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Abstract

Dual control volume grand canonical molecular dynamics (DCV-GCMD) is a boundary-driven
non-equilibrium molecular dynamics technique for simulating gradient-driven diffusion in multi-
component systems. Two control volumes are established at opposite ends of the simulation box.
Constant temperature and chemical potential of diffusing species are imposed in the control vol-
umes (i.e. constant- ;... 4, 14,V 7). This results in stable chemical potential gradients and steady-

state diffusion fluxes in the region between the control volumes. We present results and detailed
analysis for a new constant-pressure variant of the DCV-GCMD method in which one of the dif-
fusing species for which a steady-state diffusion flux exists does not have to be inserted or
deleted. Constant temperature, pressure and chemical potential of all diffusing species except one
are imposed in the control volumes (i.e. constant-y;...4, | N,PT). The constant-pressure method

can be applied to situations in which insertion and deletion of large molecules would be prohibi-
tively difficult. As an example, we used the method to simulate diffusion in a binary mixture of
spherical particles with a 2:1 size ratio. Steady-state diffusion fluxes of both diffusing species
were established. The constant-pressure diffusion coefficients agreed closely with the results of
the standard constant-volume calculations.

In addition, we show how the concentration, chemical potential and flux profiles can be used to
calculate Jocal binary and Maxwell-Stefan diffusion coefficients. In the case of the 2:1 size ratio
mixture, we found that the binary diffusion coefficients were asymmetric and composition depen-
dent, whereas the Maxwell-Stefan diffusion coefficients changed very little with composition and
* were symmetric. This last result verified that the Gibbs-Duhem relation was satisfied locally, thus
validating the assumption of local equilibrium.
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I. Introduction

In a wide variety of situations of technological and/or scientific interest, the macroscopic behavior
of a fluid is influenced by diffusion, which has its origins in the microscopic motions of atoms or
molecules comprising the fluid. The term diffusion, in this context, refers to the process whereby
a non-equilibrium spatial variation in a species concentration (or more generally chemical poten-’
tial) causes net motion of that species (relative to the system as a whole) from regions of high con-
centration to regions of low concentration. The magnitude of the spatial variation can be
quantified by some form of concentration or chemical potential gradient, referred to as a driving
force. The magnitude of the net relative motion can be quantified by a diffusion flux. While there
are many different definitions of these quantities in use in the literature, they are usually defined
so that both the driving force and diffusion flux are zero when the system is at equilibrium.
Hence, in the absence of unphysical pathologies, the diffusion flux should be directly proportional
to the driving force for systems not far removed from equilibrium. The fundamental correctness
of this proportionality follows from the principles of non-equilibrium thermodynamics!', and it is
satisfied in almost all physical situations. The numerical value of the proportionality constant is
usually referred to as a diffusion coefficient, although the way in which diffusion coefficients are
defined varies widely, particularly in the case of multicomponent diffusion?. In any event, the
macroscopic phenomenon of diffusion in multicomponent systems can be accurately character-
ized by a suitable set of diffusion coefficients. A wide variety of experimental techniques for esti-
mating diffusion coefficients have been developed®.

The difficulty with experimentally-measured diffusion coefficients is that they fail to provide
direct information on the underlying causes of diffusion. Equilibrium molecular dynamics simula-
tions provide a powerful method for examining diffusion at the microscopic level. By sampling
the center-of-mass velocity correlation functions (VCF) for every distinct pair of species in the
system, complete information about the microscopic translational dynamics, as well as the result-
ant diffusion coefficients can be obtained. Unfortunately, the VCF’s are not self-averaging; their
magnitude decays as 1/N.*3 This is particularly problematic when large system sizes are needed
e.g. in polymeric or coulombic systems. As a consequence, MD simulations of diffusion fre-
quently sample only the velocity autocorrelation function (VACF). This is a single-particle prop-
erty which is independent of system size, and so can be sampled very efficiently. The VACF for a
species i provides a measure of mobility, which can be used to calculate the tracer diffusion coef-
ficient. This is the ratio of the flux of a very dilute set of tagged particles of species i to a gradient
in their concentration, with all other species in the system in their equilibrium states. The tracer
diffusion coefficient differs from the full transport diffusion coefficient in that it ignores the effect
of collective motion involving molecules of the same species and also molecules of other species.
For this reason it is unsuitable for characterizing diffusion of species which are not at very low
concentration. -

Non-equilibrium molecular dynamics provides an alternative to the difficult-to-sample VCF’s,
without having to ignore collective motion. The basic principle of NEMDS is to study the dynam-
ics of the system by applying a driving force and measuring the resultant flux.

NEMD provides several advantages over equilibrium MD. Firstly, because the NEMD flux (sig-
nal) can be made arbitrarily larger than equilibrium fluctuations (noise) by simply increasing the
driving force, the NEMD method can be made arbitrarily efficient. The only limitation is the issue
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of linearity mentioned above, but this can be controlled for by running simulations at several dif-
ferent field strengths. Secondly, as was pointed out by Evans and Morriss®, NEMD allows one to
directly observe the microscopic physical mechanisms that are important to the transport process
being simulated. Finally, NEMD simulations provide access to transport processes which do not
conform to conventional transport models e.g. systems exhibiting non-linear response and spa--
tially inhomogeneous systems.

The driving force for transport is usually generated in one of two different ways. In the boundary-
driven method, high and low concentration reservoirs of the conserved quantity (energy, momen-
tum, matter) are constructed on opposite sides of the “gradient zone™. The conserved quantity
flows through the gradient zone from the high concentration reservoir to the low concentration
reservoir and a concentration gradient is established. Boundary-driven simulations are inherently
inhomogeneous. This makes them ideally suited to direct simulation of microscopically inhomo-
geneous systems, such as diffusion through nanoscopic films.

In the field-driven method, an external force is applied to each particle. The external force on a
particle is defined to be a function of the amount of the conserved quantity carried by that particle.
As a result, the particles obey modified equations of motion which result in net transport of the
conserved quantity in the absence of a gradient. The field-driven method is intrinsically homoge-
neous, which makes it less susceptible to finite-size effects.

The dual control volume grand canonical molecular dynamics (DCV-GCMD) method developed
by Heffelfinger and van Swol” and the similar method developed simultaneously by MacElroy®
are both examples of boundary-driven NEMD. They were designed to enable the simulation of
diffusion in systems experiencing chemical potential gradients. In DCV-GCMD two local “grand
canonical Monte Carlo control volumes” are set up inside the simulation volume of a molecular
dynamics simulation, and grand canonical Monte Carlo (GCMC) insertions and deletions are car-
ried out to establish different desired chemical potentials in these control volumes. The control
volumes act as high and low concentration reservoirs for the diffusing species. Random exchange
of energy and particles across the control volume boundaries establishes a steady-state chemical
potential gradient in the gradient zone between the control volumes.

