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Abstract

This paper describes our experience in image and
volume visualization at the Lawrence Livermore Na-
tional Laboratory. After an introduction on visual-
ization issues, we present a new software approach
to the analysis and visualization of images and vol-
umes. The efficiency of the visualization process
is improved by letting the user combine small and
reusable applications by the means of a machine-
independent interpreted language such as Tcl/Tk.
These hypertools can communicate with each other
over a network, which has a direct impact on the
design of graphical interfaces. We first describe the
implementation of a flexible gray-scale image widget
that can handle large data sets, provides complete
control of the color palette and allows for manual
and semi-interactive segmentation. This visualiza-
tion tool can be embedded in a data-flow image pro-
cessing environment to assess the quality of acquisi-
tion, preprocessing and filtering of raw data. This
approach combines the simplicity of visual program-
ming with the power of a high-level interpreted lan-
guage. We show how hypertools can be used in sur-
face and volume rendering and how they increase
the interaction efficiency by performing complex or
tedious tasks automatically. One biomedical appli-
cation is presented.

1 Introduction

Visualizing images or volumes helps extract qual-
itative information and quantitative measurements
from raw data sets. Visualization software is thus
becoming critical in virtually every domain of en-
gineering. However, despite the number of pack-
ages available from commercial vendors and from
the public domain, it is extremely difficult to find

a package that fulfills the needs of a research lab-
oratory dealing with large data sets. Indeed, all
the packages are implemented based on the following
scheme.

o First, the file formats need to be decoded, and
the raw data read in. The data can then be
formatted or extracted. This step includes op-
eration such as subsampling, interpolation or
dimensional reduction, e.g when a slice is ex-
tracted from a 3D volume.

e Next, the data are normalized, typically to 8-
or 16-bit integers, and displayed in a window
after the colors have been allocated. Using
predefined color look-up tables, stretching the
histogram, reducing the image dynamic range
and providing a colorbar help identify the rel-
evant features of the data set.

e Numerical values, extracted data or regions of
interest can then be written back into a file.

e At any point, the user may interact with a
graphical user interface (GUI) or issues com-
mands to an interpreter, e.g. to change the
color look-up table, look at pixel values, etc.

Practical experiments showed that none of the all
command-line oriented (VIEW, IDL, PWave, Mat-
lab, etc), dataflow-oriented (AVS, Explorer,..) or
“self-contained” (Analyze, 3DVIEWNIX, etc) visu-
alization packages could handle large data sets whose
size exceed both the size of the memory and swap
space. The user is thus compelled to manually ex-
tract smaller pieces of the data sets, which can be
time-consuming and inefficient. It is thus mandatory
to tightly link the data extraction and data visual-
ization steps, typically by reading and visualizing
one slice at a time instead of loading a 3D volume
in memory before visualizing its 2D slices.




The efficiency of interactive visualization is also
limited by the GUI design, which can almost never
be customized by the user. Even when the source
code is available, adding or removing features is very
difficult if not impossible, as the GUIs are imple-
mented as monoliths of hundreds of thousands of
lines. However, the user needs to control the way
the colors are allocated, e.g., interactive thresholds,
linear and non-linear colormaps. Similarly, extract-
ing profiles, histograms or non-rectangular regions of
interest make quantitative measurements possible.
Off-line data transforms or extractions are in our
opinion too cumbersome in a research environment.
In addition, unsupervised automatic segmentation
performs poorly when the data are noisy. The alter-
native, that is the use of manual and semi-automatic
segmentation techniques, is however limited by the
lack of flexibility of most graphical interfaces.

The considerations above led us to implement
a new visualization tool, geared to large data sets.
Since we could not afford, nor had the experience
required to write a self-contained application in X-
Motif, our approach was to divide the GUI into
small reusable components by relying on Tcl/Tk.
Tcl/Tk is now used by thousands of users in every
domain of graphical and engineering applications.
Indeed, Tcl/Tk provides simple ways to “glue” dif-
ferent modules together and it can be extended eas-
ily, in contrast to other GUI builders.

However, the use of Tcl/Tk in the signal and im-
age processing community is scarce. Two main rea-
sons can explain this situation. First, efficient data
management mechanisms and number-crunching ca-
pabilities in image processing are generally believed
to require high-performance languages, in contrast
to Tel which only handles character strings. Next,
the photo image widget was not designed for inter-
active visualization and its flexibility is very lim-
ited, mainly because image processing applications
are not the main focus of Tcl/Tk developers.

