon, randomized (“scrambled”) silicon (10% ran-
domization from the crystalline positions) and crystallline silicon with one

vacancy (an open-shell system). The final point is the exact answer (as de-

termined by full diagonalization).
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Fig. 2. Convergence of the average energy per occupied orbital for a supercell (64
atoms) of crystalline silicon with and without one vacancy The final point is
the exact answer (as determined by full diagonalization). Note the total range

of the energy scale is only 7 meV compared to 400 meV in Fig. 1.

Figures 1 and 2 show the convergence of our algorithm for a 96 atom Si cluster in the diamond
lattice, slightly randomized about the crystalline positions and with a vacancy. What is plotted is
the average energy per occupied orbital after each iteration. Note that after two iterations the er-
ror is only 3-5 meV which is sufficient for many purposes. After five iterations the energy for
the non-defected Si cluster is converged to better than 1 meV. However, close to convergence
improving the accuracy is slow as can be seen in Fig. 2. Should increased accuracy be necessary
a different iterative scheme (probably one that updates all the orbitals at once’, and/or one which
uses conjugate directions) should improve this situation. For example, if we update all the orbi-

tals at once the overlap matrix no longer will have a form which can be analytically inverted.

* Changing one ¢ at a time is advantageous far from convergence. We expect that this will alleviate problems of
charge sloshing in large systems. However, near convergence we expect that it might be advantageous to switch to a
global iterative scheme that relaxes all the orbitals simultaneously.
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However, near convergence the change in the overlap matrix is very small and thus it will be

sufficient to.approximate [)(®) either as
D® _ Dy _ D(n-u[S(n) . S(n-u] Dy

or

D® .2 D6y - D) Se) Die-y

If necessary, one conjugate gradient iteration could be used to improve D.

For completeness, we have also started the iterations from atom centered orbitals (as in
Ref. 4 and 8) and found that convergence is achieved with six or seven iterations. Hence the va-
lence bond orbitals are not a necessary starting point, but they are physically motivated and likely
to be more transferable. Note that the number of iterations to reach convergence is independent
of the cluster size. The results shown in Figs. 1 and 2 were determined with essentially full in-
version; (m=N or infinite range) at the zeroth iterate and thus were not computed in order N.
This is still significant because it shows that numerical accuracy was not degraded through the ¢-

updates. We next consider a conjugate gradient determination of D with a cutoff radius on the

complement basis.




C. "INVERSION" OF A WELL-CONDITIONED S BY CONJUGATE GRADIENT
MINIMIZATION

In this section we discuss the nature of the bi-orthogonal complement functions. We consider a
column by column conjugate gradient (CG) determination of D with various cutoff radii on the
complement basis in the non-orthogonal tight-binding silicon system. The kth column of D sat-

isfies the following system of equations
ZjSZijk= O (192)

We choose a cutoff radius of R to define the D-range of k and simply set all Djx = 0 for j out-
side this range; i.e., if the center of the jth bond is a distance greater than R from the center of
the kth bond. If there are m functions in the D-range of k then the system of equations involves

an mxm sub-matrix of S. The Dk for j within the D-range of k can then be computed with a CG
2
algorithm to minimize the function fk (D) = Z 7 lﬁk)(é' jk_[SD] 'k) for each k. The
J
(k) : : (k) _ ¥
A G awe weight factors (weighted least-squares), for example, /1j = forj in the D-range of k

2
and 0 otherwise or /’Lg.k) = [S jk] . If we have no other estimate of Dji from prior calculations,
we start the iteration with Djk = 5jk or D= 2§jk —Sjk'
We do, however, find it useful to make two corrections to the D determined by the
straightforward CG solution [41]. First, we guarantee that D is symmetric, either by post-

symmetrization or by solving for the lower triangle only. The latter method changes the system

of equations (Eq. 19a) to

2 ok SyD = O~ 2 j<k SyDy- (195)




Solving for the lower triangle works well in a sequential scheme since then the j<k terms are al-
ready evaluated. The second correction that we find useful fixes Dgi = [DSD]yk to guarantee
that the diagonal elements of D are the diagonal elements of the complement metric. Recall that
D serves a dual role. It is supposed to be the inverse metric and it is also supposed to be the
transformation from the basis to the complement basis. The second correction guarantees that at
least the diagonal elements exactly satisfy this dual role. It can also be seen (in Appendix C) that
this is a necessary condition to assure charge conservation. Note that with Dy = [DSD]kk then
the diagonal elements are invariant to the transformation D — 2D-DSD, the transformation to
guarantee that the band structure energy is greater than Tr[S-1H]. Our approach has been to add
a correction to the diagonal elements of D; i.e., Dy = Dgi+ dix. Then each diagonal correc-
tion, dy, is independent of the others and satisfies a simple quadratic equation.

