s ot £ —— D

B b W,

P--549-0094 SOy

C.oNF-9609 206 - -/

ANL/MCS

An Experimental Evaluation of the Parallel I/O Systems of the
IBM SP and Intel Paragon Using a Production Application*

Rajeev Thakur William Gropp Ewing Lusk

RECEIVED

Mathematics and Computer Science Division
Argonne National Laboratory AUG 1 2 1995
9700 S. Cass Avenue '
Argonne, IL 60439 @ S@ﬂ- I

{thakur, gropp, lusk} @mcs.anl.gov

Abstract

This paper presents the results of an experimental evaluation of the parallel I/O systems of
the IBM SP and Intel Paragon. For the evaluation, we used a full, three-dimensional application
code that is in production use for studying the nonlinear evolution of Jeans instability in self-
gravitating gaseous clouds. The application performs I/O by using library routines that we
developed and optimized separately for parallel 1/0 on the SP and Paragon. The I/O routines
perform two-phase I/O and use the PIOFS file system on the SP and PFS on the Paragon. We
studied the I/O performance for two different sizes of the application. We found that for the
small case, I/O was faster on the SP, whereas for the large case, I/O took almost the same time
on both systems. Communication required for I/O was faster on the Paragon in both cases. The
highest read bandwidth obtained was 48 Mbytes/sec. and the highest write bandwidth obtained
was 31.6 Mbytes/sec., both on the SP.

Key words: parallel I/O, I/O-intensive applications, I/O characterization, performance

- MASTER

*This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of
the Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38;
and by the Scalable I/O Initiative, 2 multiagency project funded by the Advanced Research Projects Agency (contract
number DABT63-94-C-0049), the Department of Energy, the National Aeronautics and Space Administration, and

the National Science Foundation.

The submitted manuscript has been authored
by a contractor of the U, S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a

nonexclusive, Ity-free 1i lish
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED [ovssluse rovsitfres tesnse o pubich
contribution, or allow others to do so, for

U. S. Government purposes.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document. ’

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

1 Introduction

It is widely recognized that, in addition to fast computation and communication, parallel machines
must also be able to provide fast parallel I/O. There is no consensus, however, as to the best
architecture for parallel I/O or the best kind of parallel file system. Several alternatives have been
proposed, some of which are being used in current-generation parallel machines. The exact parallel
I/0 hardware and software for a teraflops machine remains a research issue.

This paper presents the results of an experimental evaluation of the parallel I/0O systems of two
different, state-of-the-art parallel machines—the IBM SP at Argonne National Laboratory and the
Intel Paragon at Caltech—using a real, I/O-intensive parallel application. These machines are the
two testbeds for the Scalable I/O Initiative!. We chose a full, three-dimensional application code
that is in production use for studying the nonlinear evolution of Jeans instability in self-gravitating
gaseous clouds. We wrote special parallel I/O routines for this application and optimized them
separately for the SP and Paragon. We instrumented these I/O routines, ran the application on
both systems, and analyzed the resulting trace files. Two sizes of the application were considered.
We found that in the small case, I/O was faster on the SP, whereas in the large case, I/0O took
almost the same time on both systems. Communication required for I/O was faster on the Paragon

in both cases.
The rest of this paper is organized as follows. Section 2 gives a brief overview of related work

in the area of I/O characterization of parallel applications and performance evaluation of parallel
file systems. In Section 3, we discuss the application and its I/O requirements. We describe the
experimental setup in Section 4. The I/O characteristics on the SP and Paragon are presented in

Sections 5 and 6, respectively. We draw overall conclusions in Section 7.

2 Related Work

Numerous studies have focused on I/O characterization of applications, and performance evaluation
of file systems, on sequential and vector machines. Only recently, however, have similar studies been
conducted on parallel machines. Because of space limitations, we discuss here only the previous
work done on parallel machines.

We first consider I/O characterization studies. Kotz and Nieuwejaar [16] presented the results
of a three-week tracing study in which all file-related activity on the Intel iPSC/860 at NASA
Ames Research Center was recorded. They did not instrument individual applications; instead,
they instrumented the Concurrent File System (CFS) library routines called by all applications,
and studied the file-related activity of all applications together. A similar study on the CM-5 at

'Information about the Scalable I/O Initiative is available at http://wwv.cacr.caltech.edu/SI0/

the National Center for Supercomputing Applications was performed by Purakayastha et al. [21].
The results of these two studies were compared and contrasted in [19]. The results showed that
file sizes were large, request sizes were fairly small, data was accessed in sequence but with strides,
and I/O was dominated by writes.

