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Abstract

Small changes in container shape or in contact
angle can give rise to large shifts of liquid in a
microgravity environment. We describe some of
our mathematical results that predict such behavior
and that form the basis for physical experiments in
space. The results include cases of discontinuous
dependence on data and symmetry-breaking type of
behavior.

Introduction

In reduced gravity, fluids can behave in striking
ways that are different from what occurs in common
experience in a terrestrial environment. Discussed
here are some of the results underlying such be-
havior that arise out of our mathematical studies,
along with observations from earlier physical exper-
iments in microgravity environments. The results
are described in connection with two planned exper-
imental investigations, designed jointly with Mark
Weislogel of NASA Lewis Research Center, that are
scheduled to be carried out in the glovebox facility
on space station Mir this year.

Formulation

Our mathematical work is based on the classi-
cal Young-Laplace-Gauss formulation for an equilib-
rium free surface of liquid partly filling a container
or otherwise in contact with solid support surfaces.
In this formulation, when gravity is absent or can
be neglected, which is the situation we discuss here,
the mechanical energy E of the system is given by

E =0(S— S*cos7). (1)

The interfacial liquid-vapor surface tension param-
eter o and the relative adhesion coefficient cos<y of
the liquid with the container walls are assumed to
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depend only on the material properties, which are
taken here to be homogeneous (the same value of
cos7y on all parts of the container, as is the case
for the experiments). S and S™ are, respectively,
the areas of the liquid-vapor free surface and of the
solid-liquid interface.

Equilibrium configurations are those providing
stationary values of the energy functional E sub-
ject to the condition of fixed liquid volume.}! The
equilibrium liquid-vapor free surfaces so determined
are surfaces of constant mean curvature meeting
the bounding walls with contact angle v. We con-
sider here values of the contact angle 0 < v < 7.
Of particular interest in our mathematical studies
are situations in which small changes in contact an-
gle or geometry can result in large changes, possibly
discontinuous, of the equilibrium fluid configuration.

The wedge — discontinuous behavior

The first example of discontinuous behavior
that we uncovered arose in our study of the problem
of a free surface in a wedge (Fig. 1).2 Consider a
cylindrical container, with cross section €2, closed
at one end and partly filled with liquid forming a
free surface S. Suppose the cross-section boundary
has an isolated corner P of opening angle 2¢,
0 < 2a < 7, forming a local “wedge domain” at P.
One seeks a free surface S, as shown in Fig. 1, that
is (locally) represented by a single-valued function
over some neighborhood of P in 2, and which meets
the walls that abut at P in a prescribed angle «.
Our results state that for such a surface to ezist the
condition |’y - %I < a must hold.}23

Discontinuous change in behavior at |'y - %I =
o can be illustrated directly for the container in
Fig. 2, for which the boundary of the section 2 is
completed by joining smoothly to a wedge a circular
arc with center on the angle bisector. Over the
entire range |y —%| < a an explicit closed-form
solution can be given for &, which, for sufficient
specified liquid volume, covers the base entirely. It
is a portion of a hemispherical surface that meets




Figure 1. Wedge cénﬁgura.tion.

the walls with angle 4. Thus the free surface
height is bounded uniformly at P over this range.
However, for I'y— %I > a such a surface cannot
exist, and the liquid will necessarily move to the
corner and uncover the base, rising arbitrarily high
at the vertex if v < § (or falling arbitrarily low if
v > %), regardless of liquid volume. The surface
behavior changes discontinuously. when ['y -3~
crosses the value zero. i h

The discontinuous change in behavior has
been corroborated for certain cases in micrograv-
ity experiments**5 and will be investigated in one
of the vessels making up our second experiment.
The vessel is similar to that in Fig. 2 except that Q
is altered somewhat, to permit the vertex angle 2¢
to be varied during the experiment. This will allow
the cases of advancing and receding liquid motion
to be studied. Discontinuous behavior in the wedge
also enters into other parts of the second experi-
ment, which are discussed in detail in that section

Figure 2. Wedge container.

below. First we turn to a different phenomenon,
the one forming the basis of our first experiment on
Mir.