Future work will still need to investigate whether alternative solutions are advantageous,
2
e . — (k)
e.g, minimizing, for each k, either fk(D)_ > j A ( D jk_[ DSD]J k) or

f

k (D) = l[DSZ)] kk_D e Another appealing possibility is to minimize the band struc-

2
ture energy Tr{(2D - DSD)H}.
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Fig. 3. Convergence as a function of iteration number and cutoff for a 96 atom su-
percell of crystalline silicon. Open circles: 4,.=18, Opened Triangles:
Ac-=24, Opened Squares: 4.=32 and Opened Diamonds: .=
(indistinguishable from open squares). Filled circles: Iterating with 4.=18

and relaxing the cutoff after convergence. Filled Triagonals same as Filled

circles except 4, =24. See text for further description.

Figure 3 shows results for the 96 atom cluster of Si. The metric is for the space spanned
by the 192 valence bond orbitals without any further preconditioning. We compare the energy
per orbital (Tr{(2-DS)H} for several values of the cutoff radius. At any given iteration, the open
markers reflect energies as computed with the approximate D. We will elaborate on the filled
markers momentarily. Note that even with a root-mean-square error (rmserr) of 10-3 and a cutoff

of Rg=2.52r() (where r() is the nearest neighbor distance; in the figure this is labeled A,=18°%), the

¢ The unitless parameter A is related to the square of the cutoff distance R_ as A.=3[R./ro)°.
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computed energy is in error by only 9 meV. This cutoff is actually shorter than the range of S
which has matrix elements to R.=2.83rg (A;=24). With a cutoff at the same range as S the en-
ergy is -4.722 €V (in error by only 4 meV). The results for a range of Rc=3.27ry (A=32) are
indistinguishable from full inversion. Decreasing the rmserr below 10-3 has no effect on these
energies. A

Figure 3 also shows the results of iterating with a less than accurate D and improving the
accuracy only after stopping the iterations. These are the filled markers shown at iteration # 2, 4
and 5. It can be seen that very little in overall accuracy has been lost. This implies that for the
early iterations, there is no need to have a very accurate D, and accuracy (by extending the range)
can be improved when approaching convergence.

Itis importént to realize that a sparse D is not a general result. In other words, we have
not found a method which can invert an arbitrary sparse matrix in order N. It should work, how-
ever, for any well-conditioned mefric where the orbitals are spatially localized. We emphasize
that this does not restrict the generality of our method. It simply restricts the set of possible
starting orbitals. This is a fairly trivial matter since completeness of the basis is not an issue. In
an LCAO calculation very poorly conditioned metrics arise primarily because of the polarization
and or diffuse functions. The metric here is for the ultimate minimal basis set. Recall there are
only as many orbitals as half the number of electrons. It is easy to select a starting set of orbitals
that do not have very large overlaps, and hence will have a well-conditioned metric. What is not
easy, however, is to choose a set that is, in general, orthogonal. There is one exception: in an
orthogonal tight-binding model the valence bond orbitals can be chosen to form an orthogonal set

and consequently produce metrics, S and D, with a range of zero. We do not consider this to be

physical nor representative of an ab-initio calculation.
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Fig. 4: Converged carbon-carbon bonds for Heptane and for Decane. Bond 1 (the
terminal C-C bond) in Heptane is virtually indistinguishable from Bond 1 in
Decane, similarly for Bond 2. Bonds 3-5 in Decane are indistinguishable

from each other as well as from Bond 3 in Heptane.

To complete this section we show some pictures of converged “bond” orbitals from self-
consistent minimal basis density functional calculations. The calculations use Sandia developed
software, QuEST 7 but replaces the diagonalization with an algorithm that solves for NOLOs
instead of stationary states. The first example is two different length alkane chains, heptane

7 QuEST is a parallel LCAO-DFT code developed by M.P. Sears and P.A. Schultz. The code is based on the linear
combination of atomic orbitals. The atomic-orbital basis consist of contracted gaussians. The code exploits
sparseness of the hamiltonian and overlap matrices to achieve linear-scaling in the construction of the matrices. The
solution of Poisson’s equation to obtain the Hartree potential is done very efficiently by separating the charge into a
fast and a slow term. The fast term is a sum of spherical neutral atom terms for which Poisson’s equation is trivially
solved and is short-range. For the slow term, Poisson’s equation is solved by a fast Fourier transform on a relatively
coarse grid.