Crandall et al. [7] analyzed the I/O characteristics of three parallel applications on the Intel
Paragon at Caltech. They found a wide variety of access patterns, including both read-intensive
and write-intensive phases, large as well as small request sizes, and both sequential and irregular
access patterns. Baylor and Wu (3] performed a study of the I/O characteristics of four parallel
applications on an IBM SP using the Vesta parallel file system. They found I/O request rates
on the order of hundreds of requests per second, mainly small request sizes, and strong temporal
and spatial locality. Acharya et al. [1] reported their experience in tuning the performance of four
applications on an IBM SP. Reddy and Banerjee [22] studied the I/O activity of five applications
from the Perfect benchmark suite on an Alliant multiprocessor and found only sequential accesses.
Del Rosario and Choudhary [10] provided an informal summary of the I/O requirements of several
Grand Challenge applications. Cypher et al. [8] discussed the I/0 requirements of eight parallel
scientific applications.

Researchers have also evaluated the performance of parallel file systems. Bordawekar et al. [4]
performed a detailed performance evaluation of the Concurrent File System (CFS) on the Intel
Touchstone Delta. Kwan and Reed [17] measured the performance of the CM-5 Scalable File
System. Feitelson et al. [11] studied the performance of the Vesta file system running on an SP-1.
Nieuwejaar and Kotz [18] presented performance results for the Galley parallel file system, a new
parallel file system developed at Dartmouth College. Several studies have also been made of the
performance of the Concurrent File System (CFS) on the Intel iPSC /2 and iPSC/860 hypercubes [5,
12, 20).

In an earlier work, we studied the I/O characteristics of a different application on the SP and
Paragon [24]. For that study, we used a 2D astrophysics application that performed I/O using the
sequential Unitree file system on the SP and the PFS file system on the Paragon. For this paper, we
used a completely different 3D application that is much more data intensive and performs actual
parallel I/O (two-phase I/O) using the parallel file system PIOFS on the SP and PFS on the

Paragon.

3 The Application and its I/O

The application we used is a parallel production code developed at the University of Chicago

to study the nonlinear evolution of Jeans instability in self-gravitating gaseous clouds, a process

considered to be the basic mechanism for the formation of stars and galaxies. The code solves
the equations of compressible hydrodynamics with the inclusion of self-gravity. The computational
algorithm consists of the piecewise parabolic method (6] to solve the compressible Euler equations
and a multigrid elliptic solver to compute the gravitational potential.

The code uses the Chameleon library [14] for communication. The Chameleon communication
routines provide a portable interface to the native communication library on a given machine. The
application originally also used the Chameleon library for I/O [13], but we found that the Chameleon
I/O routines were not well optimized for parallel I/0 on the SP and Paragon. Therefore, we wrote
special routines with the same interface as the Chameleon I/0 library routines, but separately
optimized for the SP and Paragon (see Section 4 for further details about the I/0 routines). The
application performs all I/O via calls to these optimized routines. Therefore, the application code
is directly portable across the two machines. The application is written in Fortran whereas the [/0

routines are in C.
The application uses several three-dimensional arrays. A typical array size is 256 x 256 x 128.

The arrays are distributed in a (block,block,block) fashion among the processors. All data fits in
main memory. The program is iterative, and every few iterations, several arrays are written to files
for three purposes—data analysis, checkpointing (restart), and visualization. The ordering of data
in all files is required to be the same as it would be if the program were run on a single processor.

The data analysis file begins with six variables (real numbers) that have the same value across
all processors, followed by six arrays appended one after another. The arrays are stored in column-
major (Fortran) order. A new data analysis file is written during each dump. The restart file has
the same structure as the data analysis file, but the same file is overwritten during each dump.
Although computation is performed in double precision, single-precision data is written to the data
analysis and restart files. The visualization data consists of four separate files. Each file begins
with six variables (real numbers) that have the same value across all processors, followed by one
array of character data. New visualization files are written dﬁring each dump.

