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1. GRANULAR FLOWS OF NEARLY ELASTIC SPHERES DOWN
INCLINES: NUMERICAL SOLUTIONS

In this chapter, we focus attention on unconfined, gravity driven
granular flows of nearly elastic, identical spheres down bumpy inclines. We
do so in order to develop a numerical solution technique that will overcome
the difficulties associated with the ill-defined "tops" of these flows. Although
the constitutive theory and boundary conditions for nearly elastic particles are
not as complex as those that we will develop for highly inelastic particles, the
numerical problems associated with flows that extend without bound above
the incline are common to assemblies of both nearly elastic and highly
inelastic particles. It is therefore our intention first to resolve these problems
in the context of the simpler theory.

We will employ the constitutive relations of Jenkins and Richman
[1985] and boundary conditions of Richman [1988]. We solve the full
equations numerically, and compare the results to those obtained by Richman
and Marciniec [1990], who obtained approximate closed form solutions by
replacing the solid fraction by its depth averaged value wherever it occurred
in the balance equations. In addition, we parameterize the results to facilitate
qualitative comparisons with recent experimental studies (Johnson et. al.
[1990], for example).

1.1 The Boundary Value Problem

Here we consider steady, fully developed granular flows down bumpy
inclines in which the mean velocity is parallel to the flat part of the bumpy
incline, and in which spatial variations of the mean fields occur only in the
direction perpendicular to that of the mean flow.

We employ a Cartesian coordinate system in which x; points in the
direction of flow velocity u,, and x, defines the direction upon which the
mean fields depend and measures perpendicular distance from the incline.
The flows are infinite in the x,- and xj-directions. The vertical acceleration
due to gravity is g, and the angle between the incline and the horizontal is ¢.
For purposes of nondimensionalization, we introduce the characteristic
velocity a. The dimensionless fields of solid fraction v, velocity u=u,/a, and
the measure w?=T/a? of granular temperature depend only on the
dimensionless coordinate Y=x,/oc.

In these flows, the balance of mass and the x3-component of the balance
of momentum are identically satisfied. If S=-P;,/(p,a’) and P=P,/p,a? are the
dimensionless counterparts of the x,-x, and x,-x, components P;, and P,, of
the pressure tensor, then the x;-component of the momentum equation is

S = %vsin(p , (1)




where a prime denotes differentiation with respect to Y, and the x,-
component of the momentum equation is

P = gvc:os¢> . (2

If g=-Q,/p,2% and energy dissipation T'=cy/ ppa® are the dimensionless
counterparts to the x,-component Q, of the energy flux and the energy
. dissipation v, then the balance of energy reduces to

qg+Su'-T=0 . (3)

It remains to express the constitutive relations in dimensionless form. Here
and in what follows we take a’=ag.

Here we employ the constitutive theory of Jenkins and Richman [1985].
The isotropic piece of the pressure tensor gives,

P = 4vGFw? , 4
where G=v(2-v)/2(1-v)? and F=1+1/4G, and the deviatoric piece gives,

2EPu’

T 5yzFw ’ ©)

where E=1+n(1+5/ 8G)?/12. Equation (5) can be rearranged to express the
velocity gradient u’ in terms of the ratio S/P according to

. 5{mFwS
U =""5rp

(6)

The constitutive relations for q and T are,

2MPw’
q = "[7_'5 F ’ (7)

where M=1+9r(1+5/12G)?/32, and

B 6(1-e)Pw
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Following Rlchman and Marciniec {1990], we employ equations (7), (6), and (8)
to eliminate q, v/, and T from equation (3), and differentiate equation (4) with
respect to Y to write v’ in terms of P’ and w” wherever it appears. The energy
equation can then be written in terms of w and its derivatives:

Wl t P| W' t 2 2
;V—+[(1-2h)§]w +4h(x) -R2=0 ©)
where A? is defined by
1 5rF? §?
22 =5M [6(l-e) - TET’Z_] , (10)
and 2h is the function of solid fraction defined by
-d[In(M/F)l/dv
2h= 11
dln(vGE)l/dv 1

The quantity A? is a local measure of the difference between the rate at which
energy is dissipated by inelastic collisions and the rate at which energy is
supplied to the flow by gravity.

The conditions at the free surface reflect the facts that normal stress,
shear stress, and energy flux vanish there:

P=0 and S=0 |, 12)
and

w=0 . (13)

According to Richman and Marciniec [1990], the conditions at the bumpy base
determine the slip velocity v=-u(Y=0) according to,

v xS
w=\25f (14)

in which the dependence of f on boundary geometry and solid fraction is
given by,




50 .
1-537%1;—3(1 +%)31n26 56F

— + ,
212(1-cos8)csc?6-cosp] 2 °oE (15)
where A=r(1+5/8G)/12+/2; and the temperature gradient according to,
Wl
w = (16)

in which the dependence of b on boundary geometry and solid fraction is
given by,

2
b= El—gﬁ[g% f- 2(1-ew)(1-cose)csc20] . 17)

The quantity b is the dimensionless difference between the slip work done by
the boundary, and the collisional dissipation at the boundary. The boundary
supplies fluctuation energy to the flow when b is positive and absorbs
fluctuation energy when b is negative.

1.2 Numerical Solution Procedure

In what follows, we take the characteristic velocity a=(cg)!/2. Because the
velocity has been eliminated from the energy equation and the stress ratio
S/P is equal to tan¢, equations (2) for P(Y), (9) for w(Y), and the constitutive
equation (4) for P are uncoupled from equations (1) for S(Y), and (6) for u(Y).
Consequently, for fixed values of e, e,, 1, A, and ¢, equations (2), (9), and (4)
determine the functions P(Y), w(Y), and v(Y) to within three constants of
integration. These three constants and the depth of flow Y=f are determined
by the second of the stress free conditions (12) at the free surface, energy flux
conditions (13) and (16) at the free surface and at the base, and by prescribing
the mass hold-up m, defined by the integral,

B
m, = [v(Y)dyY (18)
0

With v(Y) known, equation (1) may be integrated to determine S(Y) to within
a constant of integration that is fixed by the first of stress conditions (12).
Alternatively, with P(Y) known, S(Y) is given simply by the product P(Y)tang.
Independent of the variation S(Y) but with v(Y) and w(Y) known, equation (6)
may be integrated to determine u(Y) to within a constant that is fixed by




momentum flux condition (14). The corresponding mass flow rate in may
then be calculated according to its definition,

8
m = j viVu(y)dy . (19)
0

We employ a fourth order Runge-Kutta technique to integrate
equations (2), (9), and (4) from the free surface, where both P and w' vanish,
but where the value W of w is not known. In order to parameritize the
problem by m,, we guess at the value of W, integrate the equations from the
free surface to the depth at which energy flux condition (16) is satisfied,
calculate m, according to its definition (18), and iterate on W until m, is equal
to its prescribed value.

To carry out the integrations, in equation (9), we employ equations (2)
and (4) to write the ratio P'/P as cos¢/(1+4G)w2. Whenever necessary, we
invert equation (4) to calculate the value of v corresponding to known values
of P and w. However, according to constitutive relation (4), v must be equal to
zero if P vanishes where w does not. In particular, v must be equal to zero at
the free surface. Because the w' is also equal to zero there, equations (2), (4)
and (9) demonstrate that P', v, and w" each vanish at the free surface.
Integrations initiated from the top of the flow therefore yield no spatial
variations in P, w, and v. This indicates that the theory predicts flows that are
infinitely deep and that P, w and v approach their free surface values
asymptotically from the base. To overcome this difficulty, we set v at the free
surface equal to 10, which is equivalent to relaxing very slightly the normal
stress condition there, and allows the integrations to proceed away from zero.
We have also initiated the integrations with several other values of v
between 10° and 107, and in each case obtained results that were
indistinguishable from those based on v=10%.

For any value of W, the integrations are concluded when the basal
energy flux condition (16) is satisfied. Interestingly, condition (16) may be
satisfied at more than one location, and therefore there may be more than
one steady, fully developed, solution for that choice of W. If this condition is
not satisfied within 800 particle diameters from where the integrations were
initiated, then we conclude that no steady, fully developed solution exists for
the value of W chosen. If this condition is satisfied, then P(Y), w(Y), and v(Y)
are completely determined, and equations (1) and (6) may be integrated
numerically to determine S(Y) and u(Y).




1.3 Results and Discussion

In Figure 1.1 we show the variations of in with W between 0 and 3 for
e=.8, e,=.95,r=1/2, and A=-1421/2 at inclinations ¢ of 19.00°, 20.04°, 20.70°, 21.00°,
and 21.50° obtained numerically. The numerical solution predicts steady,
fully developed flows also occur at these inclinations when W is greater than
3. However, the solid fraction in these flows is everywhere less than .02. The
theory predicts that when W is extremely small (<.02), the flows are
unrealistically dense. In fact, the lowest value of W on each curve shown in
Figure 1.1 corresponds to the minimum value at which the solid fraction
everywhere within the flow is less than .65. As W increases from its
minimum value, although the flow rates do not vary monotonically, the
flows become monotonically more dilute.

In Figure 1.2 we show the variations of in with W fof e=95, e,=.8,
r=1/2, and A=-1+21/2 at inclinations ¢ of 11.56°, 11.80°, 12.00°, 12.20°, and 12.90°
obtained numerically. Corresponding to each inclination is a finite

maximum value of W at which m becomes unbounded. When ¢=12.90°, as
W increases from its minimum wvalue at which the solid fraction everywhere
within the flow is less than .65 to its maximum value, the flows become
increasingly more dilute. At the remaining inclinations, two flows at
different flow rates are physically possible for fixed values of W near its
minimum. As W increases from its minimum value, the flow at the higher
flow rate becomes more dense until, at a value of W that is less than its
maximum, the solid fraction somewhere in the flow reaches .65. The flow at
the lower flow rate becomes more dilute as W increases to its maximum

value.
To each value of W for which the numerical solution predicts that a

steady, fully developed flow occurs, there corresponds a mass hold-up m, that
may be calculated according to its definition (18). In addition to in and m,, the

parameters that measure the overall character of the flows, such as the depth
of flow B, the depth-averaged solid fraction,
1f '
v=p [v(ndyY (20)
0
and the depth-averaged velocity,

B
a E% j u(Y)dY (20)
0

may also be calculated.




Because the numerical integrations in the Runge-Kutta solutions are
initiated from a small value of v, to each parameter set (e, e,, 1, A, ¢, and W),
there corresponds a region at the top of the flow in which the solid fraction is
essentially zero and the variations of the other mean fields are negligible.
However, the depth of this region is as arbitrary as the choice of v(Y=8). In
order to make the numerical determination of the depth B more precise, we
take it as the distance from the incline to the point Y below which 99% of the
mass m, is contained. In each figure in this chapter, we have calculated all
the numerical solutions' depth-averaged values based on this new definition
of B.

In Figure 1.3, for example, we eliminate W and show as a solid curve

the variation of m with m, when ¢=20.70° for the values e=.8, e,=.95, 1=1/2,
and A=-1+21/2 taken from the numerical solutions in Figure 1.1. In Figures

1.4, 1.5, and 1.6 we show as solid lines the corresponding variations of v , B,

and @i. Also shown in Figures 1.3, 1.4, 1.5, and 1.6, as dashed curves are the
corresponding variations predicted by the approximate solution obtained by
Richman and Marciniec [1990]. In either case, we stop the lines whenever the
solid fraction exceeds .65 anywhere in the flow. The most striking feature of
the curves in Figures 1.1 and 1.3 is that they demonstrate that there are flow
rates at which two very different flows can occur.

For convenience, in each of these figures we have labeled points a, b, c,

and d on the numerical solid lines with respective flow rates in=10.0, 17.8,
50.0, and 134.0. Whenever two solutions exist for the same flow rate, the
second, more massive solution (i.e. higher mass hold-up, m,) is distinguished
from the first by a primed label. For example, there exists two numerical

solutions at n=17.8. The less massive one (point b) at m,=1.7 and the more
massive (point b') at m;=5.4. In a similar manner, we label corresponding
points on the approximate dashed lines with greek letters «, B, v, and 8. The

values of in, m,, V, B, and @1 associated with each point labeled in Figures 1.3
through 1.6 are summarized in Table 1.1.




Table 1.1 Points in Figures 1.3-1.6

Point | m, m v B u
1.25 10.00 .06 20.07 | 10.21
1.67 17.80 .08 20.86 | 13.26
5.42 17.80 .60 8.94 3.23
281 50.00 a2 22.58 | 20.56
5.88 50.00 A48 12.07 | 8.42
555 | 133.94 28 19.51 | 23.72
1.43 10.00 13 10.68 8.00
1.85 17.80 14 12.99 | 10.80
5.56 17.80 .60 9.32 3.22
2.88 50.00 16 18.58 | 18.60
6.30 50.00 50 1265 | 7.82
429 | 133.94 16 26.36 | 31.20
7.77 | 133.94 .45 17.33 | 16.40

o AR R 2|0 o

For the case ¢=20.70° shown in Figures 1.1 and 1.3, the numerical
solution predicts that there are two flows possible for fixed flow rates between
the maximum 134.0 (point d) and 17.8 (points b and b'); the less massive flow
is more dilute, faster, and more thermalized than its more massive

counterpart. As in decreases in this range, the flow at the higher mass hold-

up becomes more dense, slower, and less thermalized, until at m=17.8 the
solid fraction within the flow exceeds .65 and we assume it can no longer be

sheared. As in decreases from its maximum value to 1, the flow at the lower
mass hold-up becomes more dilute, slower, and more thermalized.
Quantitatively similar observations may be made for the other inclinations
shown in Figure 1.1.

In Figure 1.7 we show as a solid curve the variation of in with m, when
$=12.20° for the values e=.95, e,=.8, r=1/2, and A=-1+21/2 taken from_ the
numerical solutions in Figure 1.2, and the same approximate variation as a
dashed curve. Figures 1.8, 1.9, and 1.10 show as solid curves (or dashed
curves) the corresponding variations of v, B, and @ predicted by the numerical
(or approximate) solution. Again, the most striking feature of the curves in
Figure 1.7 is that it demonstrates that there are flow rates at which two very

different flows can occur. A
In these figures we label points a, b, ¢, and d on the numerical solid

lines and the corresponding points o, §, o, v, and & on the approximate dashed

lines, whose respective flow rates are 100, 50, 20, and 10.6. The values of in,
m, v, \beta, and @i associated with each point labeled in Figures 1.7 through

10




1.10 are summarized in Table 1.2. In this case, the numerical solution predicts
two steady, fully developed flows for fixed flow rates between the minimum
10.6 (point d) and 56.7. Of the two, the less massive is more dilute, faster, and

more thermalized than its more massive counterpart. As in increases from
10.6 the less massive flow becomes more dilute, faster, and more thermalized.
The more massive flow becomes more dense, faster, and only slightly less

thermalized, until at n=56.7 the solid fraction somewhere within the flow
exceeds .65. Qualitatively similar observations may be made for the other
inclinations shown in Figure 1.2.

