e EMIS Yiew!Frint Document Cowver Sheet ***

This document was retrieved from the Boeing ISEARCH System.

Accession #: D196050356
Document #: SD-WM-C5RS-028

Title/Desc:
SYSTEM DESIGN DESCRIFPTION FOR THE TMAD CODE

M 25, 1998
AMatiow 25 ?)

ENGINEERING DATA TRANSMITTAL

, Pagoiof_l____
eor NS 700688

1.
2. To: (Receiving Ora:nizationl 3. From: (Originating Organization} 4. Related EDT No.:
Distribution Nuclear Analysis and
Characterization 7. Purchase Order No.:
5. Proj./Prog./Dept./Div.; 8. Cog. Engr.: .
\3}!_0)L{/ \i‘.‘n-ft/ S. H. Finfrock 9. Equip./Component No.:

8. Originator Remarks:

Approval / Release

10. System/Bldg./Facility:

12. Major Assm, Dwg. No.:

11. Receiver Remarks:
13. Permit/Permit Application No.:
14. Required Responss Date:
15. DATA TRANSMITTED {F) (G) (H)} {
(A) Reason | OQrigi- | Receiv-
Ilt\lem {B} Document/Drawing No. (c)'?:”t {DL':.W' {E} Title or Description of Data Transmitted IT:::;‘ Trfaor:s- Siastpo; Di:;r:a-
o. mittal stion sition
1 |WHC-SD-WM-CSRS-028| A1l 0 System Design Description for & /Zé / /
the TMAD Code
186. KEY
Impact Level (F) Reason for Transmittal (G) Disposition (H) & (I}
1. 2, 3, or 4 {see 1. Approvai 4. Raview 1. Approved 4, Reviewed no/comment
MRP 5.43) 2. Release 5. Post-Review 2. Approved w/commaent 5. Reviewed w/comment
3. Information 6. Dist. (Receipt Acknow. Required) 3. Disapproved w/comment 6. Receipt acknowledged
SIGNATURE/DISTRIBUTION
©) 7. {Sen Impact Level for required signatures) (@) H)
Rea- | oo, |) Name {K) Signature (L) Date (M) MSIN| {J) Name (K} Signature (L) Date My MSIN| e8| pigy
son . r son
’ T el
}«2. /| o Era. TP PAAS no-38
V21 /|8 Moy Totter P otn TpAS T-38
/25
/ |/ 19% pJ Edwards ,//"’7/ A4-79
Safety
Env. /20 L L v
/ Ind. Rev: [R0Fowe 7 2Y/%S Ho-38
18. SH Finfrock 19. 20. H. Toffer 21. DOE APPROVAL (if required)
Ltr No,
S5l and P Tl Y27/3S] Oaporones
Signature of EDT Date ~ { Authorized Representative Date Codnizéﬁ’rﬂianager Date D Approved w/comments

Originator

for Receiving Organizetion

l:l Disapproeved w/comments

BD-7400-172 (07/37)

RELEASE AUTHORIZATION

Document Number: WHC-SD-WM-CSRS-028, Rev. 0

Document Title: System Design Description for the TMAD code

Release Date: 9/28/95

This document was reviewed following the
procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

i Hoollo o 29/

C. WILLINGHAM

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof or its
contractors or subcontractors.

This report has been reproduced from the best available copy. Available in
paper copy. Printed in the United States of America. To obtain copies of
this report, contact:

Westinghouse Hanford Company - Document Control Services

P.0. Box 1970, Mailstop H6-08, Richland, WA 99352

Telephone: (509) 372-2420; Fax: (509) 376-4989

A-5001-400.2 (09/94) WEF256

SUPPORTING DOCUMENT

1. Total Pages 57

2. Title 3. Number

System Design Description for the TMAD Code WHC-SD-WM-CSRS-028

5. Key Words 6. Authaor

Neutron probe vame: Scott H. Finfrock

TMAD : ?\i g /
Signature T

Organization/Charge Code

8M720 / N2546

7. Abstract

This document serves as the System Design Description (SDD) for the TMAD code
system, which includes the TMAD code and the LIBMAKR code. The SDD provides a.
detailed description of the theory behind the code, and the implementation of
that theory. It is essential for anyone who is attempting to review or modify
the code or who otherwise needs to understand the internal workings of the code.
In addition, this document includes, in Appendix A, the System Requirements
Specification for the TMAD system.

8. RELEASE STAMP

<

CFFICIAL RELZASE
BY VWHG
DATE Ldepto. 28,1995

N Mativo 35

A-6400-073 (08/94) WEF124

1.0

2.0

3.0

WHC-SD-WM-CSRS-028 Rev. 0

CONTENTS

INTRODUCTION o e e e e e e e e e s s s s, 1
1.1 PURPOSE o o s . o e e e e, 1
1.2 SCOPE o e e e e e e, 1
1.3 OVERVIEW o . o o 1
1.4 DEFINITIONS & . o e e e e e e e e i s s s 1
DECOMPOSITION DESCRIPTION v v v v v v o v 2
2.1 MODULE DECOMPOSITION AND DEPENDENCY DESCRIPTION 4
2.1.1 TMAD L e e e e e e e e, 4
2.1.2 LIBMAKR o o e e e e 7
2.1.3 External Routines 10

2.2 CONCURRENT PROCESS DECOMPOSITION o v v .. 10
2.3 DATA ENTITY DECOMPOSITION o v v v .. 10
2.3.1 Data Files 10
2.3.2 Common Blocks v v v v v v e e 11
2.3.3 Constantso e e 12
2.3.4 Variables 12
INTERFACE DESCRIPTION o . o e o s s s e e . 18
3.1 MODULE INTERFACE v v e v e o e i o o . 18
3.1.1 TMAD & . . L L e e e e e e e e 18
3.1.1.1 Analyze 18

3.1.1.2 Delscan« © v v v e e e e e e 18

3.1.1.3 Findsols 18

3.1.1.4 Getfito e, 18

3.1.1.5 Getiscts 18

3.1.1.6 Getlib 19

3.1.1.7 Getscan e e e e e e e e e 19

3.1.1.8 Gsolve v e e e e 19

3.1.1.9 Interpo 19

3.1.1.10 Intersct « & v v v v e e e e 19

3.1.1.11 Listscan 19

3.1.1.12 Pickd v v . e e e e e e e e e e 19

3.1.1.13 Scanhead 19

3.1.1.14 Scanmenu e e e e e e e e e 19

3.1.1.15 Scantype oo 19

3.1.2 LIBMAKR e e e e e e e e e e e e e 19
3.1.2.1 Addlib 20

3.1.2.2 Dellib« .« « oo e e e e e e e 20

3.1.2.3 Getlib e o e e e 20

3.1.2.4 Listlib o o Lo 20

3.1.2.5 Modalim« . .« . . e e e e e e 20

3.1.2.6 Modwgt 20

3.1.2.7 Picka00 20

3.1.2.8 Pickd e e e e e e e e e e e e 20

3.1.2.9 Putlibo 20

3.1.3 CURVE FIT ROUTINES « v v v v v v v v v v 20
3.1.3.1 Crvfito 20

3.1.3.2 Gammln e e e e e e e e e e e 20

3.1.3.3 Gammg oo e e e e e e 21

iii

WHC-SD-WM-~CSRS-028 Rev. 0

3.1.3.4 Gef L .. L L L e e s e 21
3.1.3.5 Gser o e e e 21
3.1.3.6 Polyfunc 21
3.1.3.7 Svbksbo oL 21
3.1.3.8 Svdempo ..., 21
3.1.3.9 Svdfit, 21
3.2 PROCESS INTERFACE o o L o o v v o . 22
3.2.1 TMAD Interfaces v v v v v v v e e, 22
3.2.1.1 User Interface 22
3.2.1.2 Benchmark Data Library File 23
3.2.1.3 Scan Data File 25
3.2.1.4 TMAD.OUT Output File 26
3.2.1.5 TMAD.DEBUG Output File 27
3.2.2 LIBMAKR INTERFACES« . v o . o . .. 28
3.2.2.1 VUser Interface 28
3.2.2.2 Benchmark Data File 29
3.2.2.3 Benchmark Data Library File 30
4.0 DETAILED DESIGN & v v e e e e e e h e e e e . 30
4.1 MODULE DETAIL DESIGN « « v v v v v v v e v v . 30
4.1.1 TMAD Module Design 30
4.1.1.1 Anmalyze i v e e e e e e e e e 30
4.1.1.2 Delscan v e e e 31
4.1.1.3 Findsols 31
4.1.1.4 Getfit o . . o ... 31
4.1.1.5 Getiscts 32
4.1.1.6 Getlib e e e e e e 32
4,1.1.7 Getscan o Lo e e 33
4.1.1.8 Gsolve v v v e e e e e 33
4.1.1.9 Interp o . .o oo o 34
4.1.1.10 Intersct « 35
4.1.1.11 Listscan «00 e e .. 35
4.1.1.12 Pickd o o 35
4.1.1.13 Scanhead 36
4.1.1.14 Scanmenu 0 e e e e e e 36
4.1.1.15 Scantype oo . .. 36
4.1.1.16 THMAD« . o . e e e e e e e e 36
4.1.2 LIBMAKR Module Design+« + « « + « . . 36
4,.1.2.1 Addlibo s . 36
4.1.2.2 Dellib v . v v e e e e e e e e 37
4.1.2.3 Getlib oo 37
4.1,2.4 LIBMAKR oo oo 38
4,1.2.5 Listlib L oo . oo 38
4.1.2.6 Modalim 39
4.1.2.7 Modwgt o . .. 0oL L0000 39
4.1.2.8 Picka 0000 39
4.1.2.9 Pickd 39
4.1.2.10 Putlib« . e e e e e e 40
4.1.3 Curve Fit Module Design 40
4.1,3.1 Crvfit oo 41
4.1.3.2 Gammln e e e e e e e e e 41
4.1.3.3 Gammg e e e e e e e e e e e e e 41
4.1.3.4 Gef s e e e e e e e e e 41

iv

WHC-SD-WM-CSRS-028 Rev. 0

4.1.3.5 Gser o e e e e e e e e e
4,1.3.6 Polyfunc
4.1.3.7 Svbksbo
4.1.3.8 Svdemp L. L Lo Lo oo
4.1.3.9 Svdfito L L0
5.0 REFERENCESo ... PP

APPENDIX A. SYSTEM REQUIREMENTS SPECIFICATIONS FOR THE TMAD CODE

LIST OF FIGURES

Figure 2.1 TMAD Flow Diagram v v v v v v u v v v
Figure 2.2 TMAD Module Heirarachy « v v . v o ..
Figure 2.3 LIBMAKR Flow Diagram
Figure 2.4 LIBMAKR Module Heirarachy

LIST OF TERMS

LOW liguid observation well

MCNP Monte Carlo n-particle

SDD System Design Description

SRS System Requirements Specification

WHC-SD-WM-CSRS-028 Rev. 0

SYSTEM DESIGN DESCRIPTION FOR THE TMAD CODE

1.0 INTRODUCTION

1.1 PURPOSE

This document serves as the System Design Description (SDD) for the TMAD
code system (Finfrock 1995), which includes the TMAD code and the LIBMAKR
code. The SDD provides a detailed description of the theory behind the code
and the implementation of that theory. It is essential for anyone who is
attempting to review or modify the code or who otherwise needs to understand
the internal workings of the code. In addition, this document includes, in
Appendix A, the System Requirements Specification (SRS) for the TMAD system.

1.2 SCOPE

The TMAD code was commissioned to facilitate the interpretation of
moisture probe measurements in the Hanford Site waste tanks. In principle,
the code is an interpolation routine that acts over a library of benchmark
data based on two independent variables, typically anomaly size and moisture
content. Two additional variables, anomaly type and detector type, can also
be considered independent variables, but no interpolation is done over them.
The dependant variable is detector response. The intent is to provide the
code with measured detector responses from two or more detectors. The code
will then interrogate (and interpolate upon) the benchmark data library and
find the anomaly-type/anomaly-size/moisture-content combination that provides
the closest match to the measured data.

1.3 OVERVIEW

Section 2 of this document will describe the breakdown of the system into
its various components and the relationship between those components.
Section 3 will identify the internal and external interfaces in the code
system. Section 4 will explain the theory and function of the various modules
and common data structures in the TMAD system. Appendix A will provide a
description of the SRS for TMAD system.