In this paper, we describe the implementation
of a new gray-scale image widget. By focusing on
data management and color allocation problems, we
were able reach a level of performance which com-
pares favorably with other image processing and vi-
sualization packages. A transparent overlay mecha-
nism provides a link to manual and semi-interactive
segmentation techniques. We will show how this

widget helped us build VISU, a flexible VISUaliza-
tion software described below. VISU is made up of
several standalone applications which communicate
with each other over the network. The power and
flexibility of these hypertools in image and volume
visualization will be described with some examples.

A biomedical application will be presented.

2 The pict gray-scale image
- widget

As it can be guessed from the name, the pict gray-
scale image widget is based on the photo image wid-
get. After few experiments, it became clear that the
photo widget was not appropriate for our applica-
tion. First, this widget can only handle 8- or 24-bit
color images, and it does not provide any mechanism
to visualize floating-point images. Next, the colors
are allocated statically and cannot be changed dy-
namically by the user. Thus, we decided to imple-
ment a new widget by focusing on data management
and color allocation.

2.1 Data management

Since we wanted to support byte, short, integer or
float-point types, we modified the data structure, in
order to remove the fields related to color manage-
ment and dithering. The raw data is allocated in a
block of memory and can be accessed by using the
data type information. The master structure also
provides a pointer to a block of byte data, corre-
sponding to the normalized raw data. The contrast
can be increased or decreased by setting the dynamic
range of the raw data. This feature proves most
helpful when comparing two floating-point images
whose dynamic range is different. The pixel values
can be queried, and the resultant string contains the
actual value, for example a floating-point value.

The Khorosl and VIEW (local LLNL format)
file formats are now supported. The GIF and PPM
readers were modified in order to read only one color
band. Readers/writers for the SUN Raster file for-
mat are provided for both the photo and the pict
widget. Raw binary files can also be read from a file
(or a channel if the code is linked against Tcl7.5)
by specifying the dimensions, the data type and the
number of bytes corresponding to the header. In
all cases, only one slice is read at a time, which de-
creases the memory requirements dramatically. How-
ever, volume rotations and transpositions need to be
done off-line. Support will be added in the near-
future for HDF, netCDF and ACR-NEMA file for-
mats.

Profiling the Photo source code showed that me-
mory management was fairly inefficient, as a lot of
time is spent copying blocks between different ad-
dresses. The TkPictPutBlock and TkPictPutZoo-




medBlock routines were rewritten to make sure mem-
ory blocks are duplicated only when necessary.

2.2 Color allocation

The human visual system cannot see more than 60
shades of gray, which makes color management for
gray-scale images much more simple than for color
ones. Since we wanted to change the colors dynami-
cally and use predefined colormaps, we chose to dis-
play the images using an 8-bit PseudoColor Display.
This requirement is in our opinion fairly minimal.
Besides, our experience proved that dithered images
cannot be compared accurately.

In order to allow for fast array transformations,
the colors are allocated from a contiguous set. For
example, the palette can be inverted quickly by re-
versing the color indices. The images are displayed
in false colors by choosing from a variety of prefined
look-up tables. The histogram can be stretched or
thresholded to produce a binary image. Further-
more, the colors can be allocated from shared, de-
fault or private colormaps. Changing the colors of
one shared colormap will affect all the images that
share it. This feature allows the user to visualize
the same image displayed with different colors, or to
compare the result of two different thresholds.

One additional benefit is that the color allocation
can be used to display “semi-transparent” overlays.
This is a feature that was found very useful in our
interactive segmentation work. The user can for ex-
ample “paint” on the image, draw polygons, Bezier
or free-form curves, and yet guess the gray-level val-
ues. The overlays can be saved as a mask image.
Let us point out that this feature enables the user
to extract non-rectangular regions of interest. Al-
ternatively, a mask image can be overlaid on top of
the active image, in order to check and verify the ac-
curacy of an off-line segmentation, remove spurious
pixels or compare two data sets. The user can inter-
actively combine overlays with logical operations {or,
xor, and, etc..) by changing the Graphic Context.
The pict widget provides an interface to advanced
image processing routines {1, 2], and the overlays
can also be used in semi-interactive segmentation
[3], where a coarse initialization is specified; the seg-
mented result can then be displayed. Examples in
Figure 1(a)-(d) show two cross-sections of a CT wvol-
ume displayed with different look-up tables. The
concept of transparent overlays is described in Fig-
ure 2(a)-(c). The use of overlays in semi-automatic
segmentation is presented in Figure 2(d)-(f).