Table 1.2 Points in Figures 1.7-1.10
Point {| m, m v B u
a 430 | 10000 | .06 73.64 | 33.05
b 3.38 | 50.00 .07 50.50 | 21.03
b’ 8.89 | 50.00 38 23.11 | 747
C 2.55 | 20.00 .09 27.53 | 10.94
c' 4.65 20.00 29 15.57 5.56
d 248 | 10.58 17 14.60 | 5.69
o 437 [100.00| .09 47.98 | 31.06
p 3.37 50.00 .10 33.57 | 19.71
' 9.79 | 50.00 49 19.82 | 5.89
Y 2.45 | 20.00 12 20.10 | 10.52
Y 5.70 | 20.00 44 13.09 | 4.05
0 2.02 | 10.58 15 1355 | 6.56
3’ 3.74 | 10.58 .38 9.87 3.27

According to Figures 1.3 and 1.7, for those flow rates at which steady,
fully developed flows are predicted by both the numerical and approximate
solutions, the values of m, predicted by the two agree quite well. However,
according to Figure 1.3, there can be a considerable discrepancy between. the
two predictions concerning the range of flow rates within which steady flows
are possible.

In Figures 1.11, 1.12, and 1.13 we plot as solid curves the numerical
variations of v, w, and u with Y for the case ¢=20.70°, e=.8, e,=.95, r=1/2, and

A=-1+21/2 when m=>50. In Figures 1.14, 1.15, and 1.16 we do the same for the
case ¢=12.20°, e=.95, e,=.8, r=1/2, and A=-1+21/2, Shown as dashed lines are the
corresponding approximate variations. As demonstrated in Figures 1.3 and
1.7, two steady, fully developed flows are possible in both cases. The light
curves correspond to the less massive of the two flows and the dark lines
correspond to the more massive of the two. In the first case (shown in shown
in Figures 1.11, 1.12, and 1.13), the mass hold-ups for the two numerical

11




solutions are m,=2.81 (point c in Figure 1.3) and 5.88 (point ¢' in Figure 1.3),
and for the two approximate solutions are m,=2.88 (point y on Figure 1.3) and
6.30 (point ¥ on Figure 1.3).. In the second case (shown in shown in Figures
1.14, 1.15, and 1.16), the numerical values are m;=3.38 (point b in Figure 1.7)
and 8.89 (point b’ in Figure 1.3), and the approximate values are m,=3.37
(point B on Figure 1.7) and 9.79 (point B' on Figure 1.7).

Figures 1.11 and 1.14 demonstrate that the approximate solid fraction
profiles reach zero at finite distances from the base, whereas the exact profiles
vanish only as the distance form the base becomes unbounded. The
approximate solutions corresponding to the dilute and dense flows shown in
Figures 1.11, 1.12, and 1.13, for example, predict depths 18.58 and 12.65 particles
diameters, respectively. Although the corresponding numerical solutions
include no such predictions, they do demonstrate that 95.2 percent of the
mass of the dilute flow and 99.99 percent of the mass of the dense flow are
contained within the depths predicted by the approximate analysis. Similarly,
the approximate dilute and dense profiles shown in Figures 1.14, 1.15, 1.16
have depths of 33.6 and 19.8 particle diameters respectively, while the
numerical solutions contain 93.3 and 95.5 percent of the total mass of the
corresponding flows within these depths. Consequently, although the exact
profiles of 1w and u extend indefinitely above the incline whereas their
approximate counterparts end abruptly, this discrepancy is not serious. In
order to emphasize this fact, we have indicated the locations at which v=.01 by
solid dots on the numerically obtained profiles of u and w shown in Figures
1.12,1.13, 1.15, and 1.16.

The dependence of mass flow rate on mass hold-up shown in Figures
1.3 and 1.7 are not typical of those made by the theory. For the same values of
r (=1/2) and A (=-1+21/2), quantitatively different possibilities are shown in
Figure 1.17 when 1e=0.91, e,,=.8 and ¢=15.7". We have chosen e=91 and e,=.8
to agree with values reported by Johnson et. al. [1990], and have chosen a
relatively bumpy boundary (r=1/2 and A=-1+21/2) to replace their course
sandpaper. Shown in Figures 1.18, 1.19, and 1.20 are the corresponding

variations of V, B, and &t with m;. In these figures we label points a, b, and ¢ on
the solid numerical lines whose respective flow rates are 100, 50, and 10.
Similarly, we label corresponding points on the dashed approximate lines

with greek letters o, B, and y. The values of in, m,, v, B, and @ associated with
each point labeled in Figures 1.17 through 1.20 are summarized in Table 1.3.

12




Table 1.3 Points in Figures 1.17-1.20
Point | m, m v B u
a 3.84 | 100.00 | .07 5741 | 3491
a' 10.00 | 100.00 35 28.71 | 13.90
b 2.92 50.00 .07 4413 | 23.26
b’ 7.35 | 50.00 .38 19.10 | 8.34
C 1.55 10.00 .07 21.09 8.73
c' 4.01 | 10.00 44 9.05 2.82
o 415 | 100.00 | .11 3747 | 3158
o' 1043 | 100.00 | .47 22.38 | 10.60
p 3.15 | 50.00 12 2721 | 1043
i} 7.97 | 50.00 47 16.87 | 6.93
Y 1.68 10.00 .14 12.42 7.33
Y 433 10.00 .50 8.65 2.53

The most striking features of the variation of in with m; shown in
Figure 1.19 are that only one steady flow is obtained at the lowest flow rates
and mass hold-ups, and that two flows are obtained at each flow rate above a
critical value. Of these two flows, the more dilute occurs at the lower mass
hold-up and travels at the higher velocity. Moreover, along each branch, the
mass flow rate is and increasing function of mass hold-up.

Interestingly, Johnson et. al. [1990] made the same observations of their

experiments. However the variations of v, §, and i that they observed along

the branches of a typical in versus m, curve were quite different from those
summarized in Figures 1.17 through 1.20. In particular, these figures indicate

that as the flow rate increases from zero along the dilute branch of the in
versus m, curve or from the critical value above which two flows are possible
along the dense branch, the depth-averaged solid fraction decreases while the
depth and depth-averaged velocity both increase. Of these trends, only the
variations of the two depths with increasing flow rates above the critical
value agree qualitatively with those observed by Johnson et. al. [1990]. In
further contrast to their experimental observations. the theory predicts that
when two flows are possible at the same flow rate, the more dilute flow is the
deeper of the two.

13



1.4 Figures
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Figure 1.1:  The numerical variations of in with W=w(Y=8) for $=19.00°,

20.04", 20.70, 21.00°, and 21.50° when e=.8, e,=.95, r=1/2, and
A=-1+21/2,
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Figure 1.2: The numerical variations of in with W=w(Y=p) for ¢=11.56°,

11.80°, 12.00°, 12.20°, and 12.90° when e=.95, e =.8, r=1/2, and
A=-1421/2,
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Figure 1.3: The numerical (solid) and approximate (dashed) variations of in
with m, for ¢=20.70° when e=.8, e =95, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.1.
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Figure 1.4: The numerical (solid) and approximate (dashed)variations of v
with m, for $=20.70° when e=.38, e,=.95, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.1.
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Figure 1.5: The numerical (solid) and approximate (dashed)variations of B
with m, for $=20.70° when e=.38, e ,=.95, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.1.
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Figure 1.6: The numerical (solid) and approximate (dashed)variations of @

with m, for $=20.70° when e=.38, e ,=.95, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.1.
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Figure 1.7: The numerical (solid) and approximate (dashed) variations of in
with m, for ¢=12.20° when e=.95, e =8, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.2.
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Figure 1.8: The numerical (solid) and approximate (dashed) variations of ¥
with m, for $=12.20° when e=.95, e,,=.8, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.2.
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Figure 1.9: The numerical (solid) and approximate (dashed) variations of B
with m, for ¢=12.20° when e=.95, e =.8, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.2.
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Figure 1.10: The numerical (solid) and approximate (dashed) variations of 1
with m, for $=12.20°when e=.95, e=.8, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.2.
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Figure 1.11: The numerical (dark and light solid) and approximate (dark and

light dashed) variations of v with Y for ¢=20.70° and in=50 when
e=8, e,=.95,r=1/2, and A=-1+21/2
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Figure 1.12: The numerical (dark and light solid) andapproximate (dark ahd

light dashed) variations of w with Y for ¢=20.70" and in=50
when e=.8, e,=95, r=1/2, and A=-1+21/2, Solid dots indicate
where v=.01.
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Figure 1.13: The numerical (dark and light solid) and approximate (dark and
light dashed) variations of u with Y for $=20.70" and \dot m=50

when e=8, e =95, r=1/2, and A=-1+21/2, Solid dots indicate
where v=.01.
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Figure 1.14: The numerical (dark and light solid) and approximate (dark and

light dashed) variations of v with Y for ¢=12.20° and in=50 when
e=.95, e,=.8, r=1/2, and A=-1+21/2,
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Figure 1.15: The numerical (dark and light solid) and approximate (dark and
light dashed) variations of w with Y for ¢=12.20° and \dot m=50
when e=95, e =8, r=1/2, and A=-1+2/2, Solid dots indicate

where v=.01.
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Figure 1.16: The numerical (dark and light solid) andapproximate (dark and

light dashed) wvariations of u with Y for ¢=12.20° and in=50 when
e=.95, e,~.8, r=1/2, and A=-1+2'/2, Solid dots indicate where
v=01.
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Figure 1.17: The numerical (solid) and approximate (dashed) variations of in
with m, for $=15.70" when e=.91, e,=.8, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.3.
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Figure 1.18: The numerical (solid) and approximate (dashed) variations of ¥
with m, for ¢=15.70°when e=.91, e,=.8, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.3.
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Figure 1.19: The numerical (solid) and approximate (dashed) variations of B

with m, for $=15.70° when e=.91, e =8, r=1/2, and A=-1+21/2,
Numerical values of labeled points given in Table 1.3.
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Figure 1.20: The numerical (solid) and approximate (dashed) variations of @
with m, for ¢=15.70° when e=.91, e =.8, r=1/2, and A=-1421/2,
Numerical values of labeled points given in Table 1.3.
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2. GRAVITY-DRIVEN FLOWS OF SMOOTH, INELASTIC
SPHERES DOWN BUMPY INCLINES: FORMULATION

In this section, we employ the kinetic theory for highly inelastic
spheres to analyze steady, fully developed, gravity-driven flows of identical,
smooth, highly inelastic spheres down bumpy inclines. As in the general
theory, we treat the solid fraction, mean velocity, and components of the full
second moment of fluctuation velocity as mean fields. In addition to the
balance equations for mass and momentum, we treat the balance of the full
second moment of fluctuation velocity as an equation that must be satisfied
by the mean fields. However, in order to simplify the resulting boundary
value problem, we retain fluxes of second moments in its isotropic piece only.
The constitutive relations for the stresses and and collisional source of second
moment depend explicitly on the second moment of fluctuation velocity, and
the constitutive relation for the energy flux depends on gradients of granular
temperature, solid fraction, and components of the second moment. We
obtain numerical solutions that are free of stress and energy flux at the tops of
the flows, satisfy momentum and energy balances at the bumpy base, and are
most easily parameterized in terms of the granular temperature at the tops of
the flows. To each such temperature there corresponds a value of mass hold-
up and mass flow rate. For fixed coefficients of restitution, boundary
bumpiness, and angle of inclination, we calculate the variation of mass flow
rate with mass hold-up, and for a prescribed value of mass hold-up we
calculate the profiles of solid fraction, mean velocity, normal components of
the second moment, and normal stresses.

2.1 Balance Equations and Constitutive Relations

We are concerned here with steady, fully developed, gravity-driven
flows of identical, smooth, highly inelastic spheres down bumpy inclines.
The diameter of each sphere is o, the mass density of each is Pps and the
coefficient of restitution between them is e. In what follows, e need not be
close to unity. The vertical acceleration due to gravity is g, and the angle
between the incline and the the horizontal is ¢. We introduce an x;-x,-X,
Cartesian coordinate system such that x; measures distance along the incline
parallel to the flows, and x, measures distance above the incline
perpendicular to the the flows. The flows are infinitely extended in the x;-
and x,-directions.

The mean fields of interest in these granular flows are the solid
fraction v, the only non-zero velocity component u;, the granular
temperature T, and the components A;;, A,y Agy, and A, of the deviatoric
part of the second moment of particle fluctuation velocity. Their
dimensionless counterparts v, u=u,/(cg)'/?, 1=T/og, a;;=A,;/0g, ap=A,,/cg,
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ag=Az3/0g, and a;,=A;,/cg depend on the dimensionless coordinate y=x,/c
only. Their variations with y are governed by the x;- and x,-components of
the balance of momentum, the balance of energy, and the x;-X;, X,-X,, X3-X3 and
X1-X; components of the balance of second moment.

Under these circumstances, the balance of mass is satisfied identically.
If P; are the components of the pressure tensor, then in terms of their
dimensionless counterparts py=P;/p,6g, the x;- and x,-components of the
balance of momentum are,

P =vsing , ¢))
and
Py’ =-vcosd 2)

where primes denote differentiation with respect to y. The x;-component of
the balance of momentum demonstrates that p;, does not vary with y. The
balance of energy is the isotropic part of the balance of the full second
moment of fluctuation velocity. If Q, is the x,-component of the energy flux,
I is the rate of energy dissipation due to inelastic collisions, and their
dimensionless counterparts are q=2Q,/p,(cg)*/? and y=-2T/p,c'/2g?/2, then the
balance of energy is,

q =v-2ppu . (3)

The remaining equations are obtained from the deviatoric part of the balance
of full second moment. In addition to the components Py of the pressure
tensor, these equations involve the components Qg and g of the flux and
collisional source of the deviatoric part of the second moment. If the spatial
gradients of Qijk are small compared to Xijr then, in terms of the dimensionless
source components Y;=y;/p,0' /2?2, the resulting approximate equations for
a1y, 895, and a;, are the x;,-x, deviatoric component of the balance of second
moment,

4
3PpW =" @

the x,-x, deviatoric component of the balance of second moment,

-2
3IPuW =Y ©)

and the x;-x, component of the balance of second moment,
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Ppru' =7, . (6)

The x3-x; deviatoric component of the second moment equation determines
ag,, and to within a minus sign is given by the sum of equations (4) and (5).

In what follows, we employ the constitutive theory derived by
Richman and Martin [1993]. The constitutive relation for the shear stress p;,
is given in terms of the solid fraction v, the granular temperature 1, and the
second moment component a,, by,

2
Pz = -2(1+e)vG1:[ S u'-H 9%_2] , (7)

in which G(v) is equal to v(2-v)/2(1-v)? and H(G) is equal to 2[1+5/4(1+e)G]/5.
The normal pressure p,; is given in terms of v, 1, and the deviatoric
component a;; of second moment by,

Py = 2(1+eNVGr [F +H %] , ®)

in which F(G) is equal to [1+1/2(1+e)G]. Similarly, the remaining normal
pressures p,, and p,; are given by,

Py = 2(1+eWVGt [F +H %ZZ] , | ®)

and

Pas = 2(1+e)vGr [F +H ail:ﬁ’é] . (10)

Differences between the normal stresses result from corresponding
differences between a,,, ay,, and a,;.