1.4 DEFINITIONS

The following definitions will help the reader understand the neutron
probe measurement process and the TMAD code:

TMAD — The name of the code being developed. The name was
derived from the phrase "tank moisture and anomaly
detection.” TMAD is also used to refer to the system
of codes that includes TMAD and LIBMAKR.

WHC-SD-WM-CSRS-028 Rev. O

LIBMAKR — The name of the auxiliary code that is being
developed in conjunction with TMAD and that will be
part of the TMAD code system. LIBMAKR is used to
assemble the benchmark data into a library file.

I

Benchmark data Predictions of detector response to different
moisture contents, anomaly types, and anomaly sizes.
These data are produced by computer modeling of the
waste tank and probes using the MCNP code (LANL

1986).

Neutron probe -~ A device consisting of a neutron emitter and a
neutron detector. The device is Towered to the
bottom of a Tiquid observation well and then sTowly
raised. While it is being raised, it is continuously
emitting neutrons. At predetermined intervals it
measures the number of neutrons per second reaching
the detector.

Scan — The raw data recorded by the neutron probe (or other
type of probe). It typically consists of a series of
pairs of data points, with each pair consisting of a
depth and a detector response.

Liquid - A pipe, closed at the bottom and open at the top,
observation that has been inserted into the waste. The LOW
well (LOW) allows probes to be lowered into the waste without

coming into direct contact with the waste. This
avoids the need to decontaminate the probe after
every scan.

MCNP — The name of the code (LANL 1986) that will be used to
model the detector response in the waste tank,
thereby producing the benchmark data. The name is
derived from the phrase "Monte Carlo neutron photon."

2.0 DECOMPOSITION DESCRIPTION

The TMAD system consists of two codes, TMAD and LIBMAKR. LIBMAKR is used
to take the externally produced benchmark data and combine them into a library
fite that is useable by TMAD. TMAD then takes the Tibrary and externally
produced scan data and processes them. The result of this processing is a
prediction of the moisture content and anomaly size for each point in the scan
data.

The benchmark data are produced externally by modeling each detector/
anomaly/anomaly size/moisture content combination (typically using MCNP) and
combining the results into properly formatted files (see Section 3.2.2.2). In
order to create the TMAD library file, LIBMAKR performs a curve fit over the
moisture content values of each detector/anomaly/anomaly size combination.
These curves express the relationship between detector response and moisture
content. Each curve is then stored in the library file in the form of its
three characteristic coefficients. See Section 3.2.1.2 for a detailed

2

WHC-SD-WM-CSRS-028 Rev. 0

description of the library file. Ideally the Tibrary file need only be
created once after which TMAD can use it for any number of tank scan
evaluations. ‘

In order to determine the moisture content of a tank, TMAD must be
provided with a library file and two or more detector scans. The scans
consist of a series of detector readings, each representing a different depth
in the tank. The scans are first interpolated to give them a common reference
(i.e., the same number of points and the same depths for all of the scans).
After the interpolation each point is processed to find the anomaly/anomaly
size/moisture content combination that best represents the measured data.

The first step in this process is to take a point from one of the
detector scans and compare it to all of the curves representing that detector.
Because each moisture content curve is treated as a second order polynomial
(most of the data relationships are first or second order, for a very few it
may be desirable to consider higher order representations as a future
upgrade), each curve will contain none, one, or two moisture values that would
produce the probe measurement. By combining the possible solutions from all
of the anomaly sizes (for a given detector-type/anomaly-type combination)
none, one, or two curves can be produced that represent the relationship
between the anomaly size and the moisture content for the given probe
measurement. Note that at this point there are still an infinite number of
possible solutions. This process is repeated for each detector type. At the
end of this stage there are none, one, or two curves of possible solutions for
each detector type.

The next step is to find the intersections between the curves. For a
given anomaly type, every possible combination of two detectors is examined
and the intersections are found between their representative curves. Again,
because the curves are second order, there are two possible intersections for
each pair of curves. One point is then chosen for each detector pair. The
average of the resulting set of points is one possible unique solution. The
standard deviation of the average, compared to the set, is then calculated in
order to provide a measure of goodness for the solution. This procedure is
then repeated for every possible combination of curve intersections. For N
detectors, a set will consist of Z(N-1) points, that is, there are XZ(N-1)
detector pairs. If each detector is represented by two curves, and each pair
of curves has two intersections, then there will be eight possible solution
points for each detector pair. This means that there could be as many as
8= possible solutions for each anomaly. Obviously this is an extreme
situation, and in most cases the number of solutions is much smaller, but the
code has to be able to handle the extreme case.

Once all of the possible solutions have been identified for a given
anomaly type, the process is repeated for the other anomaly types. Finally
all of the possible solutions are rated according to their standard deviation,
and the solution with the lowest standard deviation is selected as the
solution for the given scan point. The entire process is then repeated for
each subsequent scan point.

WHC-SD-WM-CSRS-028 Rev. 0

2.1 MODULE DECOMPOSITION AND DEPENDENCY DESCRIPTION

2.1.1 THAD

The TMAD code reads in data scans and compares them to the benchmark data
library. Based on this comparison, it determines the most Tikely moisture
concentration and anomaly type and size at each point in the scans. The code
consists of several modules, described below. Figure 2-1 shows a simple flow
diggyam for the TMAD code, and Figure 2-2 shows the dependencies between the
modules.

TMAD modules:

Analyze — Determines moisture concentration and anomaly type and
size at each point in the scan data set

Delscan — Removes a previously selected scan file from the list of
scans to be evaluated

Findsols ~ Finds all possible sotution points based on curves in the
library data file

Getfit — Performs curve fits on the possible solutions, creating
curves that relate moisture concentration to anomaly size

Getiscts - Finds the intersections between the moisture/size curves
for each different detector type

Getlib ~ Reads in a previously created library file

Getscan — Selects a scan file and reads in data

Gsolve - Finds all of the possible combinations of solution points,

calculates an average for each combination, and calculates
an error associated with the average

Interp — Interpolates the scans to create a common positional basis

Intersct - Determines the points of intersection between two curves

Iistscan - Lists data from one scan

Pick d - A110ws the user to identify the detector type for a data
se

Scanhead - Llists the currently selected scan files

Scanmenu -~ Presents a menu of scan-related functions

Scantype — Changes the detector type associated with a scan file

TMAD — The main module, provides a menu driver for the other
modules.

0

WHC-SD-WM-CSRS-028 Rev.

TMAD Flow Diagram.

Figure 2.1.

A

uonnog isegq §10413 SOAIND UsoMmiayg
putq ¢} Jes []I e1enoen suonoess| pug [

seAlny 8z1g Alewouy
"SA
eJnjsiop ejeal)

Ajewouy yoseq Joy jeadey

siseg

Jeuolisog

UQuioD Q)
HIAUOD

sueog
199je5

Azelqn
199[93

uesg Ul Julod yoseg o) jeaday

Meyd mojd Ss9%0.d
dviAl

0

WHC-SD-WM-CSRS-028 Rev.

TMAD Module Heirarchy.

Figure 2.2.

FELFEIT JALD 1osse)uy
P Yald P N3Id
pesyuesg pesyueass pesyueag pesyueag
BAjO8D) sjosyen e sjospul4
diaqu ueas)sr edAjueog uessjaq TEETIET
ezA|euy nuswuesg
qien
L1l
dvnlL

dviNl

Aysielloq a|npop

WHC-SD-WM-CSRS-028 Rev. 0O

TMAD also uses a set of external modules that were not written as part
of this project.

Section 3.1.3.

2.1.2 LIBMAKR

The external modules will be described briefly in

The LIBMAKR code is used to create a library data file consisting of the
benchmark data and curve fits associated with that data. Figure 2-3 shows a
simple flow diagram for the LIBMAKR code, and Figure 2-4 shows the
dependencies between the modules.

LIBMAKR modules:

Addlib
Dellib

Getlib
Libmakr

List1ib
Modalim

Modwgt
Pick a
Pick d

Putlib

Reads in a set of benchmark data and adds it to the
library file

Deletes a specified set of benchmark data from the Tibrary
file

Reads in a previously created library file

The "main" routine, provides a menu driver for the other
modules

Lists the data in the current library file

Allows the user to change the valid ranges of anomaly
sizes

Allows the user to change the weighting factors for
anomaly/detector pairs

Allows the user to identify the anomaly type for a data
set

Allows the user to identify the detector type for a data
set

Writes out a library file.

LIBMAKR aiso uses a set of external modules that were not written as part
of this project.

Section 3.1.3.

The external modules will be described briefly in

0

WHC-SD-WM-CSRS-028 Rev.

LIBMAKR Flow Diagram.

Figure 2.3.

Aleiqn]

21018

Aleiqr o)

PPY 0} BleQ \
Miewyouag 199(6S

}eyd Mo|4 SS990.id
dAVINEIT

A1eiqim maN
ajeal) 1o

Bunsix3y 109195

WHC-SD-WM-CSRS-028 Rev. 0

LIBMAKR Module Heirarchy.

Figure 2.4.

qiind quind
e)0ld qlind e YoId e yoId qinnd
P~ old P 3o1d P)oId S A1
16mpop wilepow qis qleq QPPY qmen

Z

newqr

AyosiellaH ajnpon
dIVINGIT

WHC-SD-WM-CSRS-028 Rev. O

2.1.3 External Routines

Both TMAD and LIBMAKR call several external routines that were not
written as part of this project but rather were purchased along with the text
Numerical Recipes (Press et al. 1986).
External routines:

Crvfit - Serves as an interface with the svdfit module

Gammin

Calculates the log of the gamma function

Gammgq - Calculates the incomplete gamma function Q(a,x) =
1-P(a,x)

Gef - Calculates the incomplete gamma function Q(a,x)

Gser - Calculates the incomplete gamma function P(a,x)

Polyfunc - Defines the form of the equation used in the curve fitting
module

Svbksb - A backsubstitution routine solves AeX = B given a
decomposed array A and a vector B

Svdcmp - Decomposes matrix A into UeWeV' where W is a diagonal
matrix

Svdfit - Performs the curve fit.

2.2 CONCURRENT PROCESS DECOMPOSITION

There are no concurrent processes in the TMAD system.

2.3 DATA ENTITY DECOMPOSITION
There are four classes of data important to the TMAD system: data files,

common blocks, constants, and variables. FEach of these classes is described,
and its members tisted, in the following sections.

2.3.1 Data Files

Data files are primarily used in the TMAD system for the input and output
of large blocks of data. These files are described below.

Library — Unit number = 10; file name varies. This file stores the
curve fit coefficients produced by LIBMAKR and used as
input for TMAD.

Benchmark - Unit number = 11; file name varies. This file is used as
an input file to convey benchmark data to LIBMAKR.

10

Scan

TMAD debug —

TMAD out

2.3.2 Common Blocks

WHC-SD-WM-CSRS-028 Rev. 0

Unit number = 11; file name varies. This file is used as
an input file to convey measured scan data to TMAD.

Unit number = 30; file name = tmad.debug. This file
records the results of various intermediate calculations
performed by TMAD.

Unit number = 40; file name = tmad.out. This file records
the output (moisture content) from TMAD for each point in
the scan data.

Common blocks, in the TMAD system, are used primarily for providing
access to global variables (such as input parameters) and for passing data
arrays between modules. The contents of the various common blocks employed by
the TMAD system are described below.

charlib

datlib

fndsldat

getftdat

getisdat

gsoldat
scanchar

scandat

wgtlib

Library text data such as file name and detector types.
Variables included in this common block are libname
libtitte, title, nanomaly, anomaly, ndetector, and
detector.

Benchmark data library. Variables included in this common
block are alsize, acoefs, chisqr, goodfit, fimoist,
dlvalue, dlsigma, alimits, decay, latype, natypes,
ndtypes, ldtype, nisizes, nimoist, icheck, imonth, iday,
and iyear.

Solution points for a given detector. Variables included
in this common block are xsolpts, ysolpts, nsolpts, and
nsolcrvs.

Curve fit parameters for detector solution curves.
Variables included in this common block are aszcoefs,
crvxmin, crvxmax, crvymin, and crvymax.

Intercept points between different detector solution
curves. Variables included in this common block are
xpairpts, ypairpts, npairpts, and ncpts.