Due to the combination of Monte Carlo moves and classical Newtonian dynamics, the fluid parti-
cles in each control volume sample phase space with a distribution which resembles the grand
canonical ensemble with the same temperature, volume and chemical potentials. Although the
density fluctuations are generally weaker than those of the grand ensemble, the time-averages of
thermodynamic properties such as species concentration have been found to agree closely with
the grand ensemble values’. Similarly, the fluid particles in each small region outside of the con-
trol volumes sample from a phase space distribution which resembles the grand canonical ensem-
ble distribution for a system with the same local temperature and chemical potentials. Several
other boundary-driven schemes have been developed which do not attempt to rigorously enforce a

- particular thermodynamic state in the res}er_voirs.""17 A review of the DCV-GCMD method, and
related methods is available elsewhere.!®

The DCV-GCMD has been successfully used to simulate gradient-driven diffusion in a range of

different systems.!>171930 However, the need to constantly insert new molecules into the control
volumes limits its range of applicability, as well as that of all other boundary-driven methods. For
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dense fluids, the acceptance rate for GC insertion moves is roughly proportional to the probability
of randomly inserting a particle without any overlaps. This probability decreases precipitously as
the size of the inserted particle increases beyond the average particle size of the fluid. Hence the
DCV-GCMD method will fail for fluid mixtures with large size ratios. Since such mixtures are
too important to be ignored, we have circumvented the problem of insertion/deletion by running
the simulation at constant pressure. Instead of constructing control volumes which simulate the
constant-zy...¢4, 1 4,V T ensemble, we employ the constant-y; ..., (NPT ensemble. This elimi-
nates the need to exchange one of the components, allowing us to simulate diffusion in mixtures
of any size-ratio.

The outline of the paper is as follows. In the next section we briefly describe the standard con-
stant-volume DCV-GCMD method. Then we describe the new constant-pressure variant. In Sec-
tion IV we present some results of the constant-pressure method for a pure equilibrium fluid in the
absence of gradient. In Section V we compare the results of constant volume and constant pres-
sure simulations of color diffusion. In Section VI we do a similar comparison for binary diffusion
in a 2:1 size ratio mixture.

. Constant-Volume DCV-GCMD

A comprehensive review of the DCV-GCMD and related methods has recently been published'3;
here we provide only a general outline. Briefly, DCV-GCMD can be thought of as a hybridization
of MD and GCMC because it consists of embedding two GCMC control volumes in a standard
NVT molecular dynamics simulation (Fig. 1). Each atom in the system is moved with the normal
MD algorithm during an “MD phase™. During this phase, the equations of motion are solved using
the velocity Verlet algorithm®!. Temperature control is achieved using direct velocity rescaling?!.
Periodically, the global average kinetic energy per particle is compared against a target value cor-
responding to the desired temperature. If the discrepancy exceeds some threshold value, the
kinetic energy is reset to the target value by rescaling all of the particle velocities by the same fac-
tor.

After each MD phase (which proceeds for a preset number of timesteps), a “GCMC phase” fol-
lows. During the GCMC phase, a series of insertions, deletions, and (if desired) identity swaps of
each component are attempted in each GCMC control volume. Destroyed atoms are simply
removed from the simulation while created atoms are assigned velocities chosen on a Gaussian
distribution. After the GCMC phase, the simulation proceeds with another MD phase, and so on.

In the spatial-decomposition parallel implementation of the method'%2%, which we have used here,
attempted insertions and deletions are conducted in sets of eight, corresponding to the eight sub-
domains of each processor domain. On each attempt, a creation or destruction (chosen with equal
probability) is carried out on species i (chosen randomly). If the identity swap functionality is
enabled, this may be followed by an attempted change in type for a randomly selected atom of
type i. The acceptance criteria’!® used for attempted insertions, deletions, and identity swaps are
~ simply those of the standard GCMC method with the system volume, ¥, number of atoms of type
i in the system, N;, and the desired chemical potential of type i for the system, g, replaced with

the volume of ¢, ¥(c), the number of atoms of type i in control volume ¢, N{c), and the desired




chemical potential of type i for control volume ¢, y;(c), respectively, where ¢ refers to the subdo-
main (see ref. 19).

Periodic boundary conditions are applied in the dimensions appropriate for the simulated system:

the x, y, and z directions for simulations of diffusion in bulk systems and through amorphous
porous materials; for systems confined in a pore, the pore is situated along the x-axis, thus peri-

odic boundary conditions are applied only in the x direction.

The density profile, pi(x), is calculated by dividing the system volume into bins along the x-axis
and averaging the number of atoms of type i in each bin. The chemical potential profile, y(x), is
calculated using the same bins as the density profile. Outside the control volumes, the chemical

potential is determined via the insertion of test atoms whereas within the control volumes the cal-
culated energies for attempted insertions are used.

The flux of any component , at any point in space r, J;, is a vector quantity equal to pu;, where p;
is the local number density of component i and u; is the local center-of-mass velocity of compo-
nent /. In this paper, we measure the u; and the J; relative to the fixed laboratory frame of the sim-
ulation box. In addition, we use the scalar quantity J; to represent the flux in the x-direction, since
the other two components of the flux always have an average value of zero, by construction.

The flux between the two control volumes can be measured in three different ways. In the planar
flux method (Fig. 1), the net movement of each species type, i, across a stationary plane is accu-
mulated as the simulation progresses and used to calculate the flux. In the control volume method,
the net number of particles added or subtracted (total insertions - total deletions) in control vol-
umes A and B are accumulated and used to determine the flux for each type. In a third method,
flux profiles are calculated using a binning system analogous to that used for the density profiles.
For each bin, the sum of the x-velocities of the atoms of type i is averaged over the simulation.
This allows the flux of component i to be calculated as a function of x-position.

1. Constant-Pressure DCV-GCMD

Because the accompanying change in energy of the insertion or deletion of large molecules is so
great as to make the probability of accepting such a move prohibitively small, the range of appli-
cability of the DCV-GCMD method as well as all other grand canonical simulation methods are
limited. To overcome this problem, others have developed special incremental insertion/deletion
schemes. However, these schemes can be expensive and are applicable only to particular types of
molecules.

Our approach?®? to solving this problem, is to avoid insertion/deletion of component » altogether,
so that the total the number of molecules of that component remains fixed. This amounts to per-
forming a Legendre transform on the control volume simulations; we switch from constant-
. My pn 1 VT t0 constant-g...p, 1 N, VT simulations. This creates a new problem, in that the dif-

fusion of component n will cause the intensive simulation parameter N, in each control volume to

increase or decrease. The volume ¥, which is the only other extensive simulation parameter,
remains fixed, and as a result, the thermodynamic state of each control volume changes with time.
To prevent this, we perform a second Legendre transform, replacing the ¥ with its intensive con-




jugate P. This new constant-y;...4,.|N,PT ensemble is a multicomponent analog of the isother-
mal-isobaric ensemble. The important feature is that N, is the only extensive fixed parameter.
Hence as N, changes within a given control volume, the size of the entire control volume can

change with it. The thermodynamic state is determined only by the intensive fixed parameters
and so remains unchanged. '