The energy flux q is related to gradients of 7, a,, and v according to the
relation,

-4(1+e)vGrl/2
=‘—‘an—(K'c'+Mv'+na22') , (11)

in which the coefficients x(v, e), Mv, €), and n(v, ) are given by,
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9n(1+e)(2e-1) 5 5
K ={1 * T 4(29-33¢) [ 1+ 3(1+e)2(2e-1)G][ 1+ 6(1+e)G]} : (12)
9re(l-e) d(nvG) 5
M=15-33e)  dv [ + 6(1+e)G] 4 (13)
and
2 25n(3e+1)(B+a) 1 5
=g { 1 +54(3-¢)(49-33¢) [ 1+ (1+e)(B+a)G][ 1+ 6(1+e)G]
Brt 1 5
07 =) KRR el | RRE el | 44

where p=(49-33e)[-6(1+e)/5+4(1+e)?/3]1/14(3e+1), a=[-4/5-9(1+e)/5+2(1+e)%/3],
and &=[-4/5+6(1+e)/5+4(1+e)?/21]. If gradients of a,, are ignored and e is set
equal to 1, then expression (11) reduces to the expression for the energy flux in
assemblies of nearly elastic spheres obtained by Jenkins and Richman [1985].
The remaining constitutive quantity is the collisional source of second
moment of fluctuation velocity. In it, we retain terms linear in a;;, ay,, ass, a5o,
and u'. In addition, we retain just those nonlinear terms that guarantee that,
in the tensoral form of the balance of of second moment, the collisional
contribution to the stress is multiplied only by the rate of strain. In this
manner, the isotropic piece of the source of second moment is approximated

by,

-24vG(1-e?2)1%/2
Y= > 1&1/292 i . , (15)

The corresponding result obtained by Jenkins and Richman [1985] may be
obtained by replacing (1-e?) by 2(1-e) in expression (15). The deviatoric parts of
the x;-x; and x,-x, components of the source of second moment are given in
terms of v, 1, ayy, 2,5, 215, P13, and U’ by the constitutive relations,

-24vG(1+e)(3-e)t*/? ay

m= Si/2 - Tt (Plz - Valz)u' , (16)
and
-24vG(1+e)(3-e)r2 a ,
Y2 = 5rl/2 ‘522 - (pu - vau)u ’ 17)
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where p,, is given by equation (7). Similarly, the x,-x, component of the
source of second moment is,

24vG(1+e)3/2 [ (3-e) (2-e) u' u'
o= 20E010) {nl;ez a2 _ Tegﬁ} + [(pr P) - Viag -a)ls , (18)

where p;; and p,, are given by equations (8) and (9). Constitutive relations
(16), (17), and (18) have no counterparts in the theory of Jenkins and Richman
[1985] for nearly elastic spheres.

In order to reduce the number of equations in the governing system,
we employ constitutive relation (16) to eliminate v;; from balance (4) to
obtain,

ay -5ml/2 1 u'
T = 24vG(1+e)(3-e)1[ 3Put Valz] a7 (19)

and constitutive relation (17) to eliminate v,, from balance (5) to obtain,

a_22 "51'61/ 2 1 ] _1_1_'_
T T 24vG(1+e)(3-e)1[3 Pu-Vap |77z - (20)

Equations (19) and (20) and constitutive relation (7) demonstrate that the
deviatoric components a;; and a,, are sums of terms proportional to (u')? or to
products of a;, and u'. These nonlinear terms were neglected by Jenkins and
Richman [1985]. Consequently, they predicted that, for flows of nearly elastic
spheres, the components a,;, a5, and as; all vanish. In that approximation,
the constitutive equations (8), (9), and (10) simplify and guarantee that the
normal pressures pyy, Py, and pj; are all equal.

Finally, we employ constitutive relation (18) to eliminate vy;, from
balance (6) to obtain,

a -1/%(3e-1) 5 u'
TLZ 12(3-e) [ 1+ 2(1+e)(3e-1)G ] @2z : (21)

where we have neglected terms that are cubic in u', a;,, and products of u' and
aj,. If equation (21) is employed to eliminate a;, from constitutive relation (7)
and e is set equal to 1, then the resulting expression for the shear stress is
identical to that obtained by Jenkins and Richman [1985].

39




2.2 Boundary Conditions

With appropriate conditions applied at the free surface and base of the
incline, equations (1), (2), (3), (7), (9), (11), (15), (20), and (21) determine the
variations with y of pyy, P2, q, 7, ¥, U, v, a;5, and a,,. Although the location of
the free surface is not known, the stresses and the energy flux each vanish
there; i.e.

p2=0 and pyr=0 |, (22)

~and

qg=0 . (23)

Because the stresses both vanish at the top of the flow, v may be eliminated
between equations (1) and (2) to demonstrate that py,/pyp=-tang.

If v is equal to 0 and 7 is not, then according to constitutive relation (9)
the normal stress condition at the top of the flow is automatically satisfied.
Near the top of the flow, therefore, v is small, the normal stress may be
approximated by

pn = vt +ay) , (24)

and because the ratio p;,/p,, is everywhere equal to -tang, the shear stress may
be approximated by

Pz = V(T +ay,) tanp . (25)

Furthermore, if equations (21) and (25) are employed to eliminate a;, and p;,
from constitutive relation (7), then we find that near the top of the flow, u' is
given approximately by,

24(3-e)(1 +e)('r+a22)tanq>

B/ 2172 (26)

With u' given by equation (26), the lowest order approximation of equation
(7) dictates that,

a;p, = -(t+ay) tangp (27)

and with py,, u', and a,, given by equations (25), (26), and (27), balance (20)
yields,
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ayp  -3/2+~9/4 + 6tan®y
T 2tan%

1+ (28)

For small values of v and prescribed values of T and ¢, equation (28) fixes a,,,
equations (24) and (25) fix p,, and p;,, and for prescribed values of e, equation
(26) fixes u'. As v approaches zero, so too do the stresses py, and p;, and the
velocity gradient u'. However, in the same limit the components a,, and a,,
of second moment each approach nonzero limits that depend only on the
inclination angle ¢ and the local value of =.

Of interest also are the limiting behaviors of the gradients 7', v/, a;," a5,'
and u" as v approaches zero. By differentiating approximations (24) and (28)
with respect to y, for example, we find that

,  -vcosp vt
M O @

where f(¢) is given by the right-hand-side of equation (28), and
ay' = [fg)-17 . 30

If these are employed to eliminate v' and a,,', then constitutive relation (11)
for the energy flux demonstrates that 7', and therefore v' and a,,’, each
approach zero with v. Simple differentiation of approximations (26) and (27)
with respect to y then demonstrates that both u" and a;,' approach zero in the
same manner.

At the base of the incline (i.e. y=0), the rate M at which momentum is
supplied to the flows by inelastic collisions between flow particles and the
base must balance the traction vector at the base. Furthermore, the difference
between the rate -M;u,; at which energy is supplied by slip work and the rate D
at which it is absorbed by inelastic collisions between flow particles and the
base must balance the energy flux at the base.

The transfer rates M and D depend on the geometry and dissipative
nature of the incline. Here we focus on inclines that are flat surfaces to which
identical, smooth, hemispherical particles of diameter d are randomly
attached at an average distance s apart. In order to prevent flow particles from
colliding with the flat part of the boundary, the maximum allowable value of
s/d is -1+(1+26/d)*2. When a flow particle collides with a boundary particle
the distance between their centers is 8=(c+d)/2, and the energy dissipated is
fixed by the coefficient of restitution e, between them. A measure of the
bumpiness of the boundaries is the angle 6=sin"'(d+s)/(d+c), which increases
from 0 to =/2 as the boundaries evolve from perfectly flat to extremely
bumpy.
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We employ the general expressions for M and D obtained by Richman
and Martin [1993] for assemblies of inelastic spheres that interact with bumpy
boundaries described above. The expression for M involves an unknown
factor that accounts for excluded volume and particle shielding at the
boundary. If we first employ the balance between the x,-components of M
and the traction vector to write the unknown factor in terms of p,,, ay, 7, and
6, then the balance between the x;-components of M and the traction vector
determines the slip velocity u(0) according to,

u w2l Ay, 3. §(QI-sin?) u' /2 a
T = | 1+ Fa e B SEJROL,  Enem @

where 1(8)=2[2csc?6(1-cos6)-cos8]/3. Furthermore, the energy flux at the
boundary is determined by,

23/2 EE 3 -1
q= 2{ Pyt - m(l-ew)cscze(l-cose)[ 1+ (1-7sin%) 'c"zpzz} . (32)

Conditions (22), (23), (31), and (32) are the five conditions needed to complete
the set of equations (1), (2), (3), (7), (9), (11), (15), (20), and (21). We provide a
detailed description of the solution procedure in the following section.

2.3 Solution Procedure

The shear stress constitutive relation (7), the normal stress constitutive
relation (9), and the x,-x, and x;-x, deviatoric components (20) and (21) of the
balance of second moment determine v, u', a;,, and a,, as functions of <, p,,
and p,,. In principle, these functions may be employed to eliminate v from
the momentum equations (1) and (2), v and u' from the energy equation (3) in
which y is replaced by expression (15), and v, 7, v/, and ay,' from the energy flux
constitutive equation (11). The four equations that result are first order
ordinary differential equations that determine (y), p;2(¥), P22(¥), q(y), and
therefore v(y), u'(y), a;»(y), and ay(y) to within four constants of integration.
These four constants and the dimensionless depth L (measured in particle
diameters) are determined by the shear and normal stress conditions (22), the
energy flux conditons (23) and (32), and by prescribing a nonzero value W2 of
7 at the top of the flow. The mass hold-up corresponding to this choice of W2
may be calculated according to its definition,

L
m, = Ivdy . (33)
0
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The component a;y(y) is then determined algebraically by equation (19), the
component ag,(y) is simply the sum -(a,;+ay,), and the stresses p;;(y) and paa(y)
are fixed by their constitutive relations (8) and (10). Finally, by direct
integration of u'(y), the profile u(y) may be found to within a fifth constant
that is determined by the momentum flux condition (31), and the mass flow
rate may be calculated according to its definition,

L

m = fvudy . (34)
0

Unfortunately, it is not possible in closed form to eliminate v, u', a;,,
and a,, from equations (1), (2), (3), and (11). Consequently, in the numerical
integration of these equations, at each spatial location at which <, p;,, and p,,
are known it is necessary to invert the nonlinear algebraic equations (7), (9),
(20), and (21) to determine the corresponding values of v, u', a,,, and a,,. In
order to avoid this difficulty, we actually raise the order of the system by
differentiating equations (7), (9), (20), and (21) with respect to y. In this
manner, the four resulting equations and the energy flux constitutive
relation (11) may be written in matrix form:

[CI{L} = {R} , (35)

in which the components of the five dimensional vectors {L} and {R} are:

Ly=7, L=V, Ly=ay', Ly=ay,', Ly=u"; (36)
and
R __-sing R _ veosg -n/%q vu'sing
1= 2(1+e)G ! 27 2(1+e) ’ R3 = 4(1+e)VGE1/2 7 R4 = 3 ’ R5 =0. (37)

The components of the 5x5 coefficient matrix [C], which are given explicitly in
the Appendix, depend on various combinations of the unknowns <, p;,, v,
u', a3y, and a,). The momentum equations (1) and (2), the energy equation (3)
in which vy is replaced by expression (15), and the matrix equation (35) are
eight first order equations for <, py,, Py G, v, U, 55, and a,, that may be solved
by straightforward numerical integration. The first and second rows of
equation (35) are the differentiated forms of the shear stress relation (7) and
the normal stress relation (9); the third row is the energy flux relation (11);
and the fourth and fifth rows are the differentiated forms of the x,-x,
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component (20) and the x;-x, component (21) of the balance of second
moment.

For fixed values of e, e,, 6/d, s/d, and ¢, we employ a fourth order
Runge-Kutta technique to integrate equations (1), (2), (3), and (35) from the
top of the flow, where p,,, p,,, and q vanish and < is equal to its prescribed
value W2, Because, at the top of the flow, p,, vanishes and © does not, v must
vanish there. However, we have seen in the previous section that under
these circumstances the gradients <',v', a;,', a,,', and u" also vanish.
Moreover, equations (1), (2), (3) and (15) demonstrate that when v is equal to
zero, so to are py,', Py, and q'. Integrations initiated when v=0 therefore yield
- no spatial variations in pyy, Pas, G, T, V, 212, 859, and u'. This indicates that the
theory predicts that the flows are infinitely deep and that p,y, Ps, G, T, V, 12/ 359,
and u' each approach their values at the top of the flow asymptotically from
the base. To overcome this difficulty, we follow Oyediran et. al. {1992] and set
v equal to 10 at the top of the flow, which is equivalent to relaxing very
slightly the normal stress condition there. Then with t=W?, q=0, and ay,, a;,,
u', p1o, and py, given by equations (28), (27), (26), (25), and (24), the integration
produces spatial variations as it proceeds toward the base. We have also
initiated the integrations with several other combinations of v and g between
10 and 107, and in each case obtained results that were indistinguishable
from those based on v=10- and g=0. '

For any value of W?, the depth L is the distance from the point at
which the integrations are initiated to the location at which the basal energy
flux condition (32) is satisfied. When condition (32) is satisfied, the variations
P12(Y), P2(y), Ay), (y), v(y), a12(y), ax(y), and u'(y), and the mass-hold-up are
completely determined. With the slip velocity fixed by condition (31), the
variation u(y) may then be determined by direct integration of u'(y), and the
mass flow rate is fixed by its definition (34). The process of finding solutions
is complicated only by the fact that there are a great variety of parameter
values (e, e,, 6/d, s/d, and ¢) and initial values W? for which condition (32)
can not be satisfied; under these circumstances the theory predicts that no
steady, fully-developed flows can be maintained.



3. GRAVITY-DRIVEN FLOWS OF SMOOTH, INELASTIC
SPHERES DOWN BUMPY INCLINES: RESULTS AND
DISCUSSION |

3.1 Initial Results

In this sub-section, we present a sample of the results obtained from
the solution procedure described in section 2.3 above. In two previous papers,
Richman and Marciniec [1990] and Oyediran et.al. [1992] employed a theory for
nearly elastic particles, focused much of their attention on flow particles with
e=.8, and boundaries with e,=95, 6/d=1/2, and s/d=-1+21/2, and found that
steady, fully developed flows could be maintained at inclinations roughily
between $=19° and 21.5°. In order to focus on flows more inelastic than these,
we simply double their value of (1-e) by taking e=.6, and do not alter their
values of e,, 6/d, and s/d. We find that for these more dissipative flows, the
theory for highly inelastic particles predicts that the range of inclinations for
which steady, fully developed flows may be maintained is raised to roughly
between 20° and 26°. In all that follows, we take an intermediate inclination
of $=23° near the upper limit of the range.