Solution points for sets of detectors. Variables included
in this common block are gxsol, gysol, gerr, and jsol.

Scan data points. Variables included in this common block
are scantitl and scanfile.

Scan text data (file name and scan title). Variables
included in this common block are nscan, npoints, depth,
svalue, rdepth, rvalue, srcmod, npoints2, isdtype, imon,
idy, and iyr.

Detector weighting factors. Variables included in this
comman block are weights.

11

WHC-SD-WM-CSRS-028 Rev. 0

2.3.3 Constants

The TMAD system uses a variety of constants, which are defined using the
FORTRAN "parameter" command. A brief description of the constants is given
below (note that in the code, constants are identified by being presented in
all capital Tetters).

EPSILON - A number that is considered sufficiently close to zero
that all positive numbers less than it can be treated as
zZero

MANOM - The maximum number of anomalies that can be represented in
the data Tibrary

MAXSOL - The maximum number of solution points that will be
considered by the code

MDETECT - The maximum number of detector types that can be
represented in the data library

MMAX - The maximum number of curve coefficients for the curve fit
routines

MMOIST - The maximum number of moisture contents for a given
anomaly size that can be present in the data library

MPOINTS - The maximum number of data points in a curve

MSCAN - The maximum number of scans that TMAD can process at one
time

MSIZE - The maximum number of anomaly sizes for a given anomaly

that can be present in the data library

NCURVCFS - The number of coefficients used to describe a curve (this
defines the "order" of the curve)

NMAX - The maximum number of iterations for the curve fit
routines

TOL - Convergence 1imit used in the curve coefficient routines.

2.3.4 Variables

A large number of variables are defined in the TMAD system. These
variables can be broken into two general classes, local and global. Local
variables are those that are used by only one module, and global variables are
those that are used by two or more modules, either through common blocks or
direct passing. A brief description of the contents of the global variables
is given below.

12

acoefs

alimits

alsize

anomaly

aszcoefs

aZ2coefs

chi

chisqr

CrvxXmax

crvxmin

crvymax

crvymin

decay

WHC~SD-WM-CSRS-028 Rev. 0

Array of curve coefficients for the benchmark data Tibrary
curves representing detector response versus moisture
content for a given detector-type/anomaly-type/anomaly-
size combination. This variable is included in the datlib
common biock.

Array of minimum and maximum allowed anomaly sizes for
each anomaly. This variable is included in the datlib
common block.

Array of anomaly size entries in the benchmark data
library for each anomaly-type in the library. This
variablie is included in the datlib common block.

Array of names of anomaly types that are represented in
the benchmark data library. This variable is included in
the charlib common block.

Array of curve coefficients representing the moisture-
content/anomaly-size curves. This variable is included in
the getftdat common block.

Array of curve coefficients, similar to acoefs, with the
first value set equal to the detector response and the
other values set to zero (thereby representing a
horizontal line). This array is passed to the subroutine
intersct.

Calculated value of x° (see chisqr) for a moisture-
content/anomaly-size curve. This variable is passed to
the subroutine crvfit.

Array of calculated values of XZ for the curve fit
coefficients in the benchmark data library. This variable
is included in the datiib common block.

Array of maximum anomaly sizes for moisture content versus
anomaly size curves., This variable is included in the
getftdat common block.

Array of minimum anomaly sizes for moisture-content versus
anomaly size curves. This variable is included in the
getftdat common block.

Array of maximum moisture contents for moisture content
versus anomaly size curves. This variable is included in
the getftdat common block.

Array of minimum moisture-contents for moisture content
versus anomaly size curves. This variable is included in
the getftdat common block.

Array of the decay constants for the probes associated
with the different detector types. This variable is
included in the datiib common block.

13

depth

detector

dlsigma

dlvalue

flmoist

gerr

goodfit

gxsol

gysol

icheck

iday

idy

idump

imon

WHC-SD-WM-CSRS-028 Rev. 0

Array of vertical positions for each data point in each
scan. This variable is included in the scandat common
block.

Array of names of detector types represented in the
benchmark data library. This variable is included in the
charlib common block.

Array of standard deviations (02) for the data points in
the benchmark data library. This variable is included in
the datlib common block.

Array of predicted detector responses in the benchmark
data library. This variable is included in the datlib
common block.

Array of moisture content values represented in the
benchmark data library. This variable is included in the
datlib common block.

Array of calculated errors for the solution points
identified by the code. This variable is included in the
gsoldat common block.

Measure of "goodness of fit" of a curve fit. This
variable is included in the datlib common block.

Array of anomaly size values for the solution points
identified by the code. This variable is included in the
gsoldat common block.

Array of moisture content values for the solution points
identified by the code. This variable is included in the
gsoldat common block.

Array of flags indicating the anomaly-type/detector-type
combinations that are represented in the benchmark data
library. This variable is inciuded in the datlib common
block.

Day of the effective date of the benchmark data library.
This variable is included in the datlib common block.

Array of the days of the month on which the scans were
performed. This variable is included in the scandat
common block.

Number of solutions identified for a given point in the
scans in excess of the maximum (MAXSOL). This variable is
passed to the subroutine gsolve.

Array of the months in which the scans were performed.
This variable is included in the scandat cocmmon block.

14

WHC-SD-WM-CSRS-028 Rev. 0

imonth - Month of the effective date of the benchmark data library.
This variable is included in the datlib common block.

isdtype - Array of detector types for each scan. This variable is
included in the scandat common block.

isolent - Number of solutions identified for a given point in the
scans. This variable is passed to the subroutine gsolve.

iyear - Year of the effective date of the benchmark data library.
This variable is included in the datlib common block.

iyr - Array of the years in which the scans were performed.
This variable is included in the scandat common block.

izflag - Flag indicating the status of the curve intersection
calculation. This variable is returned by the subroutine
intersct.

Jsol - Array of anomaly types for the solution points identified

by the code. This variable is included in the gsoldat
common block.

latype - Array of anomaly types represented in the benchmark data
library. This variable is included in the datlib common
block.

ldtype - Array of detector types represented in the benchmark data
library. This variable is included in the datlib common
block.

libname - Name of the benchmark data library file. This variable is

included in the charlib common block.

libtitle - Title of the benchmark data library. This variable is
included in the charlib common block.

nanomaly - Number of names of anomaly types included in the benchmark
data library. This variable is included in the charlib
common block.

natypes - Number of anomaly types represented in the benchmark data
library. This variable is included in the datlib common
block.

ncpts - Number of intersections between the curves representing
the different detectors for a given anomaly. This
variable is included in the getisdat common block.

ndetector - Number of names of detector types included in the

benchmark data Tibrary. This variable is included in the
charlib common block.

15

ndtypes

nimoist

nlsizes

npairpts

npts

npoints

npoints2

nscan

nsolcrvs

nsolpts

ntmppts

rdepth

rvalue

scanfile

WHC-SD-WM-CSRS-028 Rev. 0

Number of detector types represented in the benchmark data
library. This variable is included in the datlib common
block.

Array of number of moisture content values represented for
each anomaly type and size in the benchmark data library.
This variable is included in the datlib common block.

Array of number of anomaly size values represented for
each anomaly type in the benchmark data library. This
variable is included in the datlib common block.

Array of number of intersections between every pair of
moisture-content/anomaly-size curves. This variable is
included in the getisdat common block.

Number of points to be used by the curve fit routine in
creating a moisture-content/anomaly-size curve. This
variable is passed to the subroutine crvfit.

Array of number of points in each scan. This variable is
incTuded in the scandat common block.

Number of points at which each scan will be evaluated.
This variable is included in the scandat common block.

Number of scans to be evaluated. This variable is
included in the scandat common block.

Array of number of solution curves for each anomaly-type/
detector-type combination. This variable is included in
the fndsldat common block.

Array of number of solutions for each anomaly-size/
anomaly-type/detector-type combination. This variable is
included in the fndsldat common block.

Number of jintersection points between a particular pair of
moisture-content/ancmaly-size curves. This variable is
returned by the subroutine intersct.

Array of vertical positions at which the scans will be
pracessed. This variable is included in the scandat
common block.

Array of calculated (by interpolation) detector responses,
for each scan, at the points at which the scans will be
evaluated. This variable is included in the scandat
common block.

Array of the names of the files containing the scans to be

evaluated. This variable is included in the scanchar
common block.

16

scantiti

sigma

srcmod

svalue

title

weights

xpairpts

xpts

xsolpts

ypairpts

xtmppts

ypts

ysolpts

~the moisture-content/anomaly-size curves.

WHC-SD-WM-CSRS-028 Rev. 0

Array of titles of the scans to be evaluated. This
variable is included in the scanchar common block.

Array of standard deviations for the points used to create
This variable
is passed to the subroutine crvfit.

Array of source strength modifiers (based on the decay
constant) for each scan. This variable is included in the
scandat common block.

Array of detector response values at each point in each
scan. This variable is included in the scandat common
block.

Array of titles of the anomaly-type/detector-type
combinations represented in the benchmark data 1ibrary.
This variable is included in the charlib common block.

Array of weighting factors for the different detector
types. This variable is included in the wgtlib common
block.

Array of anomaly size values for the intersection points
between pairs of moisture-content/anomaly-size curves.
This variable is included in the getisdat common block.

Array of anomaly size values to be used by the curve fit
routine in creating a moisture-content/anomaly-size curve.
This array is passed to the subroutine crvfit.

Array of moisture content values for solution points for.
anomaly-size/anomaly-type/detector-type combinations.
This variable is included in the fndsldat common block.

Array of moisture content values for the intersection
points between pairs of moisture-content/anomaly-size
curves, This variable is included in the getisdat common
block.

Array of anomaly size values for the intersection points
between a particular pair of moisture-content/anomaly-size
curves. This variable is returned by the subroutine
intersct.

Array of moisture content values to be used by the curve
fit routine in creating a moisture-content/anomaly-size
curve, This variable is passed to the subroutine crvfit.

Array of detector response values for solution points for
anomaly-size/anomaly-type/detector-type combinations (a
dummy array whose contents are not actually used). This
variable is included in the fndsldat common block.

17

WHC-SD-WM-CSRS-028 Rev. 0

ytmppts - Array of moisture content values for the intersection
points between a particular pair of moisture-content/
anomaly-size curves. This variable is returned by the
subroutine intersct.

3.0 INTERFACE DESCRIPTION

This section describes the internal and external interfaces in the TMAD
system.

3.1 MODULE INTERFACE

This section describes the intermodule interfaces in the TMAD system.
Each interface description defines the data entities that must be passed to
that subroutine, either through the subroutine call or through common blocks.
The LIBMAKR code, the TMAD code, and the curve fitting routines are treated
separately.

3.1.1 THAD

This section describes the interface to each of the subroutines within
the TMAD code.

3.1.1.1 Analyze. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are datlib, wgtlib, charlib,
scandat, scanchar, and gsoldat.

3.1.1.2 Delscan. No data needs to be passed to this subroutine through the
call command. It requires two common blocks, scandat and scanchar.

3.1.1.3 Findsols. The interface to this subroutine consists of four integer
variables, all of which are passed to the subroutine. The first variable, m,
represents the current scan point being evaluated; j is the number of the
current anomaly type being considered; 7 is the number of the current scan
being evaluated; and id is the detector type associated with the current scan.
The common blocks accessed by this subroutine are datlib, wgtlib, scandat,
scanchar, and fndsldat.

3.1.1.4 Getfit. The interface to this subroutine consists of three
variables, all of which are passed to the subroutine. The first variable, j,
is the number of the current anomaly type being condsidered; 7 is the number
of the current scan being evaluated; and id is the detector type associated
with the current scan. The common blocks used in this subroutine are datlib,
wgtlib, fndsldat, and getftdat.

3.1.1.5 Getiscts. This subroutine requires only a single integer variable,
J, the number of the current anomaly type being considered, which is passed to
it. The common blocks it requives are charlib, scandat, scanchar, fndsldat,
getftdat, and getisdat.

18

WHC-SD-WM-CSRS-028 Rev. 0

3.1.1.6 Getlib. No data needs to be passed to this subroutine through the
call command. It needs the following common blocks: datlib, wgtlib, and
charlib.

