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ABSTRACT

The discrete ordinates form of the radiative transport equation
(RTE) is spatially discretized and solved using an adaptive mesh
refinement (AMR) algorithm. This technique permits the local grid
refinement to minimize spatial discretization error of the RTE. An
error estimator is applied to define regions for local grid refinement;
overlapping refined grids are recursively placed in these regions; and
the RTE is then solved over the entire domain. The procedure
continues until the spatial discretization error has been reduced to a
sufficient level. The following aspects of the algorithm are discussed:
error estimation, grid generation, communication between refined
levels, and solution sequencing. This initial formulation employs the
step scheme, and is valid for absorbing and isotropically scattering
media in two-dimensional enclosures. The utility of the algorithm is
tested by comparing the convergence characteristics and accuracy to
those of the standard single-grid algorithm for several benchmark
cases. The AMR algorithm provides a reduction in memory
requirements and maintains the convergence characteristics of the
standard single-grid algorithm; however, the cases illustrate that
efficiency gains of the AMR algorithm will not be fully realized until
three-dimensional geometries are considered.

NOMENCLATURE

set of ordered grids

error, %

incident energy, W/m?

intensity, W/m?sr

transport operator

total number of discrete ordinates directions
number of control volumes in computation mesh
number of rectangular grids in level 1
surface normal

projection operator

position vector, m

residual

path length, m
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S source term, W/m?-sr

S, order of discrete ordinates approximation
t time, s

v volume, m?

Wy direction weights

X,¥,Z coordinate directions, m

B extinction coefficient (= x + ¢), m"
r domain boundary

€ emissivity

¢ error tolerance

K absorption coefficient, m

A spatial domain

JA domain boundary

pEn direction cosines

p reflectivity (= 1-g)

c scattering coefficient, m

Q direction with direction cosines (1,E.7)
Superscripts

e external

i internal

1 level

| 9. finest refinement level

n iteration

o reference

Subscripts

m direction

b blackbody

1] nodal indices

k generic index

n n® S, approximation

Miscellaneous

*

bold

O

incoming direction
vectorial quantity

exact value, average value
spatial averaging operator
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INTRODUCTION

Most practical combustion applications exhibit a variety of length
scales with some regions of the spatial domain containing much
higher gradients than others. In addition, some applications involve
moving fronts where the location and shape of the reaction zone
change over time. To accurately predict the physical processes using
a numerical model, the density of nodes or contro! volumes must be
very high in the regions with steep gradients and may need to be
spatially adapted over time to conform to the state of the fluid. Much
progress has been made in the computational fluid dynamics
community in developing spatial and temporal adaptation algorithms
to accurately predict the fluid dynamic processes with such disparate
length and time scales (Bell et al., 1994; Fuchs, 1986; and Kallinderis,
1992).

In addition to convective and diffusive transport associated with
fluid dynamics, radiative heat transfer often plays a large role in
governing combustion dynamics. Radiative heat transfer is the
dominant mode of heat transfer in many combustion applications and
may significantly affect gas and wall temperatures. Because reaction
rates and density distributions are closely linked to the local gas
temperatures, radiative heat transfer may be very influential in
combustion dynamics. Unfortunately, most deterministic methods for
predicting radiative heat transfer have only been formulated for fixed
computational grids which cannot support the locally refined grid
structure necessary for resolving steep solution gradients and adapting
to changing conditions. In this respect, the development of adaptive
radiation techniques has largely lagged work in the computational
fluid dynamics community.

The discrete ordinates (DO) method has been widely applied to
multi-dimensional radiative heat transfer with participating media.
The method requires a single formulation to invoke higher order
approximations, integrates easily into control volume transport codes,
guarantees conservation of radiant energy, and is applicable to non-
gray (Fiveland and Jamaluddin, 1991) and anisotropically scattering
media (Fiveland, 1988). Based on these characteristics, the DO
method has been selected for implementation into a adaptive mesh
refinement environment.

