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EXECUTIVE SUMMARY

This report addresses uncertainty in Integrated Resource Planning (IRP). IRP is
a planning and decisionmaking process employed by utilities, usually at the behest
of Public Utility Commissions (PUCs), to develop plans to ensure that utilities
have resources necessary to meet consumer demand at reasonable cost. IRP has
been used to assist utilities in developing plans that include not only traditional
electricity supply options but also demand-side management (DSM) options.

Uncertainty is a major issue for IRP, as is shown in Section 2. Future values
for numerous important variables (e.g., future fuel prices, future electricity demand,
stringency of future environmental regulations) cannot ever be known with certainty.
Many economically significant decisions are so unique that statistically-based prob-
abilities cannot even be calculated. The entire utility strategic planning process,
including IRP, encompasses different types of decisions that are made with different
time horizons and at different points in time. Because of fundamental pressures for
- change in the industry, including competition in generation, gone is the time when
utilities could easily predict increases in demand, enjoy long lead times to bring on
new capacity, and bank on steady profits.

The purpose of this report is to address in detail one aspect of uncertainty
in IRP: Dealing with Uncertainty in Quantitative Estimates, such as the future
demand for electricity or the cost to produce a mega-watt (MW) of power. A theme
which runs throughout the report is that every effort must be made to honestly
represent what is known about a variable that can be used to estimate its value, what
cannot be known, and what is not known due to operational constraints. Applying
this philosophy to the representation of uncertainty in quantitative estimates, it is
argued that imprecise probabilities are superior to classical probabilities for IRP.

Section 3 contains mathematical definitions of each.
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Deciding how to represent uncertainty quantitatively is only one part of the
challenge. Section 4 discusses how to manipulate two or more uncertain quantita-
tive estimates. Methods such as combination, conditionalization, and consensus are
defined and illustrated. In most IRPs it is necessary, at some point, to calculate
expected values for important variables like electricity demand, cost of electricity
production, and prices of competing fuels. Section 5 presents methods for calculat-
ing expected values using imprecise probabilities. The method based upon nonlinear
optimization can be considered a major technical achievement attributable to this
research. Lastly, it is also very important to understand factors underlying uncer-
tainty in quantitative estimates. Section 6 presents a qualitative framework utilities
can use to accomplish this task. The report concludes with a discussion of issues

for future research and deliberations.




1. INTRODUCTION

Decisionmakers in the electric utility industry must deal with uncertainty in
an efﬁcién’c and rational manner to ensure the economic survival of utilities and
meet the expectations of the public. This is an important challenge because maﬁy
decisions have significant impact upon the ability of the utility to compete (e.g.,
cost of new capacity) and satisfy public expectations (e.g., siting and construction
of néW transmission lines). Utility-based decisionmaking is quite difficult because
many such decisions are one-of-a kind—meaning that uncertainties are difficult if
not impossible to ascertain statistically——irreversible,’and characterized by complex
and complicated outcomes (Hirst and Schweitzer, 1988).

This report focuses on uncertainty and IRP in the electric power industry. IRP
is a process conducted by utilities, typically at the behest of PUCs, to build plans
to acquire power resources. In préctice, integrated resource plans include a mixture
of traditional supply resources (e.g, coal, oil, natural gas, hydro) and DSM options
(e.g., ‘conservation, time-of-day pricing). Good IRPs, for instance, are based upon
forecasts of energy prices and electricity demand (Hirst 1992), only two of many
aspects of IRP that entail significant uncertainty.

Accordingly, utilities have begun to address uncertainty in IRP. Section 2. sum-
marizes utilities’ attempts, to date, to accomplish this task. For example, IRPs oftenA
represent uncertainty qualitatively through the use of cases (e.g., base case, high
energy demand growth case, etc.). Fewer integrated IRPs use quantitative tech-
niques to represent uncertainty (e.g., probabilities). Fewer still employ quantitative
methods to manipulate quantitative uncertainties.

The motivation for this report is our strong belief that utilities should increase
their use of quantitative techniques both to represent and manipulate uncertainties

in integrated resource plans. Four reasons are offered in support of this contention.
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(1) Quantitative techniques are very appropriate given the preponderance of uncer-
tain quantitative variables and estimates in the plans. (2) The process of qﬁanti—
fying uncertainty about an estimate, yields a deeper appreciation into complexities
surrounding the estimate. (3) Quantitative techniques, if used properly, represent
explicit and rigorous statements of uncertainty that can be readily communicated
and evaluated by others. (4) Quantitative representations of uncertainty (e.g., ex-
pected values) are required inputs for quantitative decision analytic methods, which

should be at the foundation of important resource planning decisions.

This report is expressly written to assist utilities and analysts incorporate quan-
titatively uncertainty in IRPs. To provide a further focus, the report only deals with
one general quantitative paradigm: probability. However, as Section 3. indicates,
the report takes a broad view of probability. The section contains a brief history
of the concept (Section 3.1) and provides a mathematical overview of “classical

probability (Section 3.2).”

A theme which runs throughout the report is that one should honestly represent
what one knows and no more using the probabilistic paradigm. Oftentimes, and we
would argue in the preponderance of cases in IRP, classical probability is too re-
strictive, forcing one to overstate one’s knowledge about the value for an important
variable. Thus, we argue for the use of imprecise (e.g., upper and lower) probabili-
ties; Sections 3.3 and 3.4 present definitions of upper and lower probabilities, and
upper and lower probability distributions,‘ respectively. The balance of this section

discusses how to construct imprecise probabilities and provides examples.

Section 4 addresses the manipulation of quantitative uncertainties in geheral and
imprecise probabilities in particular. The section begins by presenting a conceptual
model that encompasses different situations where one would need to synthesize two
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or more imprecise probabilities (Section 4.1). The conceptual model is needed to

define quantitative methods such as combination, conditionalization, and consensus.

As the reader peruses this report, it will be evident that we have tried to syn-
thesize general discussions of uncertainty, detailed mathematical presentations, and
straightforward examples. Section 4. exemplifies the approach. Following the
discussion of the conceptual model is a short note on the mathematics of condi-
tionalization and imprecise probability (Section 4.2). Then several examples are

presented (Section 4.3).

In many ways, the most important quantitative challenge facing IRP analysts
is the calculation of expected values. Such calculations are straightforward using
classical probabilities. Section 5. demonstrates that there are well-understood
methods to calculate expected values using lower and upper probabilities. One such
: méthod, known as Choquet Expected Values, is discussed in Section 5.1. There are
also opportunities to extend these methods to more general imprecise probabilities
and to frameworks of importance to utility analysts. Section 5.2 illustrates this
by introducing a new method to calculate upper and lower expected values via
nonlinear optimization for decision-tree applications. A detailed example of this

method appears in Section 6.3.

Quantitative estimates of uncertainty, especially those based on subjective judg-
ments, are challenging to develop. Section 6. provides assistance to those needing
to specify imprecise probabilities. Presented first, in Section 6.1 is a presentation
of a qualitative frame (i.e., checklist) one can use to describe why there is uncer-
tainty in a quantitative estimate. For example, uncertainty may arise due to factors
under the analyst’s control, such as data quality or the application of appropriate
estimation techniques. On the other hand, a large degree of the uncertainty may

be inherent in the estimation problem itself and therefore beyond the control of the
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analyst. In those cases, it is appropriate to represent uncertainty using imprecise
probabilities.

In any case, the frame can indicate to utilities what can be done, if anything, to
reduce the uncertainty associated with key planning variables. Implications of this
realization on the cost and value of information are discusseéi in Section 6.2. The
section concludes with a discussion of elicitation issues and examples of using the
frame.

It is well known in the physical sciences that most of the easy problems have
been solved. The remaining problems are much more challenging conceptually and
oftentimes require more sophisticated and expensive equipment and experiments.
An analogy can be made to uncertainty and decisionmaking. As utilities and PUCs
strive to make better decisions, to fine tune utility investments and operations to
reduce costs and increase service to the public, the problem of decisionmaking gets
progressively, if not exponentially, more difficult.

As this report points out, dealing with uncertainty is not just an exercise in
identifying what features in the utility environment cause uncertainty. To fully
appreciate the topic, one needs to master powerful but oftentimes subtle concepts
and understand mathematical presentations and methods. We believe that the

effort is well worth it.




2. OVERVIEW OF UNCERTAINTY AND IRP

2.1 ASPECTS OF UNCERTAINTY IN IRP
IRP is a process by which utilities and PUCs work to establish mutually accept-

able plans for meeting the public’s need for utility services. Specifically, integrated
resource plans detail how utilities will supply electricity services to meet forecast
demands. In the electric utility industry, supply options traditionally focused on
building new poWer plants. IRP has evolved to include DSM, renewables, and other
energy sources in the list of supply options (Schweitzer, Hirst, and Hill 1991).

The art of IRP has evolved to where suggestions can be offered about how to
develop good integrated resource plans. Hirst (1992) states that plans need to: be
technically competent; present adequate, detailed, and consistent (with long-term
plans) short-term action plans; incorporate the interests of various stakeholders; and
be clear and comprehensive in presentation. Technically competent plans address:
energy and demand forecasts; supply and demand resources; resource integration;

and uncertainty, which is the topic of this report.

Indeed, a strong argument can be made that uncertainty dominates every as-
pect of IRP. Hirst and Schweitzer (1990) surveyed numerous plans and found that
uncertainties abound (Table 2.1). The uncertainties pertain to issues internal to
utilities and relate to factors external to the utility, which are beyond utility con-
trol. Important uncertainties, for example, involve the utility’s cost of providing
power and forecasting load growth.

To that list should be added uncertainty concerning the future of the util-
ity industry. Numerous factors are pressuring the industry to change (Tonn and
Schaffhauser, 1994; Dasovich et al., 1993). These include increasing competition in

generation and potential competition in the form of retail wheeling. It is unclear
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Table 2.1. Key Uncertainties in Integrated Resource Planning

Uncertainties Internal to Utilities
Type, availability, and/or costs of new generating facilities
Availability and/or costs of existing generating facilities
Availability and/or costs of power from life-extension projects
DSM capability

Availability of renewable energy resources

Uncertainties External to Utilities
Load Growth
Fuel Prices ‘ :
Availability and/or costs of purchased power
Actual savings from DSM and related efforts
Regulatory policies '
Inflation and interest rates
Environmental constraints

(Adapted from Hirst and Schweitzer, 1990, p.139)

whether these forces will result in: a substantially decentralized, vertically dein-
tegrated industry; a substantially more centralized, vertically integrated industry;
or an industry little changed from the situation today, which is /still dominated by
utilities in the areas of generation, transmission, and distribution, although less so

in generation than in the past.

The important point for this research is that the need to handle uncertainty is
even more important as the utility industry heads toward the next century. Irre-
gardless of whether PUCs continue to mandate IRP, utilities will have an increased
need to conduct their own strategic planning exercises to ensure organizational sur-
vival. PUCs and other governmental bodies will also have an increased need for
analysis to ensure that current government regulations are appropriate for the util-
ity industry of the future and to pfedict the consequences of proposed regulations.
Central to strategic planning, policy analysis, and IRP is the representation and

management of uncertainty.




2.2 UNCERTAINTY AND IRP: CURRENT PRACTICE

Approaches currently used to handle uncertainty in IRP are summarized in Hirst
(1992), Hirst and Schweitzer (1990), and Hirst et al. (1990). Five approaches have
been explicitly found to be used in IRPs: scenario analysis, sensitivity analysis,
‘portfolio management, probabilistic methods, and worst-case analysis. Table 2.2
summarizes these techniques. Hirst (1992) presents examples of actual plans that

use each technique.

Table 2.2. Approaches currently used to handle uncertainty in IRP

Scenario Alternative, internally consistent, futures are constructed, and
then resource options are identified to meet each future. Best
options can then be combined into a unified plan.

Sensitivity Preferred plan (combination of supply options) is identified.
Key factors are then varied to see how the plan responds to
these variations.

Portfolio Multiple plans are developed, each of which meets different
corporate goals. Often, these plans are then subjected to sen-
sitivity analysis.

Probabilistic Probabilities are assigned to different values of key uncertain
variables, and outcomes are identified that are associated with
the different values of the key factors in combination. Results
include the expected value and cumulative probability distri-
bution for key outcomes, such as electricity price and revenue
requirements.

Worst-Case Utility creates a plan to meet an extreme set of conditions
(e.g., high load growth and high fuel prices) and later learns
that it faces an entirely different set of conditions (e.g., low
load growth and low fuel prices). The utility then adjusts its
resource acquisitions to meet the newly perceived conditions.

(Source: Hirst and Schweitzer, 1990).

Scenario analysis appears to be the most favored technique. Utilities often create
cases (e.g., Base, High Load Growth, Low Load Growth) and prepare forecasts
and plans for each of the cases. Sensitivity analysis involving key variables is also

extensively used. Use of probabilistic methods is limited and no case was found
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where a utility used advanced probabilistic methods, such as discussed in the balance

of this report.

Hirst and Schweitzer (1990) also report on how utilities react to uncertainties in
IRP. They list five basic strategies: (1) ignore uncertainty, (2) plan very carefully,
' (3) defer decisions, (4) sell risks to other parties, and (5) adopt flexible strategy that
allows for easy and inexpensive changes. In the long-run, ignoring uncertainty and
options theory as a matter of course will imperil utilities and their customers. The
remaining three strategies, on the other hand, have merit. Future research needs to

evaluate how well utilities apply these three strategies.

2.3 COMMENTS

In summary, it is important to point out that utilities are pursuing two com-
plementary approaches to handling uncertainty. The first approach can be labeled
technical and deals with how to represent uncertainty quantitatively and manage
uncertainty in analytical exercises. Thus, it has been found that utilities make use
of probabilities, sensitivity analysis, and worst case scenario analysis.

The second approach is more strategic and process oriented. It relates to at-
tempts to minimize risks associated with uncertainty and results in reducing uncer-
tainty, not necessarily about what might happen‘in the future, but with respect to
the negative consequences of decisions. Thus utilities defer decisions, sell risks to
others, and adopt flexible plans.

In general, the utility industry has begun to employ rational and effective tech-
niques for handling uncertainty in integrated resource planning. However, we see
several areas where the utility industry could improve its efforts.

(1) Quantitative methods for representing and manipulating uncertainty need
wider use. Few of the IRPs make use of probabilistic methods and none use advanced
probabilitistic methods. Quantification of uncertainty has two major benefits. First,
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the process of quantification requires considerable introspection and analysis, which
will help ensure that uncertainties receive honest and rigorous consideration. Sec-
ond, numerous, powerful methods for manipulating uncertaintieé and making deci-
sions require quantitative uncertainties. This is not to say that qualitative reasoning
is unimportant; the force of qualitative reasoning can be enhanced through the use
of quantitative methods.

(2) IRPs need to be set within the larger utility /PUC decisionmaking ’contexf.
Should IRPs encompass long term strategic directions and strategic decisions in
addition to actions that can be taken in the near-term? Should IRPs actually
document strategic decisions which in turn effect the scope of action plans? We
cannot answer these questions in this report but do argue that all planning and
decisionmaking activities within a utility need to be coordinated in an effective
fashion.

(3) The plans themselves could incorporate more strategies to reduce uncertain-
ties. For example, consideration should be given to producing robust plans, which
are plans that will not collapse if one or two aspects fail to materialize.

(4) The way that uncertainty is communicated in the plans needs to be im- -
proved. Figures and tables are often confusing to interpret. It is difficult enough to
communicate sophisticated technical information to time- and attention-constrained
utility executives and PUC commissioners in the best of conditions. In addition,
care needs to be taken to clearly communicate information to a public, that cannot

be expected to be technically literate.

This report focuses solely on the first issue.







3. REPRESENTING UNCERTAINTY
IN QUANTITATIVE ESTIMATES

3.1 A BRIEF HISTORY OF PROBABILITY

“Probability” entails more than it seems to most people. It is a concept with
a long history, controversial interpretation, and significant importance to people
who need to represent uncertainty in quantitative estimates. Briefly summarizing
the history of probability is a useful exercise in a report about IRP for two major
reasons. (1) The discussion will help build a level of comfort with the topic for
those who come to this discussion with a limited background in probability. (2)
The 1deas espoused in this report, including the use of imprecise probabilities, are
best appreciated within the broader historical and evolutionary context of the con-
cept. Within any field of endeavor, inertia supports the most familiar theories and
formulations. In this case, inertia supports classical probability. However, moving
to a more general notion of uncertainty, namely imprecise probability, is actually
not a radical step at all if seen in the long-run and when one understands that
the original ideas about quantitative probability were more similar to imprecise
probabilities than classical probability.

To begin the story, it is interesting to note that priér to the 1660s, the concepts of
chance and probability were unquestionably distinct. According to Hacking (1975),
probability was associatéd with opinion and was not mathematical. For example,
an esteemed religious authority could argue that a proposition that is “probable
is impossible,” meaning that the proposition has a favored opinion but cannot
be true. Chance, on the other hand, had mathematical qualities because it was
associated with games of chance. Thus, historically, the word ”Probability” had a
much different meaning than it has today and the concepts of chance and probability

were not interchangeable.
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How then, did the two concepts become synonymous? It took many centuries
for humans to understand that: opinion could be founded, in part, on knowledge;
that knowledge is not always certain; and that an analogy could be made between
one’s uncertain knowledge and playing a game of chance. These observations arose
from the historical division between the high sciences and low sciences (Hacking
1975), the former encompassing mathematics and astronomy (and presumably no
uncertainty) and the latter alchemy, geology, and medicine (and presumably much

uncertainty).

To practice a low science, one used signs from nature. For example, physicians

used signs to diagnose patients. Unfortunately, for the ancient patients, ancient
physicians based diagnoses on signs that arose from the cultural milieu, not on
physical symptoms that could be “statistically” associated with certain diagnoses

and appropriate treatments.