3.1.1.7 Getscan. No data needs to be passed to this subroutine through the
call command. The common blocks this subroutine requires are scandat and
scanchar. '

3.1.1.8 Gsolve. The interface to this subroutine consists of three integer
variables, j, isolcnt, and idump. The first variable, j, is the number of the
current anomaly type being considered. It is passed to the subroutine.
Isolcnt and jdump are global variables that are passed to gsolve, modified,
and returned to the calling routine. This subroutine uses the following
common blocks: datlib, wgtlib, scandat, scanchar, gsoldat, and getisdat.

3.1.1.9 Interp. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are datlib, wgtlib, chariib,
scandat, and scanchar.

3.1.1.10 Intersct. The interface to this subroutine consists of the
following data entities: xsol, ysol, nsol, acl, ac2, and izflag. The first
two entities are floating-point arrays (with dimension of 2) that are
equivalent to the global arrays xtmppts and ytmppts. The next entity, nsol,
is an integer variable equivalent to the global variable ntmppts. The
entities acl and ac2 are floating-point arrays (dimensioned to the constant
“NCURVCFS"), each of which contains the coefficients representing a curve.
Izflag is an integer variable. The two curve coefficient arrays, acl and ace,
are passed to the subroutine and the other three entities are returned to the
calling routine. This subroutine does not access any common blocks.

3.1.1.11 Listscan. No data needs to be passed to this subroutine through the
call command. The common btocks it employs are charlib, scandat, and
scanchar.

3.1.1.12 Pick d. The interface to this subroutine consists of two integer
variables, idpick and mode. Mode is passed to the subroutine and idpick is
returned. This subroutine requires only the common block charlib.

3.1.1.13 Scanhead. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are charlib, scandat, and
scanchar.

3.1.1.14 Scanmenu. No data needs to be passed to this subroutine through the
call command. This subroutine does not use any common blocks.

3.1.1.15 Scantype. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are charlib, scandat, and
scanchar.

3.1.2 LIBMAKR

This section describes the interface to each of the subroutines within the

LIBMAKR code.

19

WHC-SD-WM-CSRS-028 Rev. 0

3.1.2.1 Addlib. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are charlib, datlib, and wgtlib.

3.1.2.2 Dellib. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are charlib, datlib, and wgilib.

3.1.2.3 Getlib. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are charlib, datlib, and wgtlib.

3.1.2.4 Listlib. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are charlib, datlib, and wgtlib.

3.1.2.5 Modalim. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are charlib, datlib, and wgtlib.

3.1.2.6 Modwgt. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are charlib, datlib, and wgtlib.

3.1.2.7 Pick_a. The interface to this subroutine consists of two integer
variables, japick and mode. Mode is passed to the subroutine and 7apick is
returned. This subroutine requires only the common block charlib.

3.1.2.8 Pick_d. The interface to this subroutine consists of two integer
variables, 7dpick and mode. Mode is passed to the subroutine and idpick is
returned. This subroutine requires only the common block charlib.

3.1.2.9 Putlib. No data needs to be passed to this subroutine through the
call command. The common blocks it employs are chariib, datlib, and wgtlib.

3.1.3 CURVE FIT ROUTINES

This section describes the interface to each of the curve fit routines.

3.1.3.1 Crvfit. This subroutine requires seven data entities be passed to
it: xpts, ypts, sigma, npts, ntmp, acoefs, and chi. The first three are
floating-point arrays (dimensioned to npts) that contain the x values, the

y values, and the standard deviations, respectively, of each point in the
curve fit. The next two variables, npts and ntmp, are integers representing
the number of points to be used in the curve fit and the number of curve
coefficients to be generated, respectively. Acoefs is a floating-point array
(dimensioned to ntmp) that contains the curve coefficients generated by the
curve fit. Chi is a floating-point variable that represents the x° valued
resulting from the curve fit. The first five items are all passed to the
subroutine and the last two are returned to the calling routine. There are no
common blocks accessed by this subroutine.

3.1.3.2 Gammin. This function is passed only one value, xx, a double
precision, floating-point variable. The return value is also a double
precision, floating-point value. There are no commen blocks accessed by this
subroutine.

20

WHC-SD~-WM-CSRS-028 Rev. 0

3.1.3.3 Gammq. This function is passed two values, a0 and x0, both of which
are floating-point variables. The return value is also a floating-point
value. There are no common blocks accessed by this subroutine.

3.1.3.4 Gef. This subroutine is passed four data entities: gammcf, a, x,
and gln. A1l four are double precision, floating-point variables. The second
and third are passed to the subroutine, and the first and last are returned to
the calling routine. There are no common blocks accessed by this subroutine.

3.1.3.5 Gser. This subroutine is passed four data entities: gamser, a, x,
and gln. A1l four are double precision, floating-point variables. The second
and third are passed to the subroutine, and the first and last are returned to
the calling routine. There are no common blocks accessed by this subroutine.

3.1.3.6 Polyfunc. This subroutine requires that three data entities be
passed to it. The first, xval, is a floating-point variable which is passed
to the subroutine. The next, pdat, is a floating-point array (dimensioned to
np) that is returned by the subroutine to the calling routine. The final
item, np, is an integer variable that is passed to the subroutine. There are
no commen blocks accessed by this subroutine.

3.1.3.7 Svbksb. This subroutine is passed nine data entities: warray,
warray, varray, ndata, maxa, mp, np, barray, and acoefs. The first three are
floating-point arrays (dimensioned to mp by np, np, and np by np
respectively). The next four are all integer variables. The eighth item,
barray, is a floating-point array (dimensioned to mp). The last item, acoefs,
is also a floating-point array (dimensioned to maxa). The first eight items
are all passed to the subroutine and the Tast (acoefs) is returned to the
cailing routine. There are no common blocks accessed by this subroutine.

3.1.3.8 Svdcmp. This subroutine is passed seven data entities: acoefs,
ndata, maxa, mp, np, warray, and varray. The first entity, acoefs, is a
floating-point array (dimensioned to maxa) that is passed to the subroutine,
modified, and returned to the calling routine. The next four items are all
integer variables that are passed to the subroutine. The Tast two, warray and
varray, are both floating-point arrays (both dimensioned to np and np by np,
respectively) that are returned to the calling routine. There are no common
blocks accessed by this subroutine.

3.1.3.9 sSvdfit. This subroutine requires twelve data entities in the
interface: xdat, ydat, sig, ndata, acoefs, maxa, uarray, varray, warray, mp,
np, and chisq. The first three are floating-point arrays (dimensioned to
ndata) that are passed to the subroutine. The next, ndata, is an integer
variable that is passed to the subroutine. The fifth item, acoefs, is a
floating-point array (dimensioned to maxa) that is returned to the calling
routine. The sixth item, maxa, is an integer variable that is passed to the
subroutine. The next three items (uarray, varray, and warray) are all
floating-point arrays (dimensioned to mp by np, np by np, and np,
respectively) that are returned to the calling routine. The tenth and
eleventh items, mp and np, are integer variables that are passed to the
subroutine. The final entity, chisg, is a floating-point variable that is
returned to the calling routine. There are no common blocks accessed by this
subroutine.

21

WHC-SD-WM-CSRS-028 Rev. 0

3.2 PROCESS INTERFACE

The TMAD system consists of two independent processes, the TMAD code and
the LIBMAKR code. Both of these processes have interfaces consisting of input
files, output files, and a menu-driven user interface. Each of these are
described in detail in the following sections.

3.2.1 TMAD Interfaces
This section describes the interfaces associated with the TMAD code.

3.2.1.1 User Interface. The TMAD code provides a menu-driven user interface
to provide flexibility and ease of use.

Immediately upon initiating the TMAD code, the user is prompted to enter
the name of the benchmark data library file. Once this has been entered, the
code checks to see whether the file exists. If the file does not exist, the
user is given the option of aborting or entering a new filename. This process
is repeated until the user either enters a valid filename or opts to abort.

Once the library file has been identified, the user is presented with the
main menu, which includes the following options:

Done
*» Select scan data to analyze
* Analyze scan data.

The first option, "done," exits the program. The second option,
“select," takes the user to the input scan menu (described below), and the
third option, "snalyze," initiates processing of the scan data. If either the
second or third options are selected, the user will be returned to the main
menu after that option has been executed. This process will continue until
the user selects the "done" option.

The input scan menu provides the user with the following options:

Return to previous menu
Select a scan

Unselect a scan

Change scan detector type
List selected scan data.

The first option, "return,” returns the user to the TMAD main menu. If
the user selects any of the other four options, the user will return to the
input scan menu after the option has been executed. This process will
continue until the user selects the “return" option.

The second option, "select,” allows the user to select a scan data file
for inclusion in the evaluation. After the user selects this option, the code
will present a 1ist of previously selected scans (if any) and will then prompt
the user for a scan data filename. The code will check to see whether this
file exists, and if it doesn't, the user will be returned to the TMAD main
menu. If the file does exist, the user will be prompted for the detector type

22

WHC-SD-WM-CSRS-028 Rev. 0

associated with the file. Typically the "select” option will be exercised
several times.

The "unselect" optien is provided in the event that the user decides to
replace one scan data set with another in the course of an evaluation. When
this option is selected, the user is presented with a list of previously
selected scans and is prompted to select one. The designated scan is then
removed from the list of scans to be evaluated.

The “change detector type" option allows the user to change the detector
type that had been previously specified for a scan. When this option is
selected, the user is presented with a 1ist of possible detector types and
prompted to select one. After a detector type has been selected, the code
checks to be sure that no scan has already been specified as this type. If
the choice is valid, the change is made, otherwise an error message is
generated.

The final option, "1ist," allows the user to list the data in one or more
of the selected scans.

3.2.1.2 Benchmark Data Library File. The benchmark data library file is
produced by the LIBMAKR code and serves as an interface between the two
processes. The file contains all of the benchmark data necessary for the
interpolation process performed by TMAD. The details of the file's contents
are presented below.

File entries:

Line 1 (format=a): libtitle
Line 2 (unformatted): imonth, iday, iyear
Line 3 (format=214): ndetector, nanomaly
Line 4 (format=a): detector(il)
Line 4 is repeated ndetector times
Line 5 (format=a): anomaly(jl)
Line 5 is repeated nanomaly times
Line & (format=2el5.6): decay(il)
Line 6 is repeated ndetector times
Line 7 (format=2el5.6): alimits(l,jl),alimits(2,j1)
Line 7 is repeated nanomaly times
Line 8 (format=i4): ndtypes
Line 9 (format=2i4): 1d,natypes(i)
Line 10 (format=i4): 1la
Line 11 (format=a): title(1a,1d)
Line 12 (format=i4): nlsizes(la,1d)
Line 13 (format=el5.6): weights(1a,1d)
Line 14 (format=el5.6,i4): alsize(k,la,1d), nlmoist(k,la,1d)
Line 15 (format=10el5.6): acoefs(m,k,1a,1d), m = 1,NCURVCFS
Line 16 (format=2el5.6): chisqr(k,la,1d), goodfit(k,1a,ld)
Line 17 (format=3el5.6): fimoist(1,k,1a,1d), dlvalue(1,k,1a,1d),
dlsigma(l,k,1a,1d)
Line 17 is repeated nlmoist(k,la,1d) times
Lines 14-17 are repeated nlsizes(la,id) times
Lines 10-17 are repeated natypes(i) times
Lines 9-17 are repeated ndtypes times.