The primary objective of this paper is to lay the foundation for
applying the DO method in the context of spatial/temporal adaptation.
The methodology parallels the work of Bell et al. (1994) for the
compressible Navier-Stokes equations, and is intended to complement
the work being done at the Center for Computational Sciences &
Engineering at Lawrence Berkeley National Laboratory. Methods
outlined herein build on the existing software base for adaptive grid
techniques, and are compatible with the approach taken in the fluid
dynamic development.

The remainder of the paper is broken into four sections. Section
2 presents the governing equations -- the radiative transport equation
and DO approximation. Section 3 details the adaptive mesh
refinement (AMR) algorithm, while results from the algorithm are
presented and discussed in Section 4. Finally, Section 5 summarizes
the work and states conclusions based on the considered cases.

2.0 GOVERNING EQUATIONS

2.1 Radiative Transport Equation

This paper considers an emitting-absorbing and isotropically
scattering gray medium, although the discrete ordinates method is not
restricted to these conditions. For this medium, the radiative transport
equation (RTE) is:

(Q -V I(rnQ) = ~ (x+0) I(nQ) +

0 . (])
o 4{ I(rQ) dQ' + x()

where I(r, Q) is the radiation intensity; /,(r) is the intensity of
blackbody radiation at the temperature of the medium; and x and ¢
are the gray absorption and scattering coefficients of the medium,
respectively. This integro-differential equation, which governs the
radiative heat transfer in a general spatial domain A, has both spatial
and angular dependence. .

For gray surfaces which reflect diffusely, the radiative boundary
condition for Equation (1) is given by:

1,9) = e, + £ f |n-Q | 1(r, Q) dQ’ 2)
T o
nQ’<0
where r belongs to the domain boundary I" and Equation (2) applics
for Qu>0. Ir, Q) is the intensity leaving a surfacc at a boundary
condition location, € is the surface emissivity, p is the surface
reflectivity, and n is the unit normal vector at the boundary location.

2.2 Discrete Ordinates Method

The discrete ordinates method is a general method for solving the
neutron or radiative transport equations. Only an overview will be
givén here since the method has been detailed elsewhere (Lewis and
Miller, 1984; Modest, 1993). The numerical solution of the RTE
requires discretization of both spatial and angular domains. Formally,
the discrete ordinates method only pertains to the angular
discretization.  Spatial and angular discretizations are typically
performed independently, with the angular discretization performed
first.

In the discrete ordinates method, the governing RTE is replaced
by a discrete set of equations for a finite number of directions, Q,,
and each integral is replaced by a quadrature:

Q.- V) I(rQ,) = - pIQ,) +

3)

M
g
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were w, are the ordinate weights. This angular approximation
transforms the original integro-differential equation into a set of
coupled differential equations. Weights and directions are commonly
based on the S, approximation (Fiveland, 1988, 1991). To simplify
the presentation of the algorithm, the notation in Equation (3) is
simplified as follows:

L) =xl,+85, O]

where S,, denotes the in-scattering source term, and the operator L,, is
defined as

L.=(Q,-V)+p &)

After angular discretization has been performed, the DO equations
may be discretized spatially using a number of techniques. Of the
various techniques, the finite volume method (also known as the
control volume method) is most widely used, principally because the
method guarantees conservation of radiant energy, is computationally
inexpensive, and is intuitively based. To reduce storage requirements,
the transport equation for each ordinate direction is usually discretized



and solved independently. In-scatiering source terms and reflected
boundary conditions are updated through global iteration.

3.0 SOLUTION METHODS

3.1 Adaptive Mesh Refinement (AMR) Algorithm

The present algorithm focuses on solution of the steady-state RTE
over a computational domain; the transient term of the RTE may be
neglected for most practical problems as it is scaled by the inverse of
the speed of light. Eventually, the algorithm is intended for
integration into a transient, gas-phase combustion code which is based
on the same grid structure and discretization methodology. Upon
integration, the steady RTE calculations will be performed every time-
step, and coupling to the advective-diffusive energy transport equation
will be considered. For coupled. transient calculations, regriding
occurs at a prescribed time interval to track moving fronts of the
devetoping flow field. The present algorithm for pure radiation
calculations, which has stationary forcing functions (i.e. emissive
power), differs from the transient algorithm in that grid adaption
occurs after a complete solution to the RTE is obtained.