Hacking finds the first written references that signs are derivable from nature
in the 1600s. The earliest reference is from Hobbe’s Humane Nature, published in
1650, where he says that “if the signs hit 20 times for one missing, a man may lay
a wager of twenty to one of the event; but may not conclude it for a truth.” The
book Port Royal Logic (1662) contains the first use of the word ”probability” to
represent what we might label epistemic or quantitative probability. Pascal made
the first link between games of chance and quantitative notions of probability with
his wager about the existence of God. Thus began the co-mingling of the concepts

of chance and probability that continues to this day.

Shafer (1978) attributes the most important role in the mathemization of prob-
ability to Jacob Bernoulli. In his 1713 manuscript, Ars Conjectands, Bernoulli was
concerned with different types of arguments to support or reject a proposition. A
pure argument provides support for the proposition but does not provide support

14




for competing propositidns. A mixed argument could provide support for several
competitive propositions.

Examples of pure and mixed arguments can be made with respect to the fol-
lowing proposition, S which is important in IRP:

S: Electricity demand in the service area will increase faster than
economic growth for the next twenty years.

The following is a pure argument, A”, in favor of this proposition:

AP: The use of electricity-intensive information terminology will
grow at a faster pace than overall economic growth for the next
twenty years.

The following is a mixed argument, A in favor of this proposition:

AM: Environmental concerns will continue to increase over the
next twenty years. '

AP is a pure argumént because at least one component of electricity demand,
that related to the ﬁse of information technology, will grown faster than the overall
rate of economic growth and there are no conditions associated with this argument
that would lead one to other conclusions. AM is a mixed argument because en-
vironmental concerns could lead to increases and decreases in the rate of change
in electricity demand. For example, increasing concerns could lead to more en-

vironmentally benign manufacturing technologies which could be more electricity
intensive than previous technologies. On the other hand, increasing environmental
concerns could lead to an extreme conservation ethic which would involve high levels
of energy, and therefore electricity conservation.

In addition to presenting the outlines for these types of arguments, Bernoulli
preéented mathematical formulas to implement quantitatively each kind of argu-
ment. For example, the probability associated with a pure ’argument for proposition
S is the number of cases it proves correct, a, divided by the total number of cases,

n : P(S) = a/n. This is the familiar, frequency-based definition of probability.
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Because a pure argument does not specify that unallocated probability mass be as-
signed to the complement of S, P(S), with respect to a pure argument, P(S) < 1.0,
where a probability of 1.0 (z.e., P(S) = 1.0) indicates complete certainty about the
truth of a proposition. |
This avenue of thought, that is, the frequency-based notion of probability, was
pursued by many others, including DeMoivre (1718) and Bayes (1763), who were
interested in the calculation of annuities and actuaﬁal tables. This work lead to the
development of classical probability (discussed in Section 3.2) and modern statistics.
It should be noted, however, that Bernoulli also pursued another avenue of
thought in Ars Conjectans, related to combining probabilities of various types of
~arguments, which might be necessary with respect to synthesizing pieces of evidence
in a court of law or to synthesizing various signs to render a medical diagnosis. For
example, to combi;le Z pure arguments related to the truth of S, Bernoulli proposed

the following:
P(S)=1- {[1 - Pi(S/APY[L - Py(S/AD)]...[1 - P.(S/AD)).  (3.1)

Bernoulli also proposed equations to combine numerous mixed arguments, and one

pure and one mixed argument, which is:
P(S) = P(S/AF) + 1 — P(S/AT)|P(5/AM). (3.2)

According to Shafer (1978), Lambert (1764) was the only historical figure to
extend Bernoulli’s work regarding the combination of arguments. For example,
Lambert found fault with Equation 3.2 because it does not adequately incorporate

arguments against S. He proposed the following more general equation:

Py(S) + Po(S) — Pi(S)Py(S5) — Pi(5)Q2(S) — Po(S)@1(S)
1 — Pi(S)Q2(S) — P(S)Q:1(S) ?

16
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where P;(S) is the probability of S being true for argument i, Q;(S) is the proba-
bility of 5, and P(S) + Q:(3) < 1. |

It is unclear why this avenue of thought died out in the 1700s. However, for
our discussion, it is interesting to note that thése ideas resurfaced in the 1960s
and 1970s as people became interested again in combining arguments (e.g., in ex-
pert systems). For example, Equation 3.3 is a simple version of Dempster’s (1967)
method of combining upper and lower probabilities and Shafer’s (1976) method of
combining belief functions, which are a class of imprecise probabilities. Shortliffe
(1976) rediscovered Equation 3.2 and made it the cornerstone of his certainty factor

theory, which today is a popular method of managing uncertainty in expert systems.

A theme that runs through most of the research recently, and which is found in
Bernoulli’s and Lambert’s ideas, with respect to combining probabilities associated
with arguments is that the probabilities need not be additive. That is, P(S) +
P(S) < 1, which is known as “nonadditivity,” is an acceptable constraint. This
is in contrast to classical probability, where it is assumed that P(S) + P(S) = 1,

which is known as “additivity.”

What does this seemingly arcane point have to do with IRP? The answer is
rather complex. To begin with, IRP encompasses both of Bernoulli’s avenues of
thought about probability. On one hand, much use is made of databases and statis-
tics calculated within the formal paradigm of classical probability. On the other
hand, much of IRP is an argumentative process. The development of propositions
and pure and mixed arguments is a natural part of the IRP process. To quan-
titatively represent and combine probabilities associated with propositions, based
on the above presentation, we argue that a less restrictive view of probability, (i.e.

non-additivity), is required.
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It will not do, however, to advocate the use of two probability paradigms in
IRP, one for frequentistic database applications, and one for more sub jeétive, com-
bination of argument applications. This is why we argue for the use of imprecise
probability, which Section 3.3 points out, is a generalization of classical probabil-
ity. Within the imprecise probability domain, one can still maintain the additivity
constraints with respect to statistical applications, although authors such as Walley
(1991) argue this is not necessary or even prudent. One can also have flexibility
in representing subjective knowledge that accompanies nonadditive probabilities.
These points will become clearer after the discussions on classical probability, up-
per and lower probabilities, and upper and lower distribution functions, in the next
three subsections, respectively, and through the presentation of examples (Section

3.6).

3.2 CLASSICAL PROBABILITY

This section lays out the mathematical underpinnings of classical probability

which, as discussed in Section 3.1, have their historical roots in the work of Bernoulli.

If Q is a set of possible states of the world (e.a., wy,ws .. . wy), uncertainty about
which state w € §2 is the true state is often modeled by a prebability measure P
defined on some class of subsets (called events) of Q. The number P(A) assigned
to the event A represents the probability that the true state of affairs belongs to
the set A. The probability measure P is said to be objective if P(A) represents,
in some sense, the relative frequency with which the true state belongs to A. If,
on the other hand, P(A) reflects the odds that one would consider fair (either as
bettor or bookmaker) for a bet that the “the truth lies in A,” then P is said to be
subjective. The latter types of probabilities can also be elicited directly from people

in a variety of ways (Wallsten 1983).




* Axiomatic accounts of probability theory always postulate that 0 < P(4) <1
for all events A, with P(Q2) = 1. In addition, additivity of P(ANB = § = P(AUB) =
P(A) 4+ P(B)) is always postulated, and countable additivity (P(A; U A, U---) =
P(A;) + P(Ay) + ---, for every infinite sequence A3, As,... of pairwise disjoint
events) is often postulated (always, among mathematicians). As a consequence of
these postulates, one always has P(A) + P(A) = 1 where A := {w € Q: w ¢ A},
and so P(0) = 0.

It is clear why one might demand additivity of an objective probability. Such
probabilities model relative frequencies, and relative frequencies are additive as a
matter of simple arithmetic. As for requiring additivity of subjective probabili-
ties, there are arguments, which we shall not pursue, that non-additive subjective

probabilities commit one to certain incoherent betting behavior (Skyrms, 1975).

The application of classical probability theory requires that one first complete
a demanding assessment exercise: each event must be assigned a single precise
probability. But it is clear that the evidence is very often insufficient to ground such
an assessment. For example, with respect to objective probabilities, Fine (1973)
points out that there are a number of subjective judgments required to estimate an
“objective” probabilify, (e.g., defining O and choosing the sample population). As
discussed in Section 6.1, there are other factors which could produce uncertainty
in an estimate beyénd the variability in the data used to calculate it, (e.g., suspect

theory, low quality data, lack of data, etc).

With respect to subjective probability, an important problem is the expression
of strength of evidence concerning an estimate. According to Keynes (1921), as new
evidence about a proposition accumulates, “The magnitude of the probability of the
argument may either decrease or increase, but something seems to have increased

in either case—we have a more substantial basis upon which to rest our conclusion
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(Keynes P.71).” It is not possible to represent both a probability and strength of
evidence with one number.

Popper (1974) provides an example related to tossing a coin. Prior to any toss,
a reasonable subjective probability of heads arising would be 0.50. Now, assume
that this coin 1s tossed a thousand times, and the statistically derived probability
is 0.50. Popper states that using subjective probability, there is no way to indicate
the accumulated evidence. The next section explores one way of overcoming this

problem.

3.3 UPPER AND LOWER PROBABILITIES

A natural way to relax the demand for a single number expressing the probabil-
ity of an event A is to allow assessment of uncertainty by an interval [P(A), P(A)],
where 0 < P(A) < P(A) < 1. The numbers P(A) and P(A), called respectively, the
lower and upper probabilities of A, are chosen so that one is, given present evidence,
confident that the probability of 4 is neither less that P(A) nor greater than P(A).
In a state of complete ignorance, it is entirely appropriate to set P(A) = 0 and
P(A) = 1. At the other extreme, where one knows the objective probability P(A)
of A, as in the case of sampling from a known population, it may be appropriate
to set P(A) = P(A) = P(A). This formulation avoids the problem created by the
principle of insufficient reason, and noted by Popper, where under complete igno-
rance, one assumes all events in {2 have the same probability. Once one accumulates
evidence, such probabilities may commence from the data, but it is unreasonable
to assume so at the outset. We define imprecise probability as containing a family
of axiomatic generalizations of classical probability based on the concepts of lower
and upper probability.

What properties, in addition to those indicated above, might lower and upper
probabilities possess? Suppose that P(A) and P(A) are construed objectively, (i.e.,
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as lower and upper bounds on the unknown relative frequency of A). Then, at the

very least, we should have
P(0)=P(0) =0 and P(Q) = P(Q) =1, (3.4)
as well as monotonicity of P and P, i.e.,
A; C Az = P(A;) < P(A;) and P(A;) < P(4») (3.5)

And if the bounding functions P and P are to be useful, there ought, of course,

to exist at least one probability measure P satisfying
P(A) < P(A) < P(A) for all events A. (3.6)

When {2 is finite, checking that (3.6) holds for some P amounts to checking that cer-
tain linear inequalities have a solution, which is easily done by linear programming
if  is not too large.

Interpretations of P and P in terms of upper and lower odds make it reasonable
to demand that (3.4), (3.5), and (3.6) be satisfied in subjective contexts as well.
In particular, failure to satisfy (3.6) guarantees that one will suffer a sure loss
(Walley 1991).

In what follows, therefore, we shall call functions P and P a pair of lower
and upper probability measures if they satisfy (3.4), (3.5), and (3.6). It should be
noted that sbme authors are more stringent ip their use of these terms, requiring in

addition the properties of complementarity, i.e.,
P(A)+P(A)=1 for all events A, : (3.7

superadditivity of P, 1.e.,

AiNA=0 = P(A1UAy) > P(A1) + P(4z) (3.8)
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and subadditivity of P, i.e.

AiNA; =0 = P(A3UA) < P(A)+P(4y). (3.9)

But the above three properties, while clearly desirable - they are properties
always possessed by the “tightest possible” lower and upper bounds defining the
same class of probability measures P as (3.6) - are not essential. If for some reason
it is important to satisfy (3.7)-(3.9), one can, at least for “small” finite sets 2,
upgrade a pair of upper and lower probability measures P and P to a pair P¥,
P satistying (3.4)-(3.9), with P(E) < P*(E) < P" (E) < P(E) for all events E.

Using standard linear programming, one simply computes
P*(E) =min{P(E): PePP,P)}, and (3.10)

?#(E) = maz{P(E): P € P(P,P)}, (3.11)

where P(P, P) is the closed, convex polyhedral set given by

P(P,P):={P: P is a probability measure and

P(A) < P(A) < P(A) for all events A}. (3.12)

It is perhaps worth mentioning that one can avoid assessing values of both
P and P. For example, one might only assess all lower probabilities P(A), with
P(0) =0, P(£2) =1, and P monotone (3.5), and such that there is some proba-
bility measure P for which P(A) < P(A) for all events A (again, check by linear
programming if Q is small enough). One then simply defines P(A) = 1 — P(4) for
all events A. It follows that P and P satisfy (3.4)-(3.6), and (3.7) as well.

The idea of upper and lower probabilities is not new, as we have seen. In addition
to the early 18th century writings the ideas appear in the work of Mill (1843) and
Boole (1854). In our own century Keynes (1921) and Koopman (1941), as well as
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a number of other scholars, have pursued the idea of representing uncertainty by
imprecise probabilities. In recent years, this idea has attracted substantial interest
(especially in the disciplines of artificial intelligencé, economics, and statistics), as

the following brief recent history indicates.

(1) Artificial intelligence. Students of artificial intelligence, particularly those
concerned with expert systems, were the first to endorse the use of imprecise prob-
abilities in substantial numbers, influenced strongly by Shafer’s pathbreaking book,
A Mathematical Theory of Evidence (1976). Shafer’s Belief Functions [See section
(4.5) and (4.7)], an abstraction of a highly structured class of lower probabilities
~ first studied by Strassen (1964), provided a substantial generalization of classical
probability. It has become clear, however, that one often needs an even more gen-
eral class of uncertainty measures to honestly represént the evidence at hand (e.g.,

upper and lower probabilities).

(2) Economics. Savage’s (1972) axiomatic treatment of decisionmaking under
uncertainty, with its rationalization of preference based on expected utility, is justly
famous among decision theorists. But almost from its appearance, criticisms have
been directed at the stringency of some axioms, particularly the so-called “sure-
thing principle.” In the mid-1980’s, Schmeidler (1986) constructed an account of
decisionmaking under uncertainty using rather weak axioms. In Schmeidler’s theory,
preference is based on expected utilities calculated with respect to lower and/or
upper probabilities using the “Choquet integral,” [see seCtidn (3.5)] which does not
require additivity of the measure in question. The best account of this penetration
of imprecise probabilities into the realm of decision theory is Fishburn’s Nonlinear

Preference and Utility Theory (1988).

(3) Statistics. Shafer’s A Mathematical Theory of Evidence, mentioned above,

was actually addressed to statisticians, despite having found its most appreciative
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audience in the Al community. With the publication of Walley’s (1991) magisterial
treatise, Statistical Reasoning with Imprecise Probabilities, it is likely that imprecise
probabilities will play an increasing role in statistical inference. Interestingly, the
updating of imprecise probabilities in the light of new evidence admits of a number
of different methods, which generalize ordinary conditionalization of precise proba-

bilities in various ways.

In summary, the use of imprecise probabilities is no longer the untested, avani-
garde idea that it was several decades ago. At the same time, it does not replace
classical probability where evidence supports precise assessment of uncertainty. The
theory of imprecise probabilities is not a competitor to classical probability, but rather
a generalization of classical probability, reducing to the latter when upper and lower

probabilities coincide.

3.4 UPPER AND LOWER DISTRIBUTION FUNCTIONS

Much of the similar work on imprecise probabilities assumes € is discrete. This
is understandable given that much of the effort focused on expert systems, where 2
is composed of clearly discrete diagnoses (e.g., medical diagnosis). However, with
respect to IRP, there are numerous instances where 2 is continuous (e.g., future oil

prices). Therefore, this section addresses upper and lower distribution functions.

Let Q be equipped with a probability measure P. A random variable on §2 is
a numerical labeling of the outcomes in , i.e., a function X :  — R, the real
number system. Under certain mild restrictions, which need not concern us here, a
random variable X possesses a cumulative distribution function (cdf) F: R — [0, 1]

with respect to P, where

Flz)=PHwe: X(w)<z})=“P(X <z)", forallz €R. (3.13)
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We recall that z; < z; — F(z1) < F(z3), that F(z) — 0 as 2 — —oo and
F(z) — 1 as z — 0o, and that F is “right continuous,” i.e., F(z + h) — F(z) as
h — 0 through positive values.

The generalizétion of this idea to imprecise probabilities is straightforward. If

P and P are a pair of lower and upper probability measures, we define
Flz)=P{weQ: X(w)<z})=“P(X<z) (3.14)

and

Flz2)=P({weQ: X(w)<z))=PX <z) (3.15)

and call F and F, respectively, the lower and upper cumulative distribution functions
(lcdf and ucdf) of X. Clearly, if P € P(P, P) and F is the cdf of X with respect to
P, then F(z) < F(z) < F(z) for all z € R.

The notion of random variables and their cdfs described above represents a
comprehensive, mathematical formulation. In much applied work, = R, and
X(z) = z. In such cases the cdf F is usually directly assessed, often in the form
of a density function f where F(z) = ffoo f(t)dt. One can obviously also directly
assess lcdfs and ucdfs on R, taking care simply to ensure that 0 < F(z) < F(z) <1
for all z € R, that F(z) and F(z) — 0 as £ — —oo, and F(z) and F(z) = 1 as
z — oo, and that F and F are right continuous.

3.5 CHOQUET EXPECTED VALUES

An extremely important task in IRP is the calculation of expected values. This
section presents for review how to calculate expected values using classical proba-
bilities and then presents the method to calculate expected values using lower and
upper probabilities. |

Suppose that the random variable X : Q — R takes on only a finite set

of values, say, z1 < z2 < ... < z,. If P is a probability measure on €2, then
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the ezpected value of X with respect to P, denoted Ep(X), is given by the familiar

formula

Ep(X) =) z: P(X =), (3.16)

=1

where P(X = z;) is an abbreviation for P({w € @: X(w) = z;}).