In the left-hand panel of Figure 3.1, we show the variations of flow rate
m with the value W of t'/2 at the top of the flow. In in the right-hand panel,
we eliminate W and show the corresponding variation of m with mass hold-
up m,. The lowest value (.158) of W shown on the curve in the left-hand
panel is the minimum value at which the solid fraction throughout the flow
is everywhere less than .65. The largest value (.990) of W shown on the curve
is the maximum value that yields a mass hold-up m, that is greater than
unity. As W decreases from its maximum to its minimum value, the flows
become less thermalized, more massive, faster, more shallow, and more
dense. The flow rate increases because both the mass and the speed increase.
For the parameters used here, there is only one flow for each flow rate.

In Figure 3.2, we plot the profiles of v, w=t"?, and u for m,=4, and
m=103.2, and W=.498. - In Figure 3.3, we plot the corresponding profiles of
kyp2=(t4ay) 2, ky'2=(t+ay,) 2, and kgg'/2=(t+ag5)1/2, and pyy, Pay, and pas. Solid
dots on the profiles indicate the location (y=13.47) below which ninety-nine
percent of the mass is contained. Within the flows, the rate at which energy
is dissipated by inelastic collisions is greater than the rate at which it is
supplied by gravity. For this reason, the boundary must supply energy to the
flow, and the energy flux must be positive at the boundary. Interestingly, in
the case shown here the gradients of t and v make positive contributions to
the energy flux at the boundary while the gradient of a,, actually makes a
negative contribution.

The left-hand panels of Figures 3.2 and 3.3 demonstrate that near the
top of the flow, the solid fraction is small, the components k,, and k;, are
nearly equal, and both are less than k;;. As y decreases from about 15 to 9.4,
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the solid fraction increases dramatically from 0 to its maximum value .39, k,,
rapidly approaches k;,, and both are greater than k;;. As y decreases from 9.4
to 0, the solid fraction gradually decreases from its maximum value to .15 at
the boundary, k;, gradually approaches ks;, and both are less than k;;. Except
near the top of the flow, where the solid fraction, velocity gradient, and
normal stresses each vanish, the variations of the differences between p;;, Pa,,
and p,;3 with depth follow from the behaviors of k;;, ky,, and ks;3. These
variations are due primarily to variations in solid fraction and have been
observed in the numerical simulations of homogeneous shearing by Walton
and Braun [1986], Campbell [1989], and Hopkins and Shen [1992].

3.2 Search for Steady, Fully Developed, Gravity-Driven Flows

Next we conduct a study to determine a range of parameters over
which steady, fully developed, gravity driven granular flows of identical,
smooth, inelastic spheres down bumpy inclines could be maintained. The
appropriate boundary value problem and the numerical solution procedure
have been described in detail in sections XXX. In what follows, we describe
the parameters relevant to the inclined flows investigated, the range of these
parameters that we included in our study, and the resulting ranges over
which steady, fully developed flows could be maintained.

3.2.1 Parameters

We are concerned with steady, fully developed, gravity driven flows of
identical, inelastic spheres down bumpy inclines. The diameter of each
sphere is o, the coefficient of restitution between them is e. and the angle
between the incline and the horizontal is ¢.

Here we focus on inclines that are flat surfaces to which identical,
smooth, hemispherical particles of diameter d are randomly attached at an
average distance s apart. Dimensionless measures of the boundary geometry
are r=6/d and A=s/d. In order to prevent flow particles from colliding with
the flat part of the boundary, the maximum value of A is equal to -1+(1+2r)!/2,
When a flow particle collides with a boundary particle the energy dissipated is
fixed by the coefficient of restitution e, between them.

Additional parameters are the granular temperature at the "top" of the
flow, and the "depth" of flow. However in our previous progress report, we
showed that if the stresses and energy flux vanish at the top of the flows, then
the kinetic theory predicts that the flows are infinitely deep, and that the
stresses, energy flux, and solid fraction each approach zero asymtotically from
the base. This presents a numerical difficulty because the integrations proceed
from the top of the flow to the base, and requires somewhat artificial
definitions of the "top" of the flow and the "depth" of the flow.




To address these issues, we define the "top" of the flow as the location
at which the energy flux vanishes but where the solid fraction is equal to a
small non-zero value (typically 10€). With the granular temperature 7, fixed
at a nonzero value there, this allows the integrations to be initiated from this
location and is equivalent to relaxing very slightly the normal stress
condition at the "top" of the flow. Because the ratio of the shear stress to
normal stress is everywhere equal to tan¢, in this manner the shear stress
condition is also relaxed very slightly at the "top" of the flow. The
dimensionless parameter corresponding to Ty, is Ty,=1,,,/0g, Where g is the
vertical acceleration due to gravity.

However, it is not appropriate to define the "depth" of flow as the
distance from the base to the location at which the integrations are initiated.
This is because the integrations may include great distances over which the
solid fraction is extremely small, and these distances may be quite sensitive to
the arbitrary value that the solid fraction is assigned at the "top." For these
reasons, proceeding from the "top" of the flow, we instead take the "depth" of
flow L to be the height below which ninety-nine percent of the mass of the
flow resides. Defined in this manner, the depth does not include the great
distances over which the solid fraction is extremely small, and is not
dependent on the small value of solid fraction that we choose to initiate the
integrations. The dimensionless parameter measuring this "depth" is =L/c.

We have experimented with values of solid fraction at the "top"
ranging from 107 to 107 and have observed that while the distances required
for the solid fraction to reach .01, for example, may be quite sensitive to these
values and may be quite large, the variations in all other mean fields from
their values at the "top" are quite small over these same distances.
Consequently, the dimensionless value of the granular temperature at the
upper portion of the flow may be accurately approximated by Ty, Most
importantly, we have observed that the profiles of all the mean fields are
quite insensitive to the value of the solid fraction chosen to initiate the
integration from the "top."

In summary, the input parameters of interest here are the angle of
inclination ¢, the coefficient of restitution e between flow particles, the
boundary bumpiness parameters r and A, the coefficient of restitution e,
between flow particles and boundary particles, and the granular temperature
at the "top" of the flow T,,,. The only output parameters that we are
concerned with in this study are the depth B and the solid fraction v.

3.2.2 Range of Parameters

In this study, we focus on boundaries for which r=1. These are
boundaries with bumps that have the same diameters as the flow particles.
Consequently, the range on A is between 0 (i.e. no spacing between bumps) to
the maximum value .732 beyond which flow particles will collide with the
falt part of the boundary. We consider all angles of inclination ¢ between 0°
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and 90°, but limit our attention to cases in which the coefficients of restitution
e and e, are equal and between .5 and 1.0. In addition, we accept a solution to
the boundary value problem only if the flow depth predicted by the theory is
greater than one particle diameter, and only if the theory predicts that the
solid volume fraction v is everywhere less than .65.

In order to determine a reasonable range of the final input parameter
Tyops we imagine the flow as consisting of an observable collisional portion of
depth B above which there exists a diffuse saltating region of height h. The
saltating region occurs because particles with mean square fluctuation speeds
31, at the upper layer of the collisional portion of the flows rarely collide
with other particles and are influenced primarily by gravity alone. Simple
conservation of energy arguments dictate that 31, < 2gh, or in dimensionless
form,

2h
Ttop = 3¢ ’

1

where the height h should be at least half of the depth of the collisional layer.
A flow depth B=100 would dictate that h=50, and therefore that, for fixed
values of 1, A, e, e,,, and ¢, we consider all values of Ty, < 33. However, in the
interest of saving computer time and because we have found that most
solutions have depths no greater than 30 particle diameters, we instead take
h=15 and consider the smaller range 0<T,,,<10. In this manner, we consider
saltating layers that are at least half the ?eight of the collisional portion of
most flows, and more typically are of the same heights or of greater heights
than the collisional portion of the flow.
In summary, the ranges of input parameters that we consider here are:

r=1 and 0<A<.732 ; (2)

5 Se=ey s 1.0 and 0°s¢<90° ; 3
and

0<Ty,<10 . (4)

The ranges of output parameters are:

B=1 and v<.65 . (5)




3.2.3 First Search Procedure: Finding at Least One Solution for prescribed
valuesof e, e, 1, A, and ¢

A recurring question that we answer in this first search is the
following: for prescribed values of r(=1), A, e=e,, and ¢, can a steady, fully
developed, gravity-driven flow within the ranges (4) and (5) be maintained?

In order to answer this question, we pick a value for T,,, within range
(4) and integrate downward until we either find a solution (i.e. satisfy the
basal boundary conditions) within each of ranges (5), or until either v exceeds
.65, or until it appears that the basal boundary condition will not be satisfied
regardless of how far the integrations proceed. If we find a solution, then we
have demonstrated that at least one such steady, fully developed flow can be
maintained for the prescribed values of r(=1), A, e=e,,, and ¢, and we need not
proceed further. If we do not find a solution, then we increment the value of
Typ and repeat the downward integration. We continue to increment Ty,
until we either find a solution for some value of T, , within range (4), or
until we have varied T,,, throughout the entire range (i) and have not found
any such solutions.

In order to determine, for prescribed values of r(=1), A, and e=e,, the
range of angles ¢ between which steady, fully developed, gravity-driven flows
can be maintained, we repeat the process described above for all values of ¢
between 0° and 90° incremented by 1°.

top

3.2.4 Results of the First Search

In Figure 3.4, we show as a darkened area in the ¢-e plane the values of
¢ and e for which steady, fully developed, flows are possible within the
bounds described by inequalities (4) and (5) for .5<e=e,<1.0, when r=1 and
A=.414. As expected, as e=e,, increases from .5, the typical inclinations at
which steady, fully developed flows are possible generally decrease. In these
flows, the rate at which energy is dissipated must help to balance the rate at
which it is supplied by gravity. Furthermore, the rate at which energy is
supplied to the flow by gravity decreasesas the angle of inclination decreases. -
Consequently, as the flows become less dissipative, the work done by gravity,
and therefore the angles of inclination decrease. When e=e,=1.0, no energy is
dissipated within the flow or at the boundary, and the work done by gravity
must vanish. In this limit, the theory predicts that steady, fully developed
flows can be maintained only when ¢=0°.

In Figure 3.5, we show as a darkened area in the ¢-A plane the values of
¢ and A for which steady, fully developed, flows are possible within the
bounds described by inequalities (4) and (5) for 0<A<.732, when r=1 and
e=e,=.5. (If A exceeds .732 when r=1, then the flow particles could collide with
the flat part of the boundary.) As expected, as A increases from 0 to its
maximum value, the typical inclinations at which steady, fully developed
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flows are possible generally increase. As A increases, the boundary becomes
bumpier, the slip velocity decreases, and the energy supplied to the flow by
the working of the traction at the boundary decreases. In order to balance the
energy dissipated due to inelastic collisions in the flow and at the boundary,
the work done by gravity, and therefore the angles of inclination, must
increase.

3.2.5 Second Search Procedure: Finding All Solutions for prescribed values
ofe,e, 1, A and ¢

We have focused on steady, fully developed, gravity-driven flows of
identical, smooth spheres down bumpy inclines, with flow depths greater
than one particle diameter, solid fraction profiles everywhere less than .65.
For prescribed boundary bumpiness. (r and .A), restitution coefficients of the
boundary (e,,) and the flow particles (e), and angle of inclination (¢), we have
determined whether at least one such flow could be maintained. We did so
by determining whether there was at least one value of dimensionless
granular temperature T, within the range 0<T,,,<10 for which the
appropriate boundary value problem (described in section XXX) could be
solved.

Now-we choose values of 1, A, e, e, and ¢ for which we know that at
least one solution of the type described above may be maintained, and
determine the complete range of Ty, (within 0<T,,<20 in the first case that
we will consider, and within 0<T,;<10 in the second case) for which such
flows can be maintained. For each value of Ty, in this range, we can

calculate the corresponding values of mass hold-up (m,), mass flow rate (m),
depth B, total fluctuation energy per unit area (E), slip velocity (v) at the base,
velocity (u(y=p)) at the top, and the depth-averaged values of solid fraction,
velocity, and granular temperature. In this manner, we thoroughly
characterize all the steady, fully developed, gravity driven flows that are
possible for prescribed sets of r, A, e, e, and ¢.

We characterize the solutions by calculating the corresponding values
of mass hold-up (m,), mass flow rate (m), depth B, total fluctuation energy per
unit area (E), slip velocity (v) at the base, the velocity (u(y=p)) at the top, and

the depth-averaged values of solid fraction v, velocity 4, and granular

temperature T. Here, the dimensionless depth B and distance y from the base
are nondimensionalized by particle diameter o, the dimensionless velocities
u, v, and u(y=B) are nondimensionalized by (cg)!/?, the dimensionless
granular temperature T is nondimensionalized by og, the depth-average of
any quantity q(y) is defined by,




LB
a=5 Jady &)
] |

and the depth-totaled quantities m,, m, and E are equal to v, pvu, and BVT,
respectively.

3.2.6 Results of the Second Search

Figure 3.5 demonstrates that when r=1, e=e=.5, and A=0, for example,
steady, full developed flows are possible when ¢ is approximately between 14°
and 26°. In what follows, we consider three intermediate angles ¢ for this
value of A, and for each angle determine the full range of T,,, that yields
solutions to the boundary value problem.

Here we consider the case in which r=1, e=e,,=.5, A=0, and choose three
angles ¢=21°, 22.5°, and 24" in the range 14°<¢<26°. In Figure 3.6, we show the

variations of B, m,, m, T, v, E, d, v, and u(y=B) with T, =T(y=p). At the
maximum value of T(y=B)=20, the flows are quite deep and quite dilute. The
minimum values of T(y=B) for ¢=21°, 22.5°, and 24° are 0.013613, 0.014549, and
0.015889, respectively. In each case, as T(y=f) decreases to its minimum value,
the flows become more shallow, more massive, and therefore more dense. In
fact, the theory predicts that for values of T(y=p) below the minima, the solid
fraction somewhere within the flows exceeds .65. For each inclination, when
T(y=pB) is exactly equal to its minimum value, the flow rate assumes a
corresponding finite maximum value.

To make the variations with T(y=B) near its minimum value more

clear, in Figure 3.7 we replot the variations of m, m,, and v with T(y=p) on

log-log scales. The values of m, m,, V and B corresponding to the minimum
value of T(y=B) for each angle shown in Figures 3.6 and 3.7 are summarized
in the table below:

top

(minimum)
21° 013613 | 32.236 |2.672 494 5.357
22.5° .014549 | 73.566 |3.142 416 7478
24° 015889 |168.411 |3.727 318 11.621

The variations of m with T(y=p) shown in both Figures 3.6 and 3.7 also
indicate that corresponding to each inclination is a nonzero minimum value
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of m. Indeed, we have found that corresponding to every angle in the range

14°<$<26° is a nonzero minimum value and a finite maximum value of m
between which steady, fully developed flows can be maintained.

According to Figure 3.6, as T(y=p) decreases from 20 over most of its
range, the flows become less thermalized (as might be expected) and slower.
However as T(y=B) continues to decrease near its minimum value, these

trends are reversed. Furthermore, the quantities m,, m, ¥, and to a lesser
extent E are extremely sensitive to changes in T(y=f) near its minimum value
but relatively insensitive to changes in T(y=p) away from its minimum value.
These observations indicate that there is no simple relationship between

T(y=B), which can not be controlled experimentally, and such parameters as m
and E, which may be controllable. For this reason, when presenting the

results, it is probably better to parameterize the solutions by either m or E.