(C+H;6) and decane (CioHzz). Chemically these are very similar as is clearly reflected in the con-
verged “bond” orbitals in Fig. 4. These orbitals are localized on the atoms comprising the bond
and the nearest neighbor atoms. Hence a carbon-carbon bond uses the atomic orbitals of four
carbons and four hydrogens. The terminal bond uses the atomic orbitals of three carbons and
three hydrogens. This enforced localization represents reduced variational freedom and hence
the localization error must be positive. However, despite this strong localization the error is ~0.6
meV per occupied orbital. Indeed, if we create the electronic structure for decane using con-
verged orbitals from heptane there is no additional error. Transfering the orbitals from heptane
to decane represents a calculation with zero variational freedom. As another example we show,
in Fig. 5, some converged orbitals from a more complicated class of molecules, namely C¢H3-
CONH-(CH,),-CONH-C¢H;3 with n varying from two to five. The average localization error in

these systems is still less than 2meV.

Fig. 5 - Converged NOLOs
from molecules containing
amide and di-amide frag-

ments.
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D. SOLVING FOR EXTREMAL EIGENVALUES IN NON-ORTHOGONAL REPRE-
SENTATIONS: THE GAP

After each full iteration, the Hilbert space of the primitive basis {5 } has been divided into a P
H

and a Q space. The primitive basis is the full basis in which the problem is being represented, for
example, the sp3 orbitals of the silicon system. P and Q space are approximations to the occu-
pied and unoccupied subspaces, respectively. The eigenfunctions of the hamiltonian in P space
are an approximation to the lowest N eigenfunctions. At convergence they are the lowest N ei-
genfunctions. While we have no cause to diagonalize the P space hamiltonian fully, there is rea-
son to determine the largest eigenvalue and possibly the corresponding eigenfunction. By the
variational principle this eigenvalue is necessarily greater than the Nth eigenvalue of H (the high-
est occupied level, HOMO). Similarly, we may want to determine the lowest eigenvalue of Q
space which is necessarily lower than the N+1 eigenvalue of H (the lowest unoccupied level
LUMO). There are three reasons why we might want to do this. First, we may be interested in
determining the gap in an insulator. The difference between these two levels is then necessarily a
lower bound to the gap (for a fixed one-electron potential). Second, with our algorithm (or any
iterative algorithm) there is no guarantee that we won't converge on an excited electronic state. If
this is the case then the energy of the supposed HOMO will be greater than that of the LUMO
and at least we will know either to change the starting set of orbitals or to swap some levels be-
tween P and Q space. Third, in a metal, in general, one does not know how many levels are oc-
cupied, at a given point in the Brillouin zone. It will then be necessary to “depopulate” the high-
est one, two or more "occupied” levels, or to populate a few of the lowest "unoccupied" levels.
This can be done within the present algorithm, if we can explicitly solve for just those levels
which also has the effect of explicitly including the declocalized character in a metal in an order
1 number of states. We now present an algorithm which is order N for determining the HOMO
and the LUMO and is easily generalized to more than one level from each subspace. This
method is different from that proposed by Wang and Zunger [42] which would work in order N
only for an orthogonal representation. We are unaware of any method in the literature to project

out levels in the middle of a band, from a non-orthogonal representation and to do it in order N.




In order to determine the HOMO for P space we need only the sparse N-dimensional
metric S and standard representation of the hamiltonian, H in the "occupied" orbital basis. We
take advantage of the fact that the HOMO is an extremal eigenvalue in this Hilbert space. We

use a conjugate gradient algorithm to solve a system of equations for i '

Z,-[ﬁk,—<E>Sk,] w,=0 (20)

where

Z w H; Ve
z jk l// S Jjk Wk
We define an unnormalized residual vector, v(D), with components
(n) n- (n-1)
-3 [, - (E7)S.)v, @)

Conjugate gradient dictates that we add to the residual a portion of the prior residual. If we do
not add a portion of the prior residual, the method would be steepest descents. However, we find

that CG cuts down on the number of iterations required. Thus we define

n)
chn) _ vgcn) ﬁ /l(n D (23)

ﬂn D

where ﬂ(n ) is the square of the vector norm of v(). We use the qualifier, vector, to contrast this

from the physical norm which involves the metric.




