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Summary of Technical Progress

A number of activities have been carried out in the last three months. A list outlining
these efforts is presented below.

e The design and planning of the next phase of the two-phase flow experiments have
moved forward. The necessary modifications to allow the use of wire-wrapped
screens have been made. The flow loop and the data acquisition system are cur-
rently being tested and the new experiments are about to commence.

e Work on obtaining exact well models for a horizontal well or a well of any general
profile has continued. A Masters report on this project was completed in June
which will be soon submitted to the U.S. DOE as a technical report.

e Work on the application of horizontal wells in gas condensate reservoirs has pro-
gressed. The available methods and models are being critically evaluated with the
aid of simulation runs.

e Research work on developing coarse grid methods to study cresting in horizontal
wells has continued. Correlations for optimum grid size, breakthrough time, and
post breakthrough behavior (i.e.; water-oil ratio) are being developed and tested
for the problem of water cresting.

e The Ph.D. project on three-dimensional flexible grid simulator (FLEX) was suc-
cessfully defended in June. The FLEX simulator will be used in future studies as
well as in future developments. The dissertation report will be submitted soon to
the U.S. DOE.

This quarterly report is based on the last activity listed above. It shows the advantage
of our new flexible grid simulator.

Flexible Grids in Reservoir Simulation (Task 1)

Case of Aligning Grids Along Streamlines

Streamlines have been used extensively in fluid flow to characterize flow patterns. Thiele
et al. [1] presented a novel way of applying streamlines in heterogeneous systems. This
example illustrates the alignment of gridblock boundaries along streamlines and the effect
of doing this on the water-cut response. The control-volume method [2] can be used to
model fluid flow on such grids. Quadrilateral or triangle based flexible grids can be
used for this problem. The permeability field used for this example problem is shown
in Figure 1. The fine scale permeability is described on a 256 by 128 grid. i.e. 32768
nodes. Permeability varies from 4 mD to 11168 mD. Figure 2 shows the histogram of the
permeability distribution.




Figure 1: A heterogeneous permeability field

An injector is located on the left side and a producer is located on the right side.
Streamlines for constant pressure boundary conditions at both the wells are given in
Figure 3.

To simulate the performance of fluid flow in a reasonable time span, this permeability
field has to be upscaled. The upscaling procedure can be done along the streamlines.
One of the simplest methods of upscaling is to use a power law average. Gridblocks are
constructed by aligning the z-direction gridblock boundaries along the streamlines. The
y-direction block boundaries are parallel to the y-axis. Since there are a large number
of streamlines in the example, streamlines are arbitrarily selected at equal intervals and
gridblocks are constrained only to the selected streamlines. The procedure to construct
such a grid is given in detail by Verma {3]. An upscaled permeability needs to be calcu-
lated for each of the gridblocks. All the fine-scale permeability values which fall inside a
gridblock are geometrically averaged.

Four streamline grids are shown in Figures 4 to 7. The underlying upscaled perme-
ability field is also shown in these figures. Dark regions signify higher permeability. The
histogram of the upscaled permeability distribution is also shown in these figures.

An injection rate of 100 m3/d was used for all these examples. Water-cut response
at the producer for each of these cases is shown in Figure 8. The figure also shows the
reference solution obtained with a commercial simulator, Eclipse. The fine-scale 32768
node.grid is used for this reference solution. The reference solution is expected to give
the fastest water breakthrough because the water is able to move faster through the
high permeability channels of the fine grid. When coarse grids are used, such fine scale
variations in permeability are lost through the process of averaging. This results in a
more uniform flood-front and hence a later water breakthrough. Alignment of the grid
boundaries with the streamlines produces cells with high values in all of the coarsened
grids except for the coarsest (140 nodes, see Figure 7). Strictly speaking, representation
of the multiphase flow response requires the use of scale averaged relative permeabilities.

The finest upscaled grid used contained 2120 gridnodes. The difference in the 32768
gridblock reference solution and the upscaled 2120 grid problem is not large, considering
the fact that the number of gridblocks was reduced by a factor of 16. Even the 540
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Figure 2: Histogram of permeability distribution
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Figure 3: Streamlines for horizontal wells at both ends of Figure 1
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Figure 4: (a) Top: Upscaled permeability distribution for streamline grid with 2120
gridnodes, and (b) Bottom: Streamline grid with 2120 gridnodes.
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Figure 5: (a) Top: Upscaled permeability distribution for streamline grid with 540
gridnodes, and (b) Bottom: Streamline grid with 540 gridnodes.
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Figure 6: (a) Top: Upscaled permeability distribution for streamline grid with 266
gridnodes, and (b) Bottom: Streamline grid with 266 gridnodes.
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Figure 7: (a) Top: Upscaled permeability distribution for streamline grid with 140
gridnodes, and (b) Bottom: Streamline grid with 140 gridnodes.

gridnode case shows good agreement with the reference solution. This is remarkable
considering the fact that the number of gridblocks has been reduced by a factor of about
60. As fewer gridblocks are used, the slope of water-cut response decreases. This is
expected due to the upscaling of permeability and the use of the original rock relative
permeability curves.

The same problem was also studied with grids that were not aligned along streamlines.
For each of the four cases shown above, normal point-distributed grids were used. The
upscaled permeability field for each of these cases is given in Figures 10-12 along with
the histogram of upscaled permeability. For the Cartesian grids upscaled permeability,
it is observed that the Cartesian grids have less variation in permeability and the higher
permeability values are not represented even in the first coarsening of the grid.

The same water flood problem as that for the streamline grid was also run with the
Cartesian grids. The water-cut response for each of these cases is shown in Figure 13
along with the water-cut for the streamline grids. It is evident from the figure that
aligning the grid block boundaries along streamlines significantly improves the water-cut
responses.

\
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Figure 8: Water-cut of streamline grid compared with fine-scale response
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Figure 9: (a) Top: Upscaled permeability distribution for point-distributed Cartesian
grid with 2120 gridnodes, and (b) Bottom: Point-