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Abstract ’
This paper introduces a formalism to describe the needs and preferences of database
users. Because of the precise formulation of these concepts, we have found an automatic
and very simple mechanism to incorporate user needss and preferences into the query
answering process. In the formalism, the user provides a lattice of domain independent
values that define preferences and needs and a set of domain specific user constraints
qualified with lattice values. The constraints are automatically incorporated into a rela-
tional or deductive database through a series of syntactic transformations that produces
an annotated deductive database. Query answering procedures for deductive databases
are then used, with minor modifications, to obtain annotated answers to queries. Be-
cause preference declaration is separated from data representation and management,

preferences can be easily altered without touching the database. Also, the query lan-
guage allows users to ask for answers at different preference levels.

1 Introduction

Much work has been done to explore methods to handle user preferences in databases (see
[CCL90, CD89]), human computer interaction (see [AWS92]), user models (see [McCss,
KF88]), and artificial intelligence (see [AP86, Pol90, Par87]). Cooperative answering sys-
tems try to enable users to receive answers that they are actually seeking rather than literal
answers to the posed questions (see [Mot90, GM88, GGMN92]). This paper presents a
complementary approach that incorporates the handling of user preferences into the query
answering procedure of a database. A declarative formalism for expressing user preferences
and needs as a body of information separate from the database is defined. A query answer-

ing procedure then takes both the preferences and the data into account when providing
answers.

The major advantages of the system described here are threefold. Preferences can be
easily altered without touching the database. Users can ask for all answers either with or
without the annotation of preference or for all answers that meet some level of preference.
Preferences are captured by separate bodies of declarative information that can be changed
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independently. They are: (1) qualitative labels with an ordering expressed as an upper
semi-lattice, (2) logical statements, and (3) a function for combining preferences.

The notions of need and preference are reflected through a lattice of values provided by
the user. Lattice values are used together with logical statements to express preferences. As
an illustration, consider a traveler, Kass, who wants to travel from Chicago to Amsterdam,
preferably nonstop. If she has to make a stop, she would rather stop in Washington, where
her boyfriend lives than in any other city. She absolutely does not want to stop in London.
We can define a set of annotated user constraints that express Kass® restrictions:

nonstop.flight(A, B, Date, Flight):good.

direct.flight(A, B, Date, Flight):okay.

indirect_flight(A, B, Date, Flights):bad.

stopover(Flights, Airport):fine «— dc_airport(Airport).

stopover(Flights, Airport):terrible — london_airport(Airport).

Consider the rule with the annotation terrible. The predicate london_airport in the body
(to the right of the arrow) may be read as “Airport is located in London.” The atom in the
head (to the left of the arrow) may be read as “The flights in Flights involve a stopover in
Airport.” The entire constraint may be read as “A list of Flights that involves 2 stopover
in Airport is terrible if the airport is a London airport.” (See [Gaa92] for a discussion of
natural language descriptions of constraints.) Furthermore, any answer that depends on a
flight that stops over in a London airport should be annotated as terrible.

In this example, a set of five symbols {terrible, bad, okay, good, fine} reflects preference
levels. When the following order is assigned to the symbols: terrible < bad, bad < okay, okay
< good, okay < fine, then a higher rank indicates a higher preference. As will be described
in Section 3, any upper semilattice of values may be used for ordering the symbols.

Now, when Kass asks the query “How can I travel to Amsterdam from Chicago on May
177, expressed logically as, say, « travel(chicago, amsterdam, (may,1, Time), TravelPlan),
the search space of the query should be modified with the constraints so that nonstop flights
are noted as good; direct flights through Washington as fine; flights through any other city,
except London noted as okay, and so on. Alternatively, she may want to ask for flights that
are fine or better. Then all answers below this level must be discharged.

Suppose the lattice contains only two values, say unacceptable and acceptable with the
order unacceptable < acceptable. Let the user constraints on direct_flight and nonstop_flight
be annotated with acceptable and the rest with unacceptable. In this case, the annotated
user constraints reflect Kass’ needs.

