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Abstract

We have grown AlISb and AlAs Sb,  epitaxial layers by metal-organic chemical vapor
deposition (MOCVD) using trimethylamine or ethyldimethylamine alane, triethylantimony and
arsine. These layers were successfully doped p- or n-type using diethylzinc or tetracthyltin,
respectively. We examined the growth of AlAs Sb,, using temperatures of 500 to 600 ° C,
pressures of 65 to 630 torr, V/III ratios of 1-17, and growth rates of 0.3 to 2.7 um/hour in a
horizontal quartz reactor. We have also fabricated gain-guided, injection lasers using
AlAsxSbl-x for optical confinement and a strained InAsSb/InAs multi-quantum well active
region using MOCVD. In pulsed mode, the laser operated up to 210 K with an emission
wavelength of 3.8-3.9 pum.

1. Introduction

AlSb and AlAsSb,, are of interest for their potential application as optical and
electronic confinement layers in a variety of optoelectronic devices such as infrared detectors,
resonant tunneling diodes, and laser diodes[1-4]. We are explorin,é; the synthesis of these
materials by metal-organic chemical vapor deposition (MOCVD) for their use in 2-6 pm, mid-
infrared optoelectronic heterojunction devices. Emitters in this wavelength range have potential
uses as chemical monitoré and in infrared countermeasures [1-4].

Although devices using AlAs,Sb,, have been successfully prepared by molecular
beam expitaxy [2,3], there have been no reports to date of their successful use in devices
when prepared by MOCVD. We are aware of two previous reports of the successful growth
of AlAs,Sb,, by MOCVD [4,5]. In one of those reports [5], no mention was made of the

electrical quality or the impurity level of the materials. Although there have been several




reports by others of the growth of AISb and AlGaSb by MOCVD [5-11], only references [10]
and [11] comment on impurity levels. It is well known that Al containing materials prepared
using MOCVD tend to have larger concentrations of both O and C impurities when compared
to the Ga containing analogues [4,10-14]. The presence of these impurities in Al containing
semiconductors is due to the strength of the bond between Al and O or C when compared to
the bond strength of Al to P, As, or Sb [12-14]. In our previous work we applied an
analogous approach to that used for improving the carbon concentration in AlGaAs where
trimethylamine alane (TMAA) and triethylgallium (TEGa) were used to prepare high purity
AlGaAs by using TMAA or ethyldimethylamine alane (EDMAA) and triethylantimony (TESb)
to prepare AlAsxSbl-x by MOCVD [4]. In this paper we will describe in more detail the
preparation of epitaxial layers of n- and p-type and AlAs,Sb,, on GaAs and InAs substrates
as well as the growth of InAsSb/InAs multiple quantum well active region lasers using

AlAs Sb, , optical confinement layers.

2. Experimental

This work was carried out in a previously described MOCVD system [14]. TMAA, or
EDMAA, TESb and 100% arsine were the sources for Al, Sb and As respectively. TEGa,
arsine and TESb were used to grow a 1000A to 2500A GaAsSb cap on all samples to keep the
AlAs,Sb, . layer from oxidizing. Hydrogen was used as the cam'er.gas at a total flow of 8
slpm. P-type doping was accomplished using 200 sccm to 500 sccm of diethylzinc (DEZn)
diluted to 400 ppm in hydrogen. N-type doping was accomplished using tetraethyltin (TESn)
held at 18°C to 20°C. The hydrogen flow through the TESn source was typically 20 sccm
which was diluted with 350 sccm of hydrogen. Five to 20 sccm of this mixture was
introduced into the growth chamber. Semi-insulating epi-ready GaAs and n-type InAs

substrates were used for each growth.




AlSb samples 1-2 pm thick were grown at 500 to 600° C at either 76 torr or 200 torr

with V/III ratios between 1.1 to 16. The best morphology was achieved at V/III = 15 and was
independent of reactor pressure. The surface morphology of each layer was characterized by

optical microscopy using Normarski interference contrast. Under this growth condition, the

growth rate was 0.4 - 3.0 um/hr for a group II transport rate of 1 to 7 x10° moles of TMAA

per minute.