2
. 4)

,B( n)_= Zk‘vgcn)

For the first iterate /1?) = Vg) and Wg)) = 519 where j is any one of the occupied orbitals or
the one with the largest diagonal energy. Other choices are obviously possible, including ran-

dom. To iterate, the two vectors \Jf and A are mixed,
(n) (n-1) n
Y -af” Vi +as A (25)

The ag”) and ag?) are chosen so as to maximize <E> and to normalize [/ with respect to the

metric. Small enough ,B(n ) signals convergence. We refer to the converged \f as (HOMO),

We should point out that if the basis is orthogonal and if we minimize rather than maximize <E>,
then this is similar (but not identical) to the modified Lanczos method for determining the
groundstate employed in the work of Moreo and Dagatto [43]. As nearly as we can tell their
method is equivalent to steepest descents. As mentioned, we find that changing from steepest
descents to conjugate gradient significantly cuts down on the number of iterations required to
achieve convergence.

Figure 4 shows the convergence for the zeroth, first and second iterate of P-space for the
96 atom MP tight-binding system. We note that convergence for the energy of the HOMO is not
uniform with the iterations for P-space.

Determining the LUMO is similar except we do not have an explicit representation for Q
space. It is necessary to use the implicit representation using the projector 1-P, but with one ca-
veat. It is necessary to have a reasonably accurate representation for P and not to push too hard
on the convergence. Otherwise, the ground state of the full hamiltonian can be projected from
the noise. The differences in the algorithm from that which determines the HOMO are: (1) The

hamiltonian and the metric are represented in the starting "primitive" basis. (2) Suppose we have

iterated so that P space is represented by the ¢(_n)>. Then we start the iteration scheme for the
J
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LUMO by choosing an arbitrary orbital

d>= Zvav‘év> and projecting out any P space

components; 1.e.,

= < (262)
(0)
% = Z vQ,uvaV' - (272)
(3) The residual must be projected into Q space; i.e.,
(n) (n)
= vau (28a)

(n-1)

=YL - (ET)S. v (28b)

(4) The mixing is the same as with the HOMO except now the energy is minimized. Again a
small vector norm for the residual signals convergence. If the norm of the residual is not allowed
to get too small, dropping into P-space can be avoided for a reasonably accurate representation of
P. We refer to the converged W as W(LUMO). Figure 5 shows the convergence for the LUMO
again for the zeroth, first and second iterate for P of the 96 atom MP tight-binding system. Note
the difference in the LUMO and HOMO energies is a variational lower bound to the gap. We
now show that we can also obtain an improved estimate of the gap which is a variational upper
bound.

Prior to convergence of P-space these estimates for the HOMO and LUMO energies may

not be very good; i.e., when Q(n)H P(n) # 0 as seen in Figs 4 and 5. However, an improved

estimate for the HOMO and LUMO can be obtained, relatively easily. For the LUMO we can
make the N+1 dimensional space from P() plus the LUMO of Q(@). The HOMO of the result-

ing N+1-dimensional Hilbert space can be determined by first evaluating the overlap and the




standard hamiltonian matrix element of the LUMO with each orbital in P(0); j.e., adding an
N+1st row and column. The iteration is then naturally started with the LUMO which in this rep-

resentation is simply W]EO) = 5k N4l The energy of the HOMO of the N+1 dimensional sys-

tem is an upper bound to the N+1 eigenenergy (LUMO).

Similarly Q(n) space can be augmented with the HOMO of P(m) and the LUMO of the
resulting system is a Jlower bound to the Nth eigenenergy (HOMO). To augment, Q(m=1-p(™) is
replaced by

(n) ) [= | (HOMO) HOMO)
o U

§V>. | (26b)

To start the iteration

0) /= |. (HOMO)
£-(g))

The difference between the energies of the HOMO and the LUMO from the augmented calcula-
tions gives a variational upper bound to the gap. Figure 6 summarizes the very fast convergence

for the upper and lower bounds to the HOMO, LUMO and gap energies.
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Fig. 6. Upper and lower estimates of the HOMO, the LUMO and the gap for the 96
atom supercell of crystalline silicon as a function of full iteration number.
Circles, x's (upper curve) and diamonds are upper bound estimates of the
LUMO, the gap and the HOMO energies, respectively. Triangles, squares and
x's (lower curve) are lower bound estimates of the LUMO, the gap and the

HOMO energies, respectively.




IV. METALLIC SYSTEM: FCC CALCIUM

For a metallic system there is a conceptual issue to address. In particular, can the density matrix
be represented in terms of order N localized orbitals and order unity delocalized orbitals? For a
large unit cell all the bands will be relatively flat and the majority of bands will be occupied
across the entire Brillouin zone. Any band that is fully occupied should be localizable. The
relatively few bands that cross the Fermi level will embody the delocalized character of the
metal. Alternatively, the density matrix will localize at finite temperature -- but this will require
a generalization to partially occupied orbitals. We will consider this below.