The method for handling user needs and preferences is summarized as follows: Once a
user has provided a lattice of values and a set of user constraints annotated with the val-
ues, the constraints are automatically incorporated into a relational or deductive database
through a series of syntactic transformations that produces an annotated deductive database.
Query answering procedures for deductive databases are then used, with minor modifica-
tions, to obtain annotated answers to queries. In contrast with earlier work, the only burden
on users is to express their preferences. The separation of preference declaration from data
representation is achieved through the use of the theory of annotated logic programs, de-
ductive databases, and the series of simple transformations that are invisible at the user
level.




Preliminary background definitions are given in Section 2. Section 3 provides back-
ground on annotations and discusses the theoretical details of annotated deductive databases
needed for user preferences and needs. It also provides a transformation of a normal logic
program into an annotated logic program. Section 5 formally defines annotated user con-
straints and provides a transformation that incorporates a set of annotated user constraints
into an annotated logic program. It also shows that answers obtained from the transformed
program are properly annotated to reflect user preferences and needs as expressed in the
annotated user constraints and the upper semilattice of values. Section 6 discusses briefly
how a procedure can be defined by which the answers obtained for a query are annotated
according to the constraints.

2 Background

Deductive databases are comprised of syntactic information and semantic information [GMT8].

The syntactic information consists of the intensional database (IDB) and the eztensional
database (EDB). The IDB is a set of clauses, or rules, of the form A « Lg,.. ey Lnym >0,
where A is an atom and each L; is a literal. The EDB is a set of clauses, or facts, of the
form A «, where A is a ground atom.

Direct answers to database queries, which are clauses of the form « By,...,B,. are
found by using SLD-resolution on the query, IDB, and EDB clause to produce a search tree.
The root node of the search tree is the query clause; each node in the tree is produced by
applying an IDB rule to the node above.

The semantic information in a deductive database usually consists of a set of integrity
constraints (IC), of the form A;,..., Ay, < Ci,...,Cy, where the A;s and C;s are atoms
whose predicate appears in an EDB fact or the head of an IDB rule. An integrity constraint
restricts the states that a database can take. For example, the integrity constraint No person
can be both male and female, possibly written as «— person(X),male(X '), female(X), restricts
people in a database from having two genders. Integrity constraints are considered semantic
information rather than syntactic information because the constraints on a database add
no new deductive knowledge to the database.

If we consider semantic information to be information about the information in the
database, user constraints are another form of semantic information. A user constraint
expresses a state of the database that the user wishes to be true of the database. For
example, if the user only wants to know about students who are enrolled in English 430, she
may express a constraint like the following: enrolled(X,english30) — student(X),indicating
that student(X) will be considered true during a search only when the student X is enrolled
in English 430; otherwise the user constraint is violated in the search.

Now we are prepared to turn to the investigation of how to use annotations to capture
and adhere to users preferences over database domains.




3 Annotated Logic Programs and Databases

To enable a user to specify preferences and then receive answers according to those prefer-
ences, we must be able to do the following;:

o Allow a user to specify a set of user constraints as logical statements in the language
of the deductive database and rank the constraints according to preferences through
the annotation.

o Integrate the annotated user constraints into the rules and facts of the deductive
database to form a new annotated deductive database.

¢ Accept a query from a user and return a set of annotated answers.

e Allow the user to annotate queries and receive answers that satisfy the annotation.

First, we must precisely define annotation in logic programs. In our discussion of an-
notation, we follow closely the notation in Kifer and Subrahmanian [KS92]. An annotated
logic program comprises a set of annotated clauses of the from:

A:ae« By:0,...,By, : B,.

A and the Bs are atoms as usually defined in logic programs; a and the fs are annotation
terms. A : a is the head of the annotated clause, and B; : fBi,...,B, : B, the body.
The annotation terms are defined based upon an upper semi-lattice 7, a family of total
continuous functions over 7 and an enumerable set of annotation variables. For our purpose
we assume that 7 is a complete lattice and denote the lattice ordering by <, the least upper
bound operator by U, the greatest lower bound by I, and the top and the bottom elements
of lattice by T and L respectively.

The lattice reflects the rankings of the user about the importance of states expressed in
a user constraint. For example, consider the constraints from Section 1. They included a
constraint about not stopping in London, a constraint about preferring direct flights over
indirect flights, that is flights with a change of planes, and a constraint about preferring
nonstop flights over direct flights. The user may assign the value terrible to the constraint
about London and the value bad to the constraint about indirect flights, the value okay to the
constraint about direct flights, and the value good to the constraint about nonstop flights.
The bottom of the lattice is terrible. The lattice is completed with the top element very
good, and the partial order is given by the transitive and reflexive closure of the following
relation: terrible < bad, bad < okay, okay < fine, okay < good, fine < very good, good <
very good.