The development of the AMR algorithm for radiation transport
follows the course taken by Bell et al. (1994) for fluid dynamics. The
governing cquations are integrated (solved) over an hierarchial grid
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(b) Outlines of rectangular grids

Figure 1. Sample mesh hierarchy (2 refinement levels).

structure in which the grids have differing levels of refinement. The
grid structure is based on a estimation of solution error; highly
refined grids are placed in regions of the domain with relatively high
spatial discretization error. The algorithm proceeds as follows: the
discrete RTE is solved to some level of convergence on a given grid
structure, an estimation of error is made, a new grid structure is
generated, and the RTE is solved again. The process continues until
the error has been reduced to a sufficient level,

Because the fluid dynamic and radiation modules are eventually
intended to be closely coupled to perform combustion dynamics
calculations, the grid structures for the two physics modules will most
likely be the same. Generally, the distribution of local truncation
error for the two modules, on which grid refinement is based, will not
be the same due to the differing physical processes and to different
variations in fluid dynamic and optical properties. Consequently, for
coupled calculations a hybrid error estimator, which considers both
fluid dynamic and radiative errors, will nced to be developed. For
pure radiation calculations presented in this paper, the local truncation
error is estimated using gradicnts of the radiant intensity.

3.2 Grid Structure and Nomenclature

The grid structure may be characterized by a nested hierarchy of
refined subgrids. The entire spatial domain is first covered by a set
of disjoint grids of uniform refinement. A finer refinement level
(defined by another set of grids) is then placed over the coarser level
in locations where higher resolution is required. The finer set of grids
is itself disjoint, but need not be contiguous, and its resolution is
described by an integral refinement ratio with respect to the coarse
grid. Fine grids may overlap more than one coarse grid and may be
located adjacent to physical boundaries. Finer and finer refinement
levels are recursively placed upon one another until the desired
resolution is obtained. A example grid structure is shown in Figure
1. The nesting procedure is detailed by Berger and Colella (1989).

The computational domain on a given level is denoted by the
union of a disjoint set of rectangular grids:

Nl
A=) o ®

i}

where  and N are the level and number of grids comprising the level,
respectively. Portions of this domain may be covered by grids of a
finer refinement level (I+1). The area of overlap is defined by the
projection of the finer level ({+1) to the coarser ({) and is denoted by
P(A™"). The interior and exterior composite boundaries of the level
are given by:

aAki = C]( aa; N a./g.) M

i-1 Jei

- 3Abi ®

i=1

N
an- ¢ =(UaA§

where dA/ represents the boundary of A/. The interface between two
levels of differing refinement (levels ! and I+1) is represented by the
exterior boundary of the finer level ([+1). The projection of this
interface to the coarser level is required for the communication
between levels and is denoted by P(GA™'<).



3.3_Single Grid Radiation Integrator

The integration of the DO equations is based on standard finite
volume techniques employed by Fiveland (1984, 1988), Fiveland and
Jessee (1995a), and others. The radiation integrator is independent of
the AMR shell, operating on single rectangular grids. When given a
grid, suitable boundary conditions, and an ordinate direction by the
AMR algorithm, the integrator solves an ordinate transport equation
[Equation (3)] over the rectangular patch. The integrator only
operates on a single ordinate direction rather that the entire set. The
reason becomes clear when the composite grid algorithm is detailed.