First experiment

1

The first experiment, scheduled for the current
Mir 21/NASA 2 Mission, concerns the behavior of
liquid in “exotic” containers. These containers,
which are rotationally symmetric, have the remark-
able property that for given contact angle and liquid
volume, there is an infinity (in fact, an entire contin-
uum) of distinct rotationally symmetric equilibrium
configurations, all of which have the same energy.57
The special case of contact angle /2 and zero grav-
ity is studied in Ref. 6, where the authors derive a
closed form solution; the general case is studied in
Refs. 7 and 8. ‘

Fig. 3 depicts the axial section of an exotic
container (for the case v = 80° and zero gravity).
The toroidal-like bulge of such a container is given
by the solution of a nested set of ordinary differ-
ential equations.”® This bulge forms the “exotic”
portion; it is joined to circular cylindrical extensions
with disk ends for the container shown in Fig. 3.
The dashed curves in Fig. 3 depict members of the
continuum of rotationally symmetric equilibrium in-
terfaces having the same contact angle and energy
and enclosing the same volume of liquid with the
base. Such containers can be constructed for any
contact angle. They can be constructed even for
non-zero gravity, but only under microgravity con-

Figure 3. Axial section of an exotic con-
tainer for contact angle 80° and zero gravity, de-
picting meridians (dashed curves) of members of the
rotationally-symmetric equilibrium free surface con-
tinuum. All surfaces have the same contact angle
and energy and enclose the same volume of liquid
with the bottom of the container.



ditions are they of sufficiently large scale to permit
accurate physical experiment and observation.

All of the rotationally-symmetric equilibrium
configurations turn out to be unstable, and it can
be shown that particular deformations that are
not rotationally symmetric yield configurations with
lower energy.”® For the container in Fig. 3, for which
the ends are sufficiently far apart to exclude a stable
columnar liquid bridge between them, it is possible
to demonstrate that any interface that minimizes
energy cannot be rotationally symmetric. This is in
notable contrast with what happens in the familiar
case of the right circular cylinder, for which the
symmetric interface is stable, and no asymmetric
ones can appear.!?

Numerical computations, which make use of the
Surface Evolver software package,!! were carried out
to indicate what stable configurations there might
be.!?13 The Surface Evolver seeks local minima of
a discretized energy functional, such as (1), subject
to prescribed constraints, by employing gradient-
descent type methods. Surfaces are approximated
by a piecewise-linear triangulation, the form of
which can be controlled to various degrees with
commands available to the user. Under control
of the user, the program adjusts the triangulated
surface, step-by-step, in an attempt to decrease the
energy. From the numerical and graphical output
provided by the program, a user interprets whether
a local minimum has been found.

Computed interfaces for the case v = 80° and
zero gravity are shown in Figs. 4 and 5. The up-
per configuration is the local minimum with lowest
energy found numerically. The lower figure shows
a calculated apparent local minimum configuration
with larger energy, but still less than that for the ro-
tationally symmetric continuum. The value v = 80°
corresponds to materials used in preliminary drop
tower experiments!¢ and to one set of materials used
in our Interface Configuration Experiment (ICE),
joint with M. Weislogel, that was carried out in
the glovebox on the NASA USML-1 Space Shuttle
Mission. In these experiments a configuration very
much like the one shown in Fig. 4 was observed.
In the space experiment, where there was opportu-
nity to investigate stability, the configuration was
found to be stable even to large disturbances. In
the present Mir 21/NASA 2 experiment an attempt
is made to obtain other equilibria, like the numeri-
cally computed one in Fig. 5, and to examine their
stability.

Figure 4. View of calculated energy-minimizing
equilibrium interface in an exotic container. Zero

gravity, v = 80°.