In other words, the number of files created by the application is one per dump for data analysis,
one for restart, and four per dump for visualization. For a 256 X 256 x 128 grid, the size of each of
the data analysis files and the restart file is approximately 192 Mbytes, and the size of each of the
visualization files is approximately 8 Mbytes.

4 Details of the Experiments

We describe the SP and Paragon systems, the I/O routines we used, and the various experiments

that were performed.

4.1 Machine Specifications

We used the IBM SP at Argonne National Laboratory and the Intel Paragon at Caltech, which are
the two testbeds for the Scalable I/O Initiative.

4.1.1 IBM SP

The IBM SP at Argonne National Laboratory has 128 nodes. Eight of these nodes are RS/6000
Model 970 with 256 Mbytes of main memory; the other 120 nodes are RS/6000 Model 370 with
128 Mbytes of main memory. The nodes are interconnected by a high-performance omega switch.
The operating system on each node is AIX 3.2.5.

The parallel file system on the SP is IBM PIOFS. The eight Model 970 nodes function as
servers for PIOFS. Each server has 3 Gbytes of local SCSI disks, resulting in a total PIOFS storage
capacity of 24 Gbytes. At the time we performed our experiments, the system was configured such
that the eight Model 970 nodes functioned exclusively as I/O servers; users were not allowed to run
any compute jobs on them. In other words, the system effectively had 120 compute nodes and 8
I/0 server nodes.

In PIOFS, a file is distributed across multiple I/0 server nodes. The file is logically organized
as a collection of cells, where a cell is a piece of the file stored on a particular server node. A file is
divided into a number of basic striping units (BSUs), which are assigned to cells in a round-robin
manner. Cells in turn are assigned to server nodes in a round-robin manner. The default number
of cells is equal to the number of server nodes, and the default BSU size is 32 Kbytes.

PIOFS also supports logical partitioning of files. Processors can specify a logical view of the
data to be accessed and then read/write the data in a single operation, even though the data may
not be located contiguously in the file. However, it is currently not clear to us how to specify the
view for a three-dimensional array distributed in all three dimensions, as in our application. (We
do understand how to do so for a three-dimensional array distributed in only two dimensions.)
Therefore, in this paper, we do not use the logical partitioning feature of PIOFS. We are working
with IBM on this problem, and if we find a solution, we will use it and report the results in the

final version of this paper. At present, we perform all seeks, reads, and writes explicitly.

4.1.2 Intel Paragon

The Intel Paragon at Caltech has 512 compute nodes, each of which is an Intel i860/XP micropro-
cessor. Each compute node has 32 Mbytes of main memory. The nodes are connected by a two-
dimensional mesh interconnection network. The operating system on the machine is Paragon/OSF
R1.3.3. The parallel I/O system on the Paragon consists of 21 dedicated I/O nodes that do not

run any compute jobs. Each I/O node has 32 Mbytes of main memory and is connected to a 4.8
Gbyte RAID-3 disk array. Intel’s Parallel File System (PFS) provides parallel access to files.

A PF'S file system consists of one or more stripe directories. Each strip‘e directory is usually the
mount point of a separate Unix file system (UFS). Just as a RAID subsystem collects several disks
into a unit that behaves like a single large disk, a PFS file system collects several file systems into a
unit that behaves like a single large file system. PFS files are divided into smaller stripe units and
distributed in a round-robin fashion across the stripe directories that make up the PFS file system.
The Paragon at Caltech has 16 stripe directories, and the default stripe unit is 64 Kbytes.

4.2 Parallel I/0O Routines

In this application, three-dimensional arrays are distributed among processors in a (block,block,block)
manner. Each distributed array must be written to a common file such that the data in the file
corresponds to the global array in column-major (Fortran) order. The original Chameleon I/0
routines perform this task by having all processors send their data to processor 0; only processor 0
actually writes data to the file. This approach was clearly inefficient because of the sequential
nature of the I/O and also the communication bottleneck caused by the all-to-one communication
pattern.

To overcome these limitations of the Chameleon I/0 routines, we wrote new routines, having
the same interface as Chameleon 1/0, but performing actual parallel I/O on the SP and Paragon.
These routines use PIOFS on the SP and PFS on the Paragon. We optimized the routines separately
for the two systems; for example, on the Paragon, we used the gopen() call for faster opens and
the M_ASYNC mode for faster reads and writes. The application program interface (API) did not
change; therefore, we did not have to change the application code.