In this section we explicitly consider a fcc metallic system with two electrons and thus
one occupied orbital per atom, e.g., calcium. Again we use a minimal basis set, non-orthogonal
tight-binding model. We take the parameters from Papaconstantopoulos [43]. In choosing a
starting set of orbitals we look for a set which has a well-conditioned metric and which satisfies
the octet rule for s and p electrons; i.e., each atom should be surrounded by four orbitals. Unlike
the case of silicon, this cannot be accomplished with two-centered valence bond orbitals. None-
theless, it can be accomplished with four-center orbitals centered at tetrahedral interstitial sites
[45,46]. A tetrahedral interstitial site is a site in the lattice which is surrounded by four atoms in
a tetrahedral arrangement. In the fcc lattice each atom is surrounded by eight such sites. We can
thus pair two of them as one orbital or center orbitals at half the tetrahedral interstitial sites. The
latter is conceptually simpler. For the latter case the tetrahedral interstitial orbital is a symmetric
linear combination of four orbitals one from each of the four nearest neighboring atoms. The
orbital from each atom is a s-p hybrid which points its positive lobe directly at the tetrahedral in-
terstitial site. The s-p mix is arbitrary, but 25% s, i.e., an sp3 hybrid, leads to a metric which is
best conditioned. The iteration adjusts the mix and convergence seems independent of the start-
ing mix. Whether this is still the case when self-consistency is added remains to be investigated.

Figure 7 shows the convergence for this case with one variation. Rather than a symmetric
combination of the four orbitals pointing at a tetrahedral interstritial site the mix of the four has

been randomized®. The periodic cluster is for 32 atoms of calcium which at the I" point has only

3 The parameter r (for degree of randomization) is used as follows: each of the four orbitals is multiplied by a
random factor, cos(rxm) where x is a uniform random number between 0 and 1.
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30 occupied states. (For the present discussion we assume that somehow we have determined the
Fermi level). Thus it is necessary to depopulate the highest two. The slow-down around be-
tween the third and seventh iteration (with no randomization) is due to finding a local minimum.
The problem arises because there is a set of occupied orbitals (four-fold degenerate) which is
missed by symmetry. It is this "missed" state that slows convergence. We find this in itself a
very intriguing result. Indeed, a similar result occurs with atomic-centered s-orbital initialization.
We return to this below. Randomization mitigates the local minimum and convergence (to 0.1
mRy accuracy) can be achieved with relatively few iterations, 15-25. In these calculations the
unit cell is too small to investigate whether the orbitals can be localized. Additionally, a k=0

only calculation is insufficient.

Calcium Convergence

-7500 1

7550 -

-7600 A

Energy (0.1 mHy)

-7650 A

7700 -
0

Iteration
Fig. 7.  Convergence of the average energy per occupied orbital in a 32
atom supercell of crystalline fcc calcium. The different curves represent a

different degree of randomization in the initial starting set of orbitals’.

® The parameter r (for degree of randomization) is used as follows: each of the four orbitals is multiplied by a
random factor, cos(rx7) where x is a uniform random number between 0 and 1.
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We have also started from atom centered orbitals with arbitrary sp mix'®. We find that
this starting set converges in slightly more iterations than the tetrahedral interstitials, but nonethe-
less it does converge in relatively few iterations. Hence the algorithm is robust and can converge
from a variety of starting points including random as long as the initial guess is localized. One
thing to note is: when we use full inversion, the iterative scheme does not find its way out of a
local minimum. Hence, it appears errors in D allow the possibility of escaping from a local
minimum. However, we do not believe that using "noise" to get out of a local minimum is a sat-
isfactory solution to the problem of converging to an excited state.

The surprising result here was that the algorithm converged quickly (but to a local mini-
mum) for some starting guesses, such as A; symmetry about the tetrahedral interstitial or A,
symmetry about the atom center. What we think this means is that there are closed-shell like
overlapping “invariant-subspaces” in metals. This concept can be used to project out a minimal
basis set for metals. If Py is the occupied subspace and we solve for P such that Py c P then the

Baroni and Giannozzi [3] method can be suitably adapted; i.e.,

1
Pr).
75|

(rlgw(@)lr)=(rP]

By having the projection operator P the bandwidth or emax problem is overcome. The charge-
density and band-structure energy are still obtainable by a contour integral which crosses the real
axis at the Fermi energy. The starting vector for the Baroni & Giannozzi method, rather than

being the unit vector, is a column of the projection operator P; i.e,
('|Pr)= Zjaj(r')¢k(r) = ij¢j(r')Djk¢k(r)