Conventional affine expansion/contraction techniques for controlling system pressure’! can not
be used here. These methods are based on global changes to the system volume, whereas we
require that independent volume changes occur in the left and right control volumes. In addition,
these methods would not preserve the length of the region between the two control volumes, mak-
ing it impossible to define a concentration gradient. Instead, we use a type of pressure control
introduced by Lupkowski and van Swol*? for equilibrium MD simulations of confined fluids. The
Hamiltonian describing the system of interacting particles is augmented by the addition of two
quasi-particles, labelled A and B, which we will refer to as pistons. The sole purpose of the pistons
is to enforce constant-pressure boundary conditions independently at opposite ends of the simula-
tion box. For this reason, the dynamics of the pistons can be greatly simplified. Each piston has
fixed y and z coordinates, and a fixed orientation normal to the x-direction. Hence, it has only one
degree of freedom: translation in the x-direction. The Newtonian equations of motion of the aug-
mented system are given by: ’

N
mif; = 3 Fu(r) +Fo(r) + Fi(rp) (1)
J#i
N
Fq=Pdyn,— % Fi(ry) )
i=1
N
B = PAy:nB— Z Fiw(riB) 3)

i=1

where m; is the mass of particle 4, r,; is its position vector, and Fj; is the force on particle 7 due to
particle j. P is the desired system pressure, m,, is the piston mass, 4. is the cross-sectional area of
the system on the yz plane, r, and rg are the positions of the pistons and n4 and np are unit vec-
tors in the positive and negative x-directions, respectively. F;,(r;,) is the force on particle i at r;
due to a piston located at r,,, where r;,,=r-r,,, and is given by:

Fiu(r) =~ 40, ()" @

where g;,(r) is the pair interaction energy between a particle i and a piston at a distance r away. It

is clear from these equations, that the dynamics of the augmented system can be simulated by
straight-forward extension of the standard methods of molecular dynamics simulation. In our par-
allel implementation, each processor calculates F;,(r;4) and F;,(r;g) for all the atoms which it

owns. The total force on each piston is then calculated by summing over all processors. The pis-
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ton positions are updated on processor 0, and then communicated to the other processors. In addi-
tion, the kinetic energy of the pistons is included in the temperature-rescaling algorithm.

Usually ¢;,,(r) is chosen to be a short-ranged repulsive potential which prevents atoms from cross-
ing through the pistons, while limiting the effect of the pistons to a layer of fluid which is only
several atoms thick. The repulsive force of the fluid on the atoms is counteracted by the constant
restraining force, PA,,. As a result, once the system has equilibrated, the force exerted by the

atoms on the piston will fluctuate about that of the constant restraining force, thus maintaining a
constant average pressure in the x-direction in the fluid near the wall. As long as the system is not
changing rapidly, this local pressure control will propagate throughout the system. Implicit in this
approach is the assumption that the same pressure is imposed on both pistons, i.e. there is no pres-
sure gradient in the system.

The use of the pistons in DCV-GCMD imposes certain constraints on how the simulation is con-
ducted. Firstly, we can no longer have periodic boundaries in the x-direction, and so there is only
one gradient zone, which passes through the center of the box. Secondly, the pistons are not
allowed to penetrate the control volumes. This condition could probably be relaxed, but in our
parallel implementation it simplifies the computation. Hence two buffer regions of fluid are set up
between the starting positions of the pistons and the control volumes proper. As the simulation
proceeds, component n migrates across the simulation box, leaving one buffer region and accu-
mulating in the other. Let us assume that this migration is from left to right. As a result, the pis-
tons will also tend to undergo net motion from left to right, causing the left buffer to shrink and
the right buffer to grow. Eventually, the left piston will reach the left control volume, at which
point the simulation must be terminated. Hence the maximum duration of the simulation is limited
by the size of the left-hand buffer. An additional constraint is imposed by the spatial domain
decomposition. The right buffer may eventually grow to a point where it extends beyond the
range of the rightmost processor domain. In this case the simulation must also be terminated.
Despite the transient nature of the simulation, the two control volumes and the central gradient
zone form a subsystem which is maintained at steady state, thus allowing transport properties to
be measured.

IV. Equilibrium Molecular Dynamics using Piston Pressure Control

As an initial test of this new constant pressure DCV-GCMD method, we carried out a comparison

~ with the original work of Lupkowski and van Swol*}, who first developed the pistons method of
pressure control for confined equilibrium fluids.

We performed an equilibrium NPT molecular dynamics simulation using a pure WCA fluid. The
fluid-fluid interaction potential is given by

by(r) = 4"’/’/{(950u‘(g;ﬂ)6] rep, T<20 ®)
0,

r221/60ff

~where oyis the particle diameter and & is a measure of the stiffness of the particle-particle repul-
sion. The potential is strongly repulsive at small separations, but decays smoothly to zero at the

7




cut-off separation of 2Y64. The interaction between the fluid atoms and the piston walls (A inter-
action) is defined to be the WCA analog of the 9-3 potential:

ds(r) = wa[fzg(%)g—(gf”)s]ﬂﬁ@, r<(2/5)%s,,

1/6 (6)
0 r2(2/5)" sy,

where oy, describes the range and &, the stiffness of the repulsive potential. Note that the scalar

distance variable r is always positive, and so the repulsive force on the particle, defined by Eq. (4)
is always directed away from the piston. The fluid-wall parameters (fw) were set to those of the
fluid-fluid interaction (ff), and all values of c-and £(op oy, £ and &5,) are henceforth referred to

simply as o-and &£ The pressure was set to PoPle=6255. The temperature was maintained at 7/
&= 1.5 using velocity rescaling. In the x-direction, the system was bounded by the pistons, but
was free to expand and contract. In the y and z directions the dimensions were 12 and the bound-
ary conditions were periodic. The number of atoms was fixed at 4961, to give the same quantity
of fluid per unit piston area as existed in Lupkowski’s simulation, although they only used 160
atoms and had a correspondingly smaller box width of 4.31¢. The MD simulation was run on a
4x8x8 array of processors, using a timestep of 0.005 o(a/m)”z. The pistons masses were set to
10my. The starting configuration for this NPT molecular dynamics simulation was created by
equilibrating a p¥'T simulation with the wall positions fixed at +6.3850. A configuration of this
system was selected which contained exactly 4961 particles. The NPT molecular dynamics simu-
lation was then started from this configuration, with the total momentum of the system set to zero.
The simulation was run for 60,000 timesteps. The piston positions were sampled every 100
timesteps and are shown in Fig. 2. The pistons fluctuated only slightly about their equilibrium
positions. The system as a whole remains stationary as a result of conservation of momentum.
The average separation of the walls fluctuated about a steady average value of 12.756+0.0020.
This is in close agreement with Lupkowski and van Swol’s value of 12.78¢:

We also briefly examined the effect of piston mass on the simulation dynamics. As pointed out by
Lupkowski-and van Swol, the piston mass should have no effect on the distribution of states sam-
pled by the simulation, but it will affect how the simulation evolves in time. Fig. 3 shows the
short-time behavior of the right piston during the first 50 timesteps of the simulation described
above, in which the piston mass ratio was m,/m;=10. Also shown are the piston trajectories for
mass ratios of 1 and 100. For all three mass ratios, the piston underwent oscillatory behavior with

a period which was roughly proportional to m,,'/2. The amplitude of the oscillations was roughly
equal in all three cases, and is determined by the initial displacement and velocity of the piston.
The heaviest piston mass resulted in rather sluggish behavior, due to a slower decay of time corre-
lations. Conversely, the lightest piston mass became unstable and failed after only a few
. timesteps. This was due to the characteristic timescale approaching the timestep used to integrate

the equations of motion. In order to simulate this case correctly, we had to reduce the timestep by
a factor of 10. |

The long-time behavior of the piston motion is shown in Fig. 4. For mass ratios of 10 and 100 the
right position was plotted every 100 timesteps. The lighter piston settled down more quickly, but
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after about 3000 timesteps the trajectories look very similar. Averaged over 60,000 timesteps, the
fluctuations in the wall separation were found to be 0.42% for the mass ratio of 10 and 0.38% for
the mass ratio of 100. Hence it appears that both the average properties and average fluctuations
of the system are unaffected by the choice of piston mass.