Since the local array of each processor in this application is not located contiguously in the
file, an attempt by any processor to read/write its local data directly would result in too many
small read/write requests. We eliminated this problem by using two-phase I/O [9], a technique for
reading/writing distributed arrays efficiently. In two-phase I/0, as the name suggests, a distributed
array is read or written in two phases. For writing a distributed array, in the first phase, the array
is redistributed among the processors such that in the new distribution, each processor’s local
data is located contiguously in the file. For our application, this required a redistribution from
(block,block,block) to (*,* block); in other words, after the first phase, only the third dimension
of the array was distributed. In the second phase of two-phase 1/0, processors write their local
data at appropriate locations in the file, in parallel and with a single write operation. This two-
phase method eliminates the need for several small reads/writes and also has a fairly balanced

all-to-many communication pattern. Reading a distributed array using two-phase I/O involves

each processor reading a contiguous block in the first phase and then redistributing it in the second
phase. (Note that if we were able to use the logical partitioning feature of PIOFS, we need not
have used two-phase I/O on the SP. Nevertheless, we are interested in comparing the performance
of logical partitioning and two-phase 1/0.)

The application also requires six variables (real numbers) having the same value across all
processors to be written to a file. To do so, we collected the six variables into a single buffer on
processor 0 only and had processor 0 write the buffer to the file. For reading during a restart,

processor 0 read the buffer and broadcast it to other processors.

4.3 Instrumentation and Analysis

To study the I/O behavior of the code, we instrumented the I/O routines using the Pablo per-
formance analysis environment [2, 23]. We instrumented all respective calls to open, close, read,
write, and seek, and also all communication required for I/O. We ran the instrumented code on
both the SP and Paragon and collected trace files. The traces were visualized and analyzed by
using Upshot [15], a tool for studying parallel program behavior.

4.4 Experiments

On both machines, we ran two sizes of the application:

1. Small: For this case, we used a 128 X 128 X 64 mesh on 8 processors. We restarted the
code from a previously created restart file and ran it for 20 iterations. The dumps for data

analysis, restart, and visualization were performed every 5 iterations.

2. Large: For this case, we used a 256 X 256 x 128 mesh on 64 processors. Since the application
runs only on a power-of-two number of processors and the SP at Argonne currently has 120
compute nodes, 64 was the maximum number of processors we could use. For a fair com-
parison, we used the same number on the Paragon. We restarted the code from a previously
created restart file and ran it for 5 iterations, with all the dumps performed after the fifth

iteration.

For each size, we ran the code several times. The results reported are for the case that took
the lowest time. The application only performs writes except when restarting from a checkpoint.
To be able to measure the read performance as well, we restarted the code from a checkpoint each
time. Since the application is iterative, a complete run to convergence could take more than 10,000
iterations. To keep the trace files manageable, we ran the code only for a few iterations, as specified
above. The I/O behavior in the remaining iterations is assumed to be similar to that in the first

few iterations.

5 Results on the SP

Table 1 shows the file sizes and number of files of each type for the small case. The data analysis
and restart files were 24 Mbytes each, and the visualization files were 1 Mbyte each. The same
restart file was overwritten in each dump, whereas new data analysis and visualization files were
written each time.

Table 2 shows the total number of 1/0 operations of each type and the total time taken for
each type of I/O operation. The average time per processor was calculated as the total time across
all processors divided by the number of processors. There were 200 open calls in all, and the open
calls were fairly expensive, taking more time than for read, close, or seek. Close and seek took
almost negligible time. The write operations required a large amount of time, which was expected
since the application is write-intensive. Communication for I/0 took even more time than the write

operations. This was not the case on the Paragon, however, as we discuss in Section 6.