The Fermi level is determined to conserve charge. An advantage of this approach over, for ex-
ample that of Hernandez and Gillan [16] method, is that the invariant subspaces are defined sepa-
rately and any subspaces that fall entirely below the Fermi level are out of the picture. For ex-

ample, suppose we are looking at aluminum. It has 3 electrons per unit cell. Like calcium it will

1% If the sp mix has no p-character, i.e., pure s orbitals, the algorithm converges to an excited state.
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have an invariant subspace with A; symmetry about the tetrahedral interstitials. However, unlike
calcium it will now be fully occupied and hence closed. We then must find another invariant
subspace which includes the remaining occupied states and determine the partial occupancy as in

Ref. 3. However, now the partial occupancy will always be a finite and invariant fraction of the

total whereas in Ref. 3 it is a decreasing fraction with grid-size.




V. LINEAR RESPONSE

The most important thing to recognize about linear scaling Kohn-Sham density functional theory
is that there are no stationary states of any hamiltonian. This contrasts traditional approaches that
directly solve for the lowest N stationary states of the Kohn-Sham hamiltonian, which is the
functional derivative of the energy with respect to the density. Furthermore, all existing ap-
proaches to linear response require at least the occupied stationary states. Therefore, to go be-
yond LDA to linear-response theory in large systems, it becomes necessary to develop a new ap-

proach.

Recall that in our linear scaling algorithm the basic non-linear equation that the orbitals satisfy is

(1 - P)H KZS’¢n =0
It is from these basic quantities, the {¢;}, that we now derive linear response.

Linear Response with no stationary states can be derived from perturbation theory. We

expand all quantities in the basic equation through first order changes
(1-P-A OP)(Hgs + A0V ey + A OVscp)|n + A 04> = 0.
After expanding 8P and dVscr in terms of ¢, and 8¢,, we arrive at an equation of the form Ax=b.
(1-P)(Hks)[8¢x>+(1-P)(8Vext + 8Vscr)|9n>-0PHys|pn> = 0
The variation OP is
op = Zn;5n><5¢n | * an5¢n ><§_én l

The variation 6V ¢y is the external perturbation and the operation of 8V scr is the change in the

screening potential. The operation of 6V scp on |¢> is
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OV scrln) = (057 LR = 20011 (4% )

52E
5p(r)5p(r' 5,0(7’ )5,0(7’ )
Finally
<r{(1-P)(His)|0¢0>-Zim <@un|Hys|dn>00:(1)+

S52E
d3r‘.—_____ ' r' = -
2¢n(r)2m,[ 5 (r)5 (r') ¢m(7’ )5¢m( ) (1-P)OV exd 0>

A is thus an operator in the space which is a cross-product of occupied and unoccupied sub-
spaces; X and b are vectors in this same space. The dimensionality of this space scales as N2
The first term is an electron term; it is diagonal in P space. The second term is a hole term; it is
diagonal in Q-space and the last term is a coupling term, off-diagonal in both P and Q. The com-
ponents of x are 8¢,(r). The components of b are -(1-P)dVexdn(r). A representation of the op-

erator A 1s

S62E ol
Sp(r)op(r )

If the ¢, and 8V are localized the vectors x and b are sparse. Indeed, the number of non-zero

<n,rAlm,r">=<t|(1-P)(His)lr">8m- <umlHisldw>8(r-1" Y+ 26 n(r) 7

elements in the vectors scale as order 0. Similarly the operation of the operator A on the sparse
vector can be performed in order 0. To get second derivatives, with respect to atom positions, for
example, the difficult term in 5°E/SRioORp is Tr (8p/8Rie)( 8Vex/SR;p) which in this formalism
becomes b'*' A b® where b*%,(r) = —(1-p)dVext/ORiq On(r). The required matrix element of the
inverse of A can be computed directly using Krylov space methods, such as Lanczos [29]. By
analogy with fixed hamiltonians we interpret A as the effective electron-hole interaction or evo-
lution operator. It does consist of the hamiltonian for the free electron minus the hamiltonian for
a free hole plus a coupling term that scatters electron-hole pairs. A representation of the operator
requires only having a representation of the occupied subspace. It does not require having sta-
tionary states. The major technical challenge to implement this formalism will be to perform the

operation of A on a localized vector very efficiently. Extending this to frequency dependent re-
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sponses requires determining matrix elements of the form -Im b! [A-0]” b. Different responses
involve different vectors b, but the basic operation and the major part of the effort is in the op-