To summarize, we have found that the piston mass does not significantly influence the simulation
results. However, the piston mass does influence the manner in which the simulation evolves
from an initial condition which is not close to the equilibrium state. The best performance is
achieved using a piston mass which oscillates with a period that is about order of magnitude
larger than the molecular dynamics timestep. This optimal mass should scale linearly with the
system cross-sectional area, but will also depend on such factors as the isothermal compressibility
of the fluid and the fluid-piston interaction potential.

V. Color Diffusion

In order to test the performance of the pistons in the context of gradient-driven diffusion, we
applied the method to the binary system previously modeled by Heffelfinger and van Swol’. Both
components were represented by the WCA potential described above. They were given identical
values of g and ¢, so that they differed only in their “color” or type. (That is, if we define the two
fluid components as 1 and 2 and the piston as component w, we used

Gy} = Oy = G5 = O}, = Gy, =0,and )
€1 = €3 T €3 = €, T €, =€ (8)
my = my=my; ®

for this system. The advantage of doing this type of “color diffusion” experiment is that the trans-
port diffusivities obtained from the DCV-GCMD simulation can be compared directly with the
self-diffusivity of a pure WCA fluid at the same overall density.

First, the system was simulated using a standard DCV-GCMD simulation (constant uy, th, T, V),
which we will refer to as the constant-volume simulation. This simulation is described in more

detail elsewhere.!® The temperature was maintained at k7/¢ = 1.0 using velocity rescaling. As
before, the chemical potential is specified in reduced form defined by:

T 3kT1n(%) . | (10)

]
where g is the full chemical potential, 2’ is the reduced chemical potential and A, is the thermal

de Broglie wavelength for component i. ' and z," were set to 1.54sand 2.34¢ in control volume

. A and 2.34¢and 1.54¢in control volume B. Thus a concentration gradient was established, while
the overall density was maintained at a constant value throughout the system.

The constant-volume simulation was carried out on an 8x2x2 processor (total 32 processors). The
system extended from -24oto 24 o in the x-direction and from -6 to 6o in the y and z directions.
The control volumes were located on the ranges —180<x<-6cand 66<x<180:. The MD timestep
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was 0.01 o(m/£) /2. The simulation was started from an empty box and was equilibrated for 20,000
timesteps. After equilibration, the simulation was run for 200,000 timesteps, during which the
concentration and flux profiles were sampled. The calculation was carried out on 32 nodes of an
Intel Paragon MIMD parallel machine. Each timestep required about 0.1 seconds.

The control volume concentrations including density profiles and overall density agreed closely '
with those of Heffelfinger and van Swol’ although different simulation box dimensions were used
so that the concentration gradients can not be compared directly. The average concentration gradi-
ents and fluxes are given in Table 1. The corresponding transport diffusivities in Table 1 were cal-
culated using the relation

D, = -J,/(dp,/dx), 1)

where J; is the flux of component i in the x-direction. This is valid for systems which are at rest
relative to the stationary reference frame. The individual estimates of transport diffusivity lay in
the range 0.27a(e/m)'? to 0.360(g/m)V2, in close agreement with Heffelfinger and van Swol’s
values, which lay in the range 0.27c(&/m)2 to 0.34o(&m)“2.7

Having established a benchmark using constant-volume DCV-GCMD, we then simulated the
same system at constant pressure using piston pressure control instead of inserting and deleting
component 2 (constant-z;N>TP). We will the call this the constant-pressure simulation. The sim-

ulation was carried out on an 18x4x4 processor array (total 288 processors). The simulation box
extended from -54¢ to 54¢ in the x-direction and from —12oto 12 in the y and z directions.
Note that each processor domain is a cube of size 6, the same as in the constant-volume simula-
tion. However, we have doubled the system dimensions in the y and z directions in order to get
better statistics. Also, we have extended the system in the x direction by 10 processor domains, in
order to provide buffer regions at each end.

The simulation was started from an empty box with fixed walls located at £36¢. To quickly equil-
ibrate the system, the control volumes were temporarily extended out to the ends of the simulation
box, and both species were inserted and deleted, using the same chemical potentials as before.
Steady-state was achieved after 5,000 timesteps. At this point, the system contained 9578 species
1 atoms and 9024 species 2 atoms. From this configuration, the constant-pressure simulation was

executed for 300,000 timesteps. The pressure was set at 1.46°¢ (equal to the average pressure
from the constant-volume simulation). The piston masses were set to 3my The control volumes

coordinates were reset to those used in the constant-volume simulation. While the number of
atoms of component 1 was allowed to vary through insertions and deletions in the control vol-
umes to achieve a chemical potential of component 1 of 1.54 in control volume A and 2.34 in con-
trol volume B, the number of atoms of component 2 remained fixed at 9024. The calculation was
carried out on 288 nodes of an Intel Paragon MIMD parallel machine with each timestep requir-
ing about 0.1 seconds, the same as for the constant-volume simulation. This is to be expected, as
the presence of the pistons does not add much to the computational effort, and the total number of
insertions and deletions per timestep is the same for both simulations.




The evolution of the concentration profile during consecutive 20,000 timestep intervals for com-
ponent 2 is contained in Fig. 5. For clarity, all curves except the bottom one are shifted upwards in

increments of p03 = (.1. The figure clearly demonstrates how the left buffer shrinks, the right
expands, and the central portion of the simulation box does not change. The right buffer actually
grows faster than the left buffer shrinks because the density of component 2 is lower on the right. -
The characteristic layering of the atoms at the piston walls are somewhat apparent, although the
movement of the pistons tends to blur this detail. The simulation actually terminated at nmestep
291170, when the right piston position exceeded 54 .

The component flux profiles are shown in Fig. 6, along with predictions from a simple continuum
mode! which will be described later. The flux profiles differ dramatically from the symmetric pro-
files which occurred in the constant-volume simulation (not shown)'®. In the buffer zones, both
components are flowing in the positive x-direction. This behavior is due to the bulk motion of the
pistons from left to right. In the gradient zone, component 1 is diffusing strongly, in the negative
x-direction, while the flux of component 2 is roughly constant throughout the box. This raises two
important questions:

* How can the diffusion coefficient be determined from the flux and concentration profiles?
» What factors control the fluxes in the various parts of the simulation box?