23

WHC-SD-WM-CSRS-028 Rev. 0

Variable descriptions:

acoefs(m,k,1a,1d)
alimits(1,j1)

alimits(2,31)

alsize(k,%a,1d)
anomaly(jl)
chisqr(k,1a,1d)

decay(il)

detector(il)
dlsigma(l,k,1a,1d)

dlvalue(l,k,la,ld) .

fimoist(1,k,1a,1d)

goodfit(k,1a,ld)

.i

il

iday

imonth

iyear

Jjl

Curve coefficients; type = floating point

Minimum anomaly size; type = floating
point
Maximum anomaly size; type = floating

point
Anomaly size; type = floating point

character*32

Anomaly type name; type

Chi squared value; type = floating point

Decay constant (1/days); type = floating
point

character*32

Detector type name; type

floating point

Standard deviation; type
Detector response; type = floating point

Moisture concentration; type = floating
point

Goodness of fit; type = floating point

Detector type counter, increments from 1 to
ndtypes; type = integer

Detector type name counter, increments from
1 to ndetector; type = integer

Day of month corresponding to benchmark
model; type = integer

Month of year corresponding to benchmark
model; type = integer

Year corresponding to benchmark model;
type = integer

Anomaly type counter, increments from 1 to
natypes(i); type = integer

Anomaly type name counter, increments from
1 to nanomaly; type = integer

Anomaly size counter, increments from 1 to
nlsizes(la,1d); type = integer

24

-

WHC-SD-WM-CSRS-028 Rev. 0

1 ~ Moisture concentration counter, increments
from 1 to nimoist(k,1a,1d); type = integer
Ta - Anomaly counter, increments from 1 to
natypes(i); type = integer
1d — Detector counter, increments from 1 to
ndtypes (equivalent to i); type = integer
libtitle — Title of library; type = character*60
nanomaly — Number of anomaly type names;
type = integer
natypes(i) —~ Number of anomaly types in library;
type = integer
ndetector — Number of detector type names;
type = integer
ndtypes — Number of detector types in library;
type = integer.
nimoist(k,la,1d) — Number of moisture concentrations;
type = integer.
nisizes(la,1d) — Number of anomaly sizes; type = integer
title(la,1d) — Title of detector-type/anomaly-type model;

type = character*60

weights(la,1d) - Weight factors; type = floating point.

3.2.1.3 Scan Data File. The scan data file contains the measured detector
responsed for a particular scan. A typical application of TMAD will actually
access two or more different scan data files, but each will have an identical
format, as described below.

File entries:
Line 1 (format=a): scantitle
Line 2 {(unformatted): imon, idy, iyr
Line 3 (unformatted): npoints(nscan)
Line 4 {unformatted): depth{i,nscan),svalue(i,nscan)
Line 4 is repeated npoints(nscan) times
Variable descriptions:

depth(i,nscan) - Depth (in meters) at which detector response was
measured; type = floating point

i — Data point counter, increments from 1 to
npoints(nscan); type = integer

25

WHC-SD-WM-CSRS-028 Rev. 0

idy ~ Day of month corresponding to the scan:

type = integer,
imon — Month of year corresponding to the scan;

type = integer.
iyr — Year corresponding to the scan; type = integer
npoints{nscan) - Number of points in the scan; type = integer
nscan - Scan counter, indicates the number of the

current scan; type = integer
scantitle — Title of scan data file; type = character*72

svalue(i,nscan) — Detector response; type = floating point.

3.2.1.4 TMAD.OUT Output File. The file tmad.out contains the results of the
TMAD evaluation. The details of the file are described below.

The first Tine in the tmad.out file is a header line that identifies the
version of TMAD that produced the file. The next line describes the columns
that are to follow. Specifically, the column headings are: "point," "depth
m," "depth ft," "anomaly," "size," "%H20," "sigma," and "confidence."
Following the header line is one 1ine for each point that was evaluated in the
scan. The entries in those lines are described below.

Point - This is a counter that increments from 1 to the
total number of points.

~ Depth-m - The depth (in meters)} to which the given data

point corresponds.

Depth-ft - The depth (in feet) to which the given data
point corresponds.

Anomaly - The name of the anomaly type predicted for this
point.

Size - The anomaly size predicted for this point.

%H20 - The moisture concentration (weight percent)

predicted for this point.

Sigma - The standard deviation associated with the
anomaly size and moisture content predictions
for this point.

Confidence - A calculated canfidence factor associated with

the anomaly size and moisture content predicted
for this point.

26

WHC-SD-WM-CSRS-028 Rev. 0

The format for the data lines in this file is

i5, 8.3, lx, f8.3, Ix, al3, f5.1, 5x, f5.1, 5x, g9.3, 1x, g9.3.

3.2.1.5 TMAD.DEBUG Qutput File. The file tmad.debug contains a report of
intermediate calculations completed in the course of the evaluation. It is
useful for verification purposes and, on occasion, to provide input to perform
(by hand) a more detailed assessment of the confidence factor. The file is a
mixture of alpha and numeric outputs and is not intended to be used as input
for a code. As such the format of the file will not be discussed in detail,
but the contents will be summarized below.

The first section of the file summarizes the interpolation of the various
scans to a common positional basis. The minimum and maximum depths of the new
basis are given, as is the number of points to be used in the new basis. The
depth at each point in the new basis is then listed, as is the corresponding
(interpolated) detector response for each scan.

The next section is a summary of the scan and benchmark data. This
section includes information such as the number of scans and anomaly types.
For each scan the associated detector type is identified and the number of
anomalies for that detector type that are included in the library. For each
anomaly type, the anomaly type name and the number of anomaly sizes in the
library is given. The file aiso includes a Tist of all of the anomalies that
are common in the library for the detector types represented by the selected
scans.

Following this, the file includes a summary of the calculations for each
point in the new basis. The first item reported is the number of the point
and the depth (both in meters and in feet). For each point in the scan, the
code Toops over the possible anomaly types. The current anomaly type is
written to the file. For each anomaly type, the code loops over the selected
scans. For each scan, the associated detector type and the measured detector
response are written to the file. For each scan type, the code then loops
over the available anomaly sizes. Each anomaly size is written to the file.
Any solution points found for the given anomaly size are then recorded. Once
all of the anomaly sizes have been tested, the code performs a curve fit on
the identified solution points, and the results, in the form of curve
coefficients, are written to the file. This process is repeated until all of
the anomaly types have been evaluated.

The code then loops over the anomaly types again, searching for
intersections between the curves representing the different scans. At this
stage, the anomaly type is again written to the file. Each pair of curves
compared are identified in the file along with any intersections found. The
code then combines the intersection points into all possible clusters, such
that each scan is only represented cnce per cluster, and calculates an average
value and associated error. The intersection points, the average, and the
error are reported for each cluster. This process is then repeated until all
of the anomaly types have been evaluated.

In the final stage, the code takes all of the possible solution points
{the cluster average values) and compares them based on the calculated error.
Every identified solution point is then written to the file in order of

27

WHC-SD-WM-CSRS-028 Rev. 0

increasing error. The whole process is then repeated for the next peint in
the scan.

3.2.2 LIBMAKR INTERFACES
This section describes the interfaces associated with the LIBMAKR code.

3.2.2.1 User Interface. The LIBMAKR code provides a menu-driven user
interface to facilitate performing a number of different library building
functions with the code.

Immediately upon initiating the TMAD code, the user is prompted to enter
the name of the benchmark data library file. Once this has been entered, the
code checks to see whether the file exists. If the file does not exist, the
user is given the option of aborting, creating a new library, or entering a
new filename. This process is repeated until the user enters a valid filename
or opts to either abort or create a new library. If the user elects to create
a new library, the code prompts for the effective date of the source code in
the library.

Once the library file has been identified, the user is presented with the
main menu, which includes the following options:

Done

Add data to Tibrary
Delete data from library
Modify weights

List data in Tibrary
Modify anomaly Timits.

The first option, "done," exits the program. If the user selects any of
the other options then, after the option is executed, the user is returned to
the main menu. This process is repeated until the user selects the "Done"
option.

The next option, "add," allows the user to identify a file containing
benchmark data to be added to the library. The format of this file will be
described in the next section. The user is first prompted for a filename.
The code checks to see whether the file exists, and if it does not, the user
is returned to the LIBMAKR main menu. Once a benchmark data file has heen
read, the user is prompted for a detector type and anomaly type to associate
with the new data set. In both cases the user may select from those types
already existing in the library, or the user may identify a new type. If a
new anomaly type is specified, the user is prompted for minimum and maximum
sizes for the anomaly.

The third option, "delete," allows the user to delete a data set from the
Tibrary. If this option is selected then the user is presented with a Tist of
all of the detector and anomaly types represented in the library. The user
may select a specific detector/anomaly pair or all data associated with one
detector type or one anomaly type. A1l selected data are then removed from
the library.

28

WHC~-SD-WM-CSRS-028 Rev. 0

The next option, "modify weights," allows the user to change the
weighting factor associated with a particular detector and/or anomaly type
(the default value is 1.0). The user is first prompted to enter a new weight
value, and then to select the data sets to apply it to. The selection process
here is the same as for the "delete" option.

The fifth option, "Tist," allows the user to list the data associated
with a particular detector and/or anomaly type. The selection process here is
the same as for the "delete" option.

The last option, "modify 1imits,” allows the user to change the minimum
and/or maximum sizes specified for a particular anomaly. After selecting an
anomaly type to modify, the user is presented with the current minimum and
maximum size 1imits and is prompted for new values.

3.2.2.2 Benchmark Data File. This file contains the benchmark data
associated with a particular detector-type/anomaly-type combination. In most
applications of LIBMAKR there will be many such files but all of them will
have the same format, which is discussed below.

File entries;

Line 1 (format=a): tmptitle

Line 2 (unformatted): nsizes

Line 3 (unformatted): asize(i), nmoist(i)

Line 4 (unformatted): fmoist(j,i), dvalue(j,i), sigma(j,i)
Line 4 is repeated nmoist{i) times.
Lines 3 through 4 are repeated nsizes times.

Variable descriptions:

asize(i) - Anomaly size; type = integer
dvalue(j, i) - Predicted detector response; type = floating point
fmoist(j, i) - Moisture concentration (weight percent);

type = floating point

i - Anomaly size counter, increments from 1 to nsizes;
type = integer

J - Moisture content counter, increments from 1 fo
nmoist(i); type = integer

nmoist(i) - Number of moisture content values associated with
anomaly size "i;" type = integer

nsizes - Number of anomaly sizes represented in data set;
type = integer

sigma(j,i) - Standard deviation associated with predicted detector
response; type = fleating point
tmptitie - Data set title; type = character*60.

29

-

WHC-SD-WM-CSRS-028 Rev. 0

3.2.2.3 Benchmark Data Library File. The benchmark data library file is
produced by the LIBMAKR code and serves as an interface between the two
processes. The file contains all of the benchmark data necessary for the
interpolation process performed by TMAD. The details of the file's contents
are presented in Section 3.,2.1.2 ahove.

4.0 DETAILED DESIGN

This section provides the internal details of each design entity.

4.1 MODULE DETAIL DESIGN

This section provides the internal details of each module in the TMAD
system. The modules are broken up into two groups; those associated with the
TMAD code and those associated with the LIBMAKR code.

4.1.1 TMAD Module Design
The following sections detail the design of the TMAD modules.

4.1.1.1 Analyze. The "analyze" module serves as the driver for the routines
that find the possible solutions in the benchmark 1library that would produce
the measured detector response. The first step in this process is to call the
“interp” routine, which interpolates the various scans so that they are all on
a common positional basis. Next the routine creates a list of all the
anomalies that are included in the data Tibrary for all of the specified
detector types.

After the initialization, the routine loops through each point in the
common positional basis and finds the best solution at each point. The
solutions are first found for each anomaly type from those listed. Solutions
are found by developing curves that relate the moisture concentration to the
anomaly size for each detector type. The intersections between these curves
represent a possible solution. The "analyze" module calls the "findsols"
routine to find all of the moisture concentrations that correspond to the
measured detector response for each of the anomaly sizes in the library. The
routine "getfit" is then called to perform a curve fit over these points and
produce coefficients that can be used to represent the curve. Next, the
routine "getiscts" finds the intersections between these curves and calculates
the resulting solution point and associated error.

Once all of the possible solution points have been determined, the code
sorts them to find the best (i.e., lowest error) solution. A confidence
factor, which relates the best solution to the second best, is calculated. In
the event that no solution is found, then the predicted anomaly size,
predicted moisture concentration, and confidence factor are all set to -1, the
error is set to 100.0, and the anomaly type description is set to "no
solution". After the confidence factor is determined then the best solution,
for that point in the scan, is printed and control returned to the calling
routine.

30

WHC-SD-WM-CSRS-028 Rev. 0

4.1.1.2 Delscan. The "delscan" module is used to remove a particular scan
from the Tist of scans to be included in the analysis.

The module first calls the subroutine "scanhead,” which prints a menu of
the scans that have been selected. The user is then prompted to select one of
the scans for deletion. Once a scan has been selected, the code deletes it
from the appropriate data arrays and returns control to the calling routine.

4.1.1.3 Findsols. This module takes as input the measured detector response
for a particular detector type. For each detector type, an intersection
calculation is performed with the detector response curve fit data in the data
Tibrary. The result of this operation is an array of X,Y points where X
corresponds to the anomaly size and Y corresponds to the moisture
concentration.