eration Ab.
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V1. CONCLUSION

In this report we have presented a linear scaling density functional algorithm that iteratively
solves for localized, fully occupied, non-orthogonal orbitals (NOLOs) that form a basis for the
occupied subspace of the Kohn-Sham hamiltonian. These orbitals are potentially transferable as
we have demonstrated in a few cases. The linear scaling arises from keeping all matrices sparse.
We have also demonstrated that by controlling the condition of the overlap matrix of the starting
set of orbitals (first guess), it is possible to use a sparse, approximate inverse of the overlap ma-
trix and analytic inverses during the iterative updates. The only requirement is that the “residual”
be orthogonal to the current guess for the occupied sub-space. We cast the algorithm in terms of
explicitly non-orthogonal functions so that the computed occupied orbitals will have physical
meaning and will thus be transferable between similar systems. The updates (at least far from
convergence) are state by state rather than global with the future goal in mind of controlling any
charge-sloshing instability [23] of the Kohn-Sham self-consistent energy. The required numeri-

cal effort to update a single state is order m2 , where m is independent of N for large N.




Appendix A: Update Equations

In this Appendix, we give the non-obvious and non-trivial update equations which involve the
complement basis. Given the mixing angle, 6. Appendix B gives details for determining the
mixing angle that minimizes the total band structure energy. We find that the generalized Jacobi

rotation for the kth orbital rotates the kth complement function as follows:

< ()

The change in the complement functions for j#k is

-g,(0, )[cos(é?k)<¢(n D - p@ D sin(Hk)<Z EJ’)I } (A.1a)

3

< (n— )l sin(d,) g, (6, )D(n l)[sm(é )<¢ l+cos(9 )< ”

(A.1b)

Notice that the change in <¢j

is proportional to the overlap of ¢j with ¢k and, hence, only a

¢j for j in the D-range of k changes. The bi-orthogonality relationship is verifiably preserved

with these updates.

Also the inverse matrix is easily updated as follows:

p®_|Di [d ff)]f (A2)

— (n) (n)
d, D,

where Dg]? is a scalar equal to
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DW=2g(6) DY (A2a)

The N-1 dimensional vector f (qn ) is

a’f]") =cos( ;) g( Hk)df]”—l)- (A2b)

Finally the (N-1)-dimensional matrix Dg’;) is

_12;’2 1_);’; V_g,(8)sin2(8,)d,” 'Td q“"’]‘. (A.20)

Note that the total operation count for these updates is order m2 where m is number of elements
in the D-range of k. We can easily verify that D) is the metric for the updated complement
space and that it is the transformation that relates the updated basis and complement basis.

Eliminating the work to invert S is a major step toward efficiency of our algorithm, but a
major part of the remaining work can also be eliminated in updating the proper representation of
the hamiltonian. This reduces the operation count from order m3 (for matrix multiplication) to
order m2.

That update proceeds as follows: The off-diagonal elements of the kth row where only

the bra (complement) function changes are

HY = 8,(6, Jeod 0BG DG Vsin(0, )1 for <k

(A.32)

where the hﬁ” ) were defined in Eq. 17d. The qq block (1,j #k) where again only the bra

(complement) function changes is

62




Y= Hy g, (0)sin(6; g [sin(0) ™ +cos( 01 )]
(A.3b)

Finally, the kth column, where both the bra (complement) and the ket functions change, can eas-

ily be accomplished with a matrix times a vector multiplication.

(”) >, D (”) (”) (A.30)

We should point out that this does generalize to finite k-point sampling. However, NOLOs only
make sense if they can localize within the unit cell, which implies that the overlap with its image
in another unit cell vanishes. The equations then easily generalize with all images updating si-

multaneously.
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Appendix B: Minimization of the Total Band-Structure Energy with Mixing Angle

This Appendix first explains how we can analytically minimize the real part of I—Ii',?(@), then

shows that a small change and essentially no additional work allows us to minimize E® (9)

directly. The state contribution is:

Re{ch’}f,)( g)} _ Re{ch’}’;l)} + g,(6)sin(6) [sin(@) Ay — cos(6) zk]

(B.1)
where
g, (0)= L (B.2a)
cosz(é’) + ])(” D sm2(9)
A= Di’,ﬁ D[hf:,g HZ; 1)} (B.2b)
~ {< (n)> +p@D n)}
B, = DY h (B20)

where h; and 1" ! ) were defined in the text (Section IILA Eq. 17d). Recall that DY is

the norm of

—{r-1)
¢ > and H n-1) is the kth diagonal of the proper representation of the hamil-
k

tonian. Algebra shows that minimization is achieved with an angle 9k such that

64




Prer—Br7 g

tan(20,)= (B.3)
“ YA tBry,
where
B, =%(Dil'l)+l)75’k (B.42)
Vi 2(D(H) l)ﬁk (B.4b)
c —\/32 + D D (B.4¢)

Clearly the standard Jacobi rotation (2x2 diagonalization) is recovered for the orthogonal case,

D(n 1y

=1()Y & =0). We call this more general rotation a generalized Jacobi rotation.