3 VISU: a volume VISUaliza-
tion application

In this section, we describe how the pict widget is
incorporated in VISU, a user-friendly volume visu-
alization extension of wish. In addition to the low-
level widget commands, we provide a set of default
scripts and high-level commands which make the life
of the average user easier. In order to remove any
learning curve for LLNL users, the syntax of these
commands reproduces that of VIEW, a general sig-
nal processing package used in our group. For ex-
ample, the following commarids will read the first
slice of volume “hand”, display the image, and then
display the tenth slice.

% rdfile hand 0.sdt f
% disp £
% rdslice £ 10

The simplicity of these commands enables the
user to write his/her own set of macros. In addition
to the command line, VISU also provides a graph-
ical interface to most of the high-level commands.
In order to reduce the GUI design, we chose to pro-
vide only one Control Panel (see Figure 3) and a
one-to-one mapping between images and windows.
At a given time, one image is considered “active”.
An image becomes active when the user clicks on it,
and its window title is changed. The mouse loca-
tion and pixel values displayed in the Control Panel
correspond to those of the active window. Similarly,
moving the slice scale will result in another slice be-
ing displayed; the dynamic range of the images can
be typed in two entry boxes.

The Palette Menu (Figure 4) lets the user change
the colors with the mouse. Four scales can be moved
in order to choose the low and high thresholds. The
pixels whose values are between the low and high
threshold appear white, and the rest appear black.
As soon as the scale is changed, the look-up ta-
ble is updated. Visualizing the actual values of the
thresholds instead of normalized values proved very
helpful. For example, in our CT applications, the
user can see where the attenuation value exceeds a
threshold. Predefined look-up tables can be loaded
by clicking on one of the radiobuttons. A color tool
makes it possible to stretch the colormap in a non-
linear way. The graphical interface allows the user to
change the intensity and each of the RGB channels
independently to create their own look-up table.

In the Overlays Menu (Figure 5), the active mask
can be chosen and overlaid onto the active image.
The user can choose how to combine the overlays by




setting the overlay Graphic Context with the mouse.
For example, the intersection of two binary masks
can be seen and saved into a new image. We also
provide a graphical interface to our segmentation
routines.

The GUI can be customized within minutes with-
out recompiling any code. For example, displaying
several images side-by-side could be done by pack-
ing them in the same canvas, instead of different
windows. This flexibility enables us to design the
best GUI and to take into account the requirement
of a specific imaging application. In most cases, the
user will be able to configure the GUI himself.

Releasing the source code on the Internet! helped
test VISU on various platforms and operating sys-
tems we did not have access to. The configure tool
generates Makefiles automatically. While it is still
dependent on Xlib, VISU can be ported to Windows
and Mac-OS without too much effort, to become a
machine-independent visualization software. About
500 anonymous ftps were logged on our server. Let
us remark that this figure may appear small, but
most of the VISU users have very specific needs and
would probably not use Tcl/Tk at all if this gray-
scale image widget did not exist.

4 Hypertools

So far, the features of VISU we described are fairly
standard, and can be found in other less flexible vi-
sualization packages. However, the Tk library makes
it possible to use our widget to build visualization
hypertools, defined in John Qusterhout’s book [4] as
“stand-alone applications which can communicate
with each other and be reused in ways not foreseen
by their original designers”. Indeed, it came as a
surprise to us how easily the send command can be
used by visualization tools based on the pict widget
in peer-to-peer or master/slave relationships. In or-
der to demonstrate the power of these hypertools,
we take several examples.