Now, by additivity of P we have, for 1 < ¢ < n — 1, that P(X = z;) =
P(X > z;) — P(X > zi11), so an equivalent (though slightly odd looking) formula
for £p(X) is given by

Ep(X) = 2—: z{P(X > 2;) — P(X > zi41)} + 2. P(X = z,)

i=1
n
=z + Z(.’L’, — xi_l)P(X Z xi). (317)
i=2
Now if P and P are a pair of lower and upper probability measures on , then,

motivated by (3.17), we define £p(X) and E(X) by the formulas

Ep(X) =21+ Zn:(x, —z;-1)P(X > z;) (3.18)
=2
and
Ep(X) =21 + Z(xi —2:1)P(X > z). (3.19)

We call Ep(X) and &(X) the Choquet expected values of X with respect to P
and P. The above formulas are simply special cases of the general formula, valid

for every random variable X,

0

Eo(X) = /0 " o(X > 2)ds — / - a(X > 2))ds,

where a = P, P, P(Fishburn, 1988, p. 189).
Since the quantities z; — z;—; appearing in (3.18) and (3.19) are positive, it

follows immediately that

PeP(P,P) = &(X) < Ep(X) < &5(X), (3.20)
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and so, with

E(X):=min{Ep(X): PeP(P,P)}, and
&(X):=maz{Ep(X): PeP(P,P)}, (3.21)

1t follows that

Ep(X) < E(X) <E(X) < Ex(X), N (3.22)

So the crucial quantities £(X) and £(X) may be conservatively approximated,
respectively, by the easily computable quantities £p(X) and £5(X). Indeed, in
certain cases, we are guaranteed to have £p(X) = £(X) and &5(X) = £(X). This
always happens, for example, if the pair P, P satisfy (3.4)-(3.7) and P, satisfies the

following stronger version of superadditivity, called 2-monotonicity:
P(A; UA2) > P(A;)+ P(A;) — P(A1 N Az). (3.23)

(See Chateauﬁeuf and Jaffray, 1989; and Thorp, McClure, and Fine, 1982.) Several
common constructions of imprecise probabilities yield lower probability measures
satisfying (3.23), as we show in Sections 3.6 and 4.3.

3.6 EXAMPLES

3.6.1 Example 1. Acid Rain Regulations

The context is a major electric utility located in the Eastern United States. .

The utility is investing in environment controls to reduce the emissions of SOx
and NOx to reduce acid rain. Title IV of the 1990 amendments to the Clean Air
Act (CAA) requires controls to be in place by 1996 or 2000. The National Acid
Precipitation Assessment Program (NAPAP) will report to Congress in 1996 on
the societal costs and benefits of Title IV, and every four years thereafter. An
important question facing the utility, and one which significantly affects the next

IRP, is whether Congress will again change the acid rain provisions of the Act.
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Assume that the solution set, {2, is discrete and has three members, {stricter
provisions (sp), no change (nc), less strict provisions (Isp)}. Hard evidence support-
ing any of these possibilities is non-existent. There are no published statements from
any member of Congress on future legislative intentions with regard to Title IV. In
addition, the content of environmental legislation is highly dependent on theb party
occupying the White House, another unknown. Due to the large uncertainties and
the subjective nature of the required judgments, lower and upper probabilities are

an appropriate method to represent uncertainty about 2.

There are several approaches to constructing imprecise probabilities. The ap-
proach chosen for this example is based upon eliciting lower probabilities over the
power set of {2, which as Table 3.1 indicates, has seven members. The task for the
analyst is to assign lower probabilities to each set, related to the lower probability
that the true outcome is in the set. () is always assigned a lower probability of 1.0

because, by definition, the truth must reside in this set.

Assume an analyst supplied the lower probabilities (P) found in the second
column of Table 3.1. What do they tell us? Overall, the analyst is confident that
the truth is contained in the fourth set, that Congress will issue stricter provisions
or not change the current provisions. The analyst was clearly uncomfortable with
assigning substantial lower probabilities to the sets with only one member. A small
lower probability was assigned to set 2, {no change}, if only because legislature
inertia hinders change of any sort. The analyst doesn’t give much credence to

Congress’ lessening the provisions of Title IV.

The third column of Table 3.1 provides the upper probabilities for the power
set of 2, as calculated by (3.7). A quick review of Table 3.1 indicates the follow-
ing. First, the analyst did not specify a classical probability function, for example,

because P{sp} # P{sp}. Second, the function is monotonic because in every case
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Table 3.1. Lower and upper probabilities assigned by an analyst in the acid rain example

Subset A of Q * P(A) P(4)
1. {sp} 0.2 0.06
2. {nc} : 0.4 0.4
3. {Isp} 0.0 | 0.2
4. {sp, nc} 0.8 1.0
5. {sp, lsp} 0.6 0.6
6. {nc, lsp} 0.4 0.8
7. {sp, nc, Isp} 1.0 1.0

*sp= stricter provisions; nc = no change; lsp = less strict provisions

(3.5) holds. Third, the function is also superadditive, (3.8). Fourth the function is
not subadditive, (3.9) because P{nc,lsp} > P{nc} + P{lsp}.

3.6.2 Example 2. Energy savings attributable to a residential
' weatherization program

In this example, an imprecise probability function is constructed using a less di-
rect assessment method, which we refer to as compatibility mapping. This method
was first introduced by Strassen (1964) and was further developed by Dempster
(1967). The method is applied to a problem related to calculating the lower and up-
per expected values (using Choquet expected values) of energy savings attributable
to a residential weatherization program.

Compatibility mapping involves: (1) assessing a probability measure Q on a
related set © of possible states of the world; and (2) relating © to a set Q of
outcomes which are relevant to the problem at hand. The relation between © and

Q is given by the “compatibility mapping,”
r-0—-{A:ACQ and A # ¢}, (3.24)

Where I'(©) is the set of all we2 compatible with 8, for each element few.
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As is illustrated below, @ and I' induce lower and upper probabilities P and P

or ) by the formulas
P(4) = Q({60 : T(8) C 4}) (3.25)

and

P(A) = Q{80 : T(6) N A = ¢}). (3.26)

In this example, let © = {64,62,83,6,}, where each 6; pertains to a particu-
lar pattern of household electricity use. For the purposes of this example, let 6,
represent households with relatively low electricity use and no daily use peaks, 6,
households with average electricity use and morning and evening peaks, f3 house-
holds with high electricity use and morning and evening peaks, and 8, households
with no clear electricity use patterns. Data collected as part of an extensive subme-
tering project indicates that the proportion of households exhibiting these patterns
is .10, .25, .35, and .20, for 64,62, 603, and 6, respectively.

Assume the utility has been running a residential weatherization program for a
number of years and that the program represents one DSM resource that is being
considered for inclusion in the next IRP; Before a benefit /cost ratio can be calculated
for this program, its energy savings on a per participating household basis needs to
be estimated. Analysis of weather corrected electricity bills indicate that households
participating in the program reduced their annual electricity use by 2500 kWh.

The problem for the analyst is determining what percentage of this reduction
can be attributed to the program as permanent savings. This is a problem because
households change in various ways over time. For example, households could pur-
chase/acquire different end-use technologies, and change preferences and behavior
with respect to electricity use. Only a few studies have probed this problem. - As-

sume the analyst has anecdotal evidence from the field.
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In this example, we have chosen to structure the problem using a compatibility
mapping. As mentioned above, we have a probability measure Q) on the set © over
the 4 classifications of household electricity use. We shall define the outcome set,
2, as also containing four members, where Q = {w;,ws,ws,ws} and w; = 30-70%
of electricity savings can be attributed to the residential weatherization program,

wy = 60-80%, w; = 80-90%, and w, = 90-100%.

Table 3.2 represents a compatibility mapping between © and €2, based on sparse
studies and anecdotal evidence. A* in the table indicates that 8; is corﬁpatible with
outcome w;. For example, 8;, is compatible with w;, which indicates the program is
significantly responsible for the savings, because it could be argued that few factors
othér than the installation of conservation measures could account for:a reduction
in electricity use in households that use a relatively small amount of electricity to

begin with.

A - in the table indicates that 8; is not compatible with outcome w;. For exam-
ple, 6, is Judged incompatible with ws because one can imagine numerous factors
unrelated to the installation of measures that could underlie irregular patterns of
electricity use. Thus, it seems more appropriate that 8, households are compatible

with w; and wy, outcomes.

Applying (3.25) and (3.26) to the contingency table in Table 3.2 yields the lower
and upper probabili-ties contained in Table 3.3. For example, P(w;) = 0 because no
mapping between 6 and (2 yields a subset which is equal to or is subsumed by w;.
P(wywq) = .20 because the mapping between ©4 and () yields a subset which is eqﬁal
to (wiws). 75(w1') = .55 because the mapping between ©3 and O, indicate a non-null
intersection, namely w;, and P(©;) = .35 and P(©,) = .20, which when added equal

.55. P(wyw3) = 1.0 because (wiws) has a non-null intersection with every set in ©.
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Table 3.2. Compatibility mappings for residential weatherization example

Types of Electricity Use Patterns
®1 @2 63 @4
(low, no | (moderate, | high, ir-
peaks) peaks) peaks) | regular
10 25 35 .20
% Energy w1(30 — 70%) - - * *
savings
attributable w(60 — 80%) - * * *
to installation ws(80 — 90%) * * * :
of measures
w4(90 — 100%) * * - -

*Compatible; - Incomplete

(3.18) and (3.19) can be used to calculate lower and upper expected values
for savings attributable to the weatherization program. To simplify this example,
let’s assume that wy = b,wy = .7T,w; = .85, and wy = .95. Then X; = 1250
kWh, X, = 1750 kWh, X3 = 2125 kWh and X, = 2375 kWh. Using (3.18),
Ep® = 1250 4 (1750 — 1250) * .35 4 (2175 — 1750) * .10 4 (2375 — 2125) * 0 = 1462.5
kKWh. Using (3.19), Ew(X) = 1250 + (1750 — 1250) = 1.0 + (2125 — 1750) = .80 +
(2375 — 2125) = .35 = 2137.5 kWh.

In conclusion, it should be noted that had the analyst had better information,
the contingency table could have been completed with conditional probabilities and
the expected value calculations could have been computed the classical way using
(3.16). However, as the example indicates, and we argue above, uncertainties plague
these types of problems and it is unlikely indeed that in many instances the analyst
will have the information needed to complete these types of contingency tables.

3.6.3 Example 3. Oil Price Forecasting

Example 1. features the direct elicitation of upper and lower probabilities.
Example 2 features the construction of upper and lower probabilities from an
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Table 3.3. Upper and lower probabilities for residential weatherization example

SET P P SET P P
w1 0 0.55 | wowy 0 1.0
wa 0 0.90 | wawy 0.10 | 0.80
w3 0 0.80 | wjwows 0.55 | 1.0
Wy 0 0.35 | wjwaowy 0.20 | 1.0
wiwse | 0.20 | 0.90 | wiwsws 0.10 | 1.0
wiwsz |0 1.0 | wowswy 035 | 1.0
wiws | 0 1.0 wiwowawy | 1.0 1.0
wows | O 1.0

incomplete contingency table. This example features the construction of upper
and lower probability cumulative distribution functions using a betting paradigm.

The topic chosen for this example is oil price forecasting.

Assume the utility currently possesses a supply resource base that is dependent
upon oil. The future price of oil, then, would be of considerable importance to the
utility. Assume that the utility has access to an “expert” on the world oil market
and that the goal is to elicit from the expert the expected value of the price for a

barrel of oil in the year 2000.

In addition to the two methods for eliciting and constructing upper and lower
probability functions discussed in the first two examples, a third method relies on
betting behavior to elicit subjective probabilities. Based on the work of Ramsey
(1931), De Finetti (1964), and others, the approach assumes that people make bets
or accept bets involving loses and gains according to personal assessments bf the
likelihood of the events associated with the loses and gains. For example, according
to De Finetti (1964), a person would be indifferent in making or taking a bet when

the gain (or loss) a person would certainly receive (5) is equal to the gain (or loss)
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a person would expect to receive (S*) contingent upon the event of the bet coming

true. The subjective probability of the event would be P(e) = S/S*.

The betting method will yield a classical probability function in those instances
where there is one probability where the person is indifferent between making or
taking a bet. However, as observed by Walley (1991), in real life, people rarely
would make the same bet that they would take, or take the same bet that they
would make. In other words, from the betting perspective, a person would want to
receive more for winning the bet than the person would want to pay out for losing
the bet. We attribute this observation to the fact that people intuitively fashion

upper and lower probabilities about the world because the real world is so uncertain.

Thus, we argue, the betting paradigm should be generalized for application to
uncertain real life situations such as IRP. With respect to oil price forecasting, the

following could be pursued.

Assume the goal is to elicit from the expert upper and lower cumulative distri-
bution function (LCDF) of the price of a barrel of oil in the year 2000. The LCDF
could be elicited by assigning the expert to assume the position of a bettor (as op-
posed to bookie) and posing the following general question: What is the minimum
payout (Y), you would expect for making a bet that the oil price in the year 2000
would be greater than or equal to X given that winning the bet would incur a sure
gain of $1,000,000 (or some such amount)? The question can be posed for numerous
values for a barrel of oil to create, more or less, an LCDF, as shown in Fig. 3.1,
using the formula, P(Y) = $1,000,000/Y"

Similarly, the upper cumulating distribution function (UCDF) can be elicited by
posing the following general question for numerous oil prices: What is the maximum
payout, (Z); you would provide for taking a bet that the oil price in the year 2000
would be greater than or equal to X given that losing the bet would incur a sure loss
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Fig. 3.1. Upper and lower cumulative distribution functions for the
price of oil in the year 2000.

of $1,000,000 (or some such amount)? An UCDF is shown in Figure 3.1, calculated
using the formula P(X) = $1,000,000/Z. Formulas found in Section 3.5 can be
used to calculate the expected values of the LCDF and UCDF.

We need to conclude the discussion of this example on a cautionary note. Examf
ples 1-3 were purposely designed to illustrate different approaches to constructing
upper and lower probability functions. In examples 1 and 3, it is assumed that
experts could be interviewed to supply the probabilities. Likewise, in Example 2, it
was assumed that an expert could be interviewed to supply compatibility judgments.

The examples do not indicate, unfortunately, the very real problems associated with
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working with human experts to elicit/construct these types of estimates of judg-

ments in a rehiable and valid fashion.

3.6.4 Example 4. Choosing resource supply options

An important goal of IRP is choosing resource supply options to meet fore-
casted electricity demand. Lists of supply options typically include new power
plants, repowering of existing plants, and demand-side management programs. The
challenge is deciding which combination of options to choose to meet the forecasted

requirements.

The most basic approach is to rank order the options according to some cri-
terion or criteria and then select as Ihany options as needed to meet the forecast
requirements. For example, in the 1991 Northwest Conservation and Electric Power
Plan, the options are rank ordered by levelized nominal cost and levelized real cost.
In the 1991 Niagara Mohawk Integrated Electric Resource Plan, options are rank

ordered according to benefit/cost ratios.

The goal of this example is to illustrate how upper and lower expected values can
be used to choose resource supply options. Table 3.4 presents hypothetical data on
thirteen resource options.! The Table includes, from left to right, lower expected
benefits (in present value), upper expected benefits, lower expected costs, upper
expected costs, lower expected resources supplied in MW, upper expected resources
supplied, a benefit/cost ratio defined as columns A/D, and a benefit/cost ratio
defined as columns B/C. The expected values are assumed to have been constructed

using methods such as those discussed in examples 1-3.

! The options and data are conceptually based upon real analyses contained in
the 1991 Niagara Mohawk Integrated Electric Resource Plan. We stress, however,
that the values in Table 3.4 are purely hypothetical.
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Table 3.4. Summary data on example resource options *

A B C D E F G H
Option description E(B) |E(B) |E(C) |E(C) |E(MW) |E(MW) |A/D |B/C
1. New combined
cycle unit 550 610 520 600 220 240 0.92 | 1.17
2. New simple cycle
gas turbine 12 15 18 20 20 25 0.60 | 0.83
Combined cycle
3. repowering using
existing turbines 950 | 1000 | 1200 | 1350 900 940 0.70 | 0.83
at plant X
4. New combined
cycle power plant 1200 | 1300 | 1000 | 1240 920 940 0.97 | 1.3
5. Life extension
of plant Y 20 35 200 300 320 430 0.07 | 0.18
6. 800MW phased
IGCC at plant Z 2300 { 2400 | 1800 | 2260 790 810 1.02 | 1.33
7. Life extension
of plant A 100 140 200 300 150 200 0.33 | 0.70
g. Two new 300MW
" pulverized coal 1700 | 1940 | 1800 | 2110 630 650 0.81 | 1.08
units
9. New 600MW
IGCC 2000 | 2100 | 1800 { 1900 590 610 1.05 | 1.17
10. New 25MW nat-
ural gas fuel cell 115 120 105 115 25 25 1.0 1.14
11. C&I audit
program 20 40 10 20 30 60 1.0 4.0
12 Residential
*  weatherization 30 40 15 30 50 75 1.0 | 2.67
program
13. Heat pump water
heater program 6 8 6 8 5 10 0.75 | 1.33

*A - F are in millions of dollars

There are numerous Wéys to choose resource supply options from the thirteen
presented in Table 3.4. Let’s assume that the lower expected resource need is 3000
MW and that the upper expected resource need is 3500 MW. The most conservative
approach would be to: (1) use the most risk averse benefit/cost ratio, which is the
one in Column G, which is calculated by dividing the lower expected benefits by the
upper expected costs; (2) rank order the options using this ratio; and (3) choosing

options such that the sum of the lower expected resources supplied just exceeds the
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upper expected resource need. If this approach were chosen, the following options
would be chosen —9, 6, 10, 11, 12, 4, 1, 8, 13, and 3. The lower expected resource
supply would be 4,160 MW.