For each anomaly size in the data library (for the given detector type),
the subroutine "intersct" is called. This routine returns the number of
intersections (0, 1, or 2), the corresponding moisture concentration, and, if
there are no intersections, a warning flag. If there are no intersections,
the module also prints out an appropriate warning message.

The module then checks for situations in which most of the anomaly sizes
have two intersections but one size has only one solution. This occurs when
one of the detector responses is just equal to the maximum (or minimum) of the
curve. In this case, the singular point is repeated so that the particular
anomaly size is treated as having two identical solutions. This is necessary
for the curve fitting procedure in the "getfit" module.

Finally, control is returned to the calling routine.

4.1.1.4 Getfit. The "getfit" module performs a curve fit on the sets of
possible solutions for a given anomaly-type/detector-type pair. This is done
after first filtering the sets for points that are outside of a prespecified
valid range. Sets that do not have at least two consecutive valid points are
discarded (because it is impossible to establish a curve with just one point}.

The routine first examines each point in a particular solution curve;
(the location of each point corresponds to an anomaly size and a solution
curve is a family of related solution points for a given detector-type/
anomaly-type combination). Each point falls into one of three categories: no
solution (i.e., no moisture content at this point agrees with the measured
data), a valid solution, or an invalid solution (a solution can be found only
by extrapolating to a moisture content that is outside the range of the
benchmark data for this detector/anomaly combination). Any invalid point that
is immediately adjacent to a valid point is flagged as valid (to avoid
discarding important end points).

Next, the series of points is searched to find the Tongest consecutive
string of points that does not include a "no solution" point. If this string
includes less than two points, then the entire curve is discarded. Assuming
that there are more than two points, the string is examined and any points
that had been flagged as invalid are then flagged valid and the series of
points becomes the basis for the curve fit. '

31

ey

WHC-SD-WM-CSRS-028 Rev. 0

At this point the code determines the legitimate range for the anomaly
size and the moisture content. The legitimate range for the anomaly size is
determined by finding the minimum range covered by the series of valid points
and then extending it 30% up and down. The extension allows for errors in the
measured or modeled data that might cause the predicted results to fall
outside the Timits. This process is repeated for the moisture content except
that the range is extended by only 10%. Appropriate values for the size of
the extension were determined empirically and may be dependant on the data
set.

Next, the subroutine "crvfit" is called to produce a curve fit for the
series of points. The function "gammq" produces an estimate of the goodness
of fit of the resultant curve. Finally, control is returned to the calling
routine.

4.1.1.5 Getiscts. The "getiscts" module searches through all of the
moisture/size curves for a given anomaly type and finds all of the valid
intersections between curves representing different scans.

The module first creates and initializes an array containing the number
of intersections between curves representing every pair of scans {(i.e., the
number of intersections between scan 1 curves and scan 2 curves, the number of
intersections between scan 1 curves and scan 3 curves, and so on).

Next, the code loops over every scan, and every curve of every scan, and
identifies each pair of curves that represent two different scans. Those two
curves are then passed to the subroutine "intersct," which finds the actual
intersection coordinates. Once an intersection has been found, it is compared
to minimum and maximum values for the moisture content and anomaly size. If
the point is within the specified range, it is stored. This process is
repeated until all valid intersection points have been found and identified,
and control is then returned to the calling routine.

4.1.1.6 Getlib. This module is responsible for reading in a library file so
that it can be modified. It starts out by zeroing the array that is used to
flag the anomaly/detector pairs that are represented in the library. The user
is prompted for the name of the library file that is to be read in, and if the
specified file does not exist, the user is given the option of exiting the
module or entering a new file name.

Once a valid file is identified, the file is opened and the following
data read in from the data Tibrary file (described in Section 3.2.1.2).

The data library file title

The effective date of the benchmark data

The number of possible detector and anomaly types

The names of the possible detector types

The names of the possible anomaly types

The decay constants for each detector type

The minimum and maximum anomaly sizes for each anomaly type
The number of detector types represented in the library.

For each detector, the code reads the detector number and the number of
anomalies for that detector. HNext, the following data are 1listed for each
detector/anomaly pair selected.

32

WHC-SD-WM-CSRS-028 Rev. 0

The anomaly number

The title line from the benchmark data file from which the data came
The number of anomaly sizes in the library

The importance weight associated with this detector/anomaly pair.

Each detector/anomaly pair will have one or more sets of data, each
corresponding to a different anomaly size. For each anomaly size, the
following data will be read:

The anomaly size

The number of moisture concentrations in the data set

The curve fit coefficients for this data set.

The standard deviation and goodness of fit values for the curve fit.

The curve corresponding to a given detector/anomaly/anomaly-size
combination is constructed (in the module "add1ib") from a set of data points
relating the detector response to the moisture concentration at a number of
different moisture concentrations. For each moisture concentration, the
following data are read:

. The moisture concentration
. The detector response
. The standard deviation in the detector response value.

Finally, the library data file is closed, and control is returned to the
calling routine.

4.1.1.7 Getscan. The "getscan" module is responsible for reading in scan
data files that are to be processed by TMAD.

The routine first checks to be sure that TMAD does not already have the
maximum number of scans it can handle. If it does, an error message is
printed and control is returned to the calling routine.

If TMAD can accept another scan, the routine calls the subroutine
"scanhead," which prints a Tist of the titles of the scans that have already
been read in. The user is then prompted to enter the name of the file
containing the scan data. The subroutine checks to see whether this file
exists. If it does not, an error message is printed and control is returned
to the calling routine. If the filename is valid, the file title is read in
and printed for the user, and the user is prompted to specify the appropriate
detector type and anomaly type (through the subroutines "pick_d" and "pick a,"
respectively) for this scan.

Next, the date that the scan was performed is read in. After the date is
read in, the routine reads in the scan data. These data are then sorted, if
necessary, to be sure that it is in order of increasing depth. At this point
the code also checks to see whether there has already been a scan entered for
this detector-type/anomaly-type combination. If so, an error message is
printed and this scan is deleted from memory.

Finally, control is returned to calling routine.

4.1.1.8 Gsolve. The "gsolve" module takes all of the intersections between
pairs of scan curves and forms clusters consisting of one point for every pair

33

WHC-SD-WM-CSRS-028 Rev. 0

of scans. These clusters are averaged, and the result is one possible
solution for the given point in the scan. This is done for every possible
cluster.

The routine first initializes an array consisting of counters for every
possible combination of two scans. This array is used identify the solution
point from each scan pair that is going to be used for a given cluster. The
code steps through every possible combination of clusters and performs a
weighted average on each. This average is then adjusted, if necessary, to
ensure that it falls within the allowed ranges for moisture content and
anomaly size. The result is one possible solution for the given point in the
scan. The standard deviation associated with the solution is calculated and
the solution is stored in an array. This process is repeated for every
possible cluster of points, and then control is returned to the calling
routine.

4.1.1.9 Interp. This module establishes a common positional basis for all of
the scans. It interpolates on the detector responses for all of the scans to
provide estimated detector responses at the same positions for all of the
scans.

The routine first finds the minimum and maximum depths that are common to
all of the scans. These points become the boundaries for the new positional
basis. Each of the scans is then searched to determine which has the most
points falling between the minimum and maximum depth. These points become the
remainder of the positional basis. Each of the scans is then interpolated to
estimate the detector response at the each point in the new positional basis.

Next, the scan values are adjusted to account for any source decay in the
probe. Typically, neutron probes use a radioactive source that decays over
time. As a result, the strength of the source (and consequently the magnitude
of the response) will be different from what was modeled in the benchmark data
library. To avoid this problem, the measured response is adjusted to the
appropriate value based on the difference between the source strength at the
time of the scan and that modeled in the Iibrary. This is done by modifying
every detector response by a modifier that is calculated as follows:

S=A(t,-t,)

Where:
S source modifier for the given detector
A decay constant (in inverse days) for the given detector
t, scan date (in days)
t, library date (in days)
Note that the date values are calculated using the following equation:

t = y*365.25 + m*30.44 + d

34

-y

WHC- SD-WM-CSRS-028 Rev. 0

where:
t relative date
y year (e.g., 1995)
m month (e.g., 12)
d day (e.g., 31)

Finally, control is returned to the calling routine.

4.1.1.10 Intersct. The module finds the intersections, if any, between two
second-order curves as defined by two sets of curve coefficients. The
intersections are found by solving the following equation:

€O + CI1*X + C2*X% = DO + D1*X + D2*X2

where CO is the Oth order coefficient for the first curve, Cl is the 1lst order
coefficient, C2 is the 2nd order coefficient, DO, D1, and D2 are corresponding
coefficients for the second equation, and X is the x coordinate of the
intersection point.

First, the code calculates the difference between the Oth, 1st, and 2nd
order coefficients. If the 2nd order coefficients are different, the above
equation can be solved as a quadratic equation. In this case there are two
solutions (which may be different, identical, or imaginary). If the 2nd order
coefficients are the same, there is only one solution (at most), and the
equation can be reduced to

X = -(CO - DO)/(Cl - D1)

If the Ist order coefficients are identical, there is no unique solution.
In this case, if the Oth order coefficients are identical, the lines are
identical and there is an infinite number of intersections. Otherwise, if the
Oth order coefficients are different, the curves are essentially parallel and
there are no intersections between them.

In any of the above situations in which there is no real solution, a flag
is set with a value corresponding to the reason no intersection was found
(imaginary, identical curves, or non-intersecting curves).

Once the x coordinates of the intersection points are found, the y values
are calculated using the first curve coefficients, and control is returned to
the calling routine.

4.1.1.11 Listscan. The "listscan" module prints out the data in one of the
scans that has been entered into TMAD. The module first 1lists the titles of
each of the scans that have been entered into the system. The user is then
prompted to select one of the scans and the data from this scan is then listed
to the screen. Control is then returned to the calling routine.

4.1.1.12 Pick d. This module allows the user to select a detector type to
associate with the scan file. The calling routine passes a mode flag to this
module to indicate whether "all" is a valid option for the user to select.
The module creates a menu listing all of the possible detector types from the
data library (and possibly "all" depending on the value of the mode flag).
The user then selects one of the detector types. Finally, the code returns a

35

e

WHC-SD-WM-CSRS-028 Rev. 0

number corresponding to the selected detector type (or a zero if "all" was
selected) to the calling routine.

4.1.1.13 Scanhead. This module is used to create a list or menu of all of
the scans that have currently been read into the TMAD system. The routine
Tists out the filename and title associated with each scan and then returns
control to the calling routine. '

4.1.1.14 Scanmenu. The "scanmenu" module provides a menu-driven user
interface to select the specific scan-related function to perform. The
following options are provided to the user:

Return to previous menu
Select a scan

Unselect a scan

Change scan detector type
List selected scan data.

If the first option is selected, control is returned to the calling
routine. If the second through fifth option is selected, the code calls the
"getscan,” "delscan," "scantype," or "listscan" subroutine, respectively.
After control is returned from any of these subroutines, the menu is presented
again. This is repeated until the "return" option is selected.

4.1.1.15 Scantype. This module allows the user to change the detector type
that has been associated with a particular scan. The subroutine first lists
the available scans by calling the subroutine “"scanhead" and prompts the user
to select one of the scans to change. The code next lists the current
detector type assigned to that scan and prompts the user to select a new
detector type (by calling the subroutine “pick_d"). Once a new detector type
has been selected, the code checks to be sure that detector type has not
already been assigned. If it has been assigned, the code prints an error
message, otherwise the change is made, and control is returned to the calling
routine.

4.1.1.16 TMAD. This is the main TMAD module which serves as a driver for the
other modules in the TMAD code. The first function this module performs is to
open the output files and to load the benchmark 1ibrary file by calling the
subroutine "getlib." Next, the code provides a menu of functions to the user.
There "are three possible choices the user can select: done, select scan data,
and analyze scan data. The first choice exits the program. The second choice
calls the "scanmenu" subroutine, which offers the user several choices for
loading scan data. The third choice initiates the TMAD analysis on the
selected scan data by calling the subroutine "analyze." If either the second
or third option is specified, the option is completed and the menu is
presented again. This is repeated until the "done" option is selected.