Alternatively, the lattice may be interpreted to reflect the degree of confidence in the
statement expressed in the constraint. Consider an example from the world of molecular
biology in which two constraints say that hydrophobic amino acids appear on the inside of
a protein molecule and that hydrophilic amino acids wind up on the outside. These states
tend to be true about protein molecules, but they are not always true. So let us annotate
the hydrophobic constraint with usually and the hydrophilic constraint with almost always.
Now consider a program that generates alternative protein molecule structures. Generated
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structures that have hydrophobic amino acids all on the inside and hydrophilic amino acids
all on the outside will receive the annotation almost always; structures with all hydrophobic
inside and one or more hydrophilic inside will receive the annotation usually. If almost
always is considered to be of higher confidence than usually, the first set of structures will
be preferred to the second set of structures.

For the lattices, we will initially consider two set of continuous functions. 1) For each
¢ > 1, we will have an i-ary function U;, the natural extension of U to 7 arguments. 2) For
each ¢ > 1, we will have an ¢-ary function M;, the natural extension of M to 3 arguments.
Whenever it is not ambiguous, we will use L and M instead of L; and ;. Hence an annotation
term can be recursively defined as follows: 1) Any element of 7 is an annotation term.
2) Any annotation variable is an annotation term. 3) If a3,...,a; are annotation terms
then Ui(a1,...,a;) and MN(ay,...,qe;) are complez annotation terms. Nothing else is an
annotation term. If A is an atom and @ an annotation term then A : « is called an
annotated atom. If o is a constant A : a is called c-annotated; if o is a variable v-annotated.
In annotated logic programs, complex terms appear only in the head of the program clauses;
the annotations in the bodies are either annotation variables or constants. Let £ be the
language of an annotated logic program. The Herbrand base £, HBg, is the set of all
ground (non-annotated) atoms. The semantics of annotated logic programs is defined in
terms of annotated interpretations. An annotated interpretation I4, is a binary relation
subset of HBr X 7 such that if a pair (4,c) is in I4 then for every 8 < «, (4,8) is
also in I4. We identify an annotated interpretation I4 with the set of annotated ground
atoms {A : ¢|(A4,a) € I4}. We can now define satisfaction. An annotated interpretation
I4 satisfies a ground annotated atom A : @, Iy E A:aiff A:ac I 4.3 I4 satisfies
a non-ground annotated atom A : a iff it satisfies each ground instance of the annotated
atom. I4 satisfies an annotated program clause iff for each ground instance of the clause
where each annotated atom in the body of the ground clause is satisfied by I4 the head of
the clause is also satisfied. Then an annotated model of an annotated program IL4 is an
interpretation that satisfies each clause in the program.

There is a natural partial order that can be defined between annotated interpretations
I4 and J4. We say that I4 < J4 iff for each (4, @) in I4 there exists (4, 8) in J4 such that
o < B.* The next step is to extend the Tp operator of van Emden and Kowalski [VEK76]
to compute the least annotated model of an annotated program II4.

Definition 3.1 Let II4 be an annotated program. A monotonic operator from annotated
interpretations to annotated interpretations, Ty 4> is defined as:

THA([A)={A:a|a5a' andA:a'<—B1:,61,...,Bn:,3n

is a ground instance of a clause in IT4 and Vi, 1 < i < n, (B;,6;) € 14}

We can iteratively find the least annotated minimal model by finding the least ordinal
§ such that T2 L(0) = ngl(ﬁ). In other words, the least annotated model of II4 coincides

3Slightly abusing the definition of grounding, we assume that complex terms in the annotations are
evaluated to values in 7.
*Note that this relation is equivalent to saying that 74 C J4.




with the least fixpoint of the operator Ty "

We want to allow negation in the rules and facts of a deductive database. This can
be easily done by extending the concepts of negation in normal logic programs to anno-
tated programs. Such an extension based on the stable model semantics can be found in

appendix A.