AlAs,(Sbyg, layers 0.5 - 1 um thick and lattice-matched to InAs were grown over a

range of 500 to 600°C and 76 or 500 torr uwsing a V/II ratio = 1.1 to 16 and

[AsH,]/([AsH,]+[TESb]) = 0.1 to 0.64 in the gas phase. The best morphology was achieved

when grown on a previously grown buffer layer of InAs at a V/III ratio of 7.5 at 500 °C and

200 torr. The growth rate ranged between 0.35 - 2.0 pum/hr for two hour growth times.

Secondary ion mass spectroscopy (SIMS) was used to determine C and O impurity
levels and dopant concentrations. The SIMS experiments were performed by Charles Evans
and Associates, East, using Cs* ion bombardment. ‘

Five crystal x-ray diffraction (FCXRD) using (004) reflection was used to determine
alloy composition. Layer thickness was determined using a groove technique and was cross
checked by cross sectional SEM. These techniques usually agreed within a few percent.

Room temperature Hall measurements using the Van der Pauw technique were used to
determine the majority carrier type and concentration of AlAsSb,, layers grown on semi-

insulating GaAs. Contacts were formed by alloying In/Sn (90:10) or In/Zn (95:5) at 300°C to

340° Cin a Ar/H, atmosphere.

Results And Discussion
The optimum growth conditions for AlAs Sb,, occured at 500 °C and 200 torr at a

growth rate of 1.0 pm/hour using a V/II ratio of 7.5 assuming a vapor pressure of (.75 torr




for EDMAA at 19.8°C and an [AsH3]/([AsH3]+[TESb]) ratio of 0.13. Lattice matched

AlAs,Sb, , films of high crystalline quality, as evidenced by five crystal x-ray diffraction
(FCXRD) (FWHM < 100 arc sec, see Fig. 1a), were obtained. Surface roughness increased

for growth rates of 2um / hr. for the same V/II and [AsH3]/([AsH3]+[TESb]) conditions.

The best surface morphologies were obtained by using an InAs buffer layer. GaAsSb cap
layers were grown using similar conditions, a V/III of 6, and an [AsH3]/([AsH3]+[TESb]) of

0.07. Hall measurements of AlAs , Sb, films 1 pm thick with 200A GaAs, Sb,, cap layers

grown on GaAs substrates indicated background hole concentrations between 1 to
3x10" cm™. The residual hole concentration of GaAs 4 Sb,, films on GaAs ranged between
410 7x10' cm™. We were also able to reproducibly obtain lattice matching of AlAsxSbl-x to
InAs to within less than 0.015 percent.

The use of non-optimized growth conditions led to several significant problems during
the growth of AlAs Sb, , layers lattice matched to InAs. These included composition control
and reproducibility. Growth at 600 °C resulted in very broad x-ray peaks. The full widths at
half of the maximum intensity (FWHM)for the x-ray diffraction peaks were typically = 500 arc
seconds. Analysis of the x-ray peak width indicates that it is due to a variation of Sb
composition that occurs in the layers as they are grown. The growth of InAs layers at 600 °C
after AlAs,Sb,, layers resulted in Sb incorporation in the InAs. The variation of Sb
incorporation into the grown layer is due to the high vapor pressure of Sb deposits on the
chamber walls at 600 °C ( 0.1 torr). Growth at 70 or 500 torr yielded broader x-ray
diffraction peaks (FWHM 2 300 arc seconds) with less reproducible lattice matching (£ 500
arc seconds).

We have successfully doped the AlAs Sb,, layers both n- and p-type using TESn and
DEZn. These results have been discussed in detail previously [4]. We achieved n-type doping

levels of 2 x 10" to 5 x 10" cm™ and p-type levels of 2 x 10 to 1.4 x 10" cm™.