4.1.2 LIBMAKR Module Design

The following sections detail the design of the LIBMAKR medules.
4.1.2.1 Addlib. The "addlib" module's main function is to read in benchmark
data from a file and insert it into a library file. "Addlib" first prompts

the user to input the name of the file containing the benchmark data. If the

36

WHC-SD-WM-CSRS-028 Rev. O

file exists, the data are read in, otherwise an error message is generated and
contrel is returned to the calling module. After the data has been read in,
it is passed to the curve-fitting routines, which return the coefficients that
define the fitted curve. The user will then be prompted to identify the
anomaly type and the detector type that correspond to the input data. In both
cases, the user will be given the alternative of specifying one of the types
already in the Tibrary or of specifying a new type. If a new detector type is
specified then the user is also prompted for the decay constant (in inverse
days) for the detector. If a new anomaly type is specified then the user is
prompted for the minimum and maximum acceptable anomaly sizes. Once this has
been done, the data and the curve-fit coefficients will be transferred to the
Tibrary data structure and written to the library data file. Finally, control
will be returned to the calling module.

4.1.2.2 Dellib. "Dellib" deletes existing benchmark data from a library
file. The user is first prompted for an anomaly-type/detector-type
combination to delete. As an option, the user may delete all anomaly types
for a given detector or all detector types for a given anomaly. It is
important to note that the code does not actually delete the data but rather
flags it as unavailable. It also does not remove the specifijed anomaly type
or detector type from the list of available types. After the data has been
flagged, the library file is rewritten.

4.1.2.3 Getlib. This moduie is responsible for reading in a library file so
that it can be modified. It starts out by zeroing the array that is used to
flag which anomaly/detector pairs are represented in the library. The user is
then prompted for the name of the library file that is to be read in. If the
specified file does not exist, the user is given the option of exiting the
module, entering a new file name, or creating a new library file using the
specified name. If the user opts to create a new file, the user is prompted
for a title Tine and an effective date for the library data (neutron probes
typically use a radioactive source that decays over time).

If an existing file is identified, the file is opened and the data read
in from the data library file (described in Section 3.2.1.2). The following
data are read in from the library file:

The data library file title

The effective date of the benchmark data

The number of possible detector and anomaly types

The names of the possible detector types

The names of the possible anomaly types

The decay constants for each of the detector types

The minimum and maximum anomaly sizes for each anomaly type
The number of detector types represented in the library.

Then for each detector the code reads the detector number and the number of
anomalies for that detector.

Next, for each detector/anomaly pair selected, the following data are
listed:

. The anomaly number
. The title line from the benchmark data file from which the data came
. The number of anomaly sizes in the library.

37

WHC-SD-WM-CSRS-028 Rev. 0

. The importance weight associated with this detector/anomaly pair.

Each detector/anomaly pair will have one or more sets of data, each
corresponding to a different anomaly size. For each anomaly size the
following data will be read:

The anomaly size

The number of moisture concentrations in the data set

The curve fit coefficients for this data set

The standard deviation and goodness of fit values for the curve fit.

The curve corresponding to a given detector/anomaly/anomaly-size
combination is constructed (in the module “add1ib") from a set of data points
relating the detector response to moisture concentration at a number of
different moisture concentrations. For each moisture concentration, the
following data are read:

. The moisture concentration
The detector response
. The standard deviation in the detector response value.

Finally, the Tibrary data file is closed and control is returned to the
calling routine.

4.1.2.4 LIBMAKR. This is the main module of the LIBMAKR code. It starts by
calling the "getlib" routine in order to determine the data library file to be
used. The code then presents the user with a menu of functions to select
from:

Done (exit program)

Add data to library (call module "addlib")
Delete data from library (call module "dellib")
Modify weights (call module "modwgt")

List data in library (call module "1istlib")
Modify anomaly limits (call module "modalim")

After the selected function has been completed, the menu is presented
again. This is repeated until the "done" option is selected, at which point
execution is terminated.

4.1.2.5 Listlib. This module 1ists the library data to the screen. The user
is prompted for the detector type and the anomaly type of the data to be
tisted ("all" is an acceptable option for either or both). The module then
lists the specified data to the screen, as described below.

The first item to be presented is the title of the active library file
(i.e., the Tibrary file that was selected at the beginning of execution in the
module "getlib"). Then, for each detector/anomaly pair selected, the
following data are listed:

The title Tine of the benchmark data file from which the data came
The name of the selected detector type

The name of the selected anomaly type

The effective date of the benchmark data

38

WHC-SD-WM-CSRS-028 Rev. 0

. The number of anomaly sizes in the library and the minimum and
maximum acceptable values for the sizes
. The importance weight associated with this detector/anomaly pair.

Each detector/anomaly pair will have one or more sets of data, each
corresponding to a different anomaly size. For each anomaly size the
following data will be presented: '

. The anomaly size and the number of moisture concentrations in the
data set
The curve fit coefficients for this data set

. The standard deviation and goodness of fit values for the curve fit.

The curve corresponding to a given detector/anomaly/anomaly-size
combination is constructed (in the module "addlib") from a set of data points
relating the detector response to moisture concentration at a number of
different moisture concentrations. For each moisture concentration, the
following data are Tisted:

. The moisture concentration
. The detector response
. The standard deviation in the detector response value.

After all of the data are tisted, control is returned to the caltling
routine.

4.1.2.6 Modalim. This module allows the user to change the anomaly size
1imits (minimum and maximum) that have been assigned to a given anomaly type.
The user is first prompted for the anomaly type whose limits are going to be
changed. The code then lists the current Timits and prompts the user for the
new values. The new data are written to the 1ibrary file, and control is
returned to the calling module.

4.1.2.7 Modwgt. This module allows the user to change the importance
weighting factor that has been assigned to a given detector/anomaly pair. The
user is first prompted to input the new weight value. The user then selects
the detector type and the anomaly type ("all" may be selected for either) to
which the new weight is to be applied. The code searches through the data
Tibrary and finds all detector/anomaly pairs that are to be changed. For each
such pair, the weight is changed to the new value and the title of the
combination is written to the screen. The modified library data are rewritten
to the Tibrary file, and control is returned to the calling module.

4.1.2.8 Pick_a. This module allows the user to select an anomaly type for
one of the input or library modification routines. The calling routine passes
a mode flag to this module to indicate whether "all" is a valid user option.
The module creates a menu listing all of the possible anomaly types from the
data 1ibrary (and possible "all" depending on the value of the mode flag).

The user then selects one of the anomaly types. Finally, the code returns a
number corresponding to the selected anomaly type (or a zero if "all" was
selected) to the calling routine.

4.1.2.9 Pick_d. This module allows the user to select a detector type for
one of the input or Tibrary modification routines. The calling routine passes
a mode flag to this module to indicate whether "all" is a valid user option.

39

WHC-SD-WM-CSRS-028 Rev. 0

The module creates a menu listing all of the possible detector types from the
data library (and possibly "all" depending on the value of the mode flag).
The user then selects one of the detector types. Finally, the code returns a
number corresponding to the selected detector type (or a zero if "all" was
selected) to the calling routine.

4.1.2.10 Putlib. This module writes out the data Tibrary to a file. It
first opens the data library file and writes the header information to the
file (see Section 3.2.1.2 for detailed descriptions of the Tibrary file data).
The following data are then written to the library file:

The data library title

The effective date of the benchmark data

The number of possible detector and anomaly types

The names of the possible detector types

The names of the possible anomaly types

The decay constants for each of the detector types

The minimum and maximum anomaly sizes for each anomaly type.

Next, the module searches through the library data to determine the
number of detector types and detector/anomaly pairs for which there is data in .
the library (this is done in order to discard data that was flagged to be
deleted). The remainder of the Tibrary data are then written to the file,
including the number of detector types represented in the library. For each
detector type, the detector number and the number of anomaly types for that
detector are listed. For each detector/anomaly pair the code writes:

. The title Tine of the benchmark data file from which the data came
. The number of anomaly sizes in the library
. The importance weight associated with this detector/anomaly pair.

Each detecter/anomaly pair will have one or more sets of data, each
corresponding to a different anomaly size. For each anomaly size, the
following data will be written to the file:

The anomaly size

The number of moisture concentrations in the data set

The curve fit coefficients for this data set

The standard deviation and goodness of fit values for the curve fit.

The curve corresponding to a given detector/anomaly/anomaly-size
combination is constructed (in the module "addlib") from a set of data points
relating the detector response to moisture concentration at a number of
different moisture concentrations. For each moisture concentration, the
following data are written:

’ The moisture concentration

. The detector response

. The standard deviation in the detector response value.

Finally, the file is closed and control is returned to the calling
routine.

4.1.3 Curve Fit Module Design
40

WHC-SD-WM-CSRS-028 Rev. 0

This section describes the internal design of the curve fit modules.
These subroutines are not described in great detail because they were
purchased and not developed as part of this project. Any significant
modification to these subroutines should be accompanied by a thorough design
description for the affected modules.

4.1.3.1 Crvfit. This module serves as a front-end interface for the curve
fitting routines. "Crvfit" receives the parameters from the calling routine
and then passes them to the "svdfit" routine. Once control is returned from
"svdfit," it is returned to the calling routine.

4.1.3.2 GammIn. This routine calculates the natural log of the gamma
function of the parameter passed to the routine. The gamma function is
approximated using a technique derived by Lanczos and documented in
Press et al. (1986, pp 156-157).

4.1.3.3 Gammq. This module calculates the incomplete gamma function

Q(a,x) =1 - P(a,x) as explained in Press et al. (1989, 160-163). The routine
uses two different methods to calculated the result. If x < a+l then P(a,x)
is calcutated using a series representation as implemented in the routine
"gser." The desired result, Q(a,x), is then calculated by taking the
complement of P(a,x).

Alternately, if x > a+l, then Q(a,x) is calculated directly using a
continued fraction representation as implemented in the routine "gef."

Finally, the result is returned to the calling routine.

4.1.3.4 Gcf. This module calculates the incomplete gamma function Q(a,x),
using a continued fraction representation, as described in Press et al. (1989,
160-163). After performing the calculation, the result is returned to the
calling function.

4.1.3.5 Gser. This module calculates the incomplete gamma function P(a,x),
using a series representation, as described in Press et al. (1989, 160-163).
After performing the calculation, the result is returned to the calling
function.

4.1.3.6 Polyfunc. This module defines the form of the equation used in the
curve fitting algorithm. The curve fitting routines assume that the resulting
curve will be a function of x whose value is determined, for any value of x,
by taking the scaler-product of two vectors, C and X. The vector C is an
array of coefficients, and X is an array of corresponding functions of x. In
this case, the curve is taken to be a second order polynomial, so X(1) = 1,
X(2) = x, and X(3) = x°. After the vector is defined, it is returned to the
calling routine.

4,1.3.7 Svbksb. The purpose of this module is to solve the matrix equation
AeX = B for X, where A is a decomposed array and B is a vector. This is done
using singular value decomposition. A discussion of this technique can be
found in Press et al. (1989, 52-64). After the calculation is complete, the
result is returned to the calling routine.

4.1.3.8 Svdcmp. The purpose of this mcdule is to decompose thg matrix A into
three matrices U, ¥, and W, according to the equation A = UeWeV' where W is a

41

WHC-SD-WM-CSRS-028 Rev. 0

diagonal matrix. A discussion of this technique can be found in Press et al.
(1989, 52-64). After the calculation is complete the result is returned to
the calling routine.

4.1.3.9 Svdfit. This mpdule performs the curve fit on the data points. The
fit is performed using x° minimization and singular value decomposition of the
arrays. This technique is discussed in Press et al. (1989, 515-520). After
the calculation is complete, the result is returned to the calling routine.

5.0 REFERENCES
Finfrock, S. H., 1995, System Program Management Plan for the TMAD Code,
WHC-Sd-WM-CSRS-027, Westinghouse Hanford Company, Richland, Washington.
LANL, 1986, MCNP - A General Monte Carlo Code for Neutrons and Photon
Transport, Version 3A, LA-7396-M, Rev. 2, Los Alamos National Laboratory,

Los Alamos, New Mexico.

Press, 1989, W. H., B. P. Flannery, S. A. Teukolsky, W. T. Vetterling,
Numerical Recipes, Cambridge University Press, New York.

42

-

WHC-SD-WM-CSRS-028 Rev. 0

This page intentionally Teft blank.