We can best answer the former question by first addressing the latter. First of all, we need to
replace the absolute fluxes J; by the more general diffusive fluxes J,p, which are defined relative

to the molar average velocity**

Jip =Ji=x; 2. ;5 (12)
where x; is the mole fraction of component /. In this case, Fick’s Law is written as

dp; - __Jx‘D _ Jior Ji

=R ety L (13)
dx D; Dp,, " D

In general, Eq. (13) can not be solved exaétly. However, in the case of color diffusion, where the

diffusion coefficients and total density do not vary with position, the equation can be solved ana-

Iytically. The solution is an exponential profile,

x-x, .
. -_ ). -— XB_XA
P; —P; Pi - Pi '

where
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w_Jiptat
pi = J *

{ot

(15)

For zero total flux (which is the case for the constant-volume color diffusion'®), the parameters
p;” are infinite and Eq. (14) becomes linear. However, in general, the p;° are finite, resulting in

non-linear concentration profiles. The p;* are determined by some external constraint on the sys-
tem, which in the case of our simulation is the requirement that momentum be conserved. This is
one example of the general concept of the bootstrap condition in diffusion experiments.3* The full
momentum balance is a little complicated in the piston simulation, but we can simplify it by mak-
ing assumptions which are reasonably accurate for slowly diffusing systems:

1. The simulation is in a quasi-steady state, in that the “macroscdpic” descriptors of the system
change much more slowly than local fluctuations in density, momentum, etc.

2. The simulation box is divided into three distinct regions: the left buffer and control volume 4,
with total length L 4, the gradient zone, of length L;,and the right buffer and control volume

B, with total length Lg. These dimensions are treated as constant.
The fluxes do not change with time (steady-state).
4. The flux of component two (J;) is constant throughout the simulation box (steady-state).

5. The concentrations of the two components are constants in the left control volume and buffer
zone (p;) and in the right control volume and buffer zone (p,-B )-

6. Asa consequence of assumptions 4 and 5, the flux of component one is constant in the left
control volume and buffer zone (JIA) and in the right control volume and buffer zone (J; B,

7. Insertion and deletion of component 1 has no net effect on the momentum of the system. In
fact, the effect should be to add momentum in the opposite direction to the diffusion of
component 1, since particles are added with zero momentum on average but particles which
are removed will tend to be moving in the direction of J;.

With these assumptions, the conservation of momentum constraint results in the following
expression for J; in a piston simulation involving particles of different mass.

(mr/f+ myJy)Lg

2RI L 19)

4 4 B B

A*;"—j(mlpl +”’292)“'—§(”’191 +mypz)
2 P P2 |

P, is the total linear momentum in the x direction, A4 is the cross-sectional area of the box, and m;
and 1, are the masses of the two components. In the case of the color diffusion simulation, where
the particles are of equal mass, and the total momentum is zero, this equation simplifies to an
explicit expression for p,™.




J L
pretit e 0 an
Jg: Ly/py=Lp/py

The physical meaning of this equation is that the motion of the system from left to right due to the
diffusion of component 2 must be balanced by an opposing motion from right to left within the
gradient zone, due to the diffusion of component 1. The smaller the gradient zone, relative to
regions 4 and B, the larger must be the flux. Hence, in the limit of very large buffer zones, the
mass of the gradient zone becomes negligible, and the buffer zones must have zero flux. In this
limit, the pistons do not move. In fact, the only non-zero flux is that of component 1 in the gradi-
ent zone. Conversely, in the limit of a very large gradient zone, the mass of the regions 4 and B
becomes negligible, and the gradient zone has zero net flux. In this limit, the pistons undergo the
fastest possible motion from left to right. Hence we see that increasing the buffer regions extends
the duration of a simulation in two ways. Firstly, it allows the pistons to move a larger distance.
Secondly, it reduces the rate of motion.

Differentiating Eq. (14) and inserting in Eq. (13), we obtain an explicit expression for the flux of
component 2:

D poc A_ -]
J, = 22 Zln{pz pi]. (18)

B
Lg )

From Eq. (15) it follows that

JG Jz(plol ) (19)

P2

Finally, the absence of a concentration gradients in regions 4 and B requires that the diffusion
fluxes vanish, and so it follows from Eq. (12) that

s = Jz(p"" ],and (20)
P2

S = JZ[P’—;-’— ) @1

P2

In order to compare these predictions for the fluxes against the simulation fluxes, we need to
assign values to the parameters Ly, Lg, L, pror pzA, sz and D,. The value of the diffusion coef-
" ficient was estimated by a method described below. Other parameters were taken directly from
the constant-pressure simulation and are summarized in Table 2. The resultant fluxes are plotted
in Fig. 6, together with the original simulation data. The fluxes in the three different regions are in
qualitative agreement with the simulation data, although quantitative agreement was not
achieved. This is to be expected, given the many simplifying assumptions, but it validates the
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underlying principle of the model, which is that the evolution of the simulation is controlled by
Fick’s law and conservation of momentum.

The continuum analysis provides us with the answer to our first question. Eq. (12) provides a
local definition of the diffusion coefficients, but it requires the local concentration gradient and
local diffusion flux, both of which depend on position. Of course, since the overall density of the
system is constant, we expect that the local diffusion coefficient turns out to be independent of
position. In order to carry out this analysis, we performed a three-parameter least-squares fit of
the cencentration profiles in the gradient zone to the exponential form of Eq. (14), and then calcu-
lated the concentration gradients analytically. The resulting profiles are shown in Fig. 7, along
with the diffusion fluxes calculated from Eqg. (11). It can be seen that the concentration gradients
and diffusion fluxes decrease in magnitude across the gradient zone. The resultant diffusion coef-
ficients are shown in Fig. 8. There is a significant decrease in the diffusion coefficients from left
to right. This is partly due to the statistical error in the least-squares fit to the concentration pro-
files. By fitting the density profiles so as to minimize the square relative error of the density plus
the standard deviation of the diffusion coefficient, a very similar fit is obtained, but with a uni-
form diffusion coefficient profile. The average diffusion coefficients are very close in either case.
The average values for the straight least squares fit are Di(m/g)'"*/0=0.357 and Dy(m/g)'"%/

c=0.366. The average of these two numbers was used in the continuum model described above.

In Table 3 the diffusion coefficients calculated using this simplified analysis as well as those
obtained from the least-squares fit to the concentration profiles are compared with those of the
constant-volume color diffusion simulation.

The diffusion coefficients obtained using the simplified and more detailed analyses of the con-
stant-pressure simulation agree well with each other. However, they were somewhat higher than
those from the constant-volume simulations. There are several possible reasons for this. Firstly,
the total density in the constant-pressure simulation gradient zone was slightly lower (ca. 1%)
than in the constant volume simulations, which should raise the diffusivity by about 1.5%, based
on the correlation of Ruckenstein®®, Secondly, there are significant statistical errors in the diffu-
sivities from both methods, which are difficult to estimate precisely, but are probably on the order
of several percent. Hence the observed differences are probably not statistically significant.