To balance this conservative approach, the most optimistic approach could also
be explored, which would be to use the benefit /cost ratio in Column H and choose
options to just exceed the lower expected resource need. If this approach were
chosen, the following option would be chosen—11, 12, 13, 6, 4, 9, 1, 10, and 8. The
upper expected resource supply would be 3420.

An interesting observation in this example is that the two approaches yield a
nearly identical set of options. The only difference is that option 3 is left out of
the optimistic approach. Basically, then, the utility is left with the decision about
whether or not to additionally pursue option 3, or substitute option 3 with a smaller,

but less financially attractive resource, such as option 2.
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4. MANIPULATING UNCERTAIN
QUANTITATIVE ESTIMATES

Section 3 addresses only one aspect of representing uncertainty about quanti-
tative estimates; namely, the elicitation/construction of individual upper and lower
probability functions. This section addresses what to do if one has two or more
functions that could be usefully synthesized in some fashion to provide insights into
a problem or question. ‘Aé it happens, there are numerous quantitative methods
available to synthesize uncertainty functions. To provide some guidance about what
methods to use, Section 4.1 sets out a theoretical but practical framework within
which to understand relationships between pieces of evidence to be brought to bear
on a problem.

Four general methods for synthesizing evidence are encompassed within the
framework: consensus, combination, updating conditionalization, and diagnostic
conditionalization. Mathematical definitions for these methods and illustrations
are presented in Sections 4.2 to 4.5 respectively.

4.1 SCHEMA FOR EVIDENTIAL REASONING

Evidential reasoning is defined here to represent the process of assembling and
synthesizing pieces of evidence to be brought to bear on a problem. For our pur-
poses, it is assumed that a piece of evidence will take the form of an imprecise
probability function over an outcome set Q. The schema for evidential reasoning
-presented in this section addresses different relationships between pieces of evidence
and why different mathematical methods are needed to synthesize evidence given
different relaﬁonships.

To begin this discussion, it is important to make the distinction between diagno-
sis and decisionmaking, because only the former is related to evidential reasoning.

Diagnosis is concerned with ascertaining the state of the world, past, present, or
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future. Decisionmaking is concerned with shaping the future state of the world

given relevant diagnosis.

The diagnosis—decisionmaking distinction is common in numerous areas of hu-
man endeavor. A physician renders a diagnosis about what malady affects a patient
and then, based on the diagnosis, decides what treatment to administer. In our le-
gal syst.em, the first step is to determine the innocence or guilt of the defendant
(a diagnosis). Based on the determination, a decision is made on the appropriate
punishment. Even economists follow this model when their macroeconomic recom-
mendations are based on whether the economy is determined to be in recession or

not.

This model is very applicable to the IRP context. Basically, diagnosis pertains
to the establishment of inputs for use in the resource option decisionmaking process.
Some of i:hese inputs represent the past (e.g., effectiveness of a DSM program) and
some represent the present (e.g., current total plant capacity). What makes IRP
particularly challenging is the preponderance of future diagnoses (e.g., electricity
demand, oil prices, environmental regulations). Thus, IRP entails identifying the
required inputs to the decisionmaking process, specifying the inputs quantatively,
representing uncertainty about inputs using imprecise probabilities, and applying
an appropriate decision heuristic.

Fig 4.1 is provided to help explain the diagnostic process and the associated
schema for evidential reasoning. Let’s focus on the top half of the figure and work

our way from left to right.

Because the real world is so complex, humans tend to simplify things by reducing
the real world into a collection of interrelated systems, such as the oil market,
the utility service area, a power plant, and a transmission system. Typically, a
diagnosis is related to the state of one such system, past, present, or future. Also,
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the systems themselves are still complicated, such that several descriptors of the
system are needed to render a diagnosis about the system. Thus, as indicated in
Figure 4.1, multiple data channels describing the system may need to be tapped to

form multiple pieces of evidence about the system.
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Fig. 4.1. Schema for evidential reasoning.

For example, assume that the utility service area can be considered as an elec-
tricity demand system and we want to diagnosis the area as increasing, decreasing,
or remaining stable with respect to electricity demand. To determine the current
status of the system, data could be collected from various parts of the system (e.g.,
by sector). To determine changes in the system, data should be collected over time.

A combination method of some sort is needed to synthesize the data to render a
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diagnosis about the system [e.g., is it growing, shrinking; See Section (4.3.1) for an

example of combination].

In our exposition, we assume that the current real world will first be consulted
before rendering a diagnosis. Sometimes, though, a statistical database will exist
that contains a history of past diagnosis. This database could be extremely valuable
in situations where the evidence from the real world is deficient in some way. The
general process of using a statistical database to improve a diagnosis based on
current evidence is called diagnostic conditionalization [See Section (4.5.1) for an

example]. After diagnostic conditionalization, a second diagnosis is rendered.

Notice that diagnosis A is linked to knowledge base A. This means that an
identifiable base of expertise or methodology was used to: concepfualize the real
world; build pieces of evidence; render a diagnosis; and generally manage the entire
diagnostic process. Consensus methods are used to synthesize diagnosis rendered
from different knowledge bases about the same outcome set  [See Section (4.2.1)
for an example]. Thus, the right side of Figure 4.1 illustrates consensus between the
diagnosis rendered by knowledge bases A and B, respectively, over 2. One can think

of separate knowledge bases as being different experts or models or paradigms, etc.

Sometimes information will become available which places a firm constraint on
where the truth lies in Q. In other words, it is determined that some member(s)
of ) cannot be true. Synthesizing this constraint into a current diagnosis is simply
known as updating [See Section (4.4.1) for example]. Similar to diagnostic condi-

tionalization, a new diagnosis, 2*, is rendered, after updating.

Thus, we have four methods for manipulating imprecise probability functions:
consensus, combination, updating, and diagnostic conditionalization. Not all are
necessarily used to solve all problems. They can be used in various combinations,

according to an evidential reasoning design. The following four sections say more
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about-each method, about what is known about how to actually implement each
method, and present examples.

4.2 CONSENSUS

Consensus is probably the best known and researched of the four methods. We
sometimes refer to it as a whole evidence scheme because each imprecise probability
being synthésized represents an entire diagnosis about a state of the world. Each
can stqnd on its own.

Suppose that N knowledge bases were used to appraise where the truth lies in Q,
resulting in N lower probability functions, Py, P, ... Py, over ). An appropriate
way to construct a single lower probability, P*, from P,,P,,... Py is to form a

weighted arithmetic mean
_ N _
P(A) =) wiPi(4) , 41

where A C Q for all subsets of 2 and w; are weights that are nonnegative and sum to
one. Consensus methods for imprecise probabilities has been explored axiomatically
by Wagner (1989).

4.2.1 Example 5: Consensus of economic growth

Suppose three eminent economists are polled concerning their predictions of
economic growth in the utility’s service area. Let © = { high growth (hg), medium
growth (mg), recession (r) }. Let’s also assume that the three experts provided
lower probability functions over {2 that satisfy the conditions set forth in Section
3.3, as shown in Table 4.1. Using Table 4.1, assuming equal weights of .33, the
consensus opinion of the three experts is found in the fourth row of the table. Table
3.7 can be used to calculate upper probabilities, if desired.

4.3 COMBINATION

Combination is probably the most used of the four methods, if one considers

that people implicitly if not unconsciously use combination rules to synthesize pieces
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Table 4.1. Consensus of lower probabilities *

P(hg) | P(mg) | P(r) | P(hg,mg) | P(hg,r) | P(mg,r) | P()
Expert 1 0 0.2 0.6 0.2 0.6 0.8 1.0
Expert 2 | 0.4 0.4 0 1.0 0.4 0.4 1.0
Expert 3 |0 0 0 0 0 0.5 1.0
Consensus | 0.133 | 0.20 | 0.20 0.40 0.33 0.57 1.0

*hg-High growth; mg-Medium growth; r-Recession

of evidence in many endeavors, from the professions (e.g., medicine and law) to
everyday life (e.g., What will traffic be like today?, What mood is the boss in?).
Unfortunately, developing explicit methods to combine imprecise probabilities as

proven illusive and represents a definite area for future research.

The term “combination” was coined by Shafer (1976). He uses the term in the
similar manner as we do. Specifically, combination can be seen as a partial evidence
scheme, where each piece of evidence has equal standing with respect to each other
but each alone is only partially definitive. In a partial evidence scheme, one piece
of evidence can support a diagnosis that another piece of evidence doesn’t support.
The challenge of a partial evidence scheme is to develop pieces of evidence which

are comprehensive in scope, and have minimum overlap and repetition.

The key assumption about a combination rule, then, is that the pieces of evi-
dence describe different aspects of the same phenomenon, as shown in Figure 4.1. In
the mathematical and statistical sense, the pieces of evidence are not independent,
because they flow from the same source, albeit in different ways. Unfortunately,
Shafer’s combination rule has proven controversial in application to dependent
pieces of evidence. Indéed, we have found it to be inapplicable in cases when pieces
of evidence are completely contradictory, and thus cannot recommend it for uses in
IRP.
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Thus, at the present time, we are left without a combination rule that we can
recommend without hesitation. On the other hand, we have made some progress
on a combination rule, which is summarized in Appendix A. This rule is used in

the following example.

4.3.1 Example 6. The large industrial customer

The industrial demand for electricity in the utility service area is dominated
by one very large customer, Acme Aluminum Company. This company has been a
customer for over 50 years. Unfortunately, times have changed and the utility cannot
count on Acme’s business in the future. Through discussions with the company, it
is now known that within the year, Acme will choose among these four options, =
shutdown the plant (sd), continue to buy power from your utility (sq)—for status
quo, buying power from an adjacent utility (bp), build its own cogeneration facility
(cg)-

Because Acme is such an important customer, its decision will significantly affect
IRP for the utility. The question is how to get a handle on what Acme may do.
Over the past several weeks, four pieces of evidence have surfaced which provide
clues concerning Acme’s decision.

Evidence 1. (E;). The chairman of Worldwide Aluminum International, the
parent company of Acme Aluminum Company, has publically stated that one of its
four North American plants will need to be shﬁt down due to a general downturn
in the demand for aluminum. Acme is the oldest of the four plants but enjoys
transportation and labor cost advantages over its competitors.

Evidence 2. (E;) The neighboring utility with whom Acme is said to be negoti-
ating a power purchase contract has little excess capacity. It appears that it would
have to purchase power from other utilities to meet its commitments. It is unlikely

that Acme could get a better rate by switching suppliers.
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Evidence 3. (E3) The Acme site appears uncondusive for a large co-generation

facility. The site has little free space and a lack of water. However, newer technolo-

gies might be able to overcome these constraints.

Evidence 4. (E,) The utility has never interrupted power to Acme over the past
50 years. Negotiations over rates and scheduling have always gone smoothly. Acme

has never complained about the service.

It is decided to use the pieces of evidence to construct a lower probability func-
tion over Q. The first step is to create/construct/elicit lower probability functions
for each piece of evidence, using methods such as those suggested in Section 3.
Table 4.2 presents Ps for each piece of evidence that, hypothetically, could have
resulted from such an exercise. Basically, E; supports {sd} and none of the other
options. E, weakly supports {bp} but is seen to more strongly force the utility to
favor any of the other options {sd, sq, cg}. E; is written such that {cg} cannot be
totally dismissed. However, the poor site would lend support for {sd}, and some
support for the utility purchase options {sq, bp}. E; heavily favors {sq} and also

the two utility options together {sq, bp}.

Using the methodology presented in Appendix A, the combination of these four
pieces of evidence indicates that the most likely options are shutdown and status
quo and the least likely is buying power from the neighboring utility [See P* and
P” in Table (4.2)].

4.4 UPDATING

Updating is very useful in situations where new evidence comes to light that
provides insight on which members of £ cannot be true for a particular diagnosis
and where it is impractical or illogical to reformulate existing pieces of evidence to

a constrained 2. Because the new piece of evidence cannot stand on its own and
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Table 4.2. P for the large industrial customer examples *

P(Ey) | P(E;) | P(Es) | P(E,) P P
sd 0.5 0 0.3 0 0.17 0.51
sq 0 0 0 0.5 0.13 0.68
bp 0 0.1 0 0.1 0.01 0.32
cg 0 0 0.3 0 0.11 0.39
sd sq 0.5 0 0.3 0.5 0.39 0.88
sd bp 0.5 0.1 0.3 0.1 0.19 0.70
sd cg 0.5 0 0.6 0 0.30 0.70
sq bp 0 0.1 0.3 0.8 0.30 0.70
sq cg 0 0 0.3 0.5 0.30 0.81
bp cg 0 0.1 0.3 0.1 0.12 0.61
sd sq bp 0.5 0.1 0.6 0.8 0.61 0.89
sd sq cg 0.5 0.7 0.6 0.5 0.68 0.99
sd bp cg 0.5 0.1 0.6 0.1 0.32 0.87
sq bp cg 0 0.1 0.6 0.8 0.49 0.83
Q 1.0 1.0 1.0 1.0 1.0 1.0

*sd-shut down;

says nothing about the remaining options in 2, we sometimes call the new evidence

supplemental evidence.

Generally, suppose that P and P are a pair of lower and upper probability
measures on . The probability measures P compatible with P and P are, we
recall, just those P € P(P,P) = {P :
Now if some probability measure P is our model of “how uncertainties lie”in Q and
we are apprised of additional information which renders it certain that “the truth
lies in E,” for some subset £ C Q with P(E) > 0, it is customary to revise P

by “conditionalization”(i.e., updating) to a new probability measure P(-|E), where

sqg-status quo;

bp- buy power;

P(A) < P(A) < P(A) for all events A}.

P(A|E) = P(AN E)/P(E) for all events A.
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If, instead, we have P delineated only by P and P, and we discover that E is
certain, we have the problem of updating P and P (assume P(E) > 0). A natural

way to do this would be by the formulas
P(A|E) = min{P(A|E): PeP(P,P)} ' 4.2

and
P(A|E) = maz{P(A|E): P¢eP(P,P)}. 4.3

That is, P(-|E) and P(-|E) are just the lower and upper envelopes of the family
of all conditionalized probability measures P(-|E) as P runs through the set of
all probability measures compatible with P and P. As one would expect, it is in
many cases impossible to compute P(A|E) and P(A|E) exactly. The difficulty is
the very one encountered with respect to £(X) and £(X) in Section 3.5. In fact,
the situation here is completely analogous to that of Section 3.5, for here we can
find conservative approximations to E_(A]E) and P(A|E) that are exact when P is
two-monotone.

The approximations are easily derived. Let P € P(P,P). Since P(E) =
P(ANE)+ P(ANE) for every event A, one has

~ P(ANE) P(ANE)
P(AlE)“p(AmE)_;-P(ZﬂE)Z_E(AQE)‘*'P(ZHE) 4.4
P(ANE) .
~ P(ANE)+P(ANE) ’

where the first inequality holds because for fixed ¢ > 0, z/z + ¢ is an increasing
function of z for z > 0, and the second inequality holds because P(A N E) is

replaced by the value P(AN E) > P(AN E). Similarly, one can show that

P(ANE)
P(4E) < P(ANE)+P(ANE) (45)
From (4.2) - (4.5), it follows that
P(ANE) < P(A|E) < P(A|E) < PANE) (4.6)

P(ANEY+P(ANE) ~ ~ P(ANE)+P(ANE)
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Moreover, if P and P satisfy, in addition to the defining properties (3.4) - (3.6),
the complementarity property (3.7), and if P is two-monotone (3.23), then the
first and third inequalities in (4.6) are actually equalities. And in such a case,
P(A|E)+ P(A|E) = 1, and P(-|E) remains two-monotone (Sundberg and Wagner,
1992b).

4.4.1 Example 7. No shutdown of Acme Aluminum

Today the chairman of Worldwide Aluminum International announced that
Acme Aluminum Company will remain open for business. However, nothing else
new is known about Acme’s decision on whether to continue doing business with
the utility. Tt is decided to update P*,P" [see Table (4.2) in Example 6] with the

knowledge that SD is no longer in consideration.

To accomplish this, (4.6) is applied to P* in Table 4.2. The results are in
Table 4.3. As can be seen, P*(sd) and P (sd) are now both 0.0. Also, P* (sq,
bp, cg) and P*(sq, bp, cg) both equal to 1.0, indicating that the truth will lie in
the subset that contains the remaining options. Overall, the weight of evidence has
shifted to the status quo and co-generation options, with the forﬁler carrying the

most weight.