43

WHC~-SD-WM-CSRS-028 Rev. 0

APPENDIX A

SYSTEM REQUIREMENTS SPECIFICATIONS FOR THE TMAD CODE

A-1

WHC-SD-WM-CSRS-028 Rev. 0

This page intentionally left blank.

A-2

WHC-SD-WM-CSRS-028 Rev. 0
1.0 INTRODUCTION

This appendix serves as the System Requirements Specification for the
TMAD code.

2.0 GENERAL DESCRIPTION

This section describes the general factors that affect the code and its
requirements,

2.1 PRODUCT PERSPECTIVE

The TMAD system does not interface with any other software systems. It
does, however, make use of data from other projects. Specifically, it
requires predicted detector response data from a probe computer modeling
effort, and it needs measured detector response data from scans.

There are two general performance expectations placed on the TMAD system.
First, the staff time required for the user to execute the code (not
necessarily the computer time required) must be less than 1% of the time
required to perform the same calculations by hand. Secondly, the moisture
contents and anomaly sizes predicted by those calculations must agree with the
hand calculations to .1% and .1 cm respectively. Any differences larger than
that must be demonstrably the result of changes in the algorithm (such as
using a curve fit rather than linear interpolation) from that used in the hand
calculations.

2.2 PRODUCT FUNCTIONS
The TMAD system will perform the following functions:

e Create a data Tibrary from benchmark calculation data

¢« Accept measured scan data from at Teast five different types of
' detectors

* Allow for different weighting factors to be applied to different
detector types

» Interpclate between the benchmark data points, using a curve fitting
algorithm, to find all possible solutions for a given set of
detector responses

» Establish an error factor for each possiblie solution and sort the
solutions accordingly

* Produce results in a tabular form that can be inspected visually or
imported into a graphics package for graphical display.

A-3

WHC-SD-WM-CSRS-028 Rev. O

2.3 USER CHARACTERISTICS

The TMAD system is intended to be used by a very limited group of users.
Most of the users will be intimately familiar with the techniques associated
with acquiring the data to be processed, both the benchmark and the measured
data, and with the basic theory of the code. Some users may be only
moderately familiar with these subjects, but they will be working under the
immediate supervision of someone who is. As a result, no special user
training will be required.

It is anticipated that the TMAD system will be used periodically, as
opposed to routinely, with some users falling into the infrequent-use
category. The user documentation will need to be sufficiently clear and
succinct that the infrequent users can quickly refresh their understanding of
the code.

2.4 GENERAL CONSTRAINTS

The basic theory of the code is largely untested, and as a result, much
of the theory development will progress along with the code development.
Furthermore, there are limits on the resources that can be dedicated to this
project (one staff year and one calendar year being upper 1imits). For these
reasons, the code design will be Timited to primarily functional developments
while more aesthetic features, such as graphical user interfaces, will be
relegated to future upgrades.
2.5 ASSUMPTIONS AND DEPENDENCIES

The only major assumption or dependency for the TMAD system is that the
benchmark and scan data will be readily available.

3.0 SPECIFIC REQUIREMENTS

This section includes the details necessary for the system developer to
create a design.
3.1 FUNCTIONAL REQUIREMENTS

This section provides specific descriptions of the functions that must be
accomplished by the TMAD system.

Create a data library from benchmark calculation data.
. The code must be able to read in multiple benchmark data files (as

described in Section 3.2.1.1). These files must be combined and
written out to a single library file.

A-4

—pr =

WHC-SD-WM-CSRS-028 Rev. 0

The capability must exist to modify existing library files,
inctuding deleting or replacing data, and modifying dates, weight
factors, and jdentifiers for the various data sets.

The code must be able to read in multiple scan data files (as
described in Section 3.2.1.2).

The capability must exist to change the selection of scan data files
that are to be used for the analysis.

The code must be able to find the intersections between a straight
line (corresponding to the detector response) and a curve
(representing the detector response versus moisture content
relationship for a particular detector/anomaly/anomaly-size
combination).

A curve fit must be performed on the intersection points to
establish a curve that represents a moisture versus anomaly size
relationship, a process that must be repeated for all anomaly/
detector combinations.

The code must be able to find the intersections between two
moisture/anomaly curves, representing two different detectors, for a
given anomaly, a process that must be repeated for all combinations
of two different detectors.

The code must be able to cluster the intersections so that all
possible combinations (such that there is no more than one point per
detector) are identified.

Weighted averages must then be performed on the clusters to find one
possible solution point.

The error {defined as the standard deviation) must be calculated for
each solution point.

The process (starting with the moisture/anomaly curve intersections)
must be repeated for all anomaly types.

A11 resulting solution points must be sorted accerding to error.

A confidence factor, defined as the ratio of the error to the next
best error minus one, must be established for each solution point.
Accept measured scan data from at least five different types of
detectors.

The process, starting with the straight Tine/curve intersections,
must be repeated for every point in the scan.

The results of the TMAD analysis must be printed to files as
described in Sections 3.2.1.3 and 3.2.1.4.

WHC-SD-WM-CSRS-028 Rev. 0
3.2 EXTERNAL INTERFACE REQUIREMENTS

3.2.1 User Interfaces

There are six distinct user interfaces with the TMAD system. They
include two input files, two interactive interfaces, and two output files.
The requirements for each will be described in the following sections.

3.2.1.1 Benchmark Data Input Files. The benchmark data files will serve as
the data interface to the LIBMAKR code. They will be ASCII formatted and
contain the following information:

Title

Number of anomaly sizes in file

Anomaly size, number of moisture content values for this size
Moisture content, detector response, standard deviation.

The Tast item will be repeated once for each moisture content value. The last
two items, with the last again being repeated multiple times, will be repeated
for each anomaly size.

3.2.1.2 Scan Data Input Files. The scan data files will serve as the data
interface to the TMAD code. They will be ASCII formatted and contain the
following information:

Title

Date (month, day, year)

Number of points

Depth (in meters) and detector response.

The last item will be repeated once for every point.

3.2.1.3 Predicted Moisture Content Output File. This file, produced by the
TMAD code, will contain the results of the TMAD calculations. There will be a
title Tine followed by one line for every point processed in the calculations.
The results 1ine will contain the depth of the point being processed, the type
of anomaly predicted for that point, the size of the anomaly, the moisture
content at that point, the error associated with the prediction, and the
confidence factor associated with the prediction.

3.2.1.4 Intermediate Calculations Output File. This file, produced by TMAD,
will maintain a record of the intermediate stages in the calculations to
facilitate code verification. This file shall contain all of the intermediate
solution points, both for a given detector/anomaly pair and for the set of
detector/anomaly pairs, and the results of the curve fit, curve intersection,
and solution average calculations. The file should contain sufficient text so
that the particular outputs can be identified and so that specific points can
be located.

3.2.1.5 LIBMAKR Interactive Interface. The LIBMAKR code shall have an
interactive interface to facilitate the Tibrary generation functions. This
interface shall be text oriented and accessible through any telnet-type
connection to the host machine.

A-6

WHC-SD-WM-CSRS-028 Rev. 0

The interface shall have the following features:

User input of library file name

Choice of creating a new library or editing an existing one

User input of benchmark data file names

User assignment of detector type, anomaly type, date, and weighting

factors to input data files

. Ability to remove data sets that have already been placed in the
library

. Abitity to list some or all of the data in the library.

In addition, the code shall check the validity of input filenames, and if
a nonexistent file has been specified, the user shall be informed and given
the option of entering a new name.

3.2.1.6 TMAD Interactive Interface. The LIBMAKR code shall have an
interactive interface to facilitate the scan data file selection functions.
This interface shall be text oriented and accessible through any telnet-type
connection to the host machine.

The interface shall have the following features:

. User input of scan data file names

. User assignment of detector type to input data files

. Ability to remove data sets that have already been selected

. Ability to 1ist some or all of the data in the library.

In addition, the code shall check the validity of input filenames, and if
a nonexistent file has been specified, the user shall be informed and given
the option of entering a new name.
3.2.2 Hardware Interfaces

The TMAD system shall be Toaded on one or more UNIX-based workstations.
[t should be accessible either directly from the workstation terminal or from
remote terminals.
3.2.3 Software Interfaces

There are no software interfaces with the TMAD system.

3.2.4 Communication Interfaces

There are no communications interfaces with the THMAD system.

3.3 PERFORMANCE REQUIREMENTS
The TMAD system is intended to be a single-user system and need only

accommodate one user at a time. The data Tibrary must be able to represent at
least five anomaly types with at Teast ten anomaly sizes per type and at Teast

A-7

WHC-SD-WM-CSRS-028 Rev. 0

ten moisture contents per size. The library must also be able to accept at
least five different detector types. The TMAD code must be able to accept at
Teast five different scans, with at least one thousand points each. The
interactive portions of the code must be able to be completed in no more than
1% of the time required to perform the same calculations by hand,
(i.e., approximately 1 hour).
3.4 DESIGN CONSTRAINTS

This section describes outside constraints that affect the design of the
code.
3.4.1 Standards Limitations

No applicable standards or regulations have been identified for the TMAD
system.
3.4.2 Resource Limitations

The maximum size of the code is limited by the amount of memory available
on the UNIX workstations on which it is destined to run.

3.5 ATTRIBUTES

This section describes the desired attributes of the system.

3.5.1 Availability

The TMAD system should be available on a daily basis. Occasional periods
of unavailability, consistent with normal operating experience of networked
workstations, is acceptable.

3.5.2_ Security

No security issues have been identified for the TMAD system.

3.5.3 Maintenance
It is anticipated that regqular updates to the theory and functionality of

the TMAD system may be desired. The code shall be written and implemented to
accommodate this need.

A-8

WHC-SD-WM-CSRS-028 Rev. 0

3.5.4 Data Integrity
The benchmark data library files must be protected against inadvertent

alteration. Write access to these files should be limited to the extent
possible.

3.6 OTHER REQUIREMENTS

3.6.1 Data

See Sections 3.2.1.1 through 3.2.1.4 for a discussion of the data
requirements.
3.6.2 Operations

There are no special operations modes required for the TMAD system.

3.6.3 Site Adaptation

There are no special site adaptations required for the TMAD system.

3.6.4 Options

The only alternative identified was to perform the calculations by hand.
This approach had the advantage of allowing the engineer to immediately
identify problem areas, but the time required to perform the calculations
would be prohibitive.

3.6.5 Scheduling

TMAD is expected to be available whenever the host computer is available.
There should be no regular or significant downtime associated with code
maintenance.

3.6.6 Reliability and Recovery

The TMAD system should function normally every time it is executed. The
code should fail to function normally only in the event of a host computer
system failure or incorrect user input. In the Tatter case, a warning message

should be generated informing the user of the problem. There are no special
restart capabilities required.

3.6.7 Audits

No audit requirements have been identified for the TMAD system.

A-9

WHC-SD-WM-CSRS-028 Rev. 0

3.6.8 Priorities

The TMAD system cannot be released for use until a probe-modeling effort
has been completed and probe implementation has been initiated. The TMAD
system must be complete before tank moisture monitoring can be performed,
specifically, before conclusions can be drawn from the data.

3.6.9 Transferability

No transferability issues have been identified for the TMAD system.

3.6.10 Conversion

There are no data conversion requirements for the TMAD system.

3.6.11 Testing and Acceptance Criteria

The TMAD system will be tested to ensure that it has met all of the
design criteria. The testing will consist of executing the code on an
artificial scan made up of several points from actual scans. These points
should reflect a range of actual values encountered in tank scans. The same
points will then be evaluated by hand, and the results of the two approaches
will be compared. For acceptance, the TMAD predicted moisture content and
anomaly size must match the results of the hand calculations to 0.1% and
0.1 cm, respectively. Any larger differences must be demonstrably the result
of differences in the algorithm as it was implemented in TMAD, compared to
that used in the hand calculations.

3.6.12 Documentation
The documentation required for the TMAD system includes the following:
* Project Management Plan
» System design description
¢« Verification and Validation Report
* User's Manual.
3.6.13 Training
No special training requirements have been identified for the TMAD
system.
3.6.14 Security and Privacy
There are no special security or privacy issues associated with the TMAD
system. The code and data must be protected against inadvertent damage. This

should be accomplished by using standard backup precedures and by limiting
access.

A-10