4 Transforming from LP to ALP

We want to allow users to give annotated user constraints for any logic program or deductive
database. Thus, we must unify the language of user constraints and logic programs. First,
we define how to transform any normal logic program into an annotated logic program.
Then we show how the model semantics of the normal logic program is translated into the
model semantics of the annotated logic program.

The transformation of a logic program is as follows:

Transformation 1 Let m be a (normal) program clause:
A « By,..., By, notCy,..., notCp,.
The annotated transformation of 7 is the (normal) annotated clause:
A:M{vy,...,v,} — By :v1,...,Bn i vp, notCp: L,..., notCp : L
where the v; are n distinct annotation variables. We assume that M{} = T.

Let II be a normal logic program. The annotated transformation, I 4, of I is the set of
annotated transformed clauses from II. a

The annotation of an atom in an annotated interpretation reflects the confidence or pref-
erence in the validity of that atom. Hence, any atom that is true in a given interpretation I
must be true at any level of preference or confidence in the corresponding annotated inter-
pretation. Thus, the transformation of an interpretation into an annotated interpretation
is defined as follows:

Transformation 2 Associate with each interpretation I an annotated interpretation I4
such that 4 = {A: a|A € I, for every a € T}. o

From these definitions, it is easy to show that the following lemma holds.

Lemma 1 Let II be a normal logic program and I 4 its annotated transformation. Then
M is a stable model of II iff M 4 is an annotated stable model of I 4.

In this section, we have reviewed the notion of annotated logic programs, and we have
precisely defined the annotation framework needed for handling user preferences and needs.

In the next section, we shall define annotated user constraints and show how to integrate
a set of annotated user constraints into an annotated logic program.




5 Annotated User Constraints

User constraints express statements of the form “f a condition C is true then I would lLike
to assume the formula F to be false.” This statement can naively be translated into the
implication C — -F. However, the simple addition of such implications to the theory can
create inconsistencies. The inconsistencies arise because the intention of the user is more
than just adding the implication to the program. The user wants the new information to
prevail over previous data in the system. This behavior may be obtained if we treat the
implication C — —F as an exception on the truth value of F in the way that Kowalski
and Sadri introduce exceptions into logic programs [KS90]. Although exceptions avoid
inconsistencies, there are some properties of user constraints that cannot be captured with
Kowalski and Sadri’s definition of exception. As a result, we must extend the theory beyond
that of Kowalski and Sadri.

To illustrate, consider an employee of a company in Chicago who is planning a business
trip to Paris. She would like to get flight information from a database, but before doing so,
she would like to inform the database that she prefers direct flights. Before posing the query
to the database, she could introduce the constraint ignore non-direct flights. If there are
no direct flights from Paris to Chicago, the answer to the query according to the constraint
would then be empty. The new information in the constraint takes precedence over the
existing information.

Assuming that the employee must take the trip anyway, it would be better to return
answers that include non-direct flights and to let the employee know that they are a less
than ideal solution. One possibility is to let the employee modify the constraint and ask
the query again. Suppose instead, we allow the employee to annotate the constraint with a
value that indicates the low priority of non-direct flights, as in non-direct flights:bad, Any
answers that violate these constraint would receive the annotation. Instead of eliminating
indirect flights, annotations enable the employee to give them low priority among all possible
answers. Then the employee has her preferences respected when the query is asked: she
finds direct flights if they exist and finds any flight if no direct flight exists. Formally,

Definition 5.1 A user constraint v is an annotated normal clause of the form:
A:a— By:01,...3Bn:Bn, notCp : L,..., notCp, : L.

where A : a is a c-annotated atom and the B; : §; are c- or v-annotated atoms. We say
that the constraint v is in homogeneous form if the atom A has the form p(Xq,...,X%),
where the X; are k distinct variables. The atom p(Xy,...,Xk) is called an homogeneous
atom and the predicate symbol p is called a constrained predicate symbol. =

In this paper we assume that all the constraints are in homogeneous form. This is not a
restriction if the equality predicate can be considered part of the language. However, we will
not introduce the equality predicate in this paper since it will complicate the description
of the annotated logic program semantics unnecessarily. The extension of the semantics to
cover equalities is straightforward.