4.5 DIAGNOSTIC CONDITIONALIZATION

As mentioned in Section 4.1, diagnostic conditionalization relates to a situa-
tion where one has past statistical data that could be used to improve a diagnosis
rendered using data directly taken from the system under study. Like updating, di-
agnostic conditionalization is a supplemental evidence design because, in almost all
circumstances, the past statistical data could not stand alone to support a diagnosis.
Similar to the combination rule case, methods for diagnostic conditionalization have
not been developed for the most general cases. However, we can propose a formula

to condition a special kind of imprecise probability, known as a belief function, with
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Table 4.3. Updating after the no-shutdown decision *

A P> iz
sd 0 0
sq 0.18 0.85
bp 0.01 0.52
cg 0.14 0.57
sd sq 0.18 0.85
sd bp 0.01 0.52
sd cg 0.14 0.57
sq bp 0.43 0.86
| sqcg 0.48 0.99
bp cg 0.15 0.82
sd sq bp 0.43 0.86
sd sq cg 0.48 0.99
sd bp cg 0.15 0.82
sq bp cg 1.0 1.0
Q 1.0 1.0

*sd-shutdown; sg-status quo;
bp-buy power; cg-cogeneration
past statistical data that can be represented as a classical probability function over
the frequency of outcomes in §2. |
To begin, in addition to meeting conditions set out in Equations (3.4, 3.5, 3.7
- 3.9, and 3.23), a lower probability that is also a belief function must meet the

additional condition:

P(AU...UA)> Y (-D)MP(( Ai) for all > 2. (4.7)
IC(1,...r) el
I#0

This condition is set out and explained in detail by Shafer (1976). The condition
is often referred to as r-monotonicity, which is obviously more constrained than
monotonicity, (3.5) and 2-monotonicity (3.23), respectively.
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As is often required in mathematical reasoning, it is often convenient to trans-
form a formula to find representations that are easier to work with. For example, -
a transformation was used to explain the derivation of Choquet expected values in
Section 3.5. With respect to belief functions, it is uséful to transform them using
the Mobius Transform:

M(4) =) (- FIp(B). (4.8)
ECA

Shafer (1976) refers to the M(A) values as basic probability assignments, where
M(@) =0, and >, M(A) = 1.0 for all A < Q. For completeness, a belief function
can be induced from a basic probability assignment by:

P(4)= 3" M(E). (4.9)

ECA

Assume a lower probability function, P, meeting the conditions for representing
a belief function has been developed over (2, and has been transformed to M(E)
using (4.8). Also assume, a statistical database is available from which a probability
function, PH, over  can be established. Then for each member, A, in Q, P can be

conditioned by P# by the following:
P(A)= > M(E)PH(A/E). (4.10)

ECQ

(4.10) has several interesting properties. First, it yields a classical probability
function over 2, not an imprecise probability. Second, the formula reduces to the
famous formula known as Jeffrey Conditionalization, due to Jeffrey (1983), when
the subsets of Q that have positive M values are pairwise disjoint. Wagner and
Tonn (1990) and Sundberg and Wagner (1992b) explore (4.10) in additional'depth.
As mentioned above, (4.10) needs to be generalized to handle a broader range of
imprecise probability functions, specifically imprecise past statistical probabilities,

and imprecise probabilities as outcomes.
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4.5.1 Example 8. The Hazardous Waste Site

Suppose that the utility is involved in some fashion with an abandoned haz-
ardous waste site (e.g., as a potentially responsible party [PRP] under Superfund).
To develop rough cost estimates for remediating the site, the amount and propor-
tion of hazardous wastes at the site must be known. From fragmentary records,
it can be determined that the dump contains three types of hazardous wastes,
Q = {T1,T5,T3}. It is also known that the site received at least three kinds of
shipments, Si,S>, and Sz, that accounted for 10%, 20%, and 50% of the mass of
hazardous waste at the site. It is known that S; and S, contained no hazardous
wastes of type 77, and S3 contains no wastes of type T3. Nothing is known about

the remaining 20% of the shipments, referred to as Sj.

This information can be used to create a lower probability function, P, over the
proportion of mass of each type of hazardous waste at the site (see the first column
in Table 4.4). Using (4.8), the Mdbius Transform of P can be calculated (see the

second column in Table 4.4).

Suppose a database maintained by the Regional Planning Agency indicates
that factories in the area are known to have produced wastes in 2, according to
the following proportion, P#(Ty) = 0.4, PH(T3) = 0.3, and P¥(T3) = 0.3. Using
(4.10), we can condition M(Q) by PZ(Q) to yield P(Q) (see the fourth column of

Table 4.4). For example, P(T) is calculated as follows:

H
PﬂﬁzﬁﬂTﬂwpwézfigawﬁmebﬂbR)
PH(Ty) _
PACT) T PA(Ty) + PR(T) = 0 (412)
04 + 0.2 0.4 .37

04+03  04+03+03
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Table 4.4. Hazardous waste dump *

P(Q) | M(Q) | PHQ) | P(Q)
T 0 0 0.4 0.37
T, 0 0 0.3 0.42
T 0 0 0.3 0.21
T,T, | 05 0.5
T.,Ts | 0 0
Ty, Ty | 0.3 0.3
0 1. 0.2

4.6 SUMMARY REMARKS ON EVIDENTIAL REASONING

This section introduces a schema for evidential reasoning that encompasses four
methods for synthesizing imprecise probabilities: consensus, combination, updating,
and diagnostic conditionalization. In some cases, such as consensus, the methods
have been well explored. In others, the methods need additional development (e.g.,
combination). In general, we hope this section serves well the purpose of presenting
a paradigm of handling uricertainty that relies on constructing imprecise proba-
bilities over important outcome sets given what is known about the problem at
hand.

In some sense, Figure 4.1 and the examples present an idealization of what it
takes to develop “designs” to synthesize pieces of evidence. In practice, analysts
will face numerous situations where the information at hand does not conform to
our schema or exactly track the examples. We can think of several examples where
this might be true. For instance, the problem of synthesizing two imprecise proba-
bilities specified over two different outcome sets, 2 and ¥, to create one imprecise
probability over the cartesian product of 2 and Q* is not addressed. It turns out
that this is a difficult problem even within the classical probability framework and

future reasoning should address the more general imprecise probability case.
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We have also not explicitly addressed issues surrounding the use of Bayes Theo-
rem, for updating prior uncertainties given new but not conclusive evidence, which is
often in the form of new statistical evidence. This approach to evidential reasoning
has application to IRP but its proper use, in our minds, is still under consideration.
Also, generalizing Bayesion updating using classical probabilities to use imprecise
probabilities is yet another open research question. Walley (1991) does address this
problem and his treatment deserves consideration in future research.

In summary, though, the ideas and methods contained in this section are more
than sufficient to assist utilities in using imprecise probabilities to solve real world
problems. Future research should focus on improving and extending the tool kit
of methods available to utilities. The next section addresses yet another aspect of

handling uncertainty, that of decision trees.
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5. IMPRECISE PROBABILITIES
AND DECISION TREES

This section addresses the topic of using imprecise probabilities to accumulate
expected values at the end points of deéision trees. We are using the term “decision
trees” in a general sense to represent relationships between random variables and /or
decisions that ¢an be represented as a directed graph composed of one root node,
and an arbitrary number of variables and end nodes. Figure 5.1 presents the decision

tree used in Example 9, discussed below, for consideration. Average annual ‘
coal price increase  Production

(%, 1981 $) costs (1981 $M)
Load 1% 8907
0
Factor i;z 9705
1150.2
063
1% 888.2
0.675 5%
En 0.725 2% ¢ %678
il 11469
Demand % sase
2%
4& % 965.0
Q@c’ : 11436
& 1203.8
13127
1557.7
60,000 GWH 1199.2
® 13077
1551.7
1194.4
1302.4
1545.4
)q% a 1% 1688.9
2% ,
Q% o 18455
21979
0:635
5 1% 14168
B 875 A
0.725 rm @ 15455
18349
1% 14120
s . 2% 15402
Fig. 5.1. Decision tree for production cost example.

1828.6
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The challenge arising from decision trees is how to handle probabilistic rela-
tionships among the variables in a decision tree. This is an important problem to
address because decision trees have many applications in IRP. For instance, Exam-
ple 9 considers the case where three random variables—energy demand, load factor,
and coal price increases—are input into a costing model. The goal is to calculate

expected values for the costs at the 27 end nodes in Figure 5.1.

Numerous resource problems can be “designed” as decision trees. For example,
deciding whether to run, repower, or shut down a power plant can be constructed
within the decision tree methodology. Additional examples include: strategic deci-

sionmaking, DSM program implementation, and environmental compliance.

Breaking from the pattern established in Sections 3 and 4, in this section the
discussion of the general methodology proposed to propagate imprecise probability
through a decision tree is intertwined with the example. This approach was chosen
because the example is based on previous research by Thorp, McClure, and Fine
(1982) that uses imprecise probabilities in a utility context. In this study, imprecise
probabilities were used to calculate expected values of production costs for a utility.
To contrast our method with theirs, their method and results are presénted first,
followed by our method and results. The entire discussion is made possible because

the authors of the first study kindly made available their original data.

As a final word, the method proposed herein, [see (5.2)], is based on nonlinear
optimization of an expected value calculation. Basically, the goal is to search for
those combinations of upper and lower probabilities within upper and lower bounds
on the random variables that produce maximum -and minimum expected values
of the outcome variable under consideration. The approach presented below to
accomplish this can be considered a novel result of this research project.
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5.0.1 Example 9. FORECASTING PRODUCTION COSTS FOR AN
ELECTRIC UTILITY

In a study of Thorp, McClure, and Fine (1982), which is the basis for Example 9,
the 1990 production cost, C, of an actual, but unidentified, electric utility depends
on the values of the uncertain quantities (i.e., random variables) E = energy demand
(GWH), F' = load factor, and R = average year to year coal price increase from
1981 to 1990 (%). Given specific values E = e, F = f, and R = r of these random
variables, a standard production costing algorithm can be used to calculate the
corresponding production cost C = Cfe, f,r).

In this study, the possible values of E, F, and R are given, respectively, by the
sets Qg = { 50,000 GWH, 60,000 GWH, 70,000 GWH}, Qp = {0.635, 0.675, 0.725}
and Qg = {1%,2%, 4%}. To complete the construction of the conceptual apparatus
of Section 3.5, the 27-element set {2 is defined by

Q=QexQrxQr:={(e,f,r): e€Qg, f€Qr, andr € Qr}. (5.1)

The 1990 production cost is then a random variable C: Q — [0, 00).

Figure 5.1 presents a decision tree which graphically depicts this information.
The cost values at the end-nodes were produced by a costing a,lgorithrﬁ using values
of the three random variables as inputs. To facilitate the calculation of Choquet
expected values, the values of C are calculated for each of the 27 triples (e, f,7) € Q
and arranged in increasing order, ¢; < ¢ < ... < ¢g7. Then, foreach: =1,...,27,

the triples comprising each of the 27 events
Ai = “C Zci” = {(67fyg) EQ’: C(eaf7g) Z ci} (52)

are identified.
At this point, upper and lower probabilities P(A4;) and P(A4;) are as-

sessed for Aj,...,Az7 (never mind how, for the moment; but note that
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U=A4;2422...2 Ay, so that 1 = P(A;) > P(4;) > ... > P(4y;) and

1 = P(A1) > P(4;) = ... > P(Azr)). Then the Choquet expected values of C
with respect to P and P are calculated by formulas (3.18) and (3.19), yielding in

this case
27 ’
Ep(C)=c1 + Z(Ci —¢i—1)P(A;)
=2
= $1.159 B, (5.3)
and

27
, g};(C) =c + Z(Cz - Ci-—l)F(Ai)

= $1.438 B. (5.4)
It follows from (3.22) that
$1.159 B < £(C) < &(C) < $1.438 B, (5.5)
where the crucial quantities of interest, £(C) and &£(C), are defined by
£(C) =min{€p(C): P €P(B,P)} (5.6)

and

£(C) = maz{€p(C): P P(P,P)). (5.7)

As a consequence of the way in which P and P are assessed in this particular
problem, one can actually place upper bounds on the approximation errors £(C) —
$1.159 B and $1.438 B—&(C). We shall discuss this issue shortly. At this juncture,
however, we need to consider a more basic question: If one 1s interested in the
numbers £(C) and E(C), why not calculate them, instead of approzimating them
by Ep(C) and E(C)? After all, (5.6) and (5.7) amount to optimizing a linear
function with merely 27 variables over the closed, convex polyhedral set P(P, P).
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The problem, however, is that P(P, P) is defined by the 227 — 2 pairs of inequalities

P(A) < P(A) < P(A), one pair for each nonempty subset A of the 27-element set

Q! Assessing all of the quantities P(A) and P(A) involved in these bounds is out
- of the question.

In order to set the stage for the discussion in the next section, and also be-
cause it is of interest in its own right, we now describe the method by which
Thorp, McClure, and Fine assessed the required values of P and P. What
they did was to convene a panel of six experts from the planning department of
the company. Each of the experts assessed probabilities over the separate sets
Qg = {50,000; 60,000; 70,000}, QF = {0.635, 0.675,»10.725}, and Qg = {1,2,4}.
Assuming independence, probabilities were multiplied to yield probability measures
Py,...,Pson Q= Qg x Qr x Qpg.

The lower and upper probability measures on (2 were then constructed as the

so-called lower and upper envelopes of the family {Pi,..., Ps}, namely

P(A) = min{P1(4),...,Ps(A)}, and

P(A) = maz{P,(4),... Ps(A)}. (5.8)
for each A C . Note that while (5.8) prescribes a method for calculating P(A)
and P(A) for any of the 227 subsets A C Q, this method is only implemented for
A = A;,...,A27. One can show that the upper and lower envelopes of any set of
probability measures always comprise a pair of lower and upper probability measures
[i.e., satisfy (3.4)-(3.7)] that satisfy the additional desirable properties (3.7)-(3.9).

But now that the prescription (5.8) is displayed, another question arises: Would

one not get adequate bounds on the expected production cost by simply calculating

m¢ = min{€p,(C),...,Ep(C)}, and

Mc = maz{€p,(C),...,Ep,(C)} . | (5.9)
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Thorp, McClure, and Fine argue that the interval [m¢g, M¢] is unjustifiably nar-
row, even though it includes not only the values £p,(C),...,Ep,(C), but the in-
finitely many values £p(C'), where P belongs to the convez hull of Py, . .. Pg, denoted
’H(Pl, ..., Ps), and defined by

H(P1,...,P6)={PZ P=MP +...4+ XFs,

wherel;, ..., Ag is a sequence of
nonnegative real numbers summing to one}. (5.10)
Their reason is that, given the opinions Py,..., Fs, the set of probability mea-

sures P that are “compatible” with these opinions extends beyond H(Py, ..., FPs),
the family of weighted arithmetic averages of the six opinions, to the larger family
P(P, P) of all probability measures between the upper and lower envelopes P and

P of the six opinions. We have, in short,
Ep(C) < E(C) < me < Mo < E(C) £ E5(0), (5.11)

with strict inequalities the usual state of affairs.

Note that the quantities m¢ and M¢ do have one important use. In virtue of
(8.11), the numbers m¢ — €p(C) and E5(C) — Mc provide upper bounds on the
respective errors £(C) — Ep(C) and £5(C) — &(C) that one makes by employing
Ep(C) as a conservative estimate for £(C) and £5(C') as a conservative estimate for
&(C). In the study of Thorp, McClure, and Fine, m¢ = $1.164 B and M¢ = $1.420,
and so it must be the case that £p(C) = $1.159 B errs as an approximation to £(C)
by at most $5M and £5(C) = $1.438 B errs an approximation to £(C) by at most
$18M.

In the next section we explore an entirely different approach to bounding ex-

pected production cost, based on nonlinear optimization.
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5.1 BOUNDING EXPECTED COST BY NONLINEAR
OPTIMIZATION

Let P and P be a pair of lower and upper probability measures on Q, and let

X be a random variable on Q. If it is clear, as it sometimes is, that the probability
measures P compatible with the evidence are precisely those P € P(P, P), then
the numbers £(X) = min{€p(X) : P € P(P,P)} and &(X) = max{CEp(X) :
P € P(P,P)} are obviously the appropriate bounds on the expected value of X.
As noted in the preceding two sections, we often need to content ourselves with
estimates of £(X) and £(X).

The set of probability measures P(P,P) plays a crucial role in the above ap-
proach. If this set somehow failed to capture all of the probability measures on §2
compatible with the evidence,/then no interest would attach to the numbers £(X)
and £(X). In what follows, we argue that the set P(P, P) employed by Thorp,
McClure, and Fine in the study described in the previous section fails to capture -
the set of probability measures compatible with the evidence.

We would have no quarrel with their approach if the experts had each di-
rectly assessed probabilities over the 27-element set Q. But, in fact, the ex-
perts were not called upon to assess probabilities in this way. Instead, judging
that the variables E, F, and R were independent, Thorp, McClure, and Fine
presented each expert with three assessment problems, one for each of the sets‘
Qg = {50,000; 60,000; 70,000}, Qr = {0.635, 0.675, 0.725}, and Qr = {1,2,4}.
They multiplied the appropriate probabilities provided by each expert to construct
probability measures Py,...,Ps on 2 = Qp X Qf X Qg, and then constructed P
and P as the lower and upper envelopes of the family {P;,..., Ps}.

The crucial question is whether the probability measures P on ) compatible
with all of the evidence are precisely those P € P(P, P). But the evidence in this

case 15 manifested not only in the probabilistic assessments of the siz experts for
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the three variables E, F, and R, but also in the judgment that these variables are
independent. By their very construction, the probabilities P, ..., Ps incorporate
that judgement.! But the vast majority of probability measures P € P(P, P) violate
that judgement. Moreover, we would argue that there are probability measures P
on 2, compatible with all relevant evidence, and lying outside P(2, P).2 So P(P, P)
is in some ways insufficiently restrictive, and in other ways unduly restrictive.