4.1 Image visualization

We mentioned several times in this paper the im-
portance of normalizing floating-point images in the
same way. Typically, this can be done by query-
ing the minimum and maximum value of each im-
age, and by computing the absolute minimum and
maximum of all the images being displayed. Setting
the dynamic range has to be done each time an im-
age is updated; for example, in volume visualization,

lftp://redhook.llnl.gov/pub/visu

the dynamic range is likely to be different for each
slice. Moreover, visualization tools may run on dif-
ferent systems and display the images on the same
screen. In summary, choosing a correct dynamic
range is a tedious time-consuming task. However,
the send command makes things simple, as the fol-
lowing script demonstrates:

proc set_range {} {
# initializations
set 1 [winfo interps]
set min {}; set max {}; set visu_list {}

# list visu applications
foreach k $1 {
if { [string match "visu*" \
[lindex $k 0] 1 } {
lappend visu_list $k
}
}

# query dynamic range of active images
foreach k $visu_list {
lappend min \
[send $k {$curr_img getmin}]
lappend max \
[send $k {$curr_img getmax}]
}

# compute the global minimum and maximum
set fmin [lindex $min O]
set fmax [lindex $max O]
foreach k $min {
if { $k<$fmin } {

set fmin $k

}

if { $k>$fmax } {
set fmax $k

}

}

# set the new dynamic range
foreach k $visu_list {
send $k {$curr_img range} $fmin $fmax

}

In this script, the dynamic range is broadcast to
all the visu applications. Other possibilities include
showing the pixel values at the same mouse location
in different images, so as to compare images on a
pixel-by-pixel basis. Using the visu scripts, this op-
tion could be written as the following command.




foreach k $visu_list {
send $k {set x $x}
send $k {set y $y}
send $k {set pix [$curr_img get $x $yl1}

Instead of sending values, it is possible to send
commands, and for example to visualize the same
slice in different data sets by broadcasting the com-
mand rdslice $curr_img $curr_slice. A direct
application is the creation of simultaneous anima-
tions of volumes located in different file systems and
accessed over the network.

4.2 Image profiles and histograms

Visualization of image profiles along an arbitrary
line is an invaluable tool to evaluate the presence
of artifacts in reconstructed images. For example,
in X-ray CT, beam-hardening produces “cupping”
artifacts that can easily be detected by extracting a
profile. Similarly, the accuracy of the reconstruction
techniques can be assessed by visualizing the pro-
files of sharp edges. Typically, low-pass filtering and
noise elimination smooth and spread the transitions.

Along the same lines, visualizing a histogram
helps understand the statistics of an image and the
distribution of its gray levels. In the case where the
histogram is made up of several modes, the objects
can typicaly be segmented out by applying different
thresholdings to the data.

Although most image visualization packages pro-
vide 1D signal viewers, our experience proved that
they cannot be easily customized by the user and
are not flexible enough.

In our applications, the 1D signals are extracted

by issuing a command to the pict image widget and
sent to a BLT graph. Tcl/Tk handles only character
strings and relies on the X protocol to communicate
between applications. In addition, the profiles are
generally made of less than 1000 samples, so that
the overhead introduced by the communications is
minimal. This feature allows us to let the user con-
figure the graphical interface. Figure 6 shows an ex-
ample where a profile is extracted interactively and
then sent to a 1D signal viewer. The main benefit of
this approach is that the user can dynamically cre-
ate and extract new profiles or histograms of images
viewed across the network, combine and compare
them without having to save these one-dimensional
signals in files, and transfer them by ftp.

4.3 Data-flow environments

In our biomedical application, all the data prepro-
cessing and segmentation is implemented in Khoros,
a data-flow image processing environment. Khoros
provides a network editor; the input data undergo a
series of transformations each time a network node is
executed by the scheduler (Figure 7). This data flow
environment helps the user design an imaging appli-
cation, as the output of each node can be visualized
by connecting it to a visualization module (other
packages such as AVS, Explorer, LabView use the
same paradigm). However, dynamically setting the
range of all the images in a data flow environment is
next to impossible. Similarly, writing a macro or a
loop in a command-line interface sometimes makes
more sense than editing a network of nodes.