Figure 5. View of calculated larger-energy equi-
librium interface in an exotic container. Zero grav-
ity, v = 80°.

Second experiment

The second experiment, the Angular Liquid
Bridge investigation scheduled for the Mir23/
NASA 4 Mission, is designed to explore more gen-
eral liquid configurations in a wedge than the one
shown in Fig. 1. Impetus for this experiment arises
largely from recent doctoral dissertations of two
students associated with our study, John McCuan!®
and Lianmin Zhou,® from whose contrasting results
striking inferences can be drawn.

Liquid bridge in a wedge

In his work, McCuan found conditions under
which an equilibrium tubular bridge in a wedge
domain (Fig. 6) would be possible in zero gravity,
and he gave the shape such a bridge might take.
As before, consider a wedge domain with opening
angle 2a, 0 < 2ax < 7. The results McCuan proved
contain the following (if the contact angles on the
two sides of the wedge are different, the results hold
if v on the left of the inequalities is their average):

Ify > w/2+a, a bridge in the shape of a portion
of a sphere making contact angle v with the walls
exists.

If v £ ©/2 + o, no physically realizable bridge
s possible.

Note that these results complement, in respects,

the earlier ones given for the wedge. It has not yet
been proved whether or not other shape bridges may




Figure 6. Liquid bridge in a wedge.

be possible when v > 7 /2 + ¢, or whether the spher- -

ical bridges are stable (provide a local minimum for
the energy). However, our numerical results and
those of H. Mittelmann (private communication),
obtained using the Surface Evolver software pack-
age, indicate that the spherical bridges are stable,
at least for the representative cases we considered.
Also, no bridge shapes other than the sphere have
been found numerically. Note that McCuan’s results
imply that a bridge is possible only for v > w/2.
A spherical liquid bridge is shown in Fig. 9 for the
case a = 25°, v = 130°.

Bridge between parallel plates — discontinuous
behavior

The above results for liquid bridges in a wedge
compare in a remarkable way with those for bridges
between parallel plates (Fig. 7). This latter problem
was studied initially from a rigorous mathematical
point of view by Athanassenas'” and by Vogel'®, and
later using a more physical approach by Langbein.!®
(Note that in these papers, as is the case in Ref. 16
and here, the boundary conditions at the plates are
prescribed contact angle, which arises from the vari-
ational condition for (1). For fixed end conditions,
as considered in much of the materials science lit-
erature, the behavior of solutions is different.) In
her doctoral dissertation, Zhou obtained definitive
mathematical results that imply the following:

For any value of the contact angle v and for
any liquid volume V greater than or equal to a
critical value Vo(7), a unique stable liquid bridge
exists between two parallel plates of given separation.

It is known that any equilibrium bridge must be

rotationally symmetric,'820 and that its free surface
is a Delaunay surface.!6:2%:3 For v > #/2 and for a

Figure 7. Bridge between parallel plates.

specific liquid volume V;(h) depending on the plate
spacing h, the free surface is simply a portion of the
surface of a sphere. For other values of the volume
the Delaunay surface is different from a sphere.

These results, when combined with the results
for the wedge, imply that a bridge between parallel
plates may change its configuration and position
markedly when one of the plates is tilted, even by
a small amount, or it even may cease to exist as
a bridge altogether; a liguid bridge between parallel
plates can behave discontinuously with respect to
tilting of the plates. In stability studies such as in
Refs. 16, 18, and 19, limited to the parallel plate
geometry, this liquid bridge instability with respect
to plate tilt is not observed.

As a specific example to illustrate the possibil-
ities, consider the case v > w/2 and a bridge with
volume V; between parallel plates of spacing h, so
that the bridge is spherical. Suppose the top plate
is tilted clockwise by an angle 2o < 2y — w about
a pivot line in the plate that is a distance Jhtana
from the symmetry axis of the bridge. Then this
particular bridge remains an equilibrium one for the
new tilted plate configuration, without any change
in the radius of the sphere or in the bridge’s posi-
tion on the lower plate. However, a bridge with any
volume V different from V; (and with the same con-
tact angle) would change both position and shape
discontinuously in altering to a spherical bridge in
conjunction with the tilt, shifting to the right for
V < V; or to the left for V > V.