VI Binary Diffusion

As a second test of the constant-pressure method, we applied it to a fairly dense binary mixture of
WCA spheres, with a size ratio of 1:2, i.e. oy=0, 0,=20: The Lennard-Jones energy & and mass m

of both components were the same. As before, both constant volume and constant pressure simu-
lations were performed. The reduced temperature was set to k7=1. The chemical potentials used
in the constant volume simulation, as well as the pressure used in the constant pressure simulation
are given in Table 4. These values were chosen to create the following conditions. A volume frac-
tion of 0.3 in control volume A was targeted, with 30% component 1 by volume. The volume
fraction in control volume B was chosen to match the pressure in control volume A, with 70%
component 2 by volume. The required volume fraction in control volume B turned out to be 0.22.
The chemical potentials required to create these conditions were calculated using the Carnahan-
Starling-Mansoori equation of state for hard sphere mixtures.3¢ Effective hard-sphere diameters




for the WCA particles were calculated using a correlation due to Ben-Amotz.3537 The final densi-
ties differed from the target values by less than 2%.

The constant-volume simulation was performed on an 8x4x4 array of 128 processors. The system
extended from —24 o to 240 in the x-direction and from —12oto 12¢°in the y and z directions. The
control volumes were located on the ranges —18c<x<-6cand 60<x<180. The MD timestep was

0.005 a(m/g)m. The simulation was started from an empty box and was equilibrated for 500,000
timesteps. After equilibration, the simulation was run for 3,300,000 timesteps, during which the
concentration, chemical potential and flux profiles were sampled. The relatively long duration of
the simulation was required in order to obtain very accurate measurements of the chemical poten-
tial profiles of both components. The average acceptance rates for attempted insertions were 0.1
and 0.001 for components 1 and 2 respectively. To improve the exchange of component 2, a 10%/
90% bias was used when selecting which component to insert or delete. Attempts to use the con-
stant volume method to simulate mixtures with a total volume fraction of 0.5 failed due to
extremely low acceptance rates for the large component. The calculation was carried out on 128
nodes of Sandia’s Intel Teraflop MIMD parallel machine with each timestep requiring about 0.03
seconds. ' '

The constant-pressure simulation was carried out on a 14x4x4 array of 224 processors in a man-
ner similar to that of the constant-pressure color diffusion simulation described in the previous
section. The simulation box extended from —42¢ to +42¢ in the x-direction and from —124 to
+12¢ in the y and z directions. The simulation was started from an empty box with fixed walls
located at 400 and +190. These positions were chosen to be slightly greater than the lowest
allowable x-coordinates for the left and right pistons, so as to maximize the available range of left-
to-right motion, while giving the pistons some room to fluctuate during start-up. To quickly equil-
ibrate the system, the control volumes were temporarily extended out to the ends of the simulation
box, and both species were inserted and deleted, using the same chemical potentials as before. A
stable concentration profile was established 75,000 timesteps. From this configuration, a short
constant pressure run was conducted, in order to estimate the rate of motion of the pistons. Then a

constant-pressure simulation was executed for 300,000 timesteps. The pressure was set at P&/
&=0.823 (equal to the average pressure from the constant-volume simulation). The control vol-
umes coordinates were reset to those used in the constant-volume simulation. The calculation was
carried out on 224 nodes of Sandia’s Intel Teraflop MIMD parallel machine with each timestep
requiring about 0.03 seconds, the same as for the constant-volume simulation.

In Fig. 9 we compare the concentration profiles obtained from the two simulations. The agree-
ment in control volume A is good, but in control volume B, the constant-pressure simulation
seems to have a small gradient. This is probably due to an insufficient rate of insertion of compo-
nent 1, which is constantly diffusing out of the left side of control volume B

The flux profiles from both simulations are shown in Fig. 10. The constant-volume simulation
. exhibits an asymmetry in the fluxes; component 1 diffuses nearly ten times faster than component
2. The perfect symmetry introduced by the periodic boundary conditions allow the two compo-
nents to diffuse at different rates without violating the zero total momentum constraint. Instead,
the momentum of each component sums to zero; the average value of the component fluxes is
only about 1% of the value in either gradient zone. The constant-pressure fluxes are qualitatively
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similar to those from the constant-pressure color diffusion simulation. The flux of component 2 is
small and positive throughout. The flux of component 1 is large and negative in the gradient zone,
and positive on the left and right. The average total flux is slightly negative, but only about 2% of
the flux of component 1 in the gradient zone.

The local binary diffusion coefficients were calculated by the detailed method described in the
previous section and the resultant D; profiles are shown in Fig. 11. The agreement between the

two simulation methods is excellent. Dy is smaller than D, by a factor of 4, which is a conse-
quence of the fact that Eq. (13) defines the D; in terms of number density gradient. It should also
be noted that both D; and D, depend quite strongly on position, i.e. composition. Both of these

characteristics, asymmetry and composition-dependence make binary diffusion coefficients less
than ideal descriptors of multicomponent diffusion.

The Maxwell-Stefan diffusion coefficients are defined in terms of the true driving forces for dif-
fusion. As a result, they exhibit less concentration dependence, and are symmetric, if the Gibbs-
Duhem relation is satisfied. For a binary system, the Maxwell-Stefan diffusion coefficients are
defined by**: :

pydyy

1771 and
273 0 2

Jip=-D

P, Ay,
J2D - —DZIHE}' :

The factors multiplying the D;; on the right hand side are the fundamental driving forces for diffu-

sion; the system is at equilibrium only when they vanish. In order to estimate the D,),-, we first need
to evaluate these forces. The chemical potential profiles of component 1 and 2 obtained from the
constamt-volume simulation, as well as the profile of component 1 from the constant pressure sim-
ulation are shown in Fig. 12. The profiles for component 1 from both simulation methods differ
slightly. This is consistent with the slightly lower concentration profile in the constant pressure
simulation (see Fig. 9). The levels of statistical variation from both methods are very similar. The
constant volume simulation was run ten times longer than the constant pressure simulation, but
Widom insertion were performed on component 1 only 10% of the time, hence the overall sample

sizes used for the chemical potential profile of component 1 in both simulations are about equal.

In order to estimate the local chemical potential gradient, we divided the profiles shown in Fig. 12
into six pieces, and performed a linear least-squares fit to estimate the gradient at the mid-point of
each piece. Standard errors on the gradient measurements were estimated in the usual way from
the scatter of the data about the least-squares fit. The resultant driving forces are shown in Fig. 13.
We have also included the data from the second gradient zone, which passes through the periodic
boundary. The driving forces clearly decrease in magnitude in going from control volume A to
control volume B. A similar decrease occurs in the diffusion fluxes (not shown). The total driving
force shows no systematic variation, but rather appears to fluctuate randomly about zero. The
error bars shown are based on the standard errors from the least squares fits, and provide only a
lower bound on the total uncertainty in these data points. We conclude that the driving forces at
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any given point are approximately zero. This is in agreement with the Gibbs-Duhem relation,
which for a binary mixture at constant temperature and pressure reduces to:

Prdiy +pdyy = 0 (23)

The fact that the Gibbs-Duhem relation is satisfied is strong evidence that local equilibrium exists
at all points in the gradient zone, despite the presence of fairly large fluxes.