The user constraint v can be interpreted as saying that if the antecedent of the impli-
cation, (B : f1,...,Bn : Bn, notCp: L,..., notCy, : L), is true then at most A : ¢ can be
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accepted to be true. Formally,

Definition 5.2 Let the annotated clause
A:ce=B1:01,...,Bp:fn, notCp: L,..., notCp, : L

be a user constraint v and I4 an annotated interpretation. I4 satisfies v iff for any ground
instance A" : ¢ — B; : ,31,. cey B; : B, notC,; : L., notC’,’n : L of v such that
(By:B1,...,B, : B, motC. : 1,..., notC,, : 1) is satisfied in I4, I 4 satisfies A’ : e only
when e < c. ]

As a simplification to the user interface, we allow users to pair an annotation with the
head of each constraint as follows:

A:ce By,...,By, notCy,..., notCph.

To transform the annotation/constraint pair into a fully annotated user constraint, each
B; receives a unique annotation variable f§;, and each notC; receives the annotation 1.
Users who wish to be more sophisticated can define the annotation of the head atom A with
a complex annotation term constructed from the ;s according to the annotation definitions
in Section 3.

Transformation 1 establishes a translation of normal logic programs into annotated
normal logic programs. Now we introduce a transformation that incorporates a set of nser
constraints, I/, into an annotated program, Il 4.

Transformation 3 For any clause 7 of the form:
A:a«— By :01,...,Bp: 0y, notC, : L,..., notCp, : L
in II 4 with a constrained predicate symbol in the head, replace 7 with the annotated clauses:

A:aﬂve—Bl:ﬂl,...,Bn:ﬂn,(p'(f):v)e, notCp:1,..., notCp, : L
A:a+~ By:f1,...,Bn : By, not(p'()-f):_L)G, notC,: L,..., notCp, : L

to obtain I 4z such that

1. p(X) is the head of an homogeneous constraint in I renamed apart from 7.
2. p()-f ) and A unify with mgu 6.

3. v is a new annotation variable not appearing in .

Finally we add to 1 4z all the user constraints in I replacing each predicate symbol p in
the head of the constraints with the new predicate symbol p'. a




The first property we can show is that the user constraints are satisfied by the newly
transformed program.

Theorem 1 Let M4 be an annotated stable model of Il 4 - Then for any constraint v € U,
I, satisfies v. a

Although Theorem 1 shows that Transformation 3 is correct it does not provide any
criteria to select a transformation. For example, we can merely annotate all the head
atoms in II4 with L to produce II44, but this transformation unnecessarily constrains
the rules in IT 4. We would like to show that the restrictions imposed in the program are
somehow minimal. This minimality can be expressed in terms of the partial relation < that
exists between the annotated interpretations. Before we present the theory showing this
minimality we need to define a new relation between annotated interpretations. We say
that two annotated interpretations I4 and I’ 4 are similar with respect to a set of ground
atoms G iff the projection of these interpretations over their first argument intersected with
G produces the same set. That is, for a ground atom A € G there exists « such that
(A, @) € L4 iff there exists 8 such that (4,8) € I'4.

The following theorem shows that II 4z is the best program that complies with the user
needs expressed through the set of user constraints .

Theorem 2 Let £ be the language of Il 4.

1. For every annotated stable model M4 of Il 4 there exists a similar annotated stable
model My of oy wr.t. HBg such that M4y (YHB: < M4 and there is no
annotated interpretation [4 that satisfies i and My (VHB; <[4 X Ma.

2. For every annotated stable model M4z of I 4y w.r.t. H B there exists a similar
annotated stable model M4 of I 4 such that M4y (VHB; X M4 and there is no
annotated interpretation 4 that satisfies i and My N HBz < I4 < M4. a

6 Answering Queries via Annotations

Sections 3 and 5 lay the theoretical foundation for meeting users preferences and needs
through annotated user constraints. Now let us examine an example that illustrates the
power of the approach.