The spatially-discrete ordinate equation is obtained by integrating
Equation (3) over a typical control volume:

B g

m =
Agtminni tniani) * A_y(fm.udrz'fmﬁ-m) = ©)
xly - BL,;;+ S,

Similar equations may be written for all volumes within the single
grid.  Assuming given boundary, emission, and in-scattering
conditions, the system of equations is closed by defining a
interpolation scheme that relates the face intensities to the nodal
values. Common approaches include the step, exponential, and
diamond difference techniques. Because the exponential and diamond
difference schemes are unbounded and often lead to oscillatory
solutions, they are avoided in the present work, and the first-order
step (upwind) scheme is exclusively applied. Although the step
scheme is bounded, it has the disadvantage of being only first-order
accurate. Since this paper is primarily concerned with algorithmic
details and robustness of the methods, the use of the step scheme is
appropriate. In practice, bounded, high resolution (HR) differencing
schemes should be applied. Such schemes have recently been applied
in a single-grid context by Fiveland and Jessee (1995a) and Jessee and
Fiveland (1996). Future work will apply HR schemes to the current
AMR algorithm.

For the step scheme, a given ordinate equation may be solved using
a single sweep over the grid in which volumes are visited from
upstream to downstream (Fiveland, 1984). The process is analogous
to ordering the equations from upstream to downstream to provide an
upper triangular matrix, and then back solving the system of
equations. Multiple iterations are required to include the influence of
in-scattering and wall reflections. - ‘

3.4 Multiple-level Algorithm

The purpose of the multiple-level algorithm is to obtain a solution
to the discrete RTE over the composite grid structure. This should
not be confused with multigrid algorithms whose purpose is to
accelerate solutions, although multigrid techniques may be used in
conjunction with the present multiple-level algorithm. The multiple-
level problem may be expressed as:

Ly =«! +S. on Al-pa™Y (10)

IL =y on PEA™Y, KI_ an

for all m where {?) denotes a spatial averaging operator. These
governing equations state that the RTE must be satisfied on any
uncovered portion of the composite grid, and the intensity field must

be continuous at interfaces between levels of differing refinement --
the flux leaving one portion of the computational domain must equal
the flux entering the adjacent portion. This statement neglects the
solution on a portion of any level that is covered by a level of finer
refinement, namely in the region P(A™").

The present multiple-level algorithm is based on the approach of
Bell et al. (1994), and differs substantially from the standard single-
level algorithm for the DO method (Fiveland, 1984, 1988). For a
given ordinate direction, the standard solution algorithm sweeps the
spatial grid from upstream to downstream. This approach may be
extended to an embedded grid with the modifications that when an a
ray passes from a coarse to fine grid, the interface intensity is
interpolated, and when a ray passes from a fine to coarse grid, the
interface intensity is averaged. One spatial sweep provides the
composite solution to the ordinate equation over the composite grid.
More sweeps would be required to include the influence of explicitly-
treated wall reflection and in-scattering terms. This approach has
disadvantages from efficiency and programming standpoints. Because
the interpolation and averaging operations are embedded in the sweep
of the spatial grid, computation loops in solution process are
extremely small or are broken by conditional blocks of code. This
not only limits the degree of vectorization and parallelization, but also
greatly increases the complexity of the coding.

The proposed multiple-level algorithm differs from the standard
one in that levels in the grid hierarchy are operated on individually.
For instance, in a two-level algorithm, the process begins by solving
the RTE over the entire coarse level. Next the conditions at the
coarse-fine interface are interpolated and applied to the boundary of
the fine level, and the RTE is solved on this level. Fluxes leaving the
fine level are then averaged and applied to the coarse grid to ensure
conservation, and the coarse grid solution is again found, this time
with the influence of the fine level. The transfer of information
between levels is similar to the approach detailed by Bell et al. (1994)
and Berger and Colella (1989). At coarse/fine interfaces, intensities
are interpolated with a piecewise constant operator, while averaging
is performed using an area-weighted operator. Iteration between the
levels continues until the composite solution is converged. This
domain decomposition approach has the disadvantage that iteration
between the levels is required. Nevertheless, studies have shown that
for cases with partially reflecting walls and/or scattering media, global
convergence of the method is comparable with the single grid
algorithm. The approach has the advantage that the sweeping,
interpolation, and averaging operations are applied over large regions
with uniformly spaced grids.