We used SIMS and Hall measurements of undoped, Zn, or Sn doped AlAsSb,, layers
grown on InAs and GaAs to determine the levels of impurities. Both C and O levels in the
undoped samples are significantly lower than previously reported results (<10' cm™®). Oxygen
levels measured in AlAs,Sb,, layers are nominally the same regardless of doping or the addition
of As. At this point in time it is unclear what the source of the oxygen is in these materials. The
oxygen could be coming from contaminants in the source bubblers, background in the reactor or
SIMS chamber, or from reaction of the samples with air. The carbon level in undoped and Sn
doped AlAs, ¢Sby s, (<10' cm™®) is significantly lower than that found in AISb (1-2x10'® cm™).
This carbon reduction is consistent with the well known effect of increased AsH, effectively
reducing the incorporation of C in AlGaAs films [12-14]. The higher level of carbon found in the
Zn doped AlAs,,;,Sby s, (5x10" cm™) is most likely related to the DEZn used for doping. It is
suspected that the additional carbon is largely responsible for the Hall hole concentration
considering the relatively low level of zinc measured by SIMS.

The details of the growth of the InAsSb/InAs multiple quantum well (MQW) structures
on InAs have been previously published [15]. The growth conditions used were 500 °C, 200
torr, a V/I ratio of 25 with an [AsH3]/([AsH3]+{TESb]) ratio of 0.75 and a growth rate of
0.9 um/hour. The composition, x, of the InAs, Sb, quantum wells could be varied between
0.1 and 0.2 by changing the [AsH3]/([AsH3]+[TESb]) flow ratio between 0.81and 0.63
using these growth conditions. The compositions changes can be explained using a
thermodynamic model as previously discussed [15].

Although the growth of the AlAs,Sb,  layers or the quantum well structures by themselves
gave uniform and reproducible x-ray diffraction patterns, when the MQW was grown after the
growth of AlAs,Sb,  only a very broad x-ray diffraction pattern was observed. When a layer of
InAs was grown after a layer of AlAs Sb, ,, a broad x-ray peak was observed at two theta values
greater than the InAs substrates. SIMS measurements indicated the presence of Al in the InAs
layer. In order to avoid the incorporation of Al into the quantum well structures, we developed a

regrowth technique. Following the growth of the AlAs Sb,, layer capped with GaAs, Sb,, the




quartz reaction chamber was cleaned before growing the MQW structure. A second confinement
layer of AlAsxSbl-x could then be grown on top of the quantum wells without affecting the
quality of the x-ray diffraction peaks. The highly crystalline quality of the InAsSb quantum wells is
confirmed by x-ray diffraction where 7 orders of satellites are observed (Fig. 1(b) and 1(c)) and in
optical characterization where the photoluminescence linewidth was 12 meV at 14 K. The
background doping of the InAs/InAsSb active region is n-type, = 10°-10"%cm™.

The band alignments for the MOCVD grown, injection laser are shown in Fig. 2.
Following a GaAs,,,Sb,, buffer, a 2.5 micron thick AlAs,,Sb, ., cladding is grown on an n-
type, InAs substrate. A 2004, GaAs,,,Sb,,, layer lies between the bottom cladding and a 10
period pseudomorphic MQW consisting of 500 A InAs barriers and 100 A InAs,gSby,, wells.
A 2.5 um thick AlAs, ,,Sb,, cladding followed by a 2004, GaAs,,Sby,, contact and oxidation
barrier layer is grown on top of the active region. None of the layers were intentionally doped. An
(004) x-ray rocking curve for the laser structure is shown in Fig. 1(c). The cladding layer is
closely lattice-matched to the substrate (Aafa = 0.001), and the entire active region is
pseudomorphic with the substrate and cladding layers.