In what follows we describe what we regard as the correct approach to delineat-
ing the set of probability measures on § compatible with all of the relevant evidence.
The following three tables (5.1)-(5.3) record the experts’ probability assessments for
the variables E, F, and R (first three columns of each table), expanded by us in
the obvious way to record the probabilities of all nonempty, proper events, and with

column minima and maxima designated:

Table 5.1. Energy Demand (E)

(50K} | {60K} | {70K} | {50K,60K)} | {50K,70K} | {60K, 70K}

11 0.05 0.6 0.35 0.65 0.4 0.95

2 | 0.625*%* | 0.25* | 0.125 0.875 0.75 ** 0.375**
310 * 1 0.6 0.4%* 0.6 * 04 1 *

4 1 0.6 0.4 0o * 1 ** 0.6 04
51|03 0.55 0.15 0.85 0.45 0.7

6 | 0.02 0.88** 0.1 0.9 0.12 * 0.98

*

* = column minimum; ** = column maximum

The probability measures on Qg, Qp, and Qr compatible with the evidence,
as manifested in Tables (5.1)-(5.3), are easy to delineate. Let us consider, for
example, the case Qp = {50K, 60K, 70K}, writing 50K = e;, 60K = ez, and
70K = e3 for short. Also, let us denote a typical probability measure on Qg by e,

and write e(e1) = €1, €(ez) = €2, and e(e3) = €3 for short. It seems obvious that the
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Table 5.2. Load Factor (F)

{635} | {.675} | {725} | {.635,.675} | {.635,.725} | {.675,.725}
104 |055 | 0.05* 0.95%* 0.45 0.6 *
2| 025 | 0.375% | 0.375** 0.625* 0.625** 0.75
3/ 01 |055 |035 0.65 0.45 0.9
4| 04 |05 0.1 0.9 0.5 0.6
50025 |05 0.25 0.75 0.5 0.75
6 | 0.05* | 0.8 ** | 0.15 085 | 02 * 0.95%*

* *k

= column minimum; = column maximum

Table 5.3. Coal Price Increase (R)

{1} {2} {4} {1, 2} {1, 4} | {2, 4}
102 0.7 0.1 0.9 0.3 0.8
2 | 0.125 0.5* | 0.375%* 0.625* 0.5%* | 0.875
3|02 0.75%* | 0.05* 0.95** 0.25% | 0.8
41 01* |06 03 1.7 0.4 0.9%*
5015 0.6 0.25 0.75 0.4 0.85
6 | 0.25%* | 0.6 0.15 0.85 0.4 0.75%

* = column minimum; ** = column maximum

probability measures on Qg compatible with the evidence manifested in Table 5.1

are precisely those € satisfying

€& +et+e=1
0< e £0.625
0.25 < e <0.88
0<e; £04

0.6§61+6231
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012< €+ <0.75

0.375 < ey + €3 < 1 (5.12)

In fact, (5.12) may be considerably simplified, for the lower and upper bounds

stipulated there are values of the lower envelope and upper envelope of the experts’

probability measures on Q5. And it may easily be proved that the values of lower

envelopes may always be deduced from values of upper envelopes in (5.12), (e.g.,
es < 0.4 and €1 + €2 + €3 = 1 imply that 0.6 < €; + €2, etc.). This means that the

left-hand inequalities in (5.12) are all redundant. Hence the probability measures

on Qg compatible with the evidence manifested in Table 5.1 are precisely those ¢

satisfying

€1+e+te=1
0< ¢ £0.625
0<e <0.88
0<e <04
0<e+e<Ll
0< ¢ +€ <075

0 < e+ €3 _<_ 1 (513)

Similar considerations with respect to 2 = {0.135, 0.675, 0.725} = {f1, f2, f3}
dictate that the probability measures ¢ on Q compatible with the evidence mani-

fested in Table 5.2 are precisely those satisfying

where o(fi) = ¢, 1 =1,2,3.

Y1+ w2tz =1
0<¢1 504
0<¢; 208

0 < 3 <0375
0<¢1+p2<095
0 <1+ 3 <0.625

0 < 2 + 3 < 0.95 (5.14)
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Finally, the probability measures p on Qg = {1,2,4} = {r1,r2, 73} compatible
with the evidence manifested in Table 5.3 are precisely those satisfying

prtprt+ps=1

0<p: £0.25

0< p £0.75

0<p3 <0375

0<p1+p2<095

0<p1+p3<05

0 < pp+ p3 <09, (5.15)

where p(r;) = pi, 1 =1,2,3.

What then are the probability measures 7 on Q@ = Qg xQr X Qg compatible with
the evidence manifested in Tables (5.1)-(5.3) and in the judgement that E, F, and
R are independent? They are precisely those 7 constructed by choosing numbers
€1, €2, €3 satisfying (5.13), o1, @2, @3 satisfying (5.14), and p1, p2, ps satisfying
(5.15) and defining

m(ei, fi, TR) = €i;Pk (5.16)

Now with 7 specified by (5.16), the -expected value of C with respect to 7, Ex(c)

is given by the standard formula

671-(0) = Z C(ei, fj, T‘k) €Y Pk- (5.17)
1<1,5,k<3

From the standpoint of the foregoing analysis, the appropﬁate lower and upper
bounds on expected cost are given by £,(C) and £*(C), the respective solutions to
the following nonlinear optimization problems:

EC)=MIN Y Cles firrs) epspn

1<i,5,k<3

EN(C)=MAX > Clei, fi,x) €iipr, (5.18)

1<i,j,k<3
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subject to the constraints (5.13), (5.14), and (5.15), and with the coefficients
C(ei, fj,Tx), computed by a standard production costing algorithm, given the in-
formation in Table (5.1).

The solutions to (5.18) are:
E«(C) = $1.081 B, attained when

e = 0.625 e2 = 0.375 ez = 0.000 (5.19)
@1 = 0.050 w2 =0.575 3 =0.375
p1 = 0.250 p2 = 0.700 ps = 0.050

and
E*(C) = $1.542 B, attained when
& = 0.000 e =0.600 €5 = 0.400 (5.20)
o1 = 0400  ©; =0.550 g = 0.050
1 = 0.100 ps = 0525  ps = 0.375

Note that these bounds on expected production cost comprise a wider interval than
[Ep(C),E5(C)] = [$1.159B, $1.438B], computed by Thorp, McClure and Fine using
Choquet expectation.

To see why this happens, consider first (5.19), and, in particular, the event
A = “E = 50 & R = 1". The probability measure 7 on € defined in (5.19)
assigns 7(A) = (0.625)(0.250) = 0.15625. But from Tables (5.1) and (5.3), we have
P(A) = P,(A) = (0.625)(0.125) = 0.078125. So 7 violates the condition 7 < P
posited by Thorp, McClure, and Fine (reasonably so, we hope by now to have
convinced the reader). Moreover, it does so by putting substantial probability on
the three scenarios associated with the lowest costs.

In the case of (5.20), consider the event A’ = “E = 70 &R = 4”. The probability
measure 7 on {2 defined in (5.20) assigns 7(4") = (0.400)(0.375) = 0.150. But from
Tables (5.1) and (5.3), we have P(A') = Py(A") = (0.125)(0.375) = 0.046875. So
this 7 also violates # < P, and by putting substantial probability on the three
scenarios associated with the first, second, and fourth highest costs.

We remark in conclusion that the method of bounding expected values illus-
trated above applies in principle to a wide variety of problems. The constituent
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random variables need not be independent decision nodes could be included, and
the constraints on their probability distributions need not take the form of upper
and lower probabilities. Any constraints yielding a closed, convex, polyhedral set of
distributions for each constituent variable can be accommodated. Despite the non-
linearity of the.objective functions arising in these cases, the special nature of’ these
functions appears to admit certain promising computational economies. We intend
in the future to subject this class of objective functions (which have apparently not

been investigated by operations researchers) to a detailed study.

Notes
1. Here is a simpler example that illustrates the point. There are two random
variables, E and F', judged to be independent, and taking their respective
values in the sets Qg = {e;, ez} and Qr = {fi, f2}. Two experts assign

probabilities to Qg and QF as follows:

€1 € fi ]; 2
expert 1 % 3 % 3
expert 2 % % -;— %

Using independence, their assessments are then extended to singleton sub-

sets of Q = Qp x QF as follows:

wq =(261,f1) wo =(161af2) w3 ‘—‘l(fz,fl) Wy =(782,f2)
expert 1 24—4 % 541 ?
expert 2 31 51 55 =1

and then to arbitréry subsets of ) by additivity. The lower and upper

envelopes, P and P, of these two probability measures are then com-

puted. For example, P({w1}) = 4/24, P({w;}) = 8/24, P({ws}) =

14/24, P({ws}) = 8/24, P({wr,w2}) = 12/24, P({wi,ws})

16/24, P({wi,ws}) = 12/24, P({ws,ws}) = 15/24, P({wy,w4}) =

16/24, P({ws,ws}) = 21/24, P({w1,wz,ws}) = 17/24, P({wr,wa,we}) =
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20/24, P{{wi,ws,ws}) = 23/24, and P({wq, w3, ws}) = 22/24, with P
computed similarly. Now consider the probability measure P such that
P({w1}) =4/24, P({w2}) =8/24, P({ws})=75/24, and P({ws}) = 7/24,
and extended to arbitrary subjects of by additivity. One may (laboribusly)
check that P(A) < P(A) < P(A) for all 4 = Q, i.e., that P € P(P,P). On
the other hand, denoting the marginals of P on Qg and Qz by Pg and Pp,
one has, for example, P({(es, f1)}) = 4/24 whereas Pg({e1}) x Pr({f1}) =
(4/24 + 8/24) x (4/24 + 5/24) = 3/16, violating the judged independence of
E and F.

. In the example of note 1, above, take expert 1’s probabilities for
Qr and expert 2’s probabilities for Qp and invoke independence of E
and F, getting the probability assignment @, where Q({(ei,f1)}) =
18 % 1/3 = 1/24, Q(er, f)}) = 1/8x2/3 = 2/24, Q({(ea,f1)}) =
7/8 x1/3 = 7/24, and Q({(ez, f2)}) = 7/8 x 2/3 = 14/24. Since, for ex-
ample, Q({(es, f2)}) > P({(e2, f2)}) = 8/24, Q ¢ P(P,P). But Q is cer-
tainly compatible with all of the evidence, as manifested in the experts’

probability assessments and the judged independence of E and F'.
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6. FACTORS UNDERLYING AND
AFFECTING UNCERTAINTY ESTIMATES

Up to this point, our attention has focused almost exclus‘ively on the quantitative
aspects of uncertainty. Methods for representing and manipulating uncertainty have
been presented as have several methods for creating upper and lower probability
functions. The purpose of this section is to take a step back and explore several
associated issues.

First, what factors underlie uncertainty about quantitative estimates? How
much can be known about an estimate? How does this knowledge, or lack of it,
affect the specification of imprecise probabilities and the ranges between upper and
lower probabilities? Answers to these questions are probed in Section 6.1 and must
be explored for anyone to intelligently apply the methods outlined in the previous
three sections.

Second, how does understanding aspects of uncertainty about quantitative esti-
mates relate to the value and cost of information for IRP? The conclusion one may
draw from Sectioﬁ 6.1 is that in many instances, there are limits to what one can
know about the true value of a variable. Section 6.2 explores this observation in
more depth.

Lastly, how can the discussion of Section 6.1 and 6.2 be of practical use to
utilities preparing IRPs? Section 6.3 presents an extended example of the use of
the framework and its implications for decision making and collecting additional

information.

6.1 DESCRIPTORS OF UNCERTAINTY: QUALITATIVE FRAMES

The purpose of this section is to outline a framework to describe uncertainty
about an estimate. The framework takes the form of a frame or checklist. Frames

consist of a set of descriptors that can be used to describe every instance of a class of
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objects, situations, concepts, etc. For example, a frame for automobiles would have
descriptors such as: color; engine size; number of doors; price; and manufacturer.
The challenge is to develop a frame for automobiles that allows one to describe
every instance of an automobile as simply and effectively as possible.

Table 6.1 présents a frame that consists of qualitative descriptors, for the most
part, about uncertainty about a quantitative estimate. The frame of Fig 6.1 is
intended to allow one to describe how uncertainty afflicts most every kind of quan-
titative estimate imaginable. The benefits of such a frame for IRP are that it could
provide: a systematic basis for understanding uncertainty in an estimate; a system-
atic way for comparing uncertainties among estimates; and insights about what can
and cannot be done to reduce uncertainty in an estimate.

The frame presented in Fig. 6.1 draws upon previous work by Funtowicz and
Ravetz (1990) and Tonn and Schaffhauser (1992). However, what is presented below
is more comprehensive and better tailored to the needs of IRP.

* Basic Frame

The entire frame has three major components: the basic frame; the uncertainty
protocol; and the use value frame. The basic frame has four descriptors: the name
of the variable; the estimate; the unit of measurement; and the estimator class of
the estimate. For example, the name of the variable could be the price of 0il in June,
1994, the estimate could be $17, the unit would be per barrel, and the estimator
class would be mean. Other estimator classes include: expected value; median;
mode; standard deviation, etc.

* Uncertainty Protocol

The uncertainty protocol is composed of four subframes: the quantitative repre-
sentation frame; the inherent uncertainty frame; the operational uncertainty frame

and the use value frame. The first expresses uncertainty in forms as discussed in
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2.0-5.0. The other three frames capture uncertainty about the estimate, regardless

of its intended use.

Table 6.1. Qualitative frame about uncertainty about a quantitative estimate

Basic Frame Name - (N)
Estimate - (E)
Unit of measurement - (U)
Estimation class (e.g., expected value) - (EC)

Uncertainty protocol

Quantitati\{e Uncertainty measure type - (UM)
representation Uncertainty measure specification - (SP)
frame Upper bound (e.g., on expected value) - (UB)

Lower bound - (LB)
Level of confidence - (LC)

Inherent Uncer- Fundamental knowledge that can be gained about the estimate

tainty frame - (FN) ,
Predictability of system encompassing the variable - (SYS)
Degree to which variable space can be understood - (VS) -

Operational Un-  Soundness of underlying theory (TH)

certainty frame  Data collected versus data required (DR)
Quality of underlying data (DQ)
Reasonableness of estimation methods (EM)

Use value frame  Informativeness (I)
Time robustness of the estimates (TR)
Relationships between the actual variable and variable needed
for policy context (CR)
(Non—generation of actual variable needed for policy context -
GN
Polic)y relevance (PR)

- Quantitative Representation Frame

This frame has five components: uncertainty measure type; uncertainty measure
specification; upper bound; lower bound; and level of confidence. For example,
one uncertainty measure type might be an imprecise probability. Others might
include fuzzy sets, certainty factors, and classical probability. The specification
relates to the form of the uncertainty function. Thus, one could have uniform

and normal distributions or discrete functions. The upper and lower bounds are
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applicable for both continuous and discrete specifications. In the case of an upper
and lower probability, the level of confidence would be 100%. In the case of a normal
distribution, the upper and lower bounds might pertain to a 95% confidence interval,
for example.

- Inherent Uncertainty me?

This frame has three components: fundamental knowledge (FN) that can be
gained about a variable; predictability of the system encompassing the variable
(SYS); and the degree to which the variable space can be understood (VS). Figure
6.1 presents scales for each of these components. Variables described by the left-
hand portion of the figure are said to have more inherent uncertainty that those
described by the right-hand portion of the figure. It is argued that inherent un-
certainty cannot be overcome by more time and effort (as opposed to operational
uncertainty described below).

For example, compare a forecast for electricity demand fifteen years from now to
determining how much it cost to replace a transformer at a substation last month.
In the later case, the goal is to establish a fact, the system under question (i.e.,
transformer replacement at a substation) is small scale and orderly, and the variable
space (i.e., dollars expended) is well understood. There are no inherent reasons why
there should be uncertainty about the cost.

Contrast this to the former. A long-range forecast contains high intrinsic un-
certainty because the futﬁre is not knowable, the socioeconomic system generating
electricity demand is chaotic at best, disorderly at worst, and the variable space
(i.e., what contributes to electricity demand) fifteen years hence cannot be said to
be well understood. Thus, even in the best of circumstances, there will be uncer-

tainty about the forecast.
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High | Long-range Logical l Low

EN intrinsic [forecast prediction Fact | intrinsic
uncertainty | l uncertainty
Virtually IL?fge scale/ Medium scale/  Small scale/I Highly
sSYS intractable ld's°’de”y chaotic orderly tractable
Undefinable |understood understood| defined

Fig. 6.1. Inherent Uncertainty Frame Scales.

- Operational Uncertainty Prame

This frame has four components: soundness of underlying theory (TH); data
collected versus data required (DR); quality of underlying data (DQ); and reason-
ableness of estimation methods (EM). Figure 6.2 presents scales for these compo-
nents. Variables described by the left-hand portion of the figure are said to have
high levels of operational uncertainty, those on the right-hand side low levels of
operational uncertainty. It is argued that time and money can be used to overcome
operational uncertainty.

To see this, let’s continue with the two examples presented above, the fifteen

year forecast and the transformer replacement costs. With respect to the later,
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Strong

Completely Requirements
DR inadequate met
DQ Low High
EM Completely Completely
inappropriate appropriate

Fig. 6.2. Operational Uncertainty Frame Scales.

theory may not be an issue. One just needs to track the costs. Data to be collected
include bills from contractors and vendors and internal costs for labor, materials,
overhead, etc. Some uncertainty may arise if vendor bills are late in coming and/or
if the bills can be revised within some period of time. The methodology used to

arrive at the cost is not a problem in this case either.

The forecast, like many IRP exercises, does entail operational uncertainty. The
soundness of economic, demographic, etc. theory underlying the forecast is probably
in the middle of the scale. It is rarely the case where a utility has all the data one
can imagine on-hand for the analysis. Quality of data, from billing histories to end
use metering to measure life-times, is never perfect and can usually be improved in
some way. Estimation methods could be excellent (e.g., econometric methods) or
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ad hoc (e.g., back of the envelop trend lines). Thus, both operational and inherent

uncertainty are issues with long-range forecasting.
* Use Value Frame

Estimates have lives independent of their use but in appropriate uses of esti-
mates may cause uncertainty within certain contexts. The Use Value Frame cap-
tures this observation in five components: informativeness of the estimate for the
policy context (I); time robustness of the es’;imate (TR); relationships between the
actual variable and the variable needed for the policy context (CR); generalization
of the actual variable needed for the policy context (GN); and policy relevance (PR).
Figure 6.3 provides scales for these components. Variables described by the left-
hand side of the ﬁguré are essentially worthless for the context, e.g., IRP, where as
variables described by the right-hand side are potentially very valuable, depending

on the other aspects of uncertainty involved.

Informativeness refers to how useful the range of the estimate is for decision
making. An informative range is small enough to rule out many decisions. An
uninformative range is so large that anything is still possible. Thus, a forecast with

a very la,rge‘ra,nge is not very informative for utility decision makers.

Time robustness refers to the shelf-life of the estimate. If it is only good for a
week or a month, it would not be useful. The estimate would also not be useful if it
measures something different than what is needed for IRP. For example, an estimate
of tons of SO, emitted into the atmosphere is not a perfect estimate for the potential
damage caused by the emissions but may be the best on hand. Similarly, knowing
emissions of SO, from one type of power plant using one type of fuel may or may

not be logically generalizable to a utility’s entire resource base.
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Lastly, not all estimates are equally important to an IRP. It does not make
sense to spend more time and money to reduce uncertainty about an unimportant
variable. Thus, the policy relevance component was added for completeness.