Formally, the multiple-level algorithm proceeds as follows:

« Compute emission and scattering sources on each level.
» Perform single zpace-angle sweep on coarsest level A'.
» Transfer (interpolate) solution to boundary 9A%“.

« Perform single space-angle sweep on level A%

« Transfer (interpolate) solution to boundary A%~

« Perform single space-angle sweep on level A,
» Average fluxes at downstream boundaries for coarser
level.

» Perform single space-angle sweep on level A
 Average fluxes at downstream boundaries for coarser level.

» Retumn to beginning of cycle if not converged.

On the first sweep of the coarse level, the coarse/fine interface is



neglected since no information from the finer level is available at this
time.

In general, the single space-angle sweep on a given level involves
the solution on more than one rectangular grid. Special sequencing
of the solution on the level is necessary to guarantee the efficient
transfer of information across the domain. If the grids are not
adjacent to one another, the boundary conditions are established by
either the coarser level conditions or by the physical boundary
conditions, and sequencing is immaterial. However, if the grids are
adjacent, the upstream conditions for one grid are provided from the
downstream conditions of another. This dependence necessitates that
the solution over the grids proceeds in an ordered fashion; the
upstream grids must be swept first. Because the upstream direction
varies with ordinate direction, different orderings are required for
different ordinate directions. The number of unique orderings is 2"
where n is the spatial dimension (e.g., n=2 for two-dimensional
space). The orderings correspond to the principal directions (e.g., all
possible permutations of (+1, =1) for two-dimensions), and may
denoted by the sets C/, j=1,..,2". Each set C, contains a list of
ordered grids for the particular principal direction. In addition, each
ordinate direction may be assigned one of these ordered sets -- a
relationship denoted by the pointer j,, -- by inspecting the signs of the
respective direction cosines. Whenever a new grid structure is
generated, these grid orderings may be predetermined for each level.
During the level space-angle sweep, the solution sequence first loops
over ordinate directions and then over the ordered grids for the given
direction:

Form e {1,...M} do
Forie ¢ !do
* Obtain upstream boundary conditions from adjacent
upstream grids on same level.
+ Solve ordinate equation m on grid i
Ly = xly + S, on A/
Enddo
Enddo .

3.5 Error Estimator
The local truncation error (LTE) is measured by the normalized
gradient of the radiant intensity:

vI
LTE, = Ax % (12)

m

where Ax denotes the characteristic cell size. To provide a single
error estimator, an average LTE is defined:

LTE = LTE, 13

Mx

1
ML

—

In the adaptive algorithm, the mesh is refined in portions of the
domain where the following inequality is satisfied:

ITE > 6 (14)

where 0 is a user specified error tolerance. This estimator should be
fairly accurate for the first-order step scheme, but will be overly

conservative when high-order schemes are applied. For high-order
differencing schemes, other estimators, such as one based on the finite
volume analogue of the Zhu-Zienkiewicz estimator (Zienkiewicz and
Zhu, 1987), will be more appropriate. .

4.0 RESULTS

The radiation algorithm is investigated by considering two
standard benchmark cases and a case to "simulate” a coupled transient
analysis:

1) Black rectangular enclosure with a purely absorbing medium
2) Gray, rectangular enclosure with a purely scattering medium
3) Black enclosure with 2 moving emission source

The first two cases are extensively analyzed while the last case is
presented to graphically illustrate the AMR process. For the
benchmark cases, the evaluation is based on the following criteria:

1) Accuracy
2) Total computation time
3) Convergence characteristics

Results are compared to the exact solutions and predictions from other
workers. Global energy balances are resolved to machine round-off
for the converged solutions. Convergence is measured by the
normalized difference in the incident energy from two successive
space-angle sweeps:

IRL, = max(R; : i=1,..,N_,} < 10" (15a)
where
G/ - G/'|
G

R, = (15b)

T

and superscripts 2 and / denote the iterate and cell index, respectively.
The level-symmetric even S; ordinate set (Fiveland, 1991) was used
for all cases unless otherwise indicated. A short description of the
individual cases follows.