LED and laser emission is observed for a variety of forward bias conditions. No emission
is observed in reverse bias. Laser and LED emission spectra (160 K) are shown in Fig. 3. The
onset of the LED emission coincides with the energy of the InAsSb quantum well
photoluminescence. LED emission has been observed at 300K, 4 um—with 21 uW peak power
(10 kHz, 50% duty-cycle). For LED operation, the cathode AlAs Sb, . cladding (A in Fig. 2) is
not necessary, but emission intensity is larger in LEDs where the anode AlAs Sb,  layer (B in
Fig. 2) is thick enough to effectively block electrons from leaving the active region. Gain-guided,
stripe lasers were fabricated with Ti/Au metallizations. The facets were uncoated. Devices were
tested with 100 nsec pulse widths at 10 kHz (0.1 % duty-cycle). Characteristic of the InAsSb
lasers, laser emission was blue-shifted by = 20 meV from the peak of the InAsSb quantum well
photoluminescence [1]. The lasers displayed a sharp threshold current characteristic, and lasing

was observed through 210 K. Laser emission wavelength was 3.8-3.9 um. Under pulsed




operation, peak power levels > 1 mW/facet could be obtained. A characteristic temperature (Ty) in
the 30-40 K range was observed, with the lower value (30 K) being misleading due to degradation
of the device.

These maximum operating temperature and characteristic temperature values are comparable
to the highest values reported to date, for injection lasers of this wavelength with either strained
InAsSb or InAs/GalnSb active regions [1,2,16,17]. Previously, a bipolar laser with a similar,
pseudomorphic InAsSb multiple quantum well active region displayed the same characteristic
temperature. We believe that the characteristic temperature of both devices is limited by design of
the active region and the resulting Auger rates [1]. Further details on emitter characteristics will be
presented in subsequent papers.

The use of an internal electron source enables us to consider alternative laser and LED
designs that would not be feasible with conventional, bipolar devices. To our knowledge, the only
comparable devices are tandem solar cells where tunnel junctions are used to internally generate
electrons and holes between stages. Similarly, we can operate several stages of these semi-metal
devices in series to produce multi-color LEDs or increase the gain of lasers. As a demonstration,
we have grown a 2-stage/ 2-color LED using InAsSb quantum wells with 11% and 13% Sb in
each stage. (Each stage is the segment A-B in Fig. 2. A 600A thick AlAs, Sb, . electron barrier is
between the 2 stages.) Low temperature emission spectra from a 2-stage LED and a 1-stage LED
(grown during the same run and removed from growth chamber in thc; middle of the run) showed
two peaks, corresponding to emission from each stage for the 2-stage device. Also, the relative
intensities of the peaks of the 2-stage device are comparable to those observed in

photoluminescence which indicates that electrons are independently generated in each stage.

In conclusion, we have grown AlSb and AlAs, Sb, , epitaxial layers by metal-organic
chemical vapor deposition (MOCVD) using trimethylamine or ethyldimethylamine alane,
tricthylantimony and arsine. These layers were successfully doped p- or n-type using diethylzinc
or tetraethyltin, respectively. We have demonstrated the growth of high quality AlAs,Sb, by

MOCVD and used it for optical confinement layers in a 3.8-3.9 ym injection laser with a novel



GaSb/InAs semi-metal electron injector. The laser operated under pulsed conditions up to 210K
with a T, of 30-40K. These operating characteristics are comparable to the best values reported
for other injection lasers operating at this wavelength. We have also reported a 2-color LED to

demonstrate multi-stage operation of these devices.
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Figure Captions
Figure 1. X-Ray diffraction spectra of (a) 2.5 pm of AlAsxSb1-x lattice matched to InAs, (b) a

10 period pseudomorphic InAs,Sb,,,/InAs quantum well active region, and (c) an

injection laser using the same active region as (b) and 5 pm of AlAs,,Sb,., cladding.
Figure 2. Schematic of the structure and heterojunction band alignments for the MOCVD-grown,

semi-metal electron injection laser. Multiple stages are possible by repeating the

injector/active region cell illustrated between A and B. Forward bias polarity is

indicated in the figure.

Figure 3. Laser and LED emission spectra at 160 K.
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