We understand that it would require a good bit of work to create a qualitative
frame for every estimate generated in preparing an IRP. However, we argue that
it would be a useful exercise for the most important estimates to at least assist
utilities in deciding how to spend their limited data collection and analysis funds.

The reasons why are discussed in more detail next.

| Completely Highly
uninformative informative
TR Temporally Time
obsolete ' invariant
CR No » Onein
correlation . same
GN Vast No generalization
generalization required
PR Extremely
Irrelevant
relevant

Fig. 6.3. Use value frame scales.

6.2 IMPLICATIONS FOR VALUE AND COST OF INFORMATION

There are at least two important observations to be drawn from the qualita-
tive frame presented above. First, there are some aspects of uncertainty which
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utilities cannot overcome. Second, there are other aspects of uncertainty that can
be overcome, if it makes sense to do so. Let’s take these points in order.

Imagine we have an upper and lower probability around a long-range forecast
for the price of a barrel of oil. The estimate was made using the opinion of one
expert who takes an unconventional approach to understanding the oil markets. The
utility was able to elicit from the expert an upper and lower probability for this
estimate. However, the utility felt that the range was too narrow given the inherent
uncertainty in forecasting oil prices and did not completely trust the judgment of
the expert, so the range was broadened to accommodate more inherent uncertainty
and increased operational uncertainty.

Figure 6.4 presents the situation faced by the utility. The current information,
in terms of upper and lower probabilities around an estimate, is signified by (X,Y).
The utility has the option of consulting additional experts, building an econometric
model, collecting historical oil price data, etc. The additional information would, we
strongly argue, reduce the range between the upper and lower probability around
the estimate but could not reduce the difference to zero because of the inherent
uncertainty the forecast. Thus, it is virtually inconceivable that an additive, point
probability could be established for the estimate.

Figure 6.5 presents this observation from a cost point of view. The figure in-
dicates generally what level of information is currently on hand and what the cost
was to collect the information. As is generally assumed, the figure indicates that
at some point the added cost of collecting the next piece of additional information
increases as one nears what one could theoretically collect. However, different from
most value of information models, the figure indicates that the threshold is reached

when one overcomes only operational uncertainty. Increased expenditures cannot
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Fig. 6.5. Cost of information.
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overcome inherent uncertainty. An important conclusion of this observation is that

utilities will always be making decisions that involve uncertainty.

Complete
t' Inherent uncertainty
Maximum
obtainable }
Operational
Usefulness and
use value
of uncertainty
Information
Current
% -

Cost of Information

Fig. 6.6. Usefulness of Information.

Figure 6.6 adds the usefulness frame to the picture. In this case, utilities can
expend more time and money to overcome operational uncertainty and improve
the usefulness of the information at hand. For example, data could be collected
for more relevant variables and better methodologies could be employed to reduce
the need to generalize findings. It is possible for utilities to have completely useful
information, even if uncertainty still plagues the estimates. This could happen if
the information is sufficient to provide the necessary guidance to the utility about
its current and future decisions. Thus the area between the maximally obtainable
useful information and completely useful information could be zero, although it is

hard to conceive of such a case in real life.
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6.3 EXAMPLE 10: FORECASTING IMPORTANT FACTORS IN IRP

This example takes a broad look at four variables that are important in many
IRPs: oil prices; supply costs; electricity demand; and environmental damages. The
goal is to forecast each of these variables five years hence. Let’s assume the following;:
oil prices were forecast using a panel of experts; supply costs were generated using
a highly accurate model of the utility’s physical system; electricity demand was
forecast using a time series model; and environmental damages were calculated
using information from other utilities and other sources.

Table 6.2 presents hypothetical results of an exercise to create qualitative frames
for each of these four variables. The values in the table are meant to be illustrative
only and in all likelihood do not conform to any one utility’s situation.

Each of the four variables represents a different pattern of uncertainty. The
oil price estimate suffers from much inherent uncertainty, and only moderate op-
erational uncertainty. Mainly, the time horizon of the forecast is very long for an
oil forecast, which creates a great deal of fundamental uncertainty. The panel of
experts convened were the best available and why the oil markets are chaotic is well
understood. Possibly better elicitation methods could have been used to improve
the quality of the data.

The range of ;)il prices is not very informative for those engaged in IRP. The
bottom line is that while the variable is highly relevant to IRP, there is not much
the utility can do to improve its information or the usefulness of the information
for IRP. Thus, it might not make sense for the utility to spend additional time or
money on oil price forecasts.

Uncertainty about supply costs is quite different although the conclusion is the
same. The operation and maintenance of the physical system are quite well known.

The system will remain stable over the five year planning horizon. Data collection
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Table 6.2. Qualitative frames for important IRP estimates*

N Oil price Supply Costs Electricity Environmental
demand damage

E N/A 9 N/A N/A

U $ cents per KW MW $(millions)

EC average expected value | expected value | expected value
imprecise imprecise imprecise

UM probability probability probability probability

cumulative

SP discrete weibull distribution discrete

UB $50 11 600 1000

LB $8 7 400 10

LC 99.9% 95% 99.9% 99.9%

FN+ L H M M

SYS L H M VL

VS H H M VL

TH H H M VL

DR VH VH L VL

DQ M H M L

EM M H M L

I L H M VL

TR L H M H

CR VH VH H VL

GN M VH H VL

PR H VH VH VH

* Assume five years hence
+Scale values are:

Very High (VH), High (H), Moderate (M), Low (L),

Very Low (VL); Lower levels of scale entail higher levels of uncertianty
E- Estimate

U-Unit

EC - Estimator class
UM - Uncertainty Measures DQ - Data Quality
SP - Uncertainty Measures EM - Estimation Methods
I - Informativeness

Specification
UA- Upper Bound
LB - Lower Bound

LC - Level of Confidence
FN - Fundamental Nature

SYS - System

TH - Theory

VS - Variable Space

DR - Data Requirements

TR - Time Robustness

CR - Correlation

GN - Generalizability
PR - Policy Relevance
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processes are in place to collect all relevant data on costs and the data on whole are
very reliable. The forecast is tight, which IRP analysts desire. Overall, there is little

uncertainty with respect to supply costs and the estimates are highly informative.

Thus, a conservative conclusion would be for the utility to continue doing what

it has been doing with respect to data collection, modeling and analysis.

The electricity demand forecast occupies a middle ground. Five years is a
substantial time horizon for a system that is not well-behaved but not so long that
demand is expected to change dramatically. Thus, there is only moderate inherent
uncertainty in these estimates. Likewise, people have a decent understanding of
electricity demand, although knowledge could be much better in the residential and
information technology sectors, for example. Data on hand are of decent quality
and the times series estimation technique applied to the data was not the most
simplistic nor the most sophisticated available. Unfortunately, only sketchy past

data were collected with which to estimate the times series model.

Thus, several things could be done to overcome operational uncertainty: collect
better data; improve the quality of the data collected; and use a better estimation
technique. It might be worthwhile for the utility to do this because the informa-

tiveness of the current estimates are only moderate.

The environmental damage estimates in this example exhibit the most uncer-
tainty. The range is extremely large, from virtually inconsequential to very signif-
icant. Therefore the informative value of the range is very low. The estimates are
plagued with high inherent uncertainty (e.g., the variable space is not well under-
stood) and high inherent uncertainty (e.g., data are sparse and not of high quality).
In order to make any estimates at all, proxy variables were used in place of more
appropriate variables and other studies were generalized more than they probably
should have been.
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There is much that can be done to improve the environmental damage esti-
mates, including the collection of better and more comprehensive data, the use of
better estimation techniques, and the development of more robust theories about
the environment and emissions from power plants. Investing in these activities ap-
pears worthwhile, given the very high policy relevance of the variable and the large

range of the current estimates.

In making decisions about how to improve the estimates of these four variables,
the utility needs to consider the cost effectiveness of its analytical investments.
For example, it probably would not be cost effective to spend additional time and
money to improve the supply cost estimates because they are already informative

and entail little uncertainty.

On the other hand, the oil price and environmental damage estimates are not
very informative at this time and the electricity demand forecast is only moderately
informative. It is debatable whether any investments could improve the usefulness
of oil price forecasts, given high levels of inherent uncertainty. Additionally, invest-
ments in environmental analysis may not yield positive payback for many years.
The utility needs to assess costs and time horizons with these investments and the
sensitivity of decisions to better information when weighing how to allocate scare

research and analysis dollars to reduce uncertainty.

6.4 SUMMARY

This section presented a qualitative framework within which to understand
causes of uncertainty in quantitative estimates of variables of importance in IRP.
The frame has several components, relating to the quantitative represéntation, in-
herent and operational aspects of uncertainty, and how the context for using the
estimates may cause uncertainty. It was shown at a theoretical level how aspects of

uncertainty may impact costs for reducing uncertainty in IRP.

83




There are several issues associated with the frame that need to be considered.
First, it is not clear that utilities will want to develop frames for all variables that
are encompassed in IRP. The frame requires a fair amount of information and a
number of judgments that may prove difficult to make. Thus, as a first step, it is
recommended that the frame be tried on a few of the most important variables.
Over time, utilities can develop frames for additional variables. A positive aspect
of the frame is that its structure is very amenable for a database application, such
that a database about uncertainty about IRP variables could easily be developed,
maintained and accessed as needed.

Second, additional use of the frame is needed to evaluate whether its specifi-
cation as depicted in Fig. 6.1 is best suited for IRP applications. It is possible,
for example, that the inherent uncertainty components could be clearer and that
some components, such as related to data quality, could be expanded into additional
subframes.

Lastly, additional thought is needed to translate information in the frame into
decisions about how to most cost effectively reduce uncertainty in IRP. As illus-
trated in Example 10, it is not always clear that resources should be devoted to
reducing uncertainty about the most uncertain and least informative variable if
such investments take time, and offer no guarantee of success. Existing methods for
conducting value of information analyses are seriously deficient because they assume
as a starting point what decisions would be made given perfect information. As we
have seen, it is rare that one could even contemplate having complete information,
much less information not plagued by operational and use value uncertainties. We
believe that if utilities completed frames for the most important IRP variables,
qualitative value of information judgments can be confidently made. More rigorous

and quantitative value of information analyses await the results of future research.
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7. CONCLUSIONS, REFLECTIONS
AND RECOMMENDATIONS

This report addresses numerous aspects of the topic of uncertainty. The brief
history of the concept indicates that people have been thinking about uncertainty
for a very long time and that ideas have changed radically over time. Imprecise
probability has its roots in the early 18th century, and, almost paradoxically, can
be seen as a generalization of what has become to be known as classical probability.
Several examples illustrated how to specify an imprecise probability either directly
or indirectly (e.g., using an incomplete contingency table).

Methods for manipulating imprecise probabilities were also presented based on
a general framework of evidential reasoning. Methods such as consensus and condi-
tionalization were defined both conceptually and mathematically. Several examples
illustrated how different pieces of evidence can be synthesized in various ways to
provide more insight into what one knows about a problem.

The important problem of calculating expected values was explored in-depth.
One example illustrated how to use a standard formula due to Choquet to calculate
expected values involving upper and lower probabilities. The better part of an entire
section of the report presented a more sophisticated and theoretically attractive
method based on non-linear optimization.

In addition to focusing on techniques, the report also addressed factors that
cause uncertainty in quantitative estimates. The qualitative frame offers one means
for utilities to keep systeinatic track of factors that cause uncertainty in important
variables in IRP and to facilitate decisions about how to allocate scare resources to
reduce uncertainty.

Numerous research issues remain just given the foci of this report. With respect

to methods, it was reported that a combination rule has yet to be developed to
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handle imprecise probabilities, although some progress is reported in the Appendix.
In addition, additional research is required on conditionalization methods, methods
to synthesize two independent imprecise probability functions, and on extending the
non-linear optimization approach for calculating expected values in a decision tree.
With respect to the qualitative aspects of uncertainty, the proposed qualitative
frame needs to be implemented to test its usefulness and the robustness of its
components. Ways to use the frame to make better decisions regarding the cost

effective reduction of uncertainty need to also be explored.

There are two major topics that were not addressed in this report that are
crucial to utility decision making under uncertainty and IRP. One topic is broadly
defined as psychological aspects of uncertainty. The other is broadly defined as

decision methods. Let’s reflect on each in order.

Psychological aspects of uncertainty has two main components: elicitation of
uncertainty judgments from experts; and the communication of uncertainty. With
respect to the former, a large body of psychological research indicates that at the
very least, people, and experts, have difficulties in expressing and thinking in terms
of classical probabilities. Experts tend to be overconfident about their diagnoses,
which creates a false sense of knowledge. Also, experts have good and bad days,
meaning that the reliability and validity of their judgzﬁents is not consistent from
one day to the next. People in general have a difficult time in conceptualizing low
probabilities, over-emphasize certain information, and do not think well probabilis-
tically.

The relationship between these findings and IRP is this: the uncertainty meth-
ods presented above are only as good as the uncertainty estimates needed by the
methods, and, apparently, it is not a trivial task to elicit good uncertainty estimates
from experts. A fair amount of research has been conducted on aids to help experts
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think about classical probabilities (e.g., probability wheels, sliding bars) but little
research has been done with respect to imprecise probabilities. The qualitative
frame can be seen as a conceptual aid to experts so that they do not overstate their
knowledge by constructing lower and upper probabilities with ranges that are too
narrow but no research has been done to tie the frame to uncertainty elicitation.

Future research in IRP should explore these issues in more depth.

Communicating uncertainty is crucial to the success of any analytical endeavor.
Within a utility, analysts need to communicate to executives. In addition, utilities
need to communicate with their shareholders, customers, PUCs, and interest groups.
A large body of research falling under the rubric of risk communication indicates
that the communication of uncertainty and risk is very difficult, and if done so
poorly, can actually lead to unpredictable and unintended consequences. Qur review
of uncertainty in IRP uncovered many examples of misleading tables and figures,
which indicates to us that the communication of uncertainty should be an important

topic of future research on IRP and uncertainty.

Of coursé, utilities are not interested in research for the sake of research. They
are interested in making better decisions. Methods for eliciting, representing, ma-
nipulating, and communicating uncertainties have to eventually prove their worth
in improving decision making. This report only peripherally addressed decision

making through Example 4, which focused on choosing a set of resources.

Indeed, the literature on decision making under uncertainty is very robust and
should be summarized for use in IRP. Decision methods are important because they
provide a second leg for managing uncertainty in IRP. The first leg, addressed in
this report, encompasses the explicit representation of what one knows and doesn’t
know. The second leg provides ways of making decisions to reduce risk and take

advantage of opportunities.
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For example, one observation we had of the IRPs we reviewed is that they are
not set, for the most part, in a decision analytic framework. That is, other than
choosing among a set of resource options, one does not find a classical decision
analytic model which includes a problem statement, a set of mutually exclusive
options, a set of evaluation criteria, weights over the evaluation criteria, assessments
about how well each alternative satisfies each of the criteria given different future
states of the world, and a method to assimilating this information into an informed
choice. Uncertainties play a big part in this model, from representing uncertainty
about the future state of the world to representing uncertainty about the outcomes
of the different alternatives.

There are other, more sophisticated decision methods that should be examined
for use in IRP. Portfolio/options theory is one idea. The irreversibility of decisions is
another. Multi-criteria decision making is yet another. Research in decision making

needs to be done in conjunction with research on uncertainty.
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APPENDIX A
A Combination Rule for Belief Functions

This Appendix presents the results of preliminary research on developing a
combination rule for imprecise probabilities. As will be seen, the research has
only progressed to developing a fairly complicated procedure for combining Mdbius

Transforms of an arbitrary number of belief functions.

The Appendix begins with a theoretical discussion on characteristics one might
desire a combination rule to have (A.1). Next, the Dempster-Shafer Combination
Rule is presented and critiqued (A.2). Our combination rule for the pieces of ev-
idence is presented in A.3. The fourth section, (A.4), presents our approach for
combining an arbitrary number of belief functions. A.5 presents a critique of the

progress to date.

A.1 CHARACTERISTICS OF A COMBINATION RULE

As discussed in 3.0, the purpose of a combination rule is to synthesize pieces of
evidence that have equal standing that bear on the truth of a member in Q2. The
pieces of evidence are drawn in some manner from the world. Recall Example 6
where several pieces of evidence where collected and represented as lower probabili-
ties pertaining to the decision of a large industrial customer. In addition, physicians
collect pieces of evidence from patients which are synthesized in some manner to
render diagnoses and juries are presented pieces of evidence which they synthesize
in some manner to render verdicts.

Thus, using another analogy, a combination rule is used to synthesize the work
of a detective. How a detective, or physician, or lawyer, determines which pieces

of evidence are important is a complicated question. Obviously, the diagnosis or

conclusion would be heavily dependent upon what pieces of evidence are included
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and excluded. For our purposes, let’s assume that an inclusionary rule can be

established, if only by the use of common sense.

The important consideration with respect to developing a combination rule is
that it must appropriately handle any conceivable type and sets of pieces of evidence
that are judged to be worthy of inclusion in the analysis. We argue, for example, that

a combination rule should handle these three instances in the following manners:

(I) Weight of evidence focusing: This condition addresses what ought to happen
when pieces of evidence support each other. Imagine several pieces of evidence that
all support {a} in some fashion. Taken separately, no piece of evidence overwhelm-
ingly supports {a}. However, taken together, in case after case, {a} keeps coming

up, and in the end, the weight of all the evidence clearly points to {a}.

To state this condition more formally, let’s assume that we have a set of evidence,
e = {e1,e2...€x0}. Also,let A C Q, B = {a}, and Q@ = {a,b,...}. Then, let
P,(A) > 0 when ANB # ¢, and P,(A) = o when AN B = ¢, for each ¢;. An
appropriate combination rule would yield the following: e; ® e2 ® €3...e00 = e,

where P,(B) = P.(B) = 1.0, when the pieces of evidence point to B.