In Figure 3.8, for example, we eliminate T(y=8) and.plot the variations
of E and m, with m when r=1, e=e,=5, and A=0, for ¢=21°, 22.5°, and 24°. At
each inclination, there are two flows for each flow rate near the minimum.
One is less thermalized and more massive than its counterpart. At higher
flow rates, only the less thermalized and more massive flow is possible; as the
flow rate increases to its maximum, this flow becomes more thermalized and
more massive.

In a typical experiment, the thermal energy at the inlet of an incline is
influenced by the height from which the particles are dropped and/or by
vibrating the inlet. The left-hand panel of Figure 3.8 gives some indication of
how much thermal energy should be imparted to the particles at the inlet to
to ensure that their initial states are near to the steady, fully developed states
predicted by the theory. Conversely, the left-hand panel of Figure 3.8
indicates that the steady, fully developed flows predicted by the theory may
not be established if, for a fixed flow rate, the magnitude of difference between
the thermal energy at the inlet and the predicted value of E is too great. We
anticipate that the maximum mismatch between the thermal energy at the
inlet and the predicted value of E (beyond which a steady, fully developed
flow can not be established) increases as the length of the chute increases.

In Figure 3.9, we plot the variations of B, v, and & with m corresponding .
to those of E and m, shown in Figure 3.8. For a given angle, Figure* 3.9
demonstrates that of the two flows that are possible at flow rates near the
minimum, the less thermalized and more massive flow is also more shallow,
more dense, and slower than its counterpart. At higher flow rates, only the
more shallow, more dense, slower flow is possible; as the flow rate increases
to its maximum the depth of this flow changes only slightly as it becomes
more dense and faster. For completeness, we have also included in Figure 3.

9 the corresponding variations of 8, v, and @ with E.
We have found that (when r=1, e=e,=.5, and A=0), for all inclinations
in the range 14°<¢<26° for which at least one steady, fully developed flow

could be maintained, we found that there was a finite maximum value of m
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between which steady, fully developed flows could be maintained. However,
as the next case that we investigate will demonstrate, there are boundaries,
flow particles, and inclinations for which the kinetic theory predicts that
steady, fully developed flows can be maintained at all flow rates above a
minimum value. These are qualitatively different from the results presented
in Figures 3.6 through 3.9, in which maximum flow rates (above which steady
flows could not be maintained) were determined for each case considered.
The fact that it is possible to find circumstances under which there are no
maximum flow rates that limits the occurrence of steady flows may be useful
when in practice it is necessary to steadily transport extremely high volumes
of granular materials.

Figure 3.2 demonstrates that when e=e, =5, r=1, and A=414, for
example, steady, full developed flows are possible when ¢ is approximately
between 21° and 35°." In what follows, we consider four intermediate angles ¢
for these values of ¢, e,, r and A, and for each angle determine the full range
of T(y=p) that yields solutions to the boundary value problem. In addition,
we characterize the solutions by calculating the corresponding values of mass

hold-up (m,), mass flow rate (m), depth B, total fluctuation energy per unit
area (E), slip velocity (v) at the base, the velocity (u(y=8)) at the top, and the

depth-averaged values of solid fraction V, velocity d, and granular

temperature T.
We choose four intermediate angles $=25.5°, 27.505°, 28°, and 34° in the
range 21°<¢<35°. In Figure 3.10, we show for each angle the variations of 8,

m,, m, T, v, E, 4, v, and u(y=B) with T(y=B). At the maximum value of
T(y=B)=10, the flows are quite deep and quite dilute. In each case, as T(y=B)
decreases from its maximum value, the flows become more massive and
more shallow. However, as T(y=f) nears its minimum value, the flow depths
reach their minimum values and then begin to increase. For ¢=25.5°" and
27.505°, the increase in depth is not sufficient to mitigate the increase in mass
hold-up, and the assemblies become too dense to flow as T(y=B) decreases near
its minimum value. For these two lower inclinations, the theory predicts
that for values of T(y=B) below the minima, the solid fraction somewhere
within the flows exceeds..65. For these inclinations, when T(y=) is.exactly
equal to its minimum value, the flow rate assumes a corresponding finite
maximum value. However, for the two upper inclinations $=28° and 34°, the
increase in depth as T(y=B) decreases near its minimum value is sufficient to
compensate for the increase in mass hold-up. For these two higher
inclinations, the assemblies do not become too dense to flow, and the mass
flow rates increase without bound as T(y=) approaches its minimum value.
Consequently, we find here that for r=1, e=e =.5, A=.414 (unlike for the case
r=1, e=e,=.5, and A=0) there are relatively high inlinations at which the flow
rates are unbounded. For the same values of r, e, e, and A, there are lower
inclinations at which the flow rate is bounded by a finite maximum. In
figures yyy we will focus on the transition from inclinations at which the
flow rates are bounded to those at which the flow rates are unbounded.
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To make the variations with T(y=B) near its minimum value more
clear, in Figure 3.11 we replot the variations of m, and v with T(y=8) on log-
log scales. The variations of m with T(y=B) shown in both Figures 3.10 and
3.11 also suggest that corresponding to each inclination is a nonzero
minimum value of m above which steady, fully developed flows can be
maintained.

According to Figure 3.10, as T(y=B) decreases from 10 over most of its
range, the flows become less thermalized (as might be expected) and slower.
However as T(y=p) continues to decrease near its minimum value, these

trends are reversed. Furthermore, the quantities m, m, v, and E are
extremely sensitive to changes in T(y=B) near its minimum value but
relatively insensitive to changes in T(y=B) away from its minimum value.
These observations indicate that there is no simple relationship between
T(y=p), which can not be controlled experimentally, and such parameters as m
and E, which may be controllable. For this reason, when presenting the
results, it is probably better to parameterize the solutions by either m or E.

In Figure 3.12, for example, we eliminate T(y=B), and plot the
variations of E and m, with m when r=1, e=e,=.5, and A=.414, for ¢=25.5,
27.505°, 28° and 34°. The left-hand panel of Figure 3.12 indicates how much
thermal energy should be imparted to the particles at the inlet to to ensure
that their initial states are near to the steady, fully developed states predicted
by the theory. For each inclination, the endpoints of these curves at the lower
flow rates correspond to very deep, very dilute flows of nonzero mass hold-
ups. The endpoints for the two lower inclinations at the upper flow rates
correspond to relatively dense flows in which the solid fraction is somewhere
equal o .65. The two upper inclinations have no corresponding (high-flow-
rate) endpoints.

In the upper portion of Figure 3.13, we plot the variations of B, v, and @
with m corresponding to those of E and m, shown in Figure 3.12. Of

particular interest is the variation of ¥ with m shown in the middle panel. At
the two lower inclinations, Near the higher-flow-rate end points, the depth-
averaged solid fraction increases rapidly with small changes in flow rate. This
indicates that these endpoints occur because the assemblies become too dense
to flow rapidly. At the two lower inclinations, the depth-averaged solid
fractions are quite insensitive to large increases in the high flow rates, and
appear to approach relatively dilute asymptotic values. This indicates that at
these inclinations, the flows do not become too dense regardless of how large
the flow rates become.

For completeness, we have included in the lower portion of Figure

3.13, the corresponding variations of §, v, and @ with E.




3.2.7 The Transition From Inclinations with Finite Maximum Flow Rates to
those with Unbounded Maximum Flow Rates

For prescribed boundary bumpiness (r=1 and A=.414), restitution
coefficients of the boundary (e,=.5) and the flow particles (e=.5), and angles of
inclination (¢=25.5°, 27.505°, 28°, and 34° ), we determined what appeared to be
complete range of T(y=B) (within 0<T(y=p)<10) for which such flows can be
maintained. For the two lower inclinations (¢=25.5° and 27.505°), we found
that there was a nonzero minimum and a finite maximum flow rate between
which steady, fully developed flows can be maintained. However, for the two
upper inclinations (¢=28° and 34°), although there was a nonzero minimum
flow rate for each, it appeared that there was no maximum flow rate that
limited the occurrence of steady, fully developed flows.

We now consider in greater detail the same parameter values (r=1,
A=.414, and e=e,=.5) and focus on inclinations near the apparent transition
from the those for which there exists a maximum flow rate to the
inclinations for which there appeared to be no such maximum. Using careful
numerical computations, we demonstrate that the transition is real and we
determine the angle at which it occurs. We have devoted the time to these
issues because the existence of cases in which there are no maximum flow
rates that limit the occurrence of steady flows may be of great practical value
when it is necessary to steadily transport extremely high volumes of granular
materials.

Here we consider the case in which r=1, e=e =.5, A=.414, and choose six
angles $=27.3°, 27.5°, 27.52°, 27.55°, 27.75°, and 28’ near the apparent fransition
from the those angles for which there exists a maximum flow rate to those
angles for which there appeared to be no such maximum. In addition, we
focus on values of T(y=p) (between 0 and ,.8) near the apparent minimum
values suggested by the figures 3.10 through 3.13. We do so because the flow
rate increases rapidly with decreasing values of T(y=B) near the minimum
values of T(y=p). We determine whether a distinction can be made between
those angles for which the flow rate increases to a finite maximum and those
angles for which the flow rate increases without bound.

In Figure 3.14, we show for each angle the variations of §, m,, m, T, ¥, E,
@, v, and u(y=B) with T(y=B) between 0 and .8. For ¢=27.3° and 27.5°, as T(y=f)
decreases from .8, the flow rates increase to an identifiable finite maximum
values and then decrease until the assemblies become too dense to flow. For
these inclinations, there are no gaps in the range of T(y=p) for which steady,
fully developed flows can be found. At these angles, the occurrences of
steady fully-developed flows are limited by finite maximum flow rates.

However, for $=27.52°, 27.55°, 27.75°, and 28°, we find that between the
extreme values of T(y=B) for which steady, fully developed flows can be
found, there is a sub-range T'<T(y=B)<T* for which steady, fully developed
flows can not be found. Most importantly, the flow rates apparently become
infinite as T(y=P) approaches T' from below or T* from above. ~Consequently,
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inclinations for which such a gap in T(y=p) occurs are those at which steady,
fully developed flows are not limited by a maximum flow rate.

As T(y=B) approaches T* from above, the flow rates increase
dramatically, while the flows do not become too dense to prevent the
assemblies from flowing. For values of T(y=B) between T* and T,
integrations proceed from the top of the flow indefinitely downward without
satisfying the basal boundary condition. However, at no point in the
integrations does the solid fraction exceed .65. As T(y=B) decreases away from
T, the flow rates at first decrease, and the depth-averaged solid fraction
eventually increases until the assemblies become too dense to flow. Based on
these observations, we believe that, independent of such artificial restrictions
as v<.65, the theory predicts that there is a real gap in the values of T(y=p) for
which steady, fully-developed flows can be found, and that the flow rates
corresponding to the cases T(y=B)=T* and T(y=B)=T' are unbounded.
Interestingly, it appears that the upper and lower limits, T' and T*, of the gap
depend on inclination angle ¢, and that the size of the gap increases as the
inclination increases from the angle at which the gap first appears.

The results shown in Figure 3.14 suggest that the transition from those
angles for which the flow rate increases to a finite maximum and those angles
for which the flow rate increases without bound occurs between ¢=27.5°and
27.52°. In what follows, we determine the transition angle with more
precision and further demonstrate the qualitative differences between those
flows that occur below the transition angle and those that occur above the
transition angle. In Figures 3.15, 3.16, 3.17, 3.18, and 3.19 we show the

variations of B, m, m, T, v, E, 4, v, and u(y=p) with the difference T(y=p)-T*,
for ¢=27.5°, 27.505°, 27.51°, 27.75°, and 28, respectively.

Of greatest interest here are the variations of m and v with the
difference T(y=p)-T*. Figures 3.15 and 3.16 demonstrate that when ¢=27.5"and
27.505°, for example, the flow rates increase at diminishing rates as T(y=f)
approaches T* from above (i.e. as the positive difference T(y=8)-T* becomes
smaller). This suggests that the theory would predict a finite maximum rate
(corresponding to the limit T(y=p)=T*) that limits the occurrence of steady,
fully developed flows. Because there is no gap in the range of T(y=B) for
which steady, fully developed flows can be found, the values of T* for ¢=27.5°
and ¢=27.505°are taken to be the values of T(y=B) at which the "spikes" occur
in the variations of flow rate with T(y=B), shown in the uppermost right-
hand panels of Figures 3.14 and 3.10.

By contrast, Figures 3.17, 3.18, and 3.19 demonstrate that when ¢=27.51",
27.75°, and 28°, the flow rates increase nearly linearly with -log[T(y=p)-T*].
This suggests that the flow rates would become unbounded in the limiting
case T(y=B)=T*. To check that the increase in flow rate does not diminish, we
have have observed the linear relationship between flow rate and the
quantity -log[T(y=B)-T*] when the difference T(y=p)-T* is as small as 107 when
¢=27.75 (Figure 3.18), and when the difference is as small as 10 when ¢=28,
(Figure 3.19).
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Based on these results, we conclude that when r=1, e=e,=.5, and A=.414,
the transition between those angles for which the flow rate increases to a
finite maximum and those angles for which the flow rate increases without
bound occurs at inclinations ¢ between 27.505° and 27.51°.
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3.3 Figures
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Figure 3.1:

The variations of m with W and m, for e=.6, e =.95,
o/d=1/2, s/d=-1421/2 and ¢=25°.
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Figure 3.2: The variations of v, w, and u with y for e=.6, e,=.95,
o/d=1/2, s/d=-1+2"/? and ¢=25° when m=4.
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po—

Figure 3.3: The variations with y of k;;1/2, k,,'/2, and k;3/%; and the
variations with y of p;;, Py, and pg; for e=.6, e,=.95,
o/d=1/2, s/d=-1+21/? and ¢=25°, when m~=4.
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Figure 3.6: The variations of B, m,, m, T, v, E, &, v, and u(y=p) with T(y=B) for
' $=21°,22.5°, and 24° when r=1, e=e,=.5, and A=0. |

64




T(y

T(y=R)

T(y=8)

10

0.1

0.01

10

0.1

0.01

— T T
//
\\«
A T T B R R 1
4 6 8 10 20 40 60 80 100 200

1 Illlllll lLlIllll' lllj]lll] 1

17 11

Figure 3.7: The variations of m, m,, and v with T(y=B) for ¢=21°, 22.5°, and
24° when r=1, e=e =5, and A=0.
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Figure 3.10: The variations of B, m, m, T, v, E, &, v, and u(y=p) with T(y=p) for
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4. VIBRATING BOUNDARIES

4.1 Boundary Conditions

We consider the interaction of a three-dimensional granular flow with
an impenetrable boundary that randomly fluctuates about mean velocity U.
Of particular interest are the mechanisms by which the balance of energy and
momentum are satisfied at the flow-boundary interface. Consequently, we
focus attention on a parrallelpiped in the flow with two opposite faces of unit
area, one of which is coincident with the boundary. In the limit, as the other
four sides shrink to zero, the balance of momentum within the parallelpiped
requires that

M=PN , (1)

where M is the rate per unit area at which momentum is transferred to the
flow through collision, P is the pressure tensor, and N is the unit inward
normal to the boundary. If F is the rate per unit area of energy supplied by the
boundary to the flow due to its fluctuating motion, and D is the
corresponding rate at which energy is dissipated through inelastic collisions at
the boundary, then in the same limit, the balnce of energy requires that

Mv+F-D=QN , 2)

where v is the slip velocity defined as the difference U-u between the mean
velocity U of the boundary and the mean velocity u of the flow at the
boundary, and Q is the energy flux vector. The slip work, M-v, is the rate at
which work is done by equal tractions acting through velocities that differ by
v. Thus, the boundary can either supply or absorb fluctuation energy
depending on the relative sizes of the slip work M-v, the supply rate F, or the
dissipation rate D. Even when the boundary does not vibrate (i.e. F=0) and
when all interactions between the boundary and the flow particles are
dissipative (i.e. D>0), the boundary may actually supply energy to the flow
provided that M-v exceeds D.