4.1 Black Rectangular Enclosure with an Absorbing Medium

The case consists of a two-dimensional, rectangular enclosure with
cold walls and a purely absorbing medium maintained at an emissive
power of unity (Fiveland, 1984; Fiveland and Jessee, 1995a).
Absorption coefficients, K, of 1 and 10 are individually be considered.

For the case of black walls, spatially exact solutions to the S,
equations are available (see Appendix A). This is not the “exact”
solution to the RTE, but the spatially exact solution to the angular
approximation. Therefore, it may be used to measure the error due
solely to a given spatial discretization (i.e. the computational mesh
and spatial differencing order). Measurement of angular discretization
error, namely ray effects, is another topic and should be considered
separately. To quantify the spatial discretization (SD) error, the
following error definition is used:

Ery) =169 = GeI | 1005 (16)
Gxy)

where G and G represent the spatially exact and approximate DO




solutions, respectively. In addition, the following norms are defined:

IEl, = Z.ﬁ a”n
>V
IEL. = max{E, : i=1,..,N_;} 18)

The summations in Equation (17) extend over all cells in the
computational domain.

Optical thicknesses of 1 and 10 were individually analyzed on
uniform grids of 10x10, 20x20, 40x40, 80x80, and 160x160 and
adaptive grids found with error tolerances (8) of 0.2, 0.1, 0.05, and
0.025. The accuracy and timing results are shown in Table 1 for x
of 1. The table displays the two error norms, total CPU time, and the
number of computational cells. For the adaptive analyses, the CPU
time includes the time required for all refinement cycles, the number
of cells corresponds to the mesh for the last refinement cycle, and the
final number of refinement levels is shown in parenthesis. The
number of cells is displayed to quantify the memory requirements.
All adaptive cases employ a refinement ratio of 2.

As expected. SD error is reduced as the grid resolution is
increased. The adaptive algorithm is effective in reducing both the
maximum and average error norms; however, the adaptive analyses
generally require more CPU time than the uniform analyses with
comparable error. Such undesirable behavior is due to two factors:
first, several cycles are required for the adaptive algorithm to built up
the refined mesh hierarchy; and second, multiple iterations are
required at each cycle to transfer information over the refinement
levels. The increase due to the first factor will be non-existent during
transient analyses because refinement is intertwined in the time-
stepping procedure. The increase due to the second factor will be
largely mitigated when either partially reflecting walls and/or
scattering media are considered since the convergence on a given grid
structure is generally governed by the explicitly treated reflection and
scattering terms as will be shown later.

The ability of the adaptive algorithm to reduce memory

Table 1
Error and Timing Statistics for Case 1 (x = 1).

CPU time

grid iEL, IE}.. ©) no. of cells
10x10 3.140 13.34 0.13 100
20x20 2.041 11.29 043 400
40x40 1.201 7.296 1.68 1600
80x80 0.6775 4.073 6.91 6400
160x160 0.3718 2280 28.34 25600
6=0.2 1.891 5.154 38.49 2500 (4)
6=0.1 1.009 2.894 58.52 5396 (4)
6=0.05 0.5813 2024 102.61 11892 (4)
©=0.025 0.3213 1.0983 309.17 48244 (5)

° Value in parenthesis denotes final number of refinement levels.

Table 2
Convergence Characteristics for Case 1
(Iterations for convergence).