(II) Resolution of inconsistency: Let’s assume that two pieces of evidence have
been collected, e; and ey, over the set Q = {a,b,¢c,d}. Let A = {a},B = {b},and
C = {a,b}. It turns out that P,(4) = P1(4) = 1.0 and P,(B) = Py(B) =
1.0. In other words, the two pieces of evidence point conclusively to the different
conclusioné! While this situation is unlikely to arise very often in real life situations,
it i1s symbolic of the extreme case of a common occurrence where pieces of evidence
point to inconsistent conclusions. In cases such as this, the combination rule needs
to find the most logical middle ground. In this extreme case, the result should be:
e1 ® eg = e3, where P,(C) = P3(C) = 1.0.
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(ITI) Simple support function identity: This third condition specifies an identity
requirement. That is, it specifies under what conditions the combination of two
pieces of evidence, F; and E,, will yield either E; or E,. Interestingly enough,
there are at least three identity relationships to choose from.

First, one could specify that if E; = E», irregardless of how the probability mass
is specified, then E;, ® E; = Ey. Second, one could specify that F1Q E; = E7, where
E, is the trivial belief function (i.e., M(2) = 1.0), and E; is any belief function.
Third, one could specify that By @ E; = Ey, where By = E; and M1(A) = M(A) =
1.00. In other words, the identity holds only when each M-function is characterized
by all its probability mass resting on the same subset of 2.

We have chosen the third case for the following reasons. One, the first relation-
ship is incompatible with (I), because it would prevent the focusing of the weight
of evidence arbitrarily for arbitrarily defined M-functions. Two, the second rela-
tionship presumes that a piece of evidence that supports no diagnosis should have
no bearing on the ultimate diagnosis. Our position is this: if the piece of evidence,
a priori, is deemed crucial to the diagnosis, it should be included no matter what
specifications the M-function takes on. If it is inconclusive, then it should, as a
matter of course, lead to higher levels of uncertainty about the diagnosis.

Given these comments, the third specification is a good compromise. Criterion
(I) is not violated because there is no possibility of focusing the weight of evidence
on any subsets smaller than A. Also, it handles the case where both E; and E; are
trivial belief functions.

It is desirable for the combination rule to have several mathematical properties.
These include:

(IV) Commutativity: E; @ Ey = E; ® Ey;

(V) Associativity: (Ey @ E2) ® E3 = E; @ (E; ® E3) (or any order);
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(VI) Monotinicity: By ® E; = E3, where P;(AUB) > P4(A), and P,(B) and
P3;(AUB) < P3(A), and P3(B).

Future research may reveal additional desirable characteristics for a combination
rule, or indicate the need for revising I-VI. However, for our purposes, I-VI are quite
sufficient to critique an existing rule and propose an alternative.

A.2 DEMPSTER - SHAFER RULE OF COMBINATION

As far as we have been able to determine, the only combination rule for im-
precise probabilities proposed in the literature that has been seriously considered is
traceable to the work of Dempster {(1967) and Shafer (1976). As such, the combina-
tion rule is commonly known as the Dempster-Shafer Rule (DSR) within Dempster-
Shafer theory, which basically encompasses belief functions and Mébius Transforms
of belief functions. Thus, the rule and the theory encompasses only a special, but
important, case of imprecise probability.

The DSR is most straightforwardly expressed as the Mébius Transform of a be-
lief function. Recall that a belief function is infinitely monotone (i.e., R-monotone),

such that:

P(A,U...U4) > > ()P4 (A.1)
IC(14,...1) el
I#8

The Mobius Transform is:
M(E) =Y (-1)FHIp4) , (A.2)
ACE
where E C Q.
Also, recall that to recreate a belief function from a Mobius Transform, or M-

function, one should apply:

Y M(A) = P(E),for all E C Q. (A.3)
ACE
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The DSR to combine two pieces of evidence, M; and M, is:
CR.
M = 1_kZM1(A)*M2(B), forall AC Q and BC 9 (A.4)

And where C = AN B when C # § and where K is the total value of M;(A) =
M,(B) where AN B =0. The ;=5 term can be viewed as a normalization factor.

Operation of the DSR is best understood through an example presented in
tabular form (Table A.1). Let’s assume that Wé have two pieces of evidence defined
over Q = {a,b,c,d}. Both E; and E, are belief functions and have been transformed
to be M-functions. Only the focal elements of each M-function are shown in the
table (i.e., M;(A) > 0). For comparison purposes, Table A.2 contains the lower
probabilities for F,, E; and E; Q Ey = Ej.

Table A.1. Example of the Dempster-Shafer Rule of combination

M,
M,
Ml(ab) Ml(ad) Ml(abc)
.3 4 3
My(a).3 {a}=.09 {a}=.12 {a} =.09
Ma(be)-2 {(b}=06 | {0}=08 | {bc}=.06
M(abed).5 | {ab}=.15 | {ad}=.20 | {abc}=.15
K = 08 .
Ms(a) = (.09 + .12 +.09)/(1 — .08) = .32
M;(b) = (.06)/(1 —.08) = .07
M;(ab) = (.15)/(1 — .08) = .16
M;(be) = (.06)/(1 — .08) = .07
M;3(abe) = (.15)/(1 — .08) = .16

From (A.4) and the example, it can be seen that the DSR satisfies only two
of the three major criteria for a rule of combination. As hinted at in the example,
DSR is good at weight of evidence focusing. Notice that on balance, smaller subsets
of  have higher lower probabilities in E3 than in E; or E;. DSR acts to move
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Table A.2. Lower probabilities for DSR example

E, E, E;=FE® E;

a 0.3 0 0.32
b 0 0 0.07

c | 0 0 0

d 0 0 0
ab 0.3 0.3 0.55
ac 0.3 0 0.32
ad 0.3 0.4 0.54
be 0.2 0 0.14
bd | 0 0 0.07

cd | O 0 0
abc 0.5 0.6 0.78
abd 0.3 0.7 0.77
acd 0.3 04 0.54
bed 0.2 0 0.14

abed 1.0 1.0 1.0

probability mass to smaller and smaller subsets of {2 because of the intersection term
and because K is, in essence, distributed to the intersections. DSR also satisfies the
identity criterion (III), the commutativity criterion (IV), the associativity criterion
(V), and the monotinicity criterion (VI). In fact, DSR always yields a belief function
if it is combining belief functions. Its behavior is indeterminant if given other kinds
of imprecise probabilities.

Unfortunately, DSR is not able to resolve inconsistency criterion (II). Specifi-
cally, DSR collapses if given a case of maximal inconsistency. Let M;(a) = 1.0 and
M,(b) = 1.0. In this case, K = 1.0 and there are no subsets over £ to normalize
over. DSR does not yield the preferred result, Ms(a,b) = 1.0. Thus, while DSR
meets 5 of 6 criteria, it does not meet the inconsistency resolution criteria, which is

especially important for evidential reasoning.
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A.3 A FULL EVIDENCE COMBINATION RULE

Searching for a new combination rule is not a trivial task. Conditions I-VI are
~ not specified in such a way that an equation can be logically deduced. Nor are I—VI
specified as axioms, such that if, by trial and error, a formula is discovered that it
could be proven that it is the only formula, or at least the only family of formulas,
to satisfy the criteria. Thus, at the present time, we must be content to explore
potential solutions to the problem as best as possible.

Several simple solutions to the problem of combining imprecise probabilities
were explored. For example, one could simply average lower probabilities of

M-values over N-pieces of evidence.

Such simple solutions failed to meet any of the three major criteria (I-III). Also,
at this time, it has proven especially difficult to develop formulas that use lower
probabilities directly.

Given these caveats, this section presents an algorithm for combining two
M-functions that were transformed from belief functions. The algorithm satisfies
all three major criteria, and commutativity and monotonicity. Additions to the
algorithm are needed to overcome the fact that it doesn’t satisfy the associativity
criterion (V). These additions are explained in A.4.

The algorithm takes the same basic conceptual approach as DSR in that each
subset of {2 for each piece of evidence is manipulated in some way. The algorithm

is:

For everyAN B # 0, M3(ANB) = Mi(A)* My(B)* S

M;3(A) = Mi(A)» My(B) (1 - S) * Ml(j;[ii;z(B)
M;(B) = Mi(A)* Ma(B) + (1= S) * Ml(j;! i%w)
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For everyANB =0, M3(AUB) = My(A)* Mx(B)* R
Mi(A)
Mi(A) + M(B)

My(A)
Mi(A) + M>(B)

Mj(4) = Mi(4) * My(B) % (1 - R) »

M3(B) = Mi(4) * Ma(B) * (1 - R)

|ANB ||
where § =
AN+ [IBlIl=llANB|]
_ | Mi(A) — My(A) |
andR—Z 5 )
ACE

(A.5)

(A.5) differs from (A.4) in several significant respects. Most noticeable is that
the normalization factor K is gone. Instead, (A.5) contains two algorithmic terms,
not just one, which are invoked depending upon whether A N B is non-null or null.
In the non-null case, basic probability mass is focused “downward” onto smaller

subsets of .

S can be interrupted as the focusing constant. It regulates focusing based on the
cardinality of the sets involved. It prevents basic probability mass on large subsets,
which do not carry much information, from focusing, by the intersection term, mass
onto very small subsets, which in some sense carry much more information. (A.5)
accomplishes this task by retaining mass on the original focal elements based on

(1-S) and a proportional term.

In the null case, mass is resolved “upward” to larger subsets. R can be inter-
preted as a measure of dissimilarity between M; and M;. When R = 1.0, the two
pieces of evidence are completely dissimilar and each has as a focal element whose
value is equal to 1.0. In this case, (A.5) resolves to M3(AU B) = 1.0, which satisfies
criterion II. As the pieces of evidence become less dissimilar (e.g., R — 0), then less
mass is pushed upward and more mass remains associated with the original focal

elements.
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(A.5) satisfies criterion III because in this case S = 1 and there are no cases
where AN B = ). A quick inspection will indicate that (A.5) is also commutative
and maintains monotinicity (because }_,, = 1.0 in every case and all M—values

> 0).

Table A.3 presents some results of applying (A.5) to various combinations of
two M —functions. For example, Msg; illustrates inconsistency resolution. M,
completely supports {a} and M» completely supports {b}. The best one can say in

this situation, as output by (A.5), is that M>gs should completely support {a,b}.

M, g4 llustrates focusing of weight of evidence given identical pieces of evidence.
As indicated, M, strongly supports {a}, weakly supports {b}, and provides no
support to any other diagnosis, either singly or in combination. Assuming two
pieces of evidence had been collected exactly like M,, their combination yields even

more weight on {a}, as criterion (I) would have.

M55 illustrates the result of the simple support function criterion (III). M;g2
illustrates what happens when a trivial belief function, Mj, is combined with a belief
function that provides complete support to one prognosis, M;. As is indicated,

M, g offers less support for {a} than does M, alone.

A.4 COMBINING N PIECES OF EVIDENCE

The combination rule specified in (A.5) meets five of the six criteria outlined in
A.1. An inspection of (A.5) reveals that it is not associative. In other words, for
more than two pieces of evidence, the order in which they are combined significantly
affects the result. More specifically, the last piece of evidence to be combined ha,s
the most impact on the result. This is a potentially fatal flaw with (A.5), even
though it is superior to the Dempster-Shafer Rule of Combination because it meets

the inconsistency resolution criterion.
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Table A.3. Inputs and results of the full evidence combination rule

Inputs Results

My | My | My | My | Ms | 1y | o3 | ama 5®5

al 0l10| o] 0095 0| 0625 0 .993 0
'b| 0| 0f1.0] 005 0| 0 0 .007 0
¢l 0] o o]o 0] 0 0 0 0

d| ol ol olo 0| o 0 0 0
ab| 0] 0| 01]0 1.0 0 1.0 0 1.0
ac| 0| 0] 0]o0 0] 0 0 0 0
ad| 0] 0| 0l0 0l 0 0 0 0
be| 0| 0| 0]0 0] 0 0 0 0
bd| 0] 0] 010 0] 0 0 0 0
ed| 0o 0| 00 0] 0 0 0 0
abc| 0| 0| 01}0 0] 0 0 0 0
abd| 0| 0] o]0 0] 0 0 0 0
acd| 0| 0| 0]0 ol o 0 0 0
bed| 0| 0] 0]0 0| 0 0 0 0
abed | 1.0 0| 010 0] 0.375 0 0 0

To overcome this problem, we explored additional criteria to possibly guide the
order in which pieces of evidence are coﬁbined. Two concepts appear particularly
important. First, the pieces of evidence should be combined in an order based
on their informativeness. For example, referring to Table A.3, M, is maximally
informative because it indicates the truth is in a subset of {2 with just one element,
{a}. M, is minimally informative. M5 falls in between. Thus, it makes some sense
to combine M; @ Ms ® M,.

Second, pieces of evidence should be combined in some way based on their simi-
larity to each other. In some sense, this criterion argues that there is a meta-physical
aspect to combining pieces of evidence in that those that are similar should “band”
together to support their shared diagnosis. Thus, pieces of evidence dissimilar to
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each other should be combined first, followed by pieces of evidence that are more
similar.

Conveniently, we already have a measure of dissimilarity, R. Let R' be the mea-
sure of similarity and equal 1— R for two pieces of evidence. Let O = {0,0;...0y}
indicate the order to combine N pieces of evidence. Then, let the measure of simi-

larity in an ordered array of pieces of evidence be:

N
R' =Y (1-R(E;,E;i_1))*0; . (A.6)

1=2
We would like to find an order which maximized R'.
We have conducted preliminary research on a measure of information (e.g.,

we also refer to it as a measure of determinantness). Let T be the measure of

information in a belief function. T is defined as,

T;= Y (2MA —1)log, 'TQ’ : (A7)
ich | E |

T; for piece of evidence 2, is equal to 0.0 when E; is a trivial belief function.
T; is a maximum value when E; contains a simple support function on a singleton
subset of . The maximum value of T is regulated by the number of members in
Q. The higher cardinality of €2, the more information is needed “determining” the
truth in . See Tonn (1993) for an extended discussion of T'. To order N pieces of

evidence from least to most determinateness, we could maximize:

N T
T’—_—ZOi*T' . (A.8)

To order N pieces of evidence, we maximize:

Maz (T" +R') . (A.9)
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(A.5)-(A.9) have been coded into software. Specifically, we coded the combina-
tion algorithms using C to support an expert system application. Currently, the
software is capable of handling Q of cardinality four and 2-5 pieces of evidence.

Table A.4 presents some results for combining more than two pieces of evidence.

Table A.4. Combining three or more pieces of evidence

Inputs Results
My | My | My | My | Ms | Ms | oo N

a 0.95 0 0 0.3 0.2 0 0.38 0.14
b 0.05 0 0 0.2 04 0 0.01 0.26
c 0 0.3 0 0 0.2 0.3 0 0.14

d | 0 0.2 0.2 0 0 0.1 0 0
ab | O 0 0 0.3 0 0 0 0.05
ac 0 0 0 0 0 0 0.12 0.04

ad | O 0 0 0 0 e 0.17 0
be | O 0 0 0 0 0 0.01 0.03
bd | 0 0 0 0 0 0 0.01 0.01
cd | O 0.2 0 0 0 0.3 0 0.01
abc 0 0 0 0 0.1 0 0 0.10
abd 0 0 0 0 0 0 0 0.01
acd | 0 0 0 0 0 0 0.13 0.03
bed | O 0 0 0 0 0 0.01 0.03
abced 0 0.3 0.8 0.2 0.1 0.3 0.16 0.15

First, M-Functions M;, M,, and M3 are combined, which resulted in M;g2gs3.
As is evident from visual inspection, M3 is the least informative of the three vectors,
followed by M, and then M;, which is highly informative. With respect to similarity,
M, supports different conclusions than M, and M3({a,d} vs. {c,d}). Given these
observations, one would expect the algorithm to combine Mz with M, followed by
M,. Indeed, this is what the code does, with the results shown in the seventh
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column of Table A.4. Because the pieces of evidence are somewhat inconsistent, it

can be seen that support for {a} decreases from M;.

In the second case, the similarity strongly affects the combination order. In
combining My, M5, and My, from visual inspection, M, and My appear quite similar.
Also, calculations of T indicate that Ms is the most informative, followed by M,
and Mg. Given this information, the code combined Mg with My, and then with

Ms5, with the results shown in the eighth column of Table A .4.

A.5 COMMENTARY

The combination rule presented herein is actually a fairly complex algorithm
(A.5). The algorithm has its good points. It satisfies five of six criteria presented in
(A.1) that characterize an attractive combination rule. In particular, the algorithm
has the capability of both focusing the weight of evidence on smaller subsets of Q

if so warranted or resolving inconsistencies to larger subsets of Q if so warranted.

The algorithm is not associative. Additional ideas, captured in (A.6)-(A.9),
were needed to order pieces of evidence before combination. Ordering based on
informative value and similarity has face validity but additional research on this
point is recommended. It would be better to develop an algorithm that is associa-
tive, but it looks unlikely that such could be accomplished given our current path

of algorithm development.

There are several arbitrary specifications within the algorithm. For example,
one can imagine a whole family of specifications for R and S, that would amplify or
dampen inconsistency resolution and focusing, respectively. Also, the specification

for T,T’, and R' demand further examination.

In hindsight, it would be preferable to develop an algorithm, or better yet

a simple combination rule, that utilizes imprecise probabilities directly, without
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having to apply the Mobius Transform. Also, the algorithm presented here can only

handle belief functions with some confidence. A more general version is needed.
The bottom-line for applied contexts, such as IRP, is that the algorithm appears

to yield the desired results. It operates on imprecise probabilities, albeit a restricted

case known as belief functions, as wished. The algorithm was fairly straightforward

to code.
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