Consider our user, Kass, from Section 1. Suppose that Kass is using a simple deductive
database with the following rules:

travel(A, B, Date, Plan) — fly(A,B,Date,Plan).

fly(A,B,Date, [Flight]) — nonstop_flight(A,B, Date, Flight).

fly(A,B,Date, [Flight]) — direct_flight(A, B, Date, Flight).

fiy(A,B,Date, Flights) «— indirect_flight(A, B, Date, Flights).

nonstop_flight(A, B, Date,F) — flight(F,A,B,Date), not stopover(F,X).

direct_flight(A,B, Date,F) — flight(F,A,B,Date), stopover(F,X).

indirect_flight(A, B, Datel,[F| Flights]) «— flight(F,A,X,Datel), fly(X, B, Date2, Flights).

stopover(Flights, Place) — member(F,Flights), stopover(F,Place).
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Recall Kass’ user constraints from Section 1:
nonstop_flight(A, B, Date, Flight):good.
direct_flight(A, B, Date, Flight):okay.
indirect_flight(A, B, Date, Flights):bad.
stopover(Flights, Airport):fine — dc_airport(Airport).
stopover(Flights, Airport):terrible — london_airport(Airport).

As defined in Section 5, the last two user constraints transform into the following fully
annotated user constraints in which g is an annotation variable:

stopover(Flights, Airport):fine «— dc_airport(Airport):3.

stopover(Flights, Airport):terrible — london_airport(Airport):B.

When the deductive database is transformed into an annotated logic program using
Transformation 2 and then into a new annotated logic program using Kass’ user constraints
and Transformation 3, the annotated logic program in Figure 1 results.

Now we are ready to consider Kass’ query about traveling from Chicago to Amsterdam
on May 1, « travel(chicago, amsterdam, (may, 1, Time), TravelPlan).

Without loss of generality, we assume that queries have only one atom and correspond
to a rule defining the query whose head contains the query variables as follows:

— query(Time, TravelPlan).

query(Time, TravelPlan) « travel(chicago, amsterdam, (may,1, Time), TravelPlan).

Since the query is to an annotated logic program, it must be annotated. Annotations
on the query are handled as follows:

o When users ask queries without annotation, that indicates that they are not interested
in the annotation values. Even so, an annotation variable is attached prior to search
so that the query is compatible with the program. As follows from Sections 3 and 5
all answers are returned. Substitutions for the annotation variable are not returned
to the user.

o If the user asks the query together with an annotation variable 8, all answers are
returned, and each answer has an annotation value associated with it.

o If the user asks the query together with an annotation value c, all answers at that
value or above in the lattice are returned. As follows from Sections 3 and 5, the
answers are annotated with the value given by the user.’

The process of answering a query is very similar to any SLD-resolution style proof
procedure. Let us examine each case in turn with Kass’ query.

When the query is presented to the program without an annotation variable, it receives
a temporary variable, 8, and expands to three alternative queries @1, Q2, and Q3 as follows:

Q: — query(Time, TravelPlan):(.

Q': « travel(chicago, amsterdam, (may,1,Time), TravelPlan):(.

®The query can also be thought of as the conjunction (Q : #) A (8 > c), where the constant ¢ specifies
the least acceptable value for the answers and the variable 8 receives an annotation value for each answers.
Space prevents us from expanding on this variation here.
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travel(A,B,Date,Plan):3 «— Ay(A,B,Date,Plan):(3.
Ay(A,B,Date,Flight):3 — nonstop.flight(A,B,Date, Flight):(.
fly(A,B,Date,Flight):3 — direct_flight(A, B, Date, Flight):(3.
fly(A,B,Date,Flights): — indirect. flight(A,B, Date, Flights):(3.
nonstop.flight(A,B,Date,F):N{B,N} «
flight(F,A,B,Date):83,
nonstop_flight' (A, B, Date,F):N,
not stopover(F,X):1.
nonstop_flight(A,B,Date,F):3
flight(F,A,B,Date):8,
not nonstop_flight' (4,B,Date,F):L,
not stopover(F,X):1.
directflight(A,B,Date,F):{B1,02, N} «
Aight(F,A,B,Date):3;,
stopover(F,X):(2,
direct_flight' (A,B,Date,F):N.
direct_flight(A,B,Date,F)N{B1, 52} +
fight(F,A,B,Date):y,
stopover(F,X):32,
notdirect flight’ (A,B,Date,F):1.
indirect_flight(A, B, Date, [F|Flights]):7{B1,02, N} —
fight(F,A,X,Date):1,
Ay(X,B,Date2,Flights):f32,
indirect_flight’ (A, B, Date, [F|Flights]):N.
indirect.flight(A,B, Date, [F|Flights]):11{1, B2} —
Right(F,A,X,Date):51,
Ay(X,B,Date2,Flights):32,
notindirect flight' (A, B, Date, [F|Flights]):1.
stopover(Flights,Place):01{B1,62,N} —
member(F,Flights):0y,
stopover(F,Place):32,
stopover’ (Flights,Place):N.
stopover(Flights,Place):{B1,02} —
member(F,Flights):0y,
stopover(F,Place):(32,
notstopover (Flights,Place): L.
nonstop_flight' (A, B, Date,Flight):good.
direct_flight’ (A,B,Date, Flight):0kay.
indirect_flight' (A,B,Date,Flights):5ad.
stopover’ (Flights, Airport):fine «— dc_airport(Airport):B.
stopover’ (Flights,Airport):terrible — london_airport(Airport):(.