£=0.1 £=0.5 £=1.0
x SG AMR SG AMR SG AMR
0.1 63 62 19 19 1 5
1 17 17 1110 1 5
10 10 8 8 8 1 5

SG = Single Grid Algorithm; AMR = Adaptive Mesh Algorithm

requirements is shown in the last column of Table 1. The comparison
of the uniform 160x160 and adaptive ©=0.05 cases reveals that
similar error norms are obtained with the adaptive algorithm using
less than half the cells of the uniform grid. Howell and Bell (1996)
observed similar treads with respect to CPU time and memory
requirements for the adaptive solution of the incompressible Navier-
Stokes equations. Figures 2 and 3 display the final grid structures and
incident energy fields for optical thicknesses of 1 and 10, respectively.
An error tolerance () of 0.05 was used to generate the results. As
seen in these figures, the grid adapts to the steep gradients in the
solution. Four levels of refinement are shown.

Convergence characteristics are measured by comparing the
number of iterations required for convergence from the adaptive
algorithm to that of the single grid algorithm. A range of absorption
coefficients and wall emissivities is considered. The single and
multiple-level grids used in the study correspond to the 40x40 uniform
mesh and the final adaptive meshes for 6=0.05, respectively. The
number of refinement levels for the adaptive algorithm was
constrained to four (although some conditions do not required four
levels), and the number of iterations corresponds to the last refinement
cycle. Table 2 displays the resuits. For the case of black walls,
convergence is degraded slightly for by the multiple-level algorithm;
however, for the gray cases, convergence is comparable. When the
walls are gray, convergence is governed by the explicit treatment of
the reflected boundary rays rather than by any communication delay
caused by the multiple-level algorithm. For some conditions, the
convergence of the multiple-level algorithm is actually better than the
single grid algorithm.

4.2 Rectanqular Enclosure with a purely Scattering Medium

The second case consists of a square enclosure with black walls
and an isotopically scattering medium. The lower wall has an
emissive power of unity, and the other walls have zero emissive
power. All walls of the enclosure have an emissivity of 1. The case
has been analyzed by a number of workers (Fiveland, 1984; Fiveland
and Jessee, 1995a; Ratzel and Howell, 1982) and serves as a good
benchmark for scattering applications.

Because exact solutions are not available to this problem, the
accuracy may not be quantified exactly. To compensate, the SD error
is measured by comparing DO results to those from a 320x320
uniform grid and the second-order CLAM scheme (Jessee and
Fiveland, 1996). This solution is taken as the benchmark to which all
other solutions are compared using the error norms of Equations (17)
and (18).

The case was analyzed on both uniform and adaptive grids. Error
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Figure 2. Refined grid and solution for Case 1
(x=1, 6=0.05).

and timing results are shown in Table 3. As displayed in the table,
the adaptive algorithm generally requires more CPU time for a given
level of error compared to the single grid algorithm. As stated
previously, the increase in CPU time is largely due to the additionai
solutions that are needed in the refinement process, and will be
mitigated in transient calculations. Figure 4 displays the final adapted
grid structure and the resulting incident energy field. High gradients
are visible near the Jower wall which has the driving emissive power.
Outlines of the grid structure are overlaid on the incident energy
contour.

Convergence characteristics for the single and multiple-level
algorithms are shown in Table 4. A range of scattering coefficients
and wall emissivities is considered. The single and multiple-level
grids used in the study correspond the 40x40 uniform mesh and the
final adaptive meshes for 8=0.05, respectively. The number of
refinement levels for the adaptive algorithm was constrained to four,
and the number of iterations corresponds to the last refinement cycle.
The table indicates that the convergence is generally not affected by
multiple-level algorithm. The explicitly treated in-scattering and
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Figure 3. Refined grid and solution for Case 1

(x=10, 6=0.05).

Table 3

Error and Timing Statistics for Case 2 (¢ =5).

grid 1EL, IEL. CPI(JS;ime no. of cells
10x10 11.35 4471 5.94 100
20x20 6.243 28.54 22.54 400
40x40 3313 16.29 89.79 1600
80x80 1.756 10.32 364.28 6400
160x160 0.9376 6.800 1529.28 25600
06=0.1 9.087 38.67 32.28 172 (2
6=0.05 5.724 26.42 89.57 664 (2)
6=0.025 3.344 15.13 438.50 2780 (3)
0=0.01 1.459 13.79 1745.33 14860 (4)

* Value in parenthesis denotes final number of refinement levels.



