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The contribution of the !®F(p,y) reaction to the production of °Ne, which is an im-
portant isotope in connection with the breakout from the hot CNO cycle, has been in-
vestigated in experiments with !8F beams. Measurements of the cross sections for the
18F(p,@)'®0 and '*F(p,y)'°Ne reactions indicate that the contribution of the ®F(p,y)
route to the formation of !°Ne is small.

1. INTRODUCTION

The synthesis of heavier elements in explosive nucleosynthesis in a proton-rich environ-
ment is believed to proceed through the nuclide ?Ne which is is produced either directly
via the *0O(a,v)'°Ne reaction or via the *O(a,p)'"F reaction followed by the sequence
17F(p,y)'®Ne(B*) 8F(p,7)!°Ne[1]. °Ne is then the starting point for the rp-process where,
in a series of radiative capture reactions followed by 8+ decays, nuclei up to °®Ni and be-
yond are produced[2]. Since !F can also be destroyed via the ®F(p,a)'®O reaction the
'breakout’ from the hot CNO cycle via 8F is controlled by the ratio of the reaction rates
R[*®F(p,a)]/R[*®*F(p,7)]. In a series of experiments using radioactive 3F beams we have
therefore studied the astrophysical reaction rates for the (p,a) and the (p,y) reactions on
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2. EXPERIMENTAL DETAILS

The experiments were performed at the ATLAS accelerator system of Argonne National
Laboratory using a two-accelerator method for generating the '3F ion beam. The '8F
material (T1/2=110 min) was produced at the medical cyclotron of the University of Wis-
consin via the ¥0(p,n)'8F reaction with 11 MeV protons bombarding an enriched ['30]
water target. After chemical separations the material was flown to Argonne National
Laboratory and installed in the negative ion sputter source of the tandem accelerator
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more detailed description of the production method can be found in Ref. [3].

The tandem accelerator produced '°F ions in their 4* state with energies between 11.7-
15.1 MeV. For a typical run of 2h the average beam current on target was ~5x10° 18F /sec.
The resulting beam is a mixture of radioactive ®F** and '80** ions from the production
target with the 80 being 500-2000 times more intense than the ®F.

For the {p,a) reaction, particle identification was obtained using the gas-filled mag-
net method which gives clean mass and Z identification even for particles with energies
of about 500 keV/nucleon. Details of this technique are given in Ref. [4]. To improve
background suppression the o particles from the p(*°F,'°0)a reaction were detected in
kinematic coincidence with a large area Si detector, mounted at the appropriate scattering

angle.

The (p,y) measurements were performed with the Fragment Mass Analyzer (FMA) [5]
which has a high (~ 30 %) efficiency for radiative capture measurements. In the focal
plane of the FMA the incoming particles were identified in a position-sensitive parallel-
grid avalanche counter according to their m/q ratio. This detector was followed by a
large-volume ionization chamber for Z identification. With this arrangement a suppres-
sion ratio of 1072 for (p,y) reaction products relative to the incident beam has been
achieved.

In both experiments thin stretched polypropylene foils (~ 60-100 pg/cm?) were used
as targets. The detection efficiencies of the two experimental setups were determined
by measuring the excitation functions for the !®0-induced reactions p(**0,'’N)a and
p(*80,'°F)q, respectively.

3. EXPERIMENTAL RESULTS

Figure 1 shows the cross sections for the ®*F(p,a)'®0 reaction measured in the energy
region E,,,=550-800 keV. The resonance corresponds to a state in °Ne at an excitation
energy E,= 7.063 MeV. The horizontal bars represent the energy range due to the en-
ergy loss in the target. The solid line represents a Lorentzian averaged over an energy
range of 55 keV with parameters obtained from a least-squares fit to the energy-averaged
yields as described below. The energy range of 55 keV represents an average value for
the different target thicknesses used in the experiments. From a comparison of the mea-
sured proton width T, with its Wigner limit and the results of (*He,d) measurements|6]
populating states in the mirror nucleus °F, a spin value of 3/2% for this state has been
derived[7]. This assignment agrees with the results from a thick target measurement for
the ®F(p,a)'®O reaction in Ref. [8]. From a least squares fit to the data, values of
wy=2.14+0.7 keV, I',=511.6 keV, I',=8.6+2.5 keV, and I';=13.6+4.6 keV were obtained.