Figure 1: Transformed Constrained Annotated Logic Program
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@': « fly(chicago,amsterdam, (may, 1, Time), TravelPlan):
Q1: « nonstop_flight(chicago,amsterdam, (may, 1, Time), TravelPlan ):B.
Q2: « direct_flight(chicago,amsterdam, (may, 1, Time), TravelPlan) (.
Q3: « indirect_flight(chicago,amsterdam, (may, 1, Time), TravelPlan ).
For Q1 and Q2, the variable f receives the substitution {r{s’, N}/8}, where 8’ is a renamed
variable in the rules for nonstop_flight, and direct_flight. For Q1, the variable 8 receives the
substitution {M{B], B, N'}/B}, where B4, B, and N’ are renamed variables in the rules for
indirect_flight. Expanding Q! produces the following two alternatives:
Q1-1: « flight(TravelPlan,chicago,amsterdam, (may, 1, Time)):f/,
nonstop_flight' (chicago,amsterdam, (may, 1, Time), TravelPlan):N,
not stopover(TravelPlan,X):L.
Q1-2: — flight(TravelPlan,chicago,amsterdam,(may, 1, Time)):3,
not nonstop_flight' (chicago,amsterdam, (may, 1, Time), TravelPlan): 1,
not stopover(TravelPlan,X):L.

The first choice @1-1 resolves with the renamed user constraint to unify N with the value
good. Assume that the flight atom resolves with some fact that has T as its annotation
with the substitution {101/TravelPlan,17:15/Time}. Also assumes that stopover(101,X)
fails for all X. Then one answer substitution for the query through Q1-1is {101/TravelPlan,
17:15/Time, good/B}. Following our definition of how to treat un-annotated queries, the
value good for § is not returned to Kass.

When the query is presented to the program with an annotation variable, the annotation
value is included with each answer. Suppose that the database contains the following facts:

flight(chicago,amsterdam, 101, (may,1,17:15)):T.

flight(chicago,dc,102, (may,1,14:15)):T.

flight(dc,amsterdam, 102, (may,1,20:30)):T.

flight(chicago,amsterdam, 102, (may,1,14:15)):T.

flight(chicago,london, 103, (may,1,18:00)):T.

flight(london,amsterdam, 104, (may,2,08:30)):T.

dc_airport(national):T.

london_airport(hethrow):T.

stopover(102,dc):T.

Then the set of answer substitutions for the query would be the following:
{ { 101/TravelPlan,17:15/Time,good/f3 },

{ 102/TravelPlan,14:15/Time, fine/B },

{ [108,104]/TravelPlan,18:00/ Time,terrible/B } }

If the query were annotated with the value fine, only the second answer substitution
would be returned. If it were asked with the annotation okay, the first and second answer
substitutions would be returned but not the third.

Adaptations of bottom-up procedures can also be done in a manner that is similar to the
modifications to the top-down procedure. In addition, if the query specifies an annotated
constant, the annotation indicates a selection that should be made before projections or
joins. Thus, this annotation should be pushed down in the deduction tree before starting
the bottom-up evaluation.

Observe that incorporating annotated user constraints into relational databases requires
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two steps: (1) adding one argument to some of the relations to store the annotations and
(2) adding a procedure to compute operations over the lattice. These extensions can be
done automatically without the intervention of the database designer.