The driving forces and the diffusion fluxes, calculated as before from Eq. (12), were used to cal-
culate the Dj; via Eq. (22). The resultant profiles for Dy, and D, are shown in Fig. 14 and Fig. 15
respectively. The error bars are standard error estimates based on the standard errors from the
least squares fits to the chemical potential profiles. These error bars are also consistent with the
variation amongst points in a given profile, assuming that the points are independent samples
from the same distribution. None of the profiles show any significant positional dependence. The
average values of the diffusion coefficients are shown in Table 5. The agreement between the
constant volume and constant pressure simulations is not as good as it was for the binary diffusion

coefficients. This is due in part to the greater statistical uncertainty in the chemical potential pro-
files.

VI1I. Conclusions

We have shown that constant-pressure DCV-GCMD enables the simulation of gradient-driven
diffusion in dense fluids containing one large-molecule non-insertable component. Furthermore,
we have demonstrated how appropriate transport coefficients can be extracted from such a simu-
lation by the use of local definitions for the diffusion fluxes and concentration or chemical poten-
tial gradients. Finally we have verified the existence of local equilibrium in a binary mixture
undergoing steady-state gradient-driven diffusion.

The only drawback of the method is that the duration of the simulation is limited by the initial size
of the buffer zone constructed at the high concentration boundary. However, the method enables
us to simulate gradient-driven diffusion in many systems which would otherwise be impossible.
In addition, the method can be extended to other ensembles, providing access to a wide variety of
~ systems. For example, in order to simulate a multicomponent liquid mixture of large molecules,
the semigrand ensemble of Kofke and Glandt*® could be used. Constant temperature, pressure,
and total number of molecules, as well as their relative chemical potentials would be imposed in

the control volumes. This would require identity swap Monte Carlo moves between components

(isomerizations), but would not require insertion of any molecules (except during initialization).
For large molecules with similar structures, identity swap moves will have a much higher accep-
tance rate than insertion moves.

Potential applications of the constant-pressure DCV-GCMD method include diffusion of drug
molecules across biological membranes. A semi-grand extension of the method could be used to
- simulate transport of large molecules in nanoporous materials under non-zero loading conditions
(e.g. selective transport and sorption of xylene isomers in faujasite).
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Figure Captions

Figure 1. A schematic of a DCV-GCMD simulation. Two control volumes, A and B, are used for
insertions/deletions to achieve spatial chemical potential control of each species in the system.

Figure 2. Plot of piston positions versus time for an NPT molecular dynamics simulation of a pure
WCA fluid. The temperature was 1.5k, the pressure was 6.255&/c°. The lines are (from bottom)
the left piston position, the right piston position, and the piston separation.

Figure 3. Short-time piston dynamics. Plot of the right piston position versus time for the first 50
timesteps, for m,,/myratios of 1 (diamonds), 10 (squares), and 100 (triangles). The fourth curve
(circles) used a mass ratio of 1, but with the MD timestep reduced by a factor of 10, and only
every tenth point plotted. All four simulations have the same starting point as the simulation
shown in Fig. 2.

Figure 4. Long-time piston dynamics. Plot of right piston position versus time at 100 timestep
intervals for m,/my ratios of 10 (squares), and 100 (triangles). The second curve is shifted
upwards by 0.2¢ for clarity. Both simulations have the same starting point as the simulation
shown in Fig. 2. '

Figure 5. Time evolution of the concentration profile for component 2 in the constant-pressure
DCV-GCMD simulation. Each line represents the average concentration profile accumulated over
20,000 timesteps; plot labels indicate the last timestep sampled. For clarity all the lines except the
lowest have been offset vertically by successive increments of pzaj = 0.1. The grey lines repre-
sent the boundaries of the control volumes.

Figure 6. Average flux profiles sampled between timesteps 100,000 and 200,000 of the constant-
pressure DCV-GCMD simulation. The open squares are for component 1 and the filled squares
are for component 2. The fluxes are measured relative to the “stationary coordinate reference
frame”, i.e. the simulation box coordinates. The solid lines are the predictions of the continuum
model described in the text. The grey lines represent the boundaries of the control volumes.

Figure 7. Plot of concentration gradient profiles (circles, left axis) and diffusion flux profiles (tri-
angles, right axis) in the gradient zone from the constant-pressure color diffusion simulation. The
open symbols are for component 1 and the filled symbols are for component 2.

Figure 8. Diffusion coefficient profiles for components 1 (open circles) and 2 (filled circles) from
the constant-pressure color diffusion simulation.

Figure 9. Concentration profiles from simulations of gradient-driven diffusion in a binary mixture
of WCA spheres with a 1:2 size ratio. The open symbols are for component 1 (left axis) and the
filled symbols are for component 2 (right axis). The circles are from the constant volume simula-
tion, and squares are from the constant pressure simulation. The grey lines represent the bound-
aries of the control volumes.

Figure 10. Flux profiles from simulations of gradient-driven diffusion in a binary mixture of
WCA spheres with a 1:2 size ratio. The open symbols are for component 1 (left axis) and the
filled symbols are for component 2 (right axis). The circles are from the constant volume simula-
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tion, and squares are from the constant pressure simulation. The grey lines represent the bound-
aries of the control volumes.

Figure 11. Binary diffusion coefficient profiles for the binary system of WCA spheres with a 1:2
size ratio. The open symbols are for component 1 and the filled symbols are for component 2. The
circles are from the constant volume simulation (central gradient zone), and squares are from the
constant pressure simulation.

Figure 12. Chemical potential profiles for the binary system of WCA spheres with a 1:2 size ratio.
The open symbols are for component 1 (left axis) and the filled symbols are for component 2
(right axis). The circles are from the constant volume simulation (central gradient zone), and
squares are from the constant pressure simulation (component 1 only).

Figure 13. Profiles of the thermodynamic driving forces from the constant volume simulation of
the binary system of WCA spheres with a 1:2 size ratio. The open circles are for component 1 and
the closed circles are for component 2. The triangles are the sum of the two forces. The solid lines
are the profiles in the central gradient zone; the dashed lines are the profiles from the periodic gra-
dient zone (with the x coordinate shifted and reversed appropriately). The error bars are based on
standard error estimates from the piecewise linear fits used to calculate the local chemical poten-
tial gradients. ‘

Figure 14. Maxwell-Stefan diffusion coefficient profiles for component 1 in the binary system of
WCA spheres with a 1:2 size ratio. The circles are from the constant-volume simulation, with the
solid line indicating the central gradient zone and the dashed line indicating the periodic gradient
zone (with the x coordinate shifted and reversed appropriately). The squares are from the con-
stant-pressure simulation. The error bars are based on standard error estimates from the piecewise
linear fits used to calculate the local chemical potential gradients.

Figure 15. Maxwell-Stefan diffusion coefficient profiles for component 2 in the binary system of
WCA spheres with a 1:2 size ratio. All data are from the constant-volume simulation, with the
solid line indicating the central gradient zone and the dashed line indicating the periodic gradient
zone (with the x coordinate shifted and reversed appropriately). The error bars are based on stan-
dard error estimates from the piecewise linear fits used to calculate the local chemical potential
gradients.




Table 1: Concentration gradients, absolute fluxes and resultant diffusion coeffi-
cients from the constant-volume DCV-GCMD color diffusion simulation.