4.2 Transfer Rates

The transfer rates M, F, and D depend on boundary geometry and
motion. Richman [1993], for example, has determined their forms for bumpy
boundaries whose motion was governed by an isotropic Maxwellian velocity
distribution function. Under such circumstances, contributions to the total
fluctuation energy of the boundary are the same from any three mutually
perpendicular components of the boundary's fluctuation velocity. Moreover,
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it is not possible for the vibratory motion of such boundaries to exert shear
stresses on the assemblies with which they interact. Richman and Martin
[1993, 1995] improved upon this work by considering boundaries whose
fluctuating motion was anisotropic, but restricted their attention to
assemblies that experienced no spatial variation of mean velocity at the
boundary. Here, we will calculate the transfer rates when the boundaries
fluctuate anisotropically and when the flows experience gradients of mean
velocity at the boundary. Consequently, we will calculate M, F, and D based
on an anisotropic boundary velocity distribution function and a flow particle
velocity distribution function that involves corrections to the Maxwellian
due to spatial variations of the mean flow velocity.

The boundary we focus attention on is a flat surface to which
hemispheres of diameter d are randomly attached at a disatance s apart. If ¢ is
the flow-particle diameter, then the dimensionless quantities that describe the
geometry of the boundary are r=0/d and A=s/d. The bumpiness of the
boundary is measured by the angle 6 formed by the line directed from the
center of a hemispherical bump and the center of a flow particle in contact
with that and a neighboring bump. As 6 increases, the boundary becomes
more effective at transferring momentum in directions parrallel to its flat
surface; in this sense it becomes "rougher.” The angle q is related to the
geometric parameters r and A according to the relation sin8=(1+A)/(1+41).

The dynamics of a collision at the boundary are described in terms of
the pre-collisional velocities ¢ of the flow particle and y of the boundary
particle, the unit vector k directed from the center of the boundary particle to
the center of the flow particle at impact, and the coefficient of restitution ey,
that characterizes the energy dissipated when smooth particles collide. If the
velocity of the wall particle is unaffected by the collision, then in terms of the

relative velocity g=y-c, the change in linear momentum experienced by the
flow particle is

m(c* - ¢) = m(1+e, )gkk , | 3)

where m is the mass of the flow particle and c* is the post-collisional velocity
of the flow particle. The corresponding change in energy is

%C*‘C* -cc)=m(l +ew)(g.k)[ (UKk) + (¥k) - %(l-ew)(g-k)} P 4)

where W=y-U is the fluctuation velocity of the boundary particle.

The statistics associated with collisions between wall and flow particles
are governed by two velocity distribution functions: f(c,r), which describes the
flow particle velocities; and p(y), which gives the probability per unit volume

dy=dy,dy,dy; in velocity space that any particle will have velocity y within
the range dy.
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The motion of the boundary is described by its mean velocity U and its
full second moment B of fluctuation velocity. These are analogous to u and
K within the flow and are calculated according to

U=[ypydy |, ®)

and

B = | (¥®¥) py)dy ©6)

in which the integrations are over all velocities.
At the instant of impact, the center of the boundary particle is located at

X, and the distance between the centers of the two particles is =(c+d)/2
(where ¢ is the diameter of the flow particle and d is the diameter of the
hemispherical bump). The frequency of collisions per unit area of flat wall
that involve flow particles with velocites ¢ in the range dc and wall particles
with velocities y in the range dy, and occur within an element of solid angle
dk centered about k on the surface of the wall particle is

zsinZg Hex+3k)p(y)gkidkdedy . -

Here, (g-k)>0 for a collision to occur, and the factor y accounts for the effects of
excluded volume and the shielding of flow particles from wall particles by
other flow particles. Excluded volume effects account for the space occupied
by both the flow particles and the the boundary particles. The extent of
shielding depends on the motion of the flow particles, the motion of the
boundary, and the arrangement of the boundary particles. Consequently, we
anticipate that y will at least depend on v and T at the boundary, as well as 6
and B.

The transfer rates M, F, and D are statistical averages of the appropriate
change per collision weighted by the collision frequency (7). According to
equation (3) M is the weighted average of m(l+e )(gk)k. According to the last
two terms on the right-hand-side of equation (4), F and D are the weighted
averages of m(l+e,)(gk)(¥-k) and m(1-e,?)(gk)?/2. These may be written
more compactly in integral form:




M (gkk

F =%—$—§f—gﬁ vy @WK e x+akpy)ghidkdedy ,  (8)

D H1-e, NgkP?

where the velocity integrations are carried out over all velocities such that
(g-'k)>0, and the k-integration is a surface integral over the area of the
boundary particle that is accesible to colliding flow particles.

In order to carry out the averaging procedure, we must first write down
the distribution functions f(c,r) and p(y). Here we assume that f is the
corrected Maxwellian introduced by Grad [1949]:

n 1 -
f(c,r) = OrTY2 [1 + 572 C-K~C] eXpiST [ - )]

in which n is the number density of flow particles, T is the granular
temperature, C is the fluctuation velocity c-u of the flow particles, K is the
deviatoric part of the second moment of C, and all mean fields are evaluated
at r. For sheared assemblies of nearly elastic spheres, Jenkins and Richman
[1985] have shown that K is small compared to T and may be approximated in
terms of velocity gradients by

1 2U2%A
ﬁK="‘GT)1/—2(V)‘D : (10)

where v is the solid volume fraction, A(v)=r[1+5/8G]1/21/212, G=v(2-v)/2(1-v)?,
and D is the deviatoric part of the strain rate D. Under these circumstances,
the largest corrections to the Maxwellian that we have neglected are
proportional to gradients of temperature and solid fraction. In addition, we
take p(y) as the anisotropic Maxwellian:

1 -1
plw = @B 2 exp{i ‘I‘~B'1-‘I’} , (11)

where B is the determinant of B. When B is isotropic, p(y) reduces to the
simple Maxwellian employed by Richman [1993]. When the velocity
gradients vanish, f(c,r) reduces to the simple Maxwellian employed by
Richman and Martin [1993, 1995].

Because the corrected Maxwellian (9) for f is the sum of two terms (i.e.
the Simple Maxwellian and its correction due to velocity gradients), each
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transfer rate can be decomposed into two corresponding contributions. The
contribution from the simple Maxwellian contains the lowest order
approximation to each rate, and the contribution due to velocity gradients is
a correction to each. In this manner, we write M=M°%+M¢, F=F°+F¢, and
D=D%D¢, where the superscripts "0" and "c" denote the contributions from
the first and second terms in f, respectively. If the integrations over velocites
c and y in averages (8) are carried out first, then the intermediate results can
be written compactly in terms of the quantity

v-k

T 2

where B=3+B/T and both T and v=U-u are evaluated at x+5k. The resulting
integral expression for the first contribution to the rate at which momentum
is supplied to the flow is

MO =g [ rrac o /23102 Jerte(-0) + dexpar |k , (1)

where the mass density p, the granular temperature T, and the factor y are

evaluated at x+&k. The corresponding lowest order expressions for F¥ and D°
are

172
= g.u_gl_z%iég_) J‘ px T/ Xk BK)V4(k-Bk-1) [n1/2 @ erfc(-®) + exp(-0?) | dk , (14)

and

o 2
D =§17(2};‘2”S———i);2§ [paT®2(k B2 [11:1/2@ 3102 Jerfe(-) + (1+?) exp(-q>2)]dk. (15)

To calculate M?, FY, and DY, it remains to carry out the k-integrations (13), (14),
and (15) over that portion of a wall particle that is accessible to flow particles.
In principle, we must also determine the contribution to each transfer
rate from the correction term in equation (9) for f. However, we are only
interested in calculating M, F, and D to within errors consistent with the
assumptions used by Jenkins and Richman [1985] to derive their constitutive
theory for nearly elastic spheres. For example, momentum balance (1)
demonstrates that the rate of momentum M supplied to the flow must
balance the pressure tensor P at the boundary. According to the constitutive
theory of Jenkins and Richman, the pressure tensor includes both a lowest
order contribution (i.e. it isotropic piece) and a first order correction (i.e., its
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deviatoric piece due to velocity gradients). Consequently, in order to
maintain consistency with the constitutive theory, we must include the first
order correction M°® to M. After carrying out the ¢ and y integrations, we
obtain the integral expression

_ (+ey)
~ 21sin?0

[ prk (K exfe(-0) dk (16)

where all mean fields are evaluated at x+6k. In addition, we must also
~ include the first order correction to M? from a Taylor series of the mean fields

about a common location x+6N.

By contrast, energy balance (2) demonstrates that the competing effects
of M-v+F-D must balance the energy flux Q-N normal to the boundary.
However, the constitutive relation for the energy flux derived by Jenkins and
Richman [1985] for the energy includes only lowest order contributions (due
to the presence of temperature gradients). Consequently, to adequately
approximate F and D it is necessary to only calculate the lowest order
contributions F° and D°.

In order to write down the results of the k-integrations (13), (16), (14),
and (15) for M9, M¢, F, and DY, we introduce a an x,-x,-x; Cartesian coordinate

system in which the unit inward normal N points in the +x,-direction, and
the unit tangent vectors t and t point in the £x;- and x3-directions,
respectively. We also introduce a spherical coordinate system in which & is
the angle between N and the line from the center of the wall particle to the
center of the flow particle at impact, and n is the angle between the projection
of the line of centers onto the t-t plane and the t-direction. In terms of these
quantities, dk is equal to sinfd&dn and the k-integrations are on & from 0 to o,
and on n from 0 to 2x.

In this system, the components of the second moment of boundary
fluctuation velocity are

V32 By Bp )
B=| By V;? By . 17)
By; By V32

In what follows, we consider circumstances in which V,2=V,2, the off-
diagonal components of B are small compared to its diagonal components,
and both the slip velocity v and the change in velocity cVu are small
compared to the square root T!/2 of the granular temperature. We then
expand the integrands in equations (13) through (16) in Taylor series about

x+6N with respect to these small quantities.
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Under these circumstances, it is possible to carry out the k-integrations
in closed form. The resulting approximations for M, F, and D may be written
in terms of the following quantities: the dimensionless ratio

_ VAV
R= T+V,2 18)
and the functions of R and 6 defined by
K(R,0) = (1+Rcos?0)*/2cos0 - (1+R)*/? (19)

L
VR

I(R,0) = p (20)

1
\/—*i[sin'1 R - sin!(y Reos8)] R<0

[sinh"\[—R - sinh'l(\/ﬁciose)] R>0

J(R,0) = (1+Rcos8)/2cos8 - (14R)}/2-I(R,0) , 1)

X(R,8) 5-1—52—1@— [(1+Rcos%0)*/2(3Rc0s%6-2) - (1+RP/2(3R-2)] (22)

Y(R,0) = X(R,0) - gzﬁ [(1+Rcos?0P/2 - (1+RP/?] (23)
and

H(R,0) = (1+R)/2(5+2R) - (1+Rcos20)!/2(5+2Rcos?6)cosd . (24)

When the collisions between boundary and flow particles are nearly
elastic, e, is close to unity and the approximate expression for "the
components of M is: :
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2
M, = pxﬂ:(V22+T) ¥ %(Vlz-sz)sinze] N, + 22 [@B-N)g + @B-N)g]

T+V 2y1/2 1+4R
+ Pk KR 'R0
i ATI/Z 2
) . %[Vlz_bT]l/Z(ij.l.Ilka) +_ ( 1jk+§N18kj)} (25)

where all the mean fields are evaluated at x+GN. The tensors Ly , Iy, and Ly,
which arise naturally from the averaging procedure are given by,

-2R
L, = sin?0 {‘R[K(R,e) - (+4R) —J(R, e)] (tt+1T) + (l(—RLN N k} (26)
ij = Sin'26 {(ZX(R,B)NIN]N k
- Y(R,0) [(tit +ra)dN; + (i +rmdN; + (+1mNE D} (27)

and

. . 5
Iijk = (Sin29 'Z)NIN )N k= ‘Snzl_e [(tltk +TiTi)N i + (tltk +Ti'ck )N j + (tlt] +'CiTj )Nk] . (28)

Expression (25) for M differs from that obtained by Richman and Martin [1993]
because it includes the influence of velocity gradients. There are two terms
proportional to velocity gradients. The first term is multiplied by (T+V,;?)1/2
and is a first order correction to M® due to gradients of the mena velocity. The
second is multiplied by A(n) and is the lowest order approximation to the
correction M€,

Equation (25) dictates that even in the absence of slip and mean
velocity gradients, the biagonal components of B influence the supply of
momentum in the N direction, the off-diagonal t-N and t-N components of B
are responsible for the supply of momentum in the tangential t and =
directions, and the off-diagonal t-t component of B has no effect on M.

In the same special case to which expression (25) applies, the lowest
order expressions for F and D are

231172 2 2
4py[2(T+VD)] E.‘T*Vl ) vz 2] w0 - )K(R,e)} )

= [r(1+R)]V2sin20

and
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1-e, ) [2(T+V AP

Because the effects of velocity gradients and slip velocity make higher order
contributions to F and D, expressions are identical to those obtained by
Richman and Martin [1995], who ignored both effects, and by Richman and
Martin [1993], who ignored velocity gradients.

4.3 Steady, Fully Developed, Parallel Flows

In what follows, we will examine several steady, fully developed
granular flows in which the mean velocity either vanishes or is parallel to
the vibrating boundary or boundaries with they interact. When there is more
than one boundary, they are necessarily parallel to one another. Moreover,
the spatial variations of the mean fields occur only in the direction
perpendicular to the boundaries. In this section, we derive the general
boundary value problem for these flows.