Table 1: File sizes for the small case—128 x 128 x 64 mesh on 8 Processors

Type No. of Files | Size (MB)
Data Analysis | 1 per dump ~ 24
Restart 1 ~ 24
Visualization | 4 per dump =1

Table 2: T/O operations on the SP for the small case—128 x 128 x 64 mesh on 8 processors, 20

iterations
Total Count | Total Time (sec.) | Average Time
Operation (all procs.) (all procs.) (sec.) (per proc.)
Open 200 31.35 3.919
Close 200 1.693 0.217
Read 49 4.001 0.500
Write 536 52.67 6.584
Seek 1225 0.052 0.006
Communication 5608 83.39 10.42
(for I/0)

Table 3 shows the distribution of the individual write sizes. Most of the reads and writes were
large, since we used two-phase I/0. There were a few small reads and writes because the application

requires reading/writing six variables (real numbers) at the beginning of the file. As explained in

Section 4.2, these were read/written in a single operation by processor 0 only. The aggregate read

bandwidth across all processors, computed as the total data read divided by the average read time
per processor, was 48 Mbytes/sec. The aggregate write bandwidth, computed similarly, was 31.6
Mbytes/sec.

Tables 4, 5, and 6 show the results for the large case on the SP. The data analysis, restart,
and visualization files were eight times larger than the files created in the small case. In the large
case, the seek operations took negligible time, close operations took a small amount of time, and
read and open operations took a fairly large amount of time. The most expensive operations were
communication for [/O and write. The sizes of the individual read and write operations were the
same as in the small case because, although the mesh size was eight times larger, the number of
processors was also eight times larger. The aggregate read bandwidth was 33.9 Mbytes/sec. and

the aggregate write bandwidth was 17.4 Mbytes/sec., both of which were lower than in the small
case.

Table 3: Details of read and write operations on the SP for the small case—128 X 198 x 64 mesh

on 8 processors, 20 iterations

Size Distribution Total Data Aggregate
Operation | 24 B | 128 KB | 512 KB | Transferred (MB) | BW (MB/sec.)
Read 1 0 48 =24 48.00
Write 24 128 384 = 208 31.59

Table 4: File sizes for the large case—256 x 256 x 128 mesh on 64 processors

Type No. of Files | Size (Mbytes)
Data Analysis | 1 per dump =~ 192

Restart 1 = 192
Visualization | 4 per dump ~ 8

6 Results on the Paragon

Tables 7 and 8 show the results for the small case on the Paragon. The file sizes were the same
as on the SP (Table 1). The counts and size distribution of the I/O operations were also the same
as on the SP. However, the time taken by the I/O operations on the two machines was different,
and the comparison shown in Table 9 is interesting. All I/O operations were more expensive

on the Paragon. The open operations were 2.9 times slower on the Paragon, and the read and

Table 5: I/O operations on the SP for the large case—256 x 256 X 128 mesh on 64 processors, 5
iterations

Total Count | Total Time (sec.) | Average Time
Operation (all procs.) (all procs.) (sec.) (per proc.)
Open 448 358.5 5.601
Close 448 26.96 0.421
Read 385 362.5 5.664
Write 1030 1533 23.95
Seek 3235 0.138 0.002
Communrication 109888 2142 33.47
(for I/0)

Table 6: Details of read and write operations on the SP for the large case—256 X 256 x 128 mesh
on 64 processors, 5 iterations

Size Distribution Total Data Aggregate
Operation | 24 B | 128 KB | 512 KB | Transferred (MB) | BW (MB /sec.)
Read 1 0 384 ~ 192 33.90
Write 6 256 768 = 416 17.37

Table 7: 1/O operations on the Paragon for the small case—128 x 128 x 64 mesh on 8 Pprocessors,
20 iterations

Total Count | Total Time (sec.) | Average Time
Operation (all procs.) (all procs.) (sec.) (per proc.)
Open 200 90.37 11.29
Close 200 7.586 0.948
Read 49 6.712 0.839
Write 536 97.16 12.15
Seek 1225 6.938 0.867
Communication 5608 70.17 8.771
(for I/0)

Table 8: Details of read and write operations on the Paragon for the small case—128 x 128 x 64

mesh on 8 processors, 20 iterations

Size Distribution Total Data Aggregate
Operation | 24 B | 128 KB | 512 KB | Transferred (MB) | BW (MB/sec.)
Read 1 0 48 x 24 28.61
Write 24 128 384 = 208 17.12

Table 9: Comparison of I/O performance on the SP and Paragon for the small case

Average Time | Average Time Aggregate Aggregate
per proc. per proc. BW on SP | BW on Paragon
Operation on SP (sec.) | on Paragon (sec.) | (MB/sec.) (MB/sec.)
Open 3.919 11.29
Close 0.217 0.948
Read 0.500 0.839 48.00 28.61
Write 6.584 12.15 31.59 17.12
Seek 0.006 0.867
Communication 10.42 8.771
(for I/0)

write bandwidths were 60% and 55% of the bandwidths on the SP, respectively. However, the
communication required for I/O was faster on the Paragon.