7 Conclusions

We have shown how annotated logic programs can be used to model user needs and pref-
erences. The user expresses preferences through a domain independent lattice of values.
Domain specific needs and preferences are then expressed through annotated user con-
straints, that is, logical statements that are qualified with the values in the lattice. The
work of Kifer and Subrahmanian [KS92] provides a theoretical basis for annotating logical
clauses with values. Because of the precise formulation of our formalism we have found an
automatic and very simple mechanism to incorporate user needs and preferences into query
processing. We have provided a method to transform a logic program or deductive database
without annotations together with a set of annotated user constraints into an annotated
logic program. The user may then ask a query and receive answers that are qualified, or
annotated, with values from the lattice.

We have discussed two variations on the querying process: asking a query and receiving
all answers, each with an annotation value; and asking a query together with an annotation
value and receiving all answers with that value or higher. In Section 6, we showed how query
answering procedures for deductive databases can be adapted through minor modifications
to return answers with annotations for databases produced by Transformations 1, 2, and 3
given in Sections 4 and 5. We have an implementation of the transformations and of the
modified query answering procedure. ©

The example presented in Section 6 is simple but illustrative of how user constraints
can be applied. The real advantage of the methodology becomes apparent when there are
a large number of user constraints. Molecular biological databases provide an example of a
domain rich in user constraints.

The transformations described in this paper are not limited to the incorporation of
annotated user constraints into deductive databases. We see that they will also be useful
for combining multiple deductive databases, each of which expresses an expert’s view of
the world, into a single database. If each original deductive database is annotated with
values that reflect both experts’ names and levels of confidence, then the query answering
methods described in this paper would produce answers whose annotations reflect the expert
positions. Related future directions for this work are to investigate the expressibility of
annotated user constraints as a user description paradigm and to explore how to use them
to combine different users’ judgements about preferred answers.

In summary, using the method described in this paper, a set of annotated user con-
straints, a lattice of preference values, can be used with a relational or deductive database
to return qualified answers that reflect user preferences and needs.

5In contrast to general annotated logic programs, our procedures are much simpler and closer to tradi-
tional query evaluation procedures because we do not need to adhere to ideals (see [KS92] for details on
ideals).
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A Negation

We want to allow negation in the rules and facts of a database over which a user has ex-
pressed needs and preferences. Thus, we must show how to deal with negation in annotated
logic programs. We will use the stable model semantics to interpret negation in normal logic
programs’. The stable model semantics characterizes the meaning of a normal program by
a set of minimal models called stable models, which are defined using the Gelfond-Lifschitz
transformation. This transformation is defined as follows.

Definition A.1 [GL88] Let II be a normal logic program and let I be an interpretation.

I/ = {(A «B,...,B,)| (A« By,...,B,, notDy,..., notD,,) is
a ground instance of a clause in IT and Vi,1 < ¢ < m,I |~ D;}

II! is the Gelfond-Lifschitz transformation of II with respect to I. - n

The result of the Gelfond-Lifschitz transformation is a negation-free (possibly infinite)
definite program. Stable models for logic programs may now be defined as follows.

Definition A.2 Let II be a normal program. M is a stable model of Il iff M is the unique
minimal model of IM, ]

To capture the semantics of stable models into the framework of annotated logic pro-
grams we will take the view of negation that Kifer and Subrahmanian refer to as ontological
negation. Given an annotated interpretation 4, wesay that I4 |= notA: aif [4 A : a,
that is, (A,a) & 4.

Definition A.3 (cf. [GL88]) Let Il 4 be an annotated normal logic program and let I4 be
an annotated interpretation.

Ha4={(A:a« By :B1,...,Bn:Bu)l(A: 0~ By :B1,..., By : Bn, notD; : 61,..., notDy, : 6,)
is a ground instance of a clause in II4 and Vi, 1 < i < m, I4 = notD;: §;}

IT 4’4 is the annotated Gelfond-Lifschitz transformation of Il 4 with respect to I4. ]

"Similar extensions can be done using other semantics such as the wellfounded semantics [VRSs88].

14

[ - e e e o ]




Definition A.4 (cf. [GL88])

Let IT4 be an annotated normal program. M4 is an annotated stable model of II 4 iff

M 4 is the least annotated minimal model of I 44, n
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