We employ the same Cartesian coordinate system introduced to write
down the boundary conditions. Here x; points in the direction of flow
velocity u,, and x, defines the direction upon which the mean fields depend,
and measures perpendicular distance from the lower vibrating boundary.
We focus on cases in which the boundaries are horizontal. The flows are
infinite in the x;- and x;-directions. The vertical acceleration (in the -x,-
direction) due to gravity is g. For purposes of nondimensionalization, we
introduce the characteristic velocity a. The dimensionless fields of solid
fraction v, velocity u=u,/a, and the measure w=T/a? of granular temperature
depend only on the dimensionless coordinate Y=x,/c.

In these flows, the balance of mass and the x;-component of the balance
of momentum are identically satisfied. If S=-Py,/(p,a?) and P=P,,/p,a? are the
dimensionless counterparts of the x;-x, and x,-x, components P;, and P,, of
the pressure tensor, then the x;-component of the momentum equation is

§'=0 , (31)

where a prime denotes differentiation with respect to Y, and the x,-
component of the momentum equation is

P= %%v . (32)
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If g=-Q,/ppa® and energy dissipation I'=cy/ppa® are the dimensionless
counterparts to the x,-component Q, of the energy flux and the energy
dissipation v, then the balance of energy reduces to

q+Su-Tr=0 . (33)
It remains to express the constitutive relations in dimensionless form. Here
and in what follows we take a?=cg.

Here we employ the constitutive theory of Jenkins and Richman [1985].
The isotropic piece of the pressure tensor gives,

P = 4vGFw? , (34)

where Gis given in terms of the radial distribution function g, by vg,
F=141/4G, and the deviatoric piece gives,

_ 2EPu’
T 5ynFw

(35)

where E=1+n(1+5/8G)?/12. Equation (35) can be rearranged to express the
velocity gradient u’ in terms of the ratio S/P according to

,» _5{nFwS§
U=""%s - 36)

The constitutive relations for q and T are,

_2MPw’ 37
1="=F - | 87)

where M=1497(1+5/12G)?/32, and

N 6(1-e)Pw

We employ equations (37), (36), and (38) to eliminate q, u, and T from
equation (33), and differentiate equation (34) with respect to Y to write v’ in
terms of P’ and w wherever it appears. The energy equation can then be
written in terms of w and its derivatives:
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-‘;—Vv-'—‘ + [(1-2h)%] %l + 4h(y“7')2 -2=0 (39)

where 32 is defined by
1 5z §
A2 =5M [6(1-e) - W:I , (40)
and 2h is the function of solid fraction defined by
-d[In(M/F)]/dv
2h= . 41
dInGR)/dv “n

The quantity A? is a local measure of the difference between the rate at which
energy is dissipated by inelastic collisions and the rate at which energy is
supplied to the flow by gravity.

The boundary motion is characterized by the second moment tensor B
associated with the vibrations of the boundary. Because we have restricted
our attention to cases in which V;=V,, the mean square fluctuation velocity is
3V2=2V,2+V,2. In order to write the conditions that express the balance of
momentum and energy at a randomly fluctuating bumpy boundary in
nondimensional form, we introduce the dimensionless boundary fluctuation
speeds V=V,/V and V,=V,/V that satisfy the relation V,2+2V2=3. Thus
defined, V,2/3 is the fraction of total vibrational energy that is distributed in
the normal direction. The boundary's energy is divided evenly among the
three coordinate directions when V,2=1, and is divided evenly between
normal and tangential motion when V,?=3/2. In addition, we introduce the
parameter a=V/a which arises when nondimensionalizing the boundary
conditions.

The x3-component of the momentum balance (1) at the boundary
dictates that because both v; and P,; vanish, then so too must B,;. That is, if
no motion is to occur in the x;-direction, then the boundary can not supply
momentum in that direction. Because vy, t, Ty, Ipyq, Iy, and Iy, are all zero,
the x,-component takes the simple dimensionless form

- 2 -
2vy(Q2 +V,2) =P [1 -%] b (42)

where Q=w/a. In terms of the dimensionless boundary parameters, the ratio
R is given by V,2-V.2/Q2+V2 In the expression for M; we employ equations
(52), (36), (27), and (28) to eliminate ¢, u',\ Iy, I;5;. The x;-component of
condition (1) then relates the dimensionless slip velocity v=v;/a to Q, v, and
boundary motion and geometry through
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[2(Q2 + VAHI/2L ;v sin?g 56ESQ [ ., . .y Y \ AocQsin?6
_ £ 2. . -
o = "5 bu+girggp| @ + Vo) (Iu sinze) 5

. S(Q? + Vnz)[ Rsin?6 ]

P 1- 2148 (43)

where, from equation (26), I;;(R,0)=[K-(1+4R)]/2]/[2Rsin26), Y(R,0)} is given by
equation (23), and by,=B;,/ V2. The positive (or negative) sign preceding
equation (43) applies when the inward normal N points in the positive (or
negative) x,-direction. If the energy flux boundary condition (2) is
manipulated in a similar manner, then the equation that determines w' at
the boundary is

(@2 + VAA+R)IV2r . Rsin?6 [ Sv . 2Mw'
- (232csc?0 [ “2(1+R) ] [ Pa t a(n)mF] =

2,.V2 Q2+ V2 QP +V2
[ v 1B e e, @

where v/a is given by equation (43), and H, I, ], and K are given by equations
(24), (20), (21), and (19), respectively. The positive (or negative) sign preceding
equation (44) applies when the inward normal N points in the negative (or
positive) x,-direction.

The conditions at a free surface reflect the facts that normal stress, shear
stress, and energy flux vanish there:

P=0 and S=0 , (45)
and
w'=0 . (46)

Equations (31), (32), (34), (36) and (39) determine S(Y), P(Y), v(Y), u(Y),
and w(Y) to within five constants of integration. The manner in which the
boundary conditions are employed to determine these constants depends on
the particular boundary value problem. If, for example, the flows are
confined between two bumpy boundaries (at x,=0 and x,=L) that are held a
fixed distance apart, then the five constants are determined by conditions (43)
and (44) at each boundary, and a prescription of either the mass hold-up
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B
m= [vndy |, (47)

0

where B=L /0, or the mass flow rate
g
m= yuydy , (48)
0

If, instead, one of the constants of integration were prescribed a priori (as
would be the case when a known normal pressure is applied to one of the
boundaries ), then the same five conditions determine the remaining four
constants of integration and the dimensionless distance B. Finally, if the
flows are bounded from below by a bumpy boundary and unconfined from
above, then the five constants of integration and the depth of flow B are
determined by the two conditions (43) and (44) below, the three conditions

(45) and (46) above, and a prescription of either m, or m.

The velocity does not appear in the system of equations (31), (32), (34),
(and (39) for S(Y), P(Y), v(Y),and w(Y). Furthermore, condition (43) may be
used to eliminate the slip velocity from the energy flux condition (44).

Consequently, when m, is prescribed rather than m, and when the shear
stress either vanishes everywhere or is known at a boundary (as it is at the
free surface of an unconfined flow or at the center plane of a symmetric flow),
then it is possible to determine S(Y), P(Y), v(Y), and w(Y) independently of
u(Y). The velocity profile is then easily determined by integrating equation
(36) from the boundary where the slip velocity is known from condition (43).
All the boundary value problems that we will consider uncouple in this
manner.

4.4 Deterministic Boundary Motion

The boundary conditions derived in sections (4.1) and (4.2) apply to
boundaries whose vibration is random and described in terms of a velocity
distribution function. Calculating similar boundary conditions for
boundaries that vibrate harmonically would require carrying out averages
that account for the dependence of the boundaries' velocities on time. To
avoid this complication, we assume that the averages carried out based on a
statistical (i.e. anisotropic Maxwellian) description of the boundaries’
velocities adequately represent boundaries whose motion is harmonic
provided we relate the components of second moment tensor B that describe
the random motion of fluctuating boundaries to the amplitudes and
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frequencies that describe the periodic motion of harmonic boundaries. To
this end, we consider boundaries that vibrate periodically in the three
coordinate directions about a position that is independent of time. The
particles on the boundary have velocities in the three directions given by

x = Anosin(not+f) (i=1,2, or 3) (49)

where n,=1, and n; and n, are positive integers. The amplitudes A;, phase
angles {;, integers n; and n;, and frequency factor w are all adjustable
parameters that influence the rates at which momentum and energy are
transferred to the flows. We restrict attention to boundaries with amplitudes
of vibration that are of the same order as the mean free path within the flow,
and with periods of oscillation that are of the same order as the time between
collisions within the flow. For these boundaries, we interpret the
components By in the rates (25, (29), and (30) for M, F, and D as the time

averages of the products xx; over the longest period 2rw of oscillation; i.e.,

AANnNa2c0s(CE)  n=n;
i,- ={2 i1, 02c0s(-G; 1 50)

0 A1y

According to this correspondence, any two diagonal components
(B11=V 42, By,=V,2, Byy=V3?) of B will be equal when the corresponding
products, An,, A;n,, Agng are equal; any off-diagonal component of B will
vanish when the vibrations in the two corresponding orthogonal directions
are either at the same frequency and n/2 radians out of phase, or at
frequencies that are unequal integer multiples of same factor.

4.5 Thermalization of Unconfined Assemblies Induced by Isotropic
Boundary Vibrations .

Of concern here is the influence of bumpy boundaries that vibrate
isotropically on the granular assemblies with which they interact. These are
boundaries for which the second moment B is isotropic. According to
expression (25) for M, the vibrations of such boundaries transmit no
tangential momentum to the flows, and induce no mean motion of the
assemblies. Of particular interest are the thermalized states of unconfined
assemblies that are compressed by gravity and bounded from below by a
horizontal boundary. We will examine the effects of the vibrational energy
and bumpiness of the boundary on these states. The general flow equations
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and boundary conditions derived in section 4.3 will be reduced for these flows
and solved numerically.

Here, we take characteristic velocity a=(cg)'/2, and locate the origin of
the coordinate system to coincide with the location of the lower boundary
such that Y varies from 0 at the lower boundary to B at the top of the flow (i.e.
the free surface of an unconfined flow or the upper boundary of a confined
flow). According to equation (30), the shear stress S is constant throughout
the assemblies. In the cases considered here, the shear stress vanishes at a free
surface. Consequently, the shear stress vanishes everywhere. Moreover,
constitutive relation (36) for u' demonstrates that when S vanishes, the mean
velocity is constant and the assemblies move uniformly. But according to
tangential momentum balance (43), when S is zero and B is isotropic, the slip
velocity and therefore the mean velocity everywhere in the flow vanishes.
The reduced system of equations that determines the variations of the
normal stress and mean fields of solid fraction and granular temperature are
then given by (32) for P(Y), (34) for v(Y), and (39) for w(Y).

At a free surface, the boundary conditions are the first stress-free
condition (45) and the energy flux condition (46). For bumpy boundaries
whose motion is isotropic, B is proportional to the identity tensor 3, V, and
V, are unity, and the ratio R vanishes. Under these circumstances, when
expression (2.3) for J(R=0,8) is employed, the energy flux condition (44) at a
bumpy boundary simplifies to

w'  (2V2E(1-cosB)csc20

w = ET Mw(wZad) 2

[202- (1-e,)(W?+0?)] , (51)

in which o=V /(cg}!/? is the dimensionless fluctuation speed of the boundary.
The positive (or negative) sign preceding the right-hand side of equation (51)
applies when the inward normal N points in the negative (or positive) Y-
direction as it does at a lower bumpy boundary. The first and second terms on
the right-hand side of equation (51) are measures of the energy supplied to the
assembly by the vibrations of the boundary and the energy absorbed in
dissipative collisions with the boundary.

4.5.1 Solution Procedure

We are interested in the effects of gravity and the full range of boundary
vibration on unconfined assemblies; from cases in which the vibrational
energy of the horizontal boundary tends to zero, to those where the boundary
becomes extremely energetic. In the former case, we expect that as the
boundary energy tends toward zero, so too will the granular temperature
everywhere within the flow. In order to ensure that, even under these
extreme circumstances, the solid fraction does not exceed its random close
packed value v,,,, we take G(v)=v/(1-v/v,)5v, /2. This form of G is based on the
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radial distribution function gy(v) at impact proposed by Lun and Savage [1986],
which has the correct value (=1) and slope (=5/2) in the dilute limit, agrees
well with that proposed by Carnahan and Starling [1969] for all values of v up
to .5, and becomes unbounded as v approaches v, so that collisions between
particles may support high pressures at low granular temperatures. The
results presented in the next section are based on the random close paced
value v,=.65 supposed by Johnson et. al. [1990].

Equations (32), (34), and (39) determine P(Y), v(Y), and w(Y) to within
three constants of integration. These constants and the depth B are
determined by the first of stress conditions (45) and the energy flux condition
(46) at the free surface, condition (51) at the boundary, and a fixed mass hold-
up m, calculated according to its definition (47). In principle, the solution
procedure is as follows. For fixed values of mass hold-up m,, coefficients of
restitution e and e, bumpiness 6, and dimensionless fluctuation speed o of
the boundary, we guess at the measure w of granular temperature at the top
of the assembly, and numerically integrate equations (32), (34), and (39)
downward from the location at which both P and w' vanish to the depth at
which the mass hold-up assumes its prescribed value. Condition (51), which
may be written as a quadratic equation for ¢?, then determines the value of a
that sustains that thermalized state. Finally, we iterate on the guess for w at
the top until the value of o calculated in this manner agrees with its
prescribed value. The distance over which the final integration is carried out
is the depth .

In practice, the solution procedure is somewhat less straightforward.
As described in section 1.2, whenever a free surface exists, the theory predicts
that the flow is infinitely deep and that the mean fields approach their values
at Y=f asymptotically from the base. Integrations initiated as described above
therefore yield no spatial variations in P, v and w. In order to overcome this
difficulty, we follow the procedure described in section 1.2 by initiating the
integrations with a very small value of v at the ““top" of the flow.

4.5.2 Results and Discussion

In this section, we consider only the case in which e=e,=9 and the boundary
parameter 0 is equal to =/6, unless otherwise indicated. This value of
includes the spedcial case in which the diameter ¢ of the flow particles is equal
to the diameter d of the flow particles, and the spacing s between boundary

particles vanishes. In order to present the results compactly, we introduce the
normalized function of Y,

Y
E(Y) =EIT jv(Y)dY , (52)
t9
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which gives the fraction of the total mass m, below any location Y, and varies
from 0 (when Y=0) at the base to 1 (when Y=B) at the top of the assembly.

In presenting our results, we first study the effects of vibrational speed
o on the thermalized states of fixed mass hold-ups m,. In Figures 4.1 a, b, ¢,
and d, for example, we show the variations of w(g) with o for £€=0, .05, .1, .25,
.5, .75, and 1 when m=2.5, 5, 10, and 20. As expected, the granular
temperatures, which are induced entirely by basal vibrations, increase from
zero as o increases form zero. For any pair of a and m,, the temperature
deceases monotonically from the base (§=0) to the top of the assembly (£=1).
This is because energy must be conducted into the mass above any location Y
- to balance the collisional dissipation that occurs within that mass.
Furthermore, because the energy flux at the top of the assembly vanishes, the
energy flux at the boundary must balance the total dissipation in the
assembly. Consequently, the granular temperature typically varies far more
widely throughout the lower half of the mass than it does in the upper half,
and hardly varies at all through the upper quarter of the mass. These
observations become more striking as the mass hold-up increases. According
to Figures 4.1 c and d, the measure w of granular temperature is less than .01
in the upper portions of the assemblies for values of o less than .81 when
m,=10 and for all values of a (between 0 and 5) when m,=20. Under these
circumstances, the energy supplied by the vibrating boundary is, in effect,
insufficient to thermalize the entire assembly.