Tables 10 and 11 show the results for the large case on the Paragon. The file sizes, and the counts
and size distribution of individual I/O operations were the same as on the SP. Table 12 shows a
comparison of the I/O performance on the SP and Paragon for the large case. The difference in I/0
performance of the two machines was not as much as in the small case. Most of the I/O operations
took comparable time on the two machines, and writes were in fact faster on the Paragon. The most
dramatic differences were that seeks were considerably slower on the Paragon, while communication
for I/O was faster on the Paragon by a factor of two. An interesting observation is that the read
and write bandwidths obtained on the SP were higher in the small case, whereas on the Paragon

they were higher in the large case.

7 Conclusions

We have presented the results of an experimental evaluation of the parallel I/O systems of the IBM

SP and Intel Paragon using a parallel production application. We used two different problem sizes

10

Table 10: I/O operations on the Paragon for the large case—256 x 256 x 128 mesh on 64 PTocessors,
5 iterations

Total Count | Total Time (sec.) | Average Time
Operation (all procs.) (all procs.) (sec.) (per proc.)
Open 448 402.5 6.289
Close 448 36.68 0.573
Read 385 365.7 5.714
Write 1030 1429 22.33
Seek 3235 68.97 1.078
Communication 109888 1020 15.94
(for I/0)

Table 11: Details of read and write operations on the Paragon for the large case—256 x 256 x 128
mesh on 64 processors, 5 iterations

Size Distribution Total Data Aggregate
Operation | 24 B | 128 KB | 512 KB | Transferred (MB) | BW (MB/sec.)
Read 1 0 384 ~ 192 33.60
Write 6 256 768 =~ 416 18.63

Table 12: Comparison of I/O performance on the SP and Paragon for the large case

Average Time | Average Time Aggregate Aggregate
per proc. per proc. BW on SP | BW on Paragon
Operation on SP (sec.) | on Paragon (sec.) | (MB/sec.) (MB/sec.)
Open 5.601 6.289
Close 0.421 0.573
Read 5.664 5.714 33.90 33.60
Write 23.95 22.33 17.37 18.63
Seek 0.002 1.078
Communication 33.47 15.94
(for I/0)

11

for this study. We found that in the small case, all I/O operations (open, close, read, write, seek)
were faster on the SP, though the communication required for I/O was faster on the Paragon. In
the large case, I/O operations took almost the same time on both machines, though communication
was much faster on the Paragon. On the Paragon, the I/O performance was better in the large
case than in the small case, whereas on the SP, the I/O performance was better in the small case.

We note that these performance results are for current versions of the operating systems on
the two machines—AIX 3.2.5 on the SP and OSF R1.3.3 on the Paragon. The performance may
change as the systems are upgraded. In the final version of this paper, we will report results for
the latest versions of the operating systems in use at that time.

We are currently unable to use the logical partitioning feature of PIOFS for this application,
because it is not clear to us how it can be used for arrays distributed in three dimensions. We
have sought help from IBM regarding this issue. We are particularly interested in comparing the
performance of logical partitioning and two-phase I/0. If we are able to use logical partitioning,

we will report the results in the final version of this paper.

Acknowledgments

We thank Andrea Malagoli for giving us the source code of the application, and Ruth Aydt for

helping us understand how to use Pablo.

References

[1] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon, J. Hollingsworth, J. Saltz, and A. Suss-
man. Tuning the Performance of I/O Intensive Parallel Applications. In Proceedings of Fourth Workshop
on Input/Oulpul in Parallel and Distributed Systems, pages 15-27, May 1996.

[2] R. Aydt. A User’s Guide to Pablo I/O Instrumentation. Technical report, Dept. of Computer Science,
University of Illinois at Urbana-Champaign, December 1994.

(3] S. Baylor and C. Wu. Parallel I/O Workload Characteristics Using Vesta. In IPPS ’95 Workshop on
Input/Output in Parallel and Distributed Systems, pages 16-29, April 1995.

[4] R. Bordawekar, A. Choudhary, and J. del Rosario. An Experimental Performance Evaluation of Touch-
stone Delta Concurrent File System. In Proceedings of the 7th ACM International Conference on
Supercomputing, pages 367-376, July 1993.