For v < w/2 an initial bridge would always
behave discontinuously with respect to the tilt,
regardless of volume, as it cannot persist as a bridge.
It has to be expected that the liquid will jump to
the edge of the plates in this case. If the tilted
plates touch forming a wedge, then configurations
described in the following section may form. The
above phenomena are ones we wish to study in our
forthcoming experiment.

Other configurations

When the conditions for a bridge in a wedge

Figure 8. Edge blob in a wedge.



are not satisfied, liquid may assume a position as a
blob in the shape of a portion of a sphere in contact
with the edge, see Fig. 8. The condition for such a
configuration to be possible is that |y — 7/2| < a.
(Recall we consider here only the case 0 < 2 < 7.)
Although the edge blobs have not been studied with
the same mathematical completeness as have the
bridges, they have been noted in Refs. 22 and 23
and for some examples studied numerically. Our
numerical computations indicate that, as for the
angular bridges, the spherical edge blobs are stable,
and as yet we have found no other edge blob shapes
numerically.

In our earlier work, discussed above, we have
shown that if &+ < 7/2, then fluid cannot remain
as a blob in the edge but must spread arbitrarily far
along the edge. See also Ref. 23 and the references
there for a discussion of stability of liquid columns
in a wedge.

Anticipated experiment behavior

The liquid behavior one might expect in a
physical experiment in space, based on the Laplace-
Young-Gauss formulation, is summarized in Fig. 9.
This figure illustrates the information discussed
above, based in part on mathematically rigorous
results and, where these are not available, on com-
putational evidence for particular cases. The nu-
merical solutions depicted in Fig. 9 were obtained
using the Surface Evolver software package. The
computations were carried out with initial approxi-
mations and transitions between configurations sim-
ilar to those in which the experiment is designed to
proceed, thereby enhancing appropriateness of the
numerically based predictions on uniqueness and
stability.

The upper two rows of Fig. 9 depict the non-
wetting case v > w/2: A liquid bridge between
parallel plates is convex (part of a sphere for a spe-
cific fluid volume). Spherical tubular bridges and
edge blobs exist for tilted plates, for the range of
values indicated. Edge spread is not possible. For
fixed v > w/2, transition from tubular bridges to
edge blobs occurs as « increases through the value
¥y—7/2.

For the wetting case v < 7/2, a liquid bridge
between parallel plates is concave. A tubular bridge
between tilted plates is not possible, but the (spher-
ical) edge blob and edge spread are. For fixed
7 < w/2, the transition from edge blob to un-
bounded edge spread occurs as o decreases through

the value 7/2 — 4. Computed edge blobs are shown
(from different viewing perspectives) for the case
a = 25° « = 100° in the second row and for
a = 20°, v = 75° in the bottom row.

The planned experiment will explore the tran-
sition between the configurations for a nonwetting
and for a wetting fluid. As discussed above, when
initially parallel plates are tilted, the fluid is pre-
dicted to behave discontinuously in general, the ex-
ception being the special case of a spherical bridge
and a particular pivot line. The other transitions,
horizontally across the second and fourth rows of
Fig. 9 as o changes value, are gradual, as can be
demonstrated by the explicit spherical solutions.

Concluding remarks

We have described fluid behavior predicted
mathematically and computationally for the current
investigation on the Mir 21/NASA 2 Mission and
the forthcoming investigation on the Mir 23/NASA
4 Mission. The predictions, which include discontin-
uous behavior, are based on the idealized classical
Young-Laplace-Gauss formulation. In the experi-
ments there will be an opportunity to check the
predictions against physical behavior and to ob-
serve the effects of hysteresis and other phenomena
not included in the classical formulation.
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