In Figures 4.2 a and b, we show the variations of w and v with Y for a=
25,2, and 5 when m=5. The solid dots on the profiles indicate the heights at
which £€=.99. These profiles are typical. As the fluctuation speed of the
boundary increases, the assembly becomes deeper, more dilute, and more
thermalized. The granular temperature increases monotonically from the
top to the bottom of the assembly, whereas the solid fraction increases from
zero at the top to its maximum at an intermediate location and then decreases
to a smaller value at the base. In fact, P' and w' are negative everywhere; but
when constitutive relation (34) is differentiated with respect to Y we obtain
the relation for v,

P2w

(P 0w
V = dmneGr] (53)

which is positive only where P'/P is greater than 2w'/w.

Next we study the effects of varying the mass hold-up on the
thermalized states induced by boundaries whose vibrational speeds o are
fixed. In Figures 4.3 a, b and ¢, for example, we plot the variations of w(§)
with m, for £€=0, .05, .1, .25, .5, .75, and 1 when a= .25, 2, and 5. As expected, for
fixed values of vibrational speed o and mass fraction §, the granular
temperature typically decreases as the total mass hold-up increases.
Interestingly, this effect on w(g) diminishes as & decreases, until at the base
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(§=0) the granular temperature is virtually insensitive to mass hold-ups
beyond about 2.5. Figure 4.3 also demonstrates that as vibrational speed
increases, so too does the mass that can be effectively thermalized. As o
varies from .25 to 2.5 to 5, for example, the maximum values of m, for which
w is everywhere greater than .01 increases from 8.22 to 11.10 to 11.94.

In Figures 4.4 a and b we show the variations of w and v with Y for
m,=2.5, 5, 10, and 20 when a=2. Again the solid dots indicate the locations at
which £=.99. Although the effect of increasing the mass of the assembly from
m,=2.5 to 20 is to decrease the granular temperatures everywhere, the decrease
is far more pronounced near the top of the assembly than at the base. At the
two lower values (m,=2.5 and 5) of mass hold-up, the boundary vibrations are
sufficient to fully thermalized the assemblies and to disperse them at solid
fractions that are everywhere significantly less than the random close packed
value. However, at the two higher values (m=10 and 20), the assemblies are,
in effect, only partially thermalized. These more massive assemblies consist
of an upper passive region, in which the solid fraction is essentially constant
and nearly equal to its maximum value, supported by a thermalized region
that extends approximately 11 particle diameters above the base.

Finally, in Figures 4.5 a and b, we study the effects of boundary
bumpiness on the induced thermalized states by plotting the profiles of w(Y)
and v(Y) for 6=0, =/3, and =/2 when o=2 and m;=5. The effects demonstrated
here, as the boundary evolves from perfectly flat (6=0) to extremely bumpy
(6=r/2), are typical. As 6 increases from zero, so too does the energy imparted
to the assembly by the tangential components of the isotropic boundary
vibrations. For this reason, as the boundary becomes bumpier, the granular
temperatures increase and the solid fraction decrease throughout the
assembly. However, these effects are moderated by the fact that the energy
imparted to the assembly by the normal component of the boundary
vibrations actually decreases as the boundary becomes bumpier and
experiences fewer normal and greater number of oblique impacts with the
assembly. Consequently, as the boundary becomes bumpier it becomes only
moderately more effective at transferring energy to the assembly. The net
effect of varying 6 on the resulting thermalized states is therefore relatively
minor.-

4.6 Thermalization and Mean Motion Induced by Amsotroplc
Boundary Vibration

In this section we study the effects of bumpy boundaries that vibrate
anisotropically on the granular assemblies with which they interact. These
are boundaries whose second moment of velocity fluctuation B is anisotropic,
and whose vibratory motion can by itself induce slip. In particular, we study
the effects of these boundaries on unconfined flows compressed by gravity.
Although the shear stress vanishes everywhere within the flows, the
boundary may transmit tangential momentum to the assemblies, which
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therefore may experience mean motion. In these unconfined flows we
examine dependence of both the thermalized state and the mean motion
induced not only on the distribution of energy and boundary bumpiness, but
also on the total amount of vibrational energy.

4.6.1 Solution Procedure

Here, we are concerned with unconfined flows that are compressed by gravity
and driven by horizontal boundaries that vibrate anisotropically. We take the
characteristic velocity a equal to (og)!/2 and locate the origin of coordinate
system at the boundary such that Y varies from 0 at the boundary to B at the
free surface. Here, we take G(v) as v(2-v)/2(1-v)? and solve the full equations
numerically. Now w and u are equal to their dimensional counterparts (T)!/2
and u, scaled by a=(cg)'/2. The ratio a=V/(cg)'/? will appear in the boundary
conditions and affect the solutions for w and u.

In these simple flows, according to equation (31), the shear stress is
constant throughout the assembly. Because, according to the second of stress
conditions (45), the shear stress vanishes at the free surface, it vanishes
everywhere. Because, according to equation (36), the velocity gradient is
proportional to the shear stress, it also vanishes, and the assemblies move
uniformly. Therefore, the system of equations that determines the variations
of the stresses and mean fields are given by (32) for P(Y), (34) for v(Y), and (39)
for w(Y).

The boundary at Y=0 moves with velocities given by equation (49) for

% They oscillate with frequency ® in the x;- and x,-directions, a higher
frequency ngo\ (nsz1) in the xz-direction, and amplitudes A;, A,, and
As=A,/n, in the x;-, X;-, and xs-directions. The phase difference {;-{, is equal
to {. According to relation (50), this boundary corresponds to one whose
velocity fluctuations are described by the second moment tensor,

V12=A12(D2/ 2 B12=V1V2COSC 0
Bij = le =V1V2COSC V22=A220)2/ 2 O ’ (54)
0 0 Va2=A20%/2 '

Under the influence of these boundaries, the material flows only in the +x ;-
direction.

The conditions at the bumpy boundary determine-uniform velocity
u=v, and the granular temperature there. They are the balance of
momentum (43) with 5=0,

ofm)/ 2Rsin4e[ 1+4R

1
U= DT K- 21| ViVacost (55)
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where Q=w(0)\a and R=V,2- V2)/(Q2+V2), and the balance of energy (44),

-Mw'[(Q? + Vnz)(1+R)]1/2[ Rsin? ] _

(2)?aFcsc?0 “2(14R)
2 2 2 2 +V2
[Q -ZV ]]_(Q + Vi )K (1ew)‘(-8—(1+—R)—)[H 3, (56)

in which we have used the fact that S=0. The boundary conditions at the free
surface are given by the first of conditions (45) and condition (46).

In principle, for fixed values of e, equations (32), (34), and (39)
determine P(Y), v(Y), and w(Y) to within three constants of integration. For
fixed values of V,, V,?, «, and e,,, those constants and the depth of flow are
determined by the first of the stress free conditions (45) and energy flux
condition (46) at the free surface, the energy flux condition (56) at the base,
and by prescribing the mass hold-up m;.

In practice, the solution procedure is somewhat more complicated. As
described in the earlier sections that dealt with unconfined flows, in order to
initiate the numerical integrations we must slightly relax the normal
pressure condition at the free surface by assigning a small value to v, and by
guessing the value of w there. In this manner, we integrate equations (32),
(34), and (39) from the free surface (where w' vanishes) to the location Y at
which m, assumes its prescribed value. With v, w and w' at the boundary
determined by the integrations, we check that condition (56) is satisfied for
chosen values of V,, 6, a, and e,,. If it is not, we iterate on the guess for w at
the free surface until it is satisfied. Equation (55) then determines the
uniform scaled velocity u/cost.

4,6.2 Results and Discussion

Of primary interest are the effects of the boundaries' motion, geometry,
and vibrational energy on the thermalized states and mean motion that their
vibrations induce. For this reason, in carrying out the solution procedure
described above, we have varied only V,, 6, and a. All the results presented
here are for m=5 and e=e=.9. Interestingly, because the shear stress vanishes
throughout the assemblies, the solid fraction and temperature profiles do not
depend on the mean motion of the assembly. Consequently, the predicted
profiles v(Y) and w(Y) apply both to assemblies that do and do not experience
mean motion. Mean motion will occur if the phase angle { between the
vibrations in the x;,- and xz-directions is unequal to n/2. Because the mean
velocity scales with phase angle {, it need not be specified.

In Figure 4.6, we plot the variations of the granular temperature w(0) at
the boundary with bumpiness 6 for normal fluctuation speeds V,2=0, 1, 3/2, 2,
and 3, when a=2. We observe that when the vibrations are due entirely to
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tangential motion (V,2=0), the temperatures increase as the boundaries
become bumpier, and when vibrations are due entirely to normal motion
(V,2=3), the temperatures decrease as the boundaries become bumpier and
experience fewer normal and more oblique impacts. Moreover, for fixed
values of 6 between n/6 and /3, the granular temperatures throughout the
assemblies increase monotonically as the energy of tangential vibration is
converted to energy of normal vibration.

In Figure 4.7 we show the variations of w(0) with bumpiness 8 for
dimensionless root mean fluctuation speed o= V/(cg)/?=1, 2, 3, 4, and 5, when
V.2=1. The temperature w(0) increases with increasing 0 because, for each
value of o, two-thirds of the total vibrational energy is in the tangential
mode. Interestingly, under these circumstances, w(0) is rather insensitive to 6
and apparently very nearly scales with o.

In Figure 4.8 we show the variations of scaled velocity u/cos{ with
bumpiness 6 for the case when a=1, 2, 3, 5, and 5, and V_?=1 taken from Figure
4.7. Over this range of 6, for fixed values of o, the slip velocity increases with
decreasing bumpiness 6. While both the driving force due to vibrations and
the resisting force due to slip diminish with decreasing 6, this result suggests
that the former is less sensitive to 8 than the latter. In addition, Figure 4.8
demonstrates that the velocity u very nearly scales with o.

In Figure 4.9 we show the variations of w(0) with V2 for a=1, 2, 3, 4,
and 5, when 6=r/6. In Figure 4.10 we show the corresponding variations of
scaled velocity u/cos{. For fixed values of total boundary vibrational energy
o, Figure 4.9 demonstrates that the granular temperature monotonically
increases as that energy is converted from tangential motion (V,2=0) to
normal motion(V,2=3).

Figure 4.10 demonstrates that when the boundary motion is distributed
entirely in either normal or tangential motion, it is unable to induce mean
motion. However, away from these extreme cases, the boundary does induce
slip. In fact, at least for 6=x/6, slip is maximized when V,? is about .72. That
this optimum value of V_? is nearly independent of a is another indication
that u roughly scales with .

In Figures 4.11 and 4.12 we show the granular temperature and solid
fraction profiles w(Y) and w(Y) for V,2=0, 1, 1.5, 2, and 3, when 6=r/6 and o=2.
Solid dots on the profiles indicate the value of Y below which 99% of-the
mass m, is contained. For these parameters, as V,? increases from 0 to 3, the
boundary becomes more effective at thermalizing the assembly and the flows
become deeper, more thermalized, and more dilute. Qualitatively similar
observations can be made for other fixed combinations of bumpiness 6 and
vibrational energy o.
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4.7 Figures

9




01

? - 8

T lll]11 L] l 1

- 10
)
1

lllllllllllllllllll(lll

=

Illlllllll1IITrIIllllll||_bllll|llll|lllllllllllllll
llllll'llllllllllll
3

¥

ALlllllllll]lllllllllllll
X

lll'—lll|llll}"Illllllll:’:lllllllllllllll]lllllllll

Illl]llllll!ll'll!l'llll o
! 2

| FE I

= g

10 e
[
L.
o

Figure 4.1:  The variations of w(¢) with o for a) m=2.5, b) m=5, ¢) m=10, and
d) m,=20, when £=0, .05, .10, .25, .5, .75, and 1, 6=r/6, and e=e,,=.9.
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Figure 4.2: The variations of a) w and b) v with Y for ¢=.25, 2, and 5, when,
m,=5, 0=r/6, and e=e,~.9.
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Figure 4.3: The variations of w(£) with m, for a)a=.25, b) a=2, and ¢) a=5,
when £=0, .05, .10, .25, .5, .75, and 1, 6=xr/6, and e=e =.9.
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The variations of a) w and b) v with Y for m=2.5, m=5, m=10,
and m=20, when a=2, 0=x/6, and e=ew=09.
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Figure 4.5: The variations of a) w and b) v with Y for 0=0, ©/3, and =/2 when
a=2, m=5, and e=e,=.9.
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Figure 4.6: The variations w(0) with 8 for V.2=0,1,3/2,2,and 3, when a=2,
e=e,=.9, and m=5.
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Figure 4.7: The variations of w(0) with 6 for a=1, 2, 3, 5, and 5, when V,2=1,

e=e,=.9 and m=b.
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Figure 4.11: The variations of w with Y for V_2=0, 1, 1.5, 2, and 3, when =2,
0=x/6, e=e =9, and m=5. Solid dots on the profiles indicate the
value of Y below which 99% of the mass m, is contained.
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6. APPENDIX

Here we provide the elements of the 5x5 coefficient matrix [C] of
equation (2.35). The subscripts on the elements of [C] are unrelated to the x;-
Xp-X3 coordinate directions.

The first row of equation (2.35) is the differentiated form of shear stress
relation (2.7). The coefficients are,

u' dH P12 divG)
Cu=5im Co =G, " 2M4e)0CP dv  ’ (AD)
and
27172
Cs=0 , Ca=-H , Cis =577 - (A2)

The second row of equation (2.35) is the differentiated form of the normal
stress relation (2.9). The coefficients are,

Cy=VvGF, C,= 'cd(:;(v;F) + azzd(\:i(\;,H) , Cyu=vVvGH , (A3)

and C,,;=Cy5=0. The third row of equation (2.35) is the energy flux relation
(2.11). The coefficients are,

Chy=x, Cp =M , Cy=mn, (A4)

and C3,=Cy;=0. The fourth row of equation (2.35) is the differentiated form of
the x,-x, deviatoric component (2.20) of the balance of second moment. The
coefficients are,

-12(1+e)(3-e)vGa. -24(1+e)(3-e)t!%ay, d(vG) ' '
and
-24(1+e)(3-e)vGrl/2 . 1
C43 = 5751/2 ’ C44 =vua , C45 = vapy - 5 P2 - (A6)

The fifth row of equation (2.35) is the differentiated form of the x;-x;
component (2.21) of the balance of second moment. The coefficients are,
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6(3-e)a;, 5u’ dG

Coo = 772G+ Co = JTre)Be R av + T =0, (A7)
and
-12(3-¢) 5
Css = JP@eA72 Cs = -[ 1+ 357 +e)(3e-1)G] . (A8)
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