These two problems were solved by implement-
ing a Khoros module that executes a VISU script.
This approach results in several important benefits.
First, it compensates for some of the drawbacks of
VISU, e.g. by providing simple ways to extract arbi-
trary slices. Basically, we rely on modules provided
in the Khoros distribution, or write our own mod-
ules to filter and transform the raw data. Next, the
power of both command-line and data-flow environ-
ment can be combined: a command-line interface
is provided by a remote controller derived from the
rmt example of the Tk distribution, which can com-
municate either with a specific application or send
messages to all of them. As a result, the user can
rely on the power of visual programming, while be-
ing able to rely on a more traditional command-line
interface. To our knowledge, this feature is not pro-
vided by any other visualization package. Finally,
the embedded visualization modules can communi-
cate with each other. For example, the same profile
could be extracted in different images and displayed
in the same 1D signal viewer. Let us remark that the
same approach could be easily implemented in other
data-flow environments such as AVS or Explorer.

4.4 Volume visualization

As described before, VISU can display slices of a 3D
volume. Another way to visualize a volume is to
extract isosurfaces, either by using the 3D Marching
Cubes algorithm [5] or by reconstruction of a 3D sur-
face from 2D contours [6]. Visualizing a surface helps
understand the spatial distribution of objects in 3-
space, in contrast to visualizing 2D slices. Almost
every visualization package provides these tools, but
they are almost never combined or used simultane-
ously.




Several other approaches make use of Tcl/Tk
in volume visualization. Schroeder, Lorensen and
Martin recently released vtk?, a visualization toolkit
which can be used either by writing C++ programs,
or through Tcl/Tk scripts. Similarly, Lacroute [7]
released VolPack 3, a volume rendering library cou-
pled with a Tcl/Tk-based graphical interface.

These two toolkits could be used in conjunction
with VISU in order to build a volume visualization
package by relying on the send command. This ap-
proach results in two main benefits.

First, the different visualization modules can be
combined easily, even if they are not executed on
the same machine. Typically, it will be possible to
highlight a point of the surface and to see the in-
tersecting slice. Conversely, viewing a new slice will
automatically change the coordinates of this high-
lighted point. The color tools provided with VISU
will also be used in order to choose isosurface values,
or the transfer functions in volume rendering. The
same graphical interface can also be used to set the
viewing parameters in surface and volume rendering.
It is our belief that the combination of these visual-
ization techniques will help identify more efficiently
the relevant features of volumetric data sets.

Next, provided that the interface between hy-
pertools does not change, the user does not need
to know how the surface or volume rendering tech-
niques are implemented. As a result, the best vi-
sualization modules can be chosen by the user. For
example, vtk supports an abstract rendering engine
and can be slower than the tkSM widget %, which
provides easy access to the OpenGL and Mesa li-
braries. In the case where the software modules were
not linked against Tcl/Tk, they can still be used and
executed from the Tcl/Tk environment.

5 Conclusion

Although Tecl/Tk is widely distributed in engineer-
ing and graphical applications, its use in imaging
and visualization is recent. In this paper, we de-
scribed a new gray-scale widget and its use in visu-
alization of large data sets. Although it relies on a
interpreter, its speed compares favorably with typi-
cal X-Motif self-contained applications, as we imple-
mented an efficient management of data and colors.
Designing high level commands and combining hy-
pertools helps perform tedious tasks automatically,
thus increasing the interaction efficiency. We plan

2http://www.cs.rpi.edu:80/ martink
3http:/ /www-graphics.stanford.edu/software/volpack/
4http:/ /www.isr.umd.edu/ ihsu/tksm.html

in the near-future to enhance our image processing
library and to port the code to Windows and Mac.
The Tcl7.5 sockets will also be used to develop dis-
tributed visualization applications for the Internet.
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7 Figures

(c) (d)

Figure 1: Cross-sections of a thumb and index near joint: (a) corresponds to slice 308 displayed with a ’ct’
private colormap; (b) is also slice 308 with a shared colormap; (c) corresponds to slice 314 with a ’gray’
private colormap; (d) is slice 314 with a shared colormap. In this example, the private colormaps are used
as a reference while the colors are changed simultaneously in the two shared colormaps.




(d) (¢) (f)

Figure 2: Cross-section of a hand: (a) contours from an off-line segmentation; (b) contours overlaid on the
image; (c) Regions created from these contours; (d) Coarse manual initialization of overlays; (e) Interactive
segmentation result after region-growing; (h) Resulting segmented mask
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Figure 3: Control Panel

Figure 4: Palette options

Figure 5: Overlays options
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Figure 7: Khoros data flow environment