Given the results in Appendix A, the total band structure energy, as a function of the

mixing angle, is
E(n)(gk)z E(n—1)4sin(Hk)gk(ﬁk)[sin(ﬁk)Ak—cos(Hk)ﬁk] B.5)

where

Ar= Dy hzz

-1 -1 -1
(n-1) , (n) n )IHI —(n— )> B0
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y <(n1)

The change in the minimization from minimizing the kth state energy to minimize the total band

(n)> < (n)

—(n-1)
F11 X > (B.6b)

energy amounts to only a redefinition of the two parameters IB A and A k-
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Appendix C: Update to the Charge Density

In problems for which self-consistency is necessary it may be useful to update the charge density
at the same time as the updates. Given the update equations of Appendix A we can derive the
change in the charge density. Recall that the charge density is the diagonal elements of the den-

sity matrix in a spatial representation:

- R4

Inserting the updated functions and complement functions (Recall that only one function and

C.1

many complement functions get updated. The sum is eliminated using the relation

)

The final result is

(rlp™r)={rjpt-lr >+g(9k)Sin9k[Sin9kf1(” )—cos@y f (7 )]

C3

where

—(n-1)

G (1)

R

2
! Cda

f() D" ()()* l

7o)l
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Note that both f 1(7") and f 2(7’) are functions whose integral over all space vanishes, (this

assures charge conservation) provided that

D= [drl C.5a

—{(n- 1)( )I <—(n—1)’——(n—1)>

and that the residual ‘ chn)> and the complement function

n—1
agc )> are othogonal;

(7700

For full inversion these identities definitely hold. As we have implemented our algorithm, we
simply assure that these identities hold independent of any approximations.
The scaling to update the charge density is only linear in the number of grid points for

which the density is changing, assuming this is calculated on a grid. Determining the charge

density at each full iteration scales as order Nm?2.




Appendix D: The Residual Vector

In this Appendix, we discuss the mechanics of determining the residual vector and its matrix
elements. The kth residual is the "leakage" out of the space defined by the "occupied " orbitals
when operating H on the kth "occupied" orbital . We put the word, occupied, in quotes because
until there is no leakage the orbitals are not 100% occupied.

We need the residual represented in the primitive and in the complement to the primitive
i

(contravariant representation). The dimension is that of the primitive basis. They are related by

basis; i.e., we need define two vectors <Z:,u > (covariant representation) and < é:,u’ chn)>

the primitive metric. When referring to the primitive basis we use Greek indices. The

<Eﬂl ¢§n)> are determined by the update Eq. 15. We, thus, apparently have the option of com-

puting Z‘ () by solving a system of equations to determine <Z‘ ,I:I~ ¢<"_1)> or alternatively
H Xy mo T |

we can evaluate <§[ t chn)> and then solve a system of equations to obtain <2
/i

Zg’)>. Either
way, solving the resulting system of equations is the dominant work in a ¢-update for non-

orthogonal primitive representations. An orthogonal primitive representation (such as a grid

based method) would avoid having this system of equations to solve.

H o,

We prefer solving the system of equations for <2 (n—1) > rather than directly for
/]

the convariant represention of the residual, <—§-J chn)>’ because then we can use

g

equations. It is also the most efficient method if we use the approximate i, determined at the

Al (n=-2 . . . . . . .
H‘ gc )> as a starting point in a conjugate gradient iterative solution of the system of

beginning of each iteration to fix the order of ¢-updates. The <2 ‘I;I' gcn-1)> would then al-
L

ready be available. Hence
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< i (n)>=< ) l (n- 1) J<Zi,) ¢§_n)>ij -

To quarantee charge conservation in practice (see Appendix C) it is necessary to explicitly or-

—(n-1
thogonalize chn) to ¢§Cn ) which is done at this point in the calculation. The work involved

is order m2. In principle this does not change lgcn) , hence we do not indicate this step in the

remaining equations. The contravariant representation is obtained from the relation:

<fl 20 ZASIENE,

The normalization, 7;, is chosen so that the residual has a physical norm of 1.

(”)> (D.1b)

ek o

NPT
Given <§ ’ > a matrix vector multiply determines <§ l ' >

b5 2 .

and simple dot products determine the remaining matrix elements, h(n ) and hgzg

RPN
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hﬁ‘n? =2 #<¢§n—l)‘2ﬂ><§ ﬂ’ﬁ’)(;n)> (D.3b)
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