[5] D. Bradley and D. Reed. Performance of the Intel iPSC/2 Input/Output System. In Fourth Conference
on Hypercube Concurrent Computers and Applications, pages 141-144, 1989.

[6] P. Colella and P. Woodward. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations.
Journal of Computational Physics, 54(1):174-201, April 1984.

(7] P. Crandall, R. Aydt, A. Chien, and D. Reed. Input-Output Characteristics of Scalable Parallel Appli-
cations. In Proceedings of Supercomputing 95, December 1995.

(8] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural Requirements of Parallel Scientific
Applications with Explicit Communication. In Proceedings of the 20th Annual International Symposium
on Computer Architecture, pages 2-13, 1993.

12

(9] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved Parallel I/O via a Two-Phase Runtime
Access Strategy. In Proceedings of the Workshop on I/0 in Parallel Computer Systems at IPPS ’93,
pages 56-70, April 1993.

[10] J. del Rosario and A. Choudhary. High Performance I/O for Parallel Computers: Problems and
Prospects. IEEE Computer, pages 59-68, March 1994.

[11] D. Feitelson, P. Corbett, and J. Prost. Performance of the Vesta Parallel File System. In Proceedings
of the Ninth International Parallel Processing Symposium, pages 150-158, April 1995.

[12] J. French, T. Pratt, and M. Das. Performance Measurement of the Concurrent File System of the
Intel iPSC/2 Hypercube. Journal of Parallel and Distributed Computing, 17(1-2):115-121, January
and February 1993.

[13] N. Galbreath, W. Gropp, and D. Levine. Applications-Driven Parallel I/0. In Proceedings of Super-
computing ’93, pages 462-471, November 1993.

[14] W. Gropp and B. Smith. Chameleon Parallel Programming Tools User’s Manual. Technical Report
ANL-93/23, Mathematics and Computer Science Division, Argonne National Laboratory, March 1993.

(15] V. Herrarte and E. Lusk. Studying Parallel Program Behavior with Upshot. Technical Report ANL—
91/15, Mathematics and Computer Science Division, Argonne National Laboratory, August 1991.

[16] D. Kotz and N. Nieuwejaar. File-System Workload on a Scientific Multiprocessor. IEEE Parallel and
Distributed Technology, pages 51-60, Spring 1995.

[17] T. Kwan and D. Reed. Performance of the CM-5 Scalable File System. In Proceedings of the 8th ACM
International Conference on Supercomputing, pages 156-165, July 1994.

[18] N. Nieuwejaar and D. Kotz. Performance of the Galley Parallel File System. In Proceedings of Fourth
Workshop on Input/Qutput in Parallel and Distributed Systems, pages 83—-94, May 1996.

[19] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best. File-Access Characteristics of Parallel
Scientific Workloads. Technical Report PCS-TR95-263, Dept. of Computer Science, Dartmouth College,
August 1995.

[20] B. Nitzberg. Performance of the iPSC/860 Concurrent File System. Technical Report RND-92-020,
NAS Systems Division, NASA Ames, December 1992.

[21] A. Purakayastha, C. Ellis, D. Kotz, N. Nieuwejaar, and M. Best. Characterizing Parallel File-Access
Patterns on a Large-Scale Multiprocessor. In Proceedings of the Ninth International Parallel Processing
Symposium, pages 165-172, April 1995.

[22] A. L. N. Reddy and P. Banerjee. A Study of 1/0O Behavior of Perfect Benchmarks on a Multiprocessor.
In Proceedings of the 17th Annual International Symposium on Computer Architecture, pages 312-321,
1990.

[23] D. Reed, R. Aydt, R. Noe, P. Roth, K. Shields, B. Schwartz, and L. Tavera. Scalable Performance Anal-
ysis: The Pablo Performance Analysis Environment. In Proceedings of the Scalable Parallel Libraries
Conference, pages 104-113, October 1993.

[24] R. Thakur, E. Lusk, and W. Gropp. I/O Characterization of a Portable Astrophysics Application on the
IBM SP and Intel Paragon. Technical Report MCS-P534-0895, Mathematics and Computer Science
Division, Argonne National Laboratory, Revised October 1995.

13

e ———— e e e e