Table 4
Convergence Characteristics for Case 2
(iterations for convergence).

e=0.5 £=0.75 e=1.0
c SG AMR SG AMR SG AMR
0.1 20 20 12 12 7 7
1 43 38 27 22 19 17
10 327 257 258 199 223 169

SG = Single Grid Algorithm; AMR = Adaptive Mesh Algorithm

reflection terms dominate the convergence. For some conditions, the
multiple-level algorithm requires fewer iterations. Although they were
not applied here, mesh rebalance lechniques (Fiveland and Jessee,
1995b) may be used to accelerate convergence for problems
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Figure 4. Refined grid and solution for Case 2
(o=5, 6=0.025).
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with significant scattering. Such acceleration techniques. will likely
prove effective for the multiple-level grid structure and should be
investigated in future work.

4.3 Black Enclosure with Time-Varying Emission

Radiative transfer is considered in a rectangular enclosure with a
moving area source. The case was selected to conceptually simulate
a moving flame front in a combustion analysis, and to illustrate the
adaptation process. The conditions are displayed in Figure 5. A
circular area of radius 0.1 and emissive power of 5 moves in a path
of radius 1/3 and origin located in the center of the enclosure. The
emissive power of the surrounding media and walls is unity, the
absorption coefficient (x) of the entire domain is 10, and the walls are
black. The "spot” moves at a frequency of 1 rotation per second.

Figure 6 displays the adapted grids and predicted incident energy
fields at four times in the rotation cycle -- t=0, 0.125, 0.25, and
0.375s. The case was analyzed with an error tolerance (6) of 0.05,
and the number of refinement levels was constrained to three, At
each timestep. four adaption cycles were allowed. As shown in Figure
6, the algorithm adapts the grid to the area of high emission and
accurately captures the steep gradients in the solution. The incident
energy is high in the vicinity of the area source and decays as rays
penetrate the surrounding media. Rotational symmetry of 90 degrees
may be seen by comparing the results which differ by a 0.25s time
interval (e.g.. results at t=0 and t=0.25s).

5.0 SUMMARY

An adaptive mesh refinement algorithm has been formulated and
implemented for the discrete ordinates method. The resulting
algorithm has exhibited convergence characteristics comparable to
those of the single grid algorithm. In addition, the algorithm has
illustrated the ability to adapt to areas of high local truncation error
based on a simple error estimator. However, for the two basic
benchmark cases considered, the AMR algorithm did not show any
efficiency gain over the single grid algorithm, although memory
requirements were reduced. This anomaly is due to the nature of the
benchmark problems - large areas of uniform emissive power - and
to the added computation of the refinement cycles. The last case
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Figure 5. Geometry and conditions for Case 3.
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Figure 6. Refined grid (left) and predicted incident
energy (right) for Case 3 (6=0.05).

illustrated adaptation to a moving front and provides a prelude to
integrating the DO algorithm into a combustion dynamics code. The
efficiency gains of the AMR algorithm will not be fully realized until
coupled, three-dimensional, transient calculations are performed. This
application is a topic of future work.
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APPENDIX A - EXACT SOLUTION TO CASE 1.

The exact solution to the discrete ordinates equation is:

Ixy) = (I"-Ib) e™ + I,

where

-y 0 -y 0
s = min | 22X XY
By En

and

0 p>0 0 >0
x° = ya =
XL l"'m<0 YL Em<0

(AD)

(A2)

(A3)

The incident energy from the exact spatial solution of the DO
equations may be found by forming the angular quadrature of the

above intensity expression:

M
G&xy) = Yo w, L(x)
m=1

(A4)
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