Component 0-4dpi/a55 Control Volume Flux Plane
JEmd? | Dimd¥o | JiPmld? | Dimle o
1 0.0124 0.00447 0360 0.00451 0.364
2 0.0122 0.00331 0271 0.00334 0.274
Average 0.0123 0.00389 0314 0.00393 0319

Table 2: Parameters used in the continuum model of the constant-pressure color dif-
fusion simulation.
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Table 3: Concentration gradients, diffusion fluxes and resultant diffusion coeffi-
cients from the constant-volume and constant pressure color diffusion simulations.

Constant Volume DCV-GCMD Constant Pressure DCV-GCMD

Spec. dp; d
P o*oPi Jg |7 D; [m it Jre I D; [m
dx iD £ - |= dx iD € N
cA¢€ cAE
1 0.0124 | 0.003%4 0.317 0.0106 | 0.00399 0.357
2 0.0122 { 0.00394 0.323 0.0109 | 0.00399 0.366
Ave. ]0.0123 | 0.00394 0.320 0.0108 { 0.00399 0.362

Table 4: Thermodynamic conditions used in binary diffusion simulations.

wile ulle pile e PSle kTle
Constant V 1.007 1.267 8.886 7.219 - 1.0
Constant P 1.007 1.267 - - 0.823 1.0
| 22




Table 5: Average binary and Maxwell-Stefan diffusion coefficients from the con-
stant-volume and constant pressure simulations of the 2:1 size ratio mixture.

by Jr—z Dyfm | Oufm | Du fg

cNEg GANE c Ne G NeE
Constant Volume 0.104 0.368 0.25+0.012 | 0.25+0.013
Constant Pressure 0.101 0.358 0.20=0.012 -

2. Uncertainty estimates are based on the standard errors from the piecewise linear fits to the
chemical potential profiles.




Figure 1. A schematic of a DCV-GCMD simulation. Two control volumes, A and B, are used for
insertions/deletions to achieve spatial chemical potential control of each species in the system.




Figure 2. Plot of piston positions versus time for an NPT molecular dynamics simulation of a pure
WCA fluid. The temperature was 1.5k, the pressure was 6.255¢/c>. The lines are (from bottom)
the left piston position, the right piston position, and the piston separation.
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Figure 3. Short-time piston dynamics. Plot of the right piston position versus time for the first 50
timesteps, for m,,/myratios of 1 (diamonds), 10 (squares), and 100 (triangles). The fourth curve
(circles) used a mass ratio of 1, but with the MD timestep reduced by a factor of 10, and only

every tenth point plotted. All four simulations have the same starting point as the simulation
shown in Fig. 2.
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Figure 4. Long-time piston dynamics. Plot of right piston position versus time at 100 timestep
intervals for m,,/my ratios of 10 (squares), and 100 (triangles). The second curve is shifted
upwards by 0.2¢ for clarity. Both simulations have the same starting point as the simulation

shown in Fig. 2.
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Figure 5. Time evolution of the concentration profile for component 2 in the constant-pressure
DCV-GCMD simulation. Each line represents the average concentration profile accumulated over
20,000 timesteps; plot labels indicate the last timestep sampled. For clarity all the lines except the

lowest have been offset vertically by successive increments of p, &

sent the boundaries of the control volumes.
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Figure 6. Average flux profiles sampled between timesteps 100,000 and 200,000 of the constant-
pressure DCV-GCMD simulation. The open squares are for component 1 and the filled squares
are for component 2. The fluxes are measured relative to the “stationary coordinate reference
frame”, i.e. the simulation box coordinates. The solid lines are the predictions of the continuum
model described in the text. The grey lines represent the boundaries of the control volumes.
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Figure 7. Plot of concentration gradient profiles (circles, left axis) and diffusion flux profiles (tri-
angles, right axis) in the gradient zone from the constant-pressure color diffusion simulation. The
open symbols are for component 1 and the filled symbols are for component 2.

002 - - 0.005
4 A, .
R S 4 0.004
A A o
°© o o * 410003
o :
0.01 | °© ° ° o o 4 of
o Conc. Grad. Comp. 1 7 1 0.002

¢ Conc. Grad. Comp. 2
a Flux Component 1
4 Flux Component 2

1 i i 1 3 1 X i 1 1 0

4 0.001

o d pldx
o
J; (mlg)'”?




Figure 8. Diffusion coefficient profiles for components 1 (open circles) and 2 (filled circles) from
the constant-pressure color diffusion simulation.
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Figure 9. Concentration profiles from simulations of gradient-driven diffusion in a binary mixture
of WCA spheres with a 1:2 size ratio. The open symbols are for component 1 (left axis) and the
filled symbols are for component 2 (right axis). The circles are from the constant volume simula-
tion, and squares are from the constant pressure simulation. The grey lines represent the bound-

aries of the control volumes.
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Figure 10. Flux profiles from simulations of gradient-driven diffusion in a binary mixture of
WCA spheres with a 1:2 size ratio. The open symbols are for component 1 (left axis) and the
filled symbols are for component 2 (right axis). The circles are from the constant volume simula-
tion, and squares are from the constant pressure simulation. The grey lines represent the bound-
aries of the control volumes.
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Figure 11. Binary diffusion coefficient profiles for the binary system of WCA spheres with a 1:2
size ratio. The open symbols are for component 1 and the filled symbols are for component 2. The
circles are from the constant volume simulation (central gradient zone), and squares are from the
constant pressure simulation.
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Figure 12. Chemical potential profiles for the binary system of WCA spheres with a 1:2 size ratio.
The open symbols are for component 1 (left axis) and the filled symbols are for component 2
(right axis). The circles are from the constant volume simulation (central gradient zone), and
squares are from the constant pressure simulation (component 1 only).
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Figure 13. Profiles of the thermodynamic driving forces from the constant volume simulation of
the binary system of WCA spheres with a 1:2 size ratio. The open circles are for component 1 and
the closed circles are for component 2. The triangles are the sum of the two forces. The solid lines
are the profiles in the central gradient zone; the dashed lines are the profiles from the periodic gra-
dient zone (with the x coordinate shifted and reversed appropriately). The error bars are based on
standard error estimates from the piecewise linear fits used to calculate the local chemical poten-
tial gradients.
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Figure 14. Maxwell-Stefan diffusion coefficient profiles for component 1 in the binary system of
WCA spheres with a 1:2 size ratio. The circles are from the constant-volume simulation, with the
solid line indicating the central gradient zone and the dashed line indicating the periodic gradient
'zone (with. the.x coordinate shifted and reversed appropriately). The squares are from the con-
":stant-préssure simulation. The error bars are based on standard error estimates from the piecewise
' ‘lmear fi s 'uséd to calculate the local chemical potential gradients.
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Figure 15. Maxwell-Stefan diffusion coefficient profiles for component 2 in the binary system of
WCA spheres with a 1:2 size ratio. All data are from the constant-volume simulation, with the
solid line indicating the central gradient zone and the dashed line indicating the periodic gradient
zone (with the x coordinate shifted and reversed appropriately). The error bars are based on stan-
dard error estimates from the piecewise linear fits used to calculate the local chemical potential
gradients.
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