SONDGL-ISE3C

CONF-9609/2--8

RISK AND RELIABILITY ASSESSMENT FOR

TELECOMMUNICATIONS NETWORKS*

Gregory D. Wyss

Risk Assessment & Systems Modeling
Sandia National Laboratories
Albuguerque, NM 87185-0747

(505) 844-5893 (505) 844-2719

ABSTRACT

Sandia National Laboratories has assembled an
interdisciplinary team to explore the applicability of
probabilistic logic modeling (PLM) techniques to model
network reliability for a wide variety of communications
network architectures. We have found that the reliability
and fajlure modes of current generation network
technologies can be effectively modeled using fault tree
PLM techniques. We have developed a “plug-and-play”
fault tree analysis methodology that can be used to model
connectivity and the provision of network services in a wide
variety of current generation network architectures. We
have also developed an efficient search algorithm that can
be used to determine the minimal cut sets of an arbitrarily-
interconnected (non-hierarchical) mnetwork without the
construction of a fault tree model. This paper provides an
overview of these modeling techniques and describes how
they are applied to networks that exhibit hybrid network
structures (i.e., a network in which some areas are
hierarchical and some areas are not hierarchical).

1. BACKGROUND

For many -years, probabilistic logic modeling (PLM)
techniques have been used to help assess the reliability of
complex electro-mechanical systems ranging from
individual components within automobiles to large precision
machine tools and even complex semiconductor fabrication
facilities. Related techniques have been used to assess the
risks associated with potentially high-consequence facilities

* This work was performed under the Laboratory-
Directed Research and Development Program at Sandia
National Laboratories. Sandia National Laboratories is
operated by Sandia Corporation, a Lockheed Martin
Company, for the U.S. Department of Epergy under
contract DE-AC04-94AL85000.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED MA

Heather K. Schriner

Risk Assessment & Systems Modeling
Sandia National Laboratories
Albuquerque, NM 87185-0747

JUL 0 2 1535
OSTI

Timothy R. Gaylor

Data Transport & Network Design
Sandia National Laboratories
Albuquerque, NM 87185-0451
(505) 844-8228

such as chemical processing plants and nuclear power
reactors. These techniques provide designers and analysts
with key insights that can be used to predict the most
important failure modes and vulnerabilities in the system.
They can also provide quantitative guidance as to the most
cost-effective ways to improve overall reliability.

While PLMs have been commonly used in many industries,
their use in the telecommunications industry has been fairly
limited. The complex topologies of communications
networks and the time-dependent interactions between
petwork elements' have been difficult to model with the
fault tree, event tree, and reliability block diagram models
that have provem so successful in other industries.
However, network designers and analysts could benefit
greatly from the quantitative risk and reliability guidance
that these types of models can yield.

An interdisciplinary team has been assembled at Sandia
National Laboratories to examine how PLM techniques
might be applied to model network reliability for typical
current and future generation communications network
architectures. This team has found that many current
generation network technologies are generally deployed in
hierarchical architectures. These hierarchical architectures
can be readily modeled using PLM techniques. However,
current generation telephone npetworks as well as
Asynchronous Transfer Mode (ATM) data networks are
often deployed in non-hierarchical (“flat™) topologies, and
non-hierarchical networks are very difficult to model using
fault tree methods. Because of these observations, we have
developed two separate algorithms for finding risk and
reliability information (cut sets): a “plug-and-play” fault
tree analysis methodology for modeling hierarchical
networks, and an efficient search algorithm for modeling
non-hierarchical networks. We have also shown that these
algorithms can be “married” by cut set substitution in order
to provide insights for hybrid hierarchical/non-hierarchical




II. HIERARCHICAL NETWORK ANALYSIS

A network can be said to be hierarchical if either the
network address space or the physical structure of the
network architecture enforce a hierarchy. In such a
network there are usually only a few paths from one node
to another. Because such networks contain few
redundancies, they are less expensive to construct and
easier to manage than their non-hierarchical cousins. Many
existing data networks are hierarchical. Examples include
most corporate data networks, much of the “Internet”, and
most cable television distribution and data networks. In
addition, some non-hierarchical networks exhibit
characteristics that make them behave almost hierarchically.
For example, although “911" emergency services are
provided on the non-hierarchical public telephone network,

these services often behave hierarchically, with the top of -

the hierarchy being the public service answering point.
While the following discussion assumes a rigid hierarchy
within the network, the method can accommodate a limited
number -of “cross-cuts” through the hierarchy without
becoming overly burdensome.

The PLM method chosen for analyzing communications
networks is fault tree analysis (FTA).? Fault trees were
developed and solved in a modular fashion for both
network devices and network architectures. This enabled
us to develop a “plug-and-play” fault tree analysis
methodology that allows a person with network experience
but little FTA experience to successfully model most
hierarchical network architectures.

A. Models for Devices

Sandia’s research started by building fault trees to assess
the modes by which individual network devices can either
fail to communicate with the network or disrupt traffic on
the network for other users. One of the primary
prerequisites to building these fault trees was deciding what
types of failure modes’ to include in the models. Some
types of failures are obvious, such as a cable break or
someone unplugging the power cord. Other failure modes,
such as network interface beaconing, are less obvious.
After examining many candidate failure modes, we decided
on a representative set of failures to be incorporated into
our model of legacy network devices. These failures were
then used to build fault trees to represent a network
constructed with these devices and, ultimately, to construct
the fault tree modules that represent these devices in the
“plug-and-play” methodology.

B. Models for Network Architectures

Once the failure modes were developed for the individual
network devices, the next step was to define what

constitutes success and/or failure for the network as a
whole. A few possible metrics for measuring network
success are:* (1) Device A can communicate with Device B;
(2) minimum bandwidth requirements for all users are met;
(3) isochronous (video, voice) data arrives at the destination
in time to be useful; (4) switches, routers, etc., are not
saturated and do not have to discard data; (5) errors are at
a minimum and do not significantly affect user
performance; (6) all users that need a particular service can
gain access to it within a reasonable amount of time; and
(7) network security is maintained at all times.

One immediately notices that some of these metrics contain
fuzzy terms such as “reasonable” and “in time” and
“useful.” How, for example, does one define “a
reasonable amount of time” for access to a -particular
network service? A “reasonable” time period for a Cray
supercomputer is likely to be very different from that for an
80386-based PC. Similarly, the definition of “in time” for
data that controls a weapons system on a battleship that is
under attack may be quite different from that for an
engineer remotely accessing a CAD package over the
network. So what are the criteria for measuring a failure
quantitatively? When does poor performance constitute a
failure? The answers to these questions vary for each
network depending on its design purpose. Human health
and safety, business productivity, and corporate profits
must all be considered when defining success for a
particular network. Therefore, the success metrics that are
chosen for each network must be appropriate for the
applications that the network is intended to impiement.
Furthermore, the success metrics must be reevaluated over
time as the mission of the network evolves.

While the above criteria are very flexible, they still do not
present . an adequate definition for mnetwork failure.
Qualitatively, the user of device A will perceive that the
network has failed whenever they cannot communicate with
any needed device B. The user will also perceive that the
network has failed if a needed network service is
unavailable for a measurable amount of time. These
qualitative observations by users are valid and important
even though they are unlikely to represent the best
quantitative measures of network success as described in the
previous paragraph. Therefore, since they are generic to all
networks and germane to the users’ perception of network
failure, the following metrics of network success were
chosen as a starting point for our fault tree analysis of local
area networks:

1. Within each workgroup (or sub-network), all devices
(routers, workstations, etc.) attached to the network
can intercommunicate with one another (the “local
copnectivity” condition).




2. Bridges and routers that interconnect workgroups on
different LAN segments need to be operational for
normal day to day operation (the “global connectivity”
condition).

3. Network services must be functional for the network
users that depend upon them (file servers, Novell
servers, mail servers, etc.).

We began to model network architectures by constructing
fault tree models for the local connectivity condition. We
developed fault tree models for most current types of local
networks, including individual device-to-device links, as
well as ethernet, token ring, and FDDI architectures (the
arbitrary interconnectivity of ATM networks was handled
differently, and is discussed later). We demonstrated that
it is a straightforward exercise to construct fault tree
connectivity models for each of these classes of networks,
and that the resulting cut sets do not contain any features
that would make them incompatible with the traditional cut
set importance measures described previously.

After achieving success modeling local connectivity, we
sought to model the global connectivity condition. There
are potentially an infinite number of ways that local
networks can be combined to form larger corporate and
global networks. However, if a physical and/or logical
hierarchy is strictly maintained, or if there are not many
“crosscuts” through the hierarchy, then one can develop a
global connectivity fault tree by starting at the highest point
in the hierarchy and working towards the bottom using the
same basic techniques that were developed for the local
connectivity condition. In this way we developed fault tree
connectivity models for a variety of realistic hierarchical
network architectures that incorporated many different
combinations of networking technology. The fault trees
were developed, solved, and analyzed for component
importance using existing Sandia risk analysis software.>®

C. Models for Network Services

We have also successfully incorporated the availability of
network services into our fault tree connectivity models. In
a typical network, these services are provided to network
users by one or more server computers. A user is able to
use a particular service if all of the following are true:
(1) the user’s computer can communicate with the network,
(2) the server machines that provide the particular service
are available and can communicate with the network, and
(3) the network is able to carry traffic between all of these
machines.

Condition 1 simply requires that the user’s machine be in
working order, and, since this can be assessed separately
from network connectivity and service conditions,

individual user machines are generally not incorporated into
the network fault tree model. For a simple single-server
network service, condition 2 requires only that the server
machine be working and communicating with the network.
Finally, for a single user of network services, condition 3
is simply a subset of our global connectivity condition. If
we look at the availability of network services to all users,
condition 3 becomes a larger subset of this same global
connectivity condition because, while every user must be
able to communicate with the server machine, every user
need not be able to communicate with every other machine
in order to obtain network services. However, the user
does not view the network as successful if global
connectivity is violated. Thus, in the spirit of modeling
network success through the eyes of the user, condition 3
can be replaced by the global connectivity condition without
loss of applicability. Therefore, a fault tree that models
both network connectivity and network services can be
constructed based upon the following success criteria: the
network-based information system is successful only if
global connectivity is maintained and servers are available
to provide all necessary network services (thus, from the
user’s perspective, the network-based information system
fails if either the server or network connectivity fails). In
a network where a single server provides all network
services, the applicable fault tree model simply consists of
a logical OR condition of the availability of the server
machine with the network connectivity model we developed
in previous sections. For more advanced networks with
multiple and possibly redundant servers, the single server
in the OR condition would be replaced by a logical model
(likely a small fault tree) that examines the combinations of
server machines that must be functional in order for all
network services to be available. This fault tree is usually
easy 10 construct given the network specifications.

D. The “Plug and Play” Methodology

As we developed more and more fault tree global
connectivity models, we became aware that a user of our
methods would be required to have significant expertise in
FTA methods in order to assure that their models were in
fact implemented correctly. However, in order for FTA
methods to be applied widely in the networking community,
they must be made accessible to network analysts who are
at most casual fault tree analysts. Our objective was to
develop a methodology that would allow network designers
to construct a fault tree model in much the same way one
might think about assembling a network architecture
diagram: by simply “plugging together” model elements
that represent easily identified network components to, in
essence, automatically build the fault tree model. Under a
“plug-and-play” modeling technique, an expert constructs
generic fanlt tree “modules” to represent the failure modes
of typical network components and subnetwork




architectures.”® A casual analyst can then “plug” these

modules together to quickly form a complete fault tree
global connectivity model for a complex hierarchical
network. There are a number of advantages to this
approach. By creating individual fault tree modules for
each network component which can be combined together
to mode!l an overall network, an initial fault tree model of
a complex network can be constructed quickly and
efficiently. Furthermore, changing network configurations
can also be easily incorporated into the model. Finally, the
method for building such fault trees will be familiar to
many network designers and analysis. This section
describes the construction of generic fault tree modules and
the method by which they are combined to form a fault tree
global connectivity model.

1. Generic Fault Tree Module Development. The
universe of available network elements is large and ever-
growing. Since our research project is relatively small, and
its objective is methodology development (as opposed to
setting up a production analysis environment), we chose to
model only a representative subset of typical network
elements (e.g., traffic routing and switching hardware, and
a generic class of end user devices) and architectures (e.g.,
FDDI rings, token rings, and a variety of ethernet
architectures) in generic fault tree modules. Each generic
fault tree module must contain all of the important failure
modes that its network element may exhibit in any
situation. Since not all failure modes may apply to every
situation, the network analyst will “trim” from the final
fault tree model those failure modes that do not apply to the
particular situation at hand. Each fault tree module consists
of two intercomnected parts: (1) a section for the failure
modes for the network component itself, and (2) a second
section to include failure modes for any attached
components. The generic fault tree modules for other
attached components are “plugged into” the second section
of this network element’s generic module under the “plug-
and-play” methodology. The generic fault trees were
specifically structured so that it would be easy to combine
them in arbitrary ways and model any network
configuration with ease.

2. Combining the Generic Modules. The first step in
applying the generic fault tree modules to model a network
is to determine the network element that sits at the top of
the network hierarchy. In most cases, the top network
element is one whose failure would cause the greatest loss
in communication abilities. This network element often
also resides at the top of a logical address hierarchy within
the network. We select the generic fault tree module for
this top network element to be the basis for the overall fault
tree for the network (it forms the top of our fault tree
model).

The next step in this method is to “reach out” from the top
network element toward the bottom of the network
hierarchy by attaching the generic fault tree modules for
any components that are found along the way. Thus, any
components or sub-network architectures that are directly
connected to the top element of the network hierarchy are
modeled by substituting or “plugging in” the connected
component’s generic fault tree module into the attachment
branch of the top element’s fault tree. These newly
modeled network elements are then examined to determine
the components that are attached to them. As each new
network element is identified, its generic fault tree module
is “plugged into” the appropriate attachment branches of
the emerging fault tree “stem™. This process continues
until the entire network has been modeled. Once all
network elements are included in the fault tree model, any
remaining unused attachment branches are simply trimmed
off because they represent network attachment options that
were not exercised in the current network architecture. At
this point the fault tree model is complete and ready to be
solved. '

Note that the fault tree development process can be broken
off before all elements are incorporated in the model if the
analyst is interested in modeling the characteristics of only
a specific portion of the network (say, the network
backbone). The analyst can then extend this fault tree
model to successively lower levels in the hierarchy without
any loss of information by simply reviving the appropriate
attachment branches and continuing to apply the “plug-and-
play” methodology as described previously. The fault tree
paradigm naturally supports this concept of a high-level
“quick look™ followed by iterative model refinement. Since
the model can be evaluated at any level of detail, it can
provide a relatively inexpensive method for investigating
high-level questions about the network. It also provides a
cost effective way to play “What if?” games on early
network designs as the network designer experiments with
different ways to provide maximum reliability for the user
community.

II. NON-HIERARCHICAL NETWORK ANALYSIS

Non-hierarchical networks have no enforced physical or
logical hierarchy. They are often designed with a high
degree of redundancy, so there may be many paths from
one node to another. This makes these networks well-
suited for use in areas where a high degree of reliability is
important. This redundancy is, however, expensive to
install and can be difficult to manage. Examples of non-
hierarchical networks include the public telephone
voice/data network and many ATM data networks.

Fault tree models become extremely difficult to construct
for non-hierarchical networks for two reasons. First, there




is no hierarchy, and there can be data links between
arbitrary combinations of nodes. These links act like
“cross-cuts” through a hierarchical network, and even a
small number of these “cross-cuts” can greatly increase the
difficulty of construction for individual fault trees. Second,
to properly model global connectivity (“everyone can talk
10 everyone”) can require the construction of many fault
trees in order to appropriately capture all of the possible
paths between all combinations of nodes. These factors
combine to render FTA cumbersome and ineffective for
most realistic non-hierarchical networks. \

Previous approaches to modeling the reliability of non-
hierarchical networks have focused on path set theory.*'
The objective of a path set analysis is to determine all of the
possible paths over which data can flow as it travels from
one endpoint to another. Path set analysis is an efficient
reliability analysis when the analyst is principally concerned
with traffic between two or at most a few points in a
network. However, to truly model global connectivity
(often called the k-terminal network reliability problem)
using path sets, one would have to examine the path sets
connecting every possible pairwise combination of network
endpoints. This is very computationally expensive. Also,
path sets are not suited to the types of component
importance measurement that are naturally derived from cut
sets. Some have noted that cut sets can be derived from
path sets through the mathematical principal of duality.
While this duality-based approach is theoretically very
appealing, it should be noted that the actual determination
of duality is computationally very challenging given a
physically reasonable number of path sets.

Because of the limitations of these commonly used
techniques, Sandia National Laboratories has developed an
efficient search algorithm to find the global connectivity cut
sets for arbitrarily interconnected networks. This method
determines cut sets based on the network connectivity
diagram, so there is no need to construct and maintain a
separate reliability model. The algorithm takes advantage
of a number of architectural and mathematical properties to
reduce the computational effort required to obtain global
connectivity cut sets for these networks. These cut sets can
then be mathematically combined into the OR condition
described in a previous section to obtain system cut sets that
consider network services.

While the high degree of redundancy that can be present in
non-hierarchical networks can result in a highly reliabie
system, it has a major drawback for risk and reliability
analysts: the number of cut sets that are required to model
full connectivity can be extremely large. The most
computationally expensive portion of the solution involves
the direct search of the network for cut sets. We can
minimize the work required in that portion of the solution

by first simplifying the network prior to solution, and
second, by extracting as much information as possible from
the cut sets generated during the solution process.

A. Simplifying the Network

One obvious way to reduce the amount of computational
effort required to search the network for cut sets is to
search through a simpler network. The concept of solving
a series of simpler problems and then assembling the results
at the end is similar to the concept of independent subtrees
(ISTs) in FTA. In FTA, an IST is any portion of the fault
iree (a subtree) such that, when it is separated from the
remainder of the fault tree, every event in the subtree
occurs only within that subtree and not within the remainder
of the fault tree (the “stem”). Mathematically, these
subtrees are independent of the remainder of the fault tree,
so they can be removed, replaced by a placeholder primary
event on the stem, solved separately from the stem, and
reintegrated with the stem solution at the end of the analysis
through variable substitution. The computational savings
comes about not only because we are solving several
simpler problems instead of a single complex problem, but
also because the independence of the ISTs means that we
need not perform the computationally expensive Boolean
reduction step as the IST cut sets are reintegrated with the
stem cut sets.

A similar type of simplification can be accomplished for
non-hierarchical networks. First, any node or group of
nodes that are attached to the remainder of the network by
only a single link or node can be thought of as a “tail” and
can be removed as an independent network. It can be
solved separately from the remainder of the network, and
the cut sets for the entire network consist simply of the cut
sets from the tail subnetwork “OR”ed with those from the
remainder of the network “OR”ed with the failure of the
single link or node that connects these partial networks.
Since no link or node can occur in both subnetworks, the
two solutions are independent of one another and need not
be subjected to Boolean reduction.

A second type of simplification can be performed for any
node or group of nodes that are attached to the remainder
of the network by only two paths (links or nodes). This
subnetwork can be thought of as a “loop” and the network
can be subdivided at this attachment point. The loop can be
removed and replaced by a duromy link that will be used as
a surrogate for the removed subnetwork. The loop and the
remaining subnetwork are now solved separately. The final
network solution is generated by substituting the cut sets
found for the loop into any cut set that contains the dummy
link as one would backsubstitute the cut sets found for an
independent subtree into the cut sets for the fault tree stem.
Again, since no link or node can occur in both




subnetworks, the two solutions are independent of one
another and need not be subjected to Boolean reduction.

In some cases it is possible to identify subdivision points
such as tails and loops automatically with a minimal amount
of computational effort. This is generally true when the
loop or tail consists of only a single string of nodes. When
the singlely- or doublely-connected subnetwork is more
complex than this, however, it can take as much
computational time to identify the subdivision point as it
does to solve the complex problem. Since these network
architecture features are often easy for the analyst to
identify visually, it is possible to obtain significant
computational savings even when automated network
subdivision methods fail.

B. Inference of Cut Sets

The most computationally expensive portion of the solution
is directly searching the network for cut sets. Therefore,
we would like to spend as little time as possible in this
portion of the analysis and infer as much information as
possible from its results. If possible, we would like to
search out only some fraction of the actual cut sets and
infer the existence of the remaining cut sets from the search
results.

If we pause for a moment at this point to look at the reason
that a network exists, we can derive insight that will help us
as we seek to minimize network searching activities. A
network exists for the purpose of transmitting data over
links from one point to another. Any failure of
communication can be made to appear equivalent to the
failure of some set of communication links — regardless of
whether the failure actually occurs in a link, a node, or
some combination thereof. Therefore, we can without loss
of generality search the network for cut sets that contain
only link failures (i.e., assume for the purposes of the
search engine that the nodes are completely reliable), and
then infer in a later non-search operation the existence of
cut sets that contain combinations of link and node failures.
This inference occurs as a mathematical transformation
based on a simple physical principle: there can be no data
traffic on a particular link (i.e., the link appears to be
failed) if either the link itself is failed or the node at either
end of the link has failed. Therefore, we can use the search
algorithm to find those cut sets that contain only link
failures, and then expand each link failure event to include
the potential for one of its endpoint nodes to cause the link
functionality to fail. In this way, a single cut set that
contains » links becomes a Boolean expression that, when
expanded, can become up to 3" system cut sets that contain
both links and nodes. Unfortunately, since a single node
may terminate many links within the same link-based cut
set, the resulting 3” system cut sets may not be minimal.

Furthermore, since the failure of a single node can cause
the functionality of many links to fail, the fact that we start
out with minimal link-based cut sets from the search
algorithm does not imply that all of the expanded system cut
sets will be minimal. Therefore, the expanded system cut
sets must be subjected to Boolean reduction. This is most
efficiently accomplished as a three step process:

1. Expand each link-based cut set into its 3" system cut
sets (based on both links and nodes), and perform
Boolean reduction on the resulting equation,

2. Assemble all of the remaining reduced system cut sets
into a single cut set expression, and

3. Perform a Boolean reduction across all system cut sets
to obtain the minimal system cut sets for the overall
network.

It should be noted at this point that the resulting minimal
system cut set expression is likely to be very large (many
thousands of cut sets) for any realistic non-hierarchical
network.  Thus, it is very important that network
simplification be performed before either the network
search or cut set inference steps are performed. The
independence of subnetworks described in the previous
section means that the recombination of subnetworks can
occur after the cut set inference step, thus further reducing
the computational effort associated with the Boolean
reduction operations.

Ongoing research indicates that a further dramatic reduction
in computational effort may be possible for these classes of
problems. It may be possible to use the link-based cut sets
to directly construct system cut sets that are minimal both
within a single link-based cut set and over the entire group
of link-based cut sets. This would mean that all of the
previously mentioned Boolean reduction steps could be
avoided — a major improvement in computational
efficiency. The discussion of that technique, should it
prove viable, will be the subject of another paper.

C. Search Algorithm

Given the constraints described in the preceding sections,
we are now ready to discuss the search algorithm that is
used to obtain link-based cut sets for each of the identified
subnetworks. The algorithm begins with the arbitrary
selection of a starting node within the network. We will
then “reach out” from that node incrementally to find all
possible ways to subdivide the network, and the link-based
cut set associated with each subdivision.

The first step in the search algorithm is to arbitrarily select
a starting node within the network. We then construct the




link-based cut set that subdivides the network into one
subnetwork that contains only the single starting node, and
one subnetwork that represents the remainder of the
-network. ~ This cut set is trivial to construct — it simply
consists of the list of all links that are attached to the single
node. '

The next step in the network is to reach out from our
starting node to make a subnetwork that contains two
nodes: our starting node plus one other node to which our
starting node is attached (via a link). We again construct
the link-based cut set that subdivides the network into one
subnetwork that contains only our two selected nodes, and
one subnetwork that represents the remainder of the
network. We repeat this process until we have link-based
cut sets for all possible two-node subnetworks that contain
our starting node. After completing the cut sets for two-
node subnetworks, we perform the same process for three-
node subnetworks, then for four-node subnetworks, and so
on until, for an n-node network, we have completed this
process for all possible (n-1)-node subnetworks. At that
point we will have generated the link-based cut set for
every possible subdivision of the network, and the
algorithm terminates.

IV. APPLICATIONS

The techniques described in this paper can be used both to
obtain network connectivity cut sets and to assess the
potential for particular types of equipment failure to affect
overall network performance. We have successfully used
these techniques to assess the reliability of and/or the risks
associated with a variety of types of hierarchical and non-
hierarchical network-based information systems, including
enhanced 911 emergency services architectures, public
telephone common channel signaling - networks, non-
hierarchical data networks (LAN/MAN/WAN
environments), and high-speed ATM data networks. The
importance measures that were derived for these cut sets
have been shown-to be helpful to network designers in
developing more robust network  architecture
implementations. They have also proven useful to network
operations personnel as they seek to prioritize both network
upgrade and network maintenance activities. Cut set results
can also be used with discrete optimization techniques such
as genetic algorithms to help an analyst select the most
effective system improvement approach from a possibly
large number of candidate strategies.'!"

While the techniques that have been used to generate system
cut sets for this project are somewhat unique, the cut sets
are in every way traditional Boolean cut sets. Thus, they
can also be subjected to location transformations as would
be typical in an “external events” PRA analysis (e.g.,
examining the risks associated with fire and flood events)

or a “vital area” analysis (for evaluation of security
practices). In fact, the term “location™ can in this instance
refer either to a traditional physical location or to a
“virtual” location (a location within a computer or network
from which an intentional or accidental attack could be
launched).'® - It should be noted, however, that these
methods do not constitute a “silver bullet” that will solve all
network analysis problems. Many of the problems that
exist within computers and networks are inherently time-
dependent (e.g., they may only impact the system if they
occur in a particular order or within a constrained time
window). Although traditional fault tree analyses and cut
sets do not adequately capture the time-dependent nature of
many of these dynamic events, %’ they can prove helpful to
simulation-based network analysts because they can help
point those analysts toward the most risk-significant
scenarios. This has been occurring for years in the nuclear
power industry as PRA results have helped prioritize
analysis and testing programs.

V. SUMMARY

This paper has presented the results from an
interdisciplinary team that was formed at Sandia National
Laboratories to explore the applicability of PLM techniques
to information systems. We have demonstrated that many
aspects of information systems can be modeled using a
“plug-and-play” fault tree analysis technique as well as a
new efficient cut set search technique for use with non-
hierarchical network architectures. We have also
demonstrated that the types of results that can be obtained
from PLMs can be of great practical value to network
designers as well as operations personnel. These PLM
techniques are intended mnot to replace current network
analysis methods, but to supplement them. They provide
additional tools for the network designers’ workbench to
enhance their depth of understanding so that they can design
more functional and reliable network systems.

REFERENCES

1. M.O. Ball, “Computational Complexity of Network
Reliability Analysis: An Overview,” IEEE Trans.
Reliability, Vol. R-35, No. 3, pp. 230-239, August
1986.

2. N.H. Roberts, W.E. Vesely, D.F. Haasl, and F.F.
Goldberg, “Fault Tree Handbook,” NUREG-0492,
U.S. Nuclear Regulatory Commission, Washington,
D.C., January 1981.

3. “Novell’s Guide to Netware LAN Analysis,” 2nd
Edition, Novell Press, 1993.




10.

1.

12.

13.

14.

A.S. Tanenbaum, “Computer Networks,” 2nd Edition,
Prentice Hall, New York, 1991.

B. Bingham, J. Hutchison, and B. Lopez, “SEATREE
Version 2.62 User Manual,” prepared for Sandia
National Laboratories by Science and Engineering
Associates, Albuguerque, New Mexico, 1994.

K.M. Hays, G.D. Wyss, and S.L. Daniel, “A User’s
Guide to SABLE,” Sandia National Laboratories,
Albuquerque, New Mexico, 1996.

G.B. Varnado, W.H. Horton, and P.R. Lobner, -

“Modular Fault Tree Analysis Procedures Guide,”
SANDS83-0963, NUREG/CR-3268, Prepared by Sandia
National Laboratories for the U.S. Nuclear Regulatory
Commission, Washington, D.C., August 1983.

T.L. Zimmerman, N.L. Graves, A.C. Payne, and
D.W. Whitehead, “Microcomputer Applications of and
Modifications to the Modular Fault Trees,”
SANDg9-1887, NUREG/CR-4838, Prepared by Sandia
Narjonal Laboratories for the U.S. Nuclear Regulatory
Commission, Washington, D.C., June 1990.

T. Polif and A. Sathyanarayana, “Efficient Algorithms
for Reliability Analysis of Planar Networks — A
Survey,” IEEE Trans. Reliability, Vol. R-35, No. 3,
Pp. 252-259, August 1986.

R.K. Wood, “Factoring Algorithms for Computing K-
Terminal Network Reliability,” IEEE Trans.
Reliability, Vol. R-35, No. 3, pp. 269-278, August
1986.

D.W. Coit & A.E. Smith, “Use of a Genetic
Algorithm to Optimize a Combinatorial Reliability
Design Problem,” Proceedings of the Third IIE
Research Conference, 467-472, 1994.

L. Painton & J. Campbell, “Genetic Algorithms in the
Optimization of System Reliability,” IEEE
Transactions on Reliability, Special Issue on Design,
44(2), 172-178, 1995. ‘

G.D. Wyss, S.L. Daniel, HK. Schriner, and T.R.
Gaylor, “Information Systems Vuinerability: a Systems
Analysis Perspective,” Presented at the 12th Annual
Security Technology Symposium and Exhibition,
American Defense  Preparedness  Association,
Williamsburg, VA, June 17-20, 1996.

J.B. Dugan, S.J. Bavuso & M.A. Boyd, “Dynamic
Fault Tree Models for Faunlt Tolerant Computer

15.

Systems,” IEEE Transactions on Reliability, 41(3),
363-377, 1992.

L.L. Pullum & J.B. Dugan, “Fault Tree Models for
the Analysis of Complex Computer Systems,”
Proceedings of the 1996 Reliability and Maintainability
Symposium, 1996.




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