Five runs were carried out with '®F beams to study the 8F(p,y)'°Ne reaction at a bom-
barding energy of E.,= 670 keV, i.e. slightly above the s-wave resonance found in the
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Figure 1. Excitation function for the

18F(p,a)'®0 reaction. The horizontal er-
ror bars represent the various target thick-
nesses. The solid line represents the cross
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Figure 2. Ratio of the reaction rates be-
tween the ¥F(p,a)*®*0 and the ®*F(p,y)'°Ne
reactions. The two solid lines represent the
upper and lower limits for this ratio.

section from a resonance with parameters
given in the text averaged over an energy

interval of 55 keV.

18F(p,a)'®0 reaction. The '®F beam intensity was monitored by collecting elastically scat-
tered 18F particles on a circular aperture which covered the angular range ©;,,=3.6-10°.
The B8 activity of each collimator was measured off-line after each run with a calibrated
Ge detector. From the integrated charge associated with the !®F beam (2.8 pnC) and
the total detection efficiency of the FMA an upper limit for the ¥F(p,7)'°Ne reaction at
E.n= 670 keV of 42 yb has been deduced. Assuming the widths for the 3/2% resonance
as given above, upper limits for the resonance strength wy= 740 meV and the gamma
width I',= 3 eV have been calculated.

4. DISCUSSION

As shown in Ref. [9], the 3/2% s-wave resonance in !°Ne has a strong influence on the
astrophysical reaction rate for the '®*F(p,a) reaction. At temperatures above Tg=0.5 the
reaction rate is dominated by the new 3/2% state at 7.063 MeV. Only at temperatures
Ty <0.5 do contributions from other states start to be significant, with the 3/2~ level at
6.742 MeV excitation energy being the most important.

From the limit for the resonance strength for the 8F(p,y)'°Ne reaction given above,
an upper limit for the astrophysical reaction rate can be calculated which is smaller than
the corresponding (p,c) value by at least three orders of magnitude. A lower limit for the
reaction rate is provided by the cross section for direct proton capture as calculated in
Ref. {10]. The ratio of the reaction rates R['3F(p,a)]/R[*®F(p,7)] which is the controlling
factor for the breakout from the hot CNO cycle to the rp-process is plotted in Fig. 2.
The two solid lines represent the lower and upper limits for this ratio caused by the limits




of the (p,y) reaction rate mentioned above. Due to the large value of the ¥F(p,a)!%0
cross section, the ratio of the reaction rates is larger than ~ 10% over the whole range of
temperatures. This means that for the production of !°Ne the ¥F(p,y) route is small,
and the dominant mechanism for generating this isotope must be the >0O(a,v) reaction.

5. SUMMARY

This work provides the first experimental limit for the ratio of the astrophysical re-
action rates between the ¥F(p,a)°0 and the ®F(p,y)'°Ne reactions. The large cross
section for the first reaction makes the (p,y) route a small branch for the production of
19Ne which is more effectively produced via the *0O(a,y) reaction. The gas-filled magnet
technique allowed a clean mass and Z identification for reaction products with energies
below 1 MeV /u. The use of the Fragment Mass Analyzer for the measurement of radiative
capture reactions results is a considerable improvement over gamma detection techniques,
especially when unstable reaction products have to be detected. Improvements in beam
intensity, which should be possible for less chemically reactive unstable isotopes, should
allow the use of thinner targets and thus the measurement of excitation functions in finer
steps than was done in these first experiments with radioactive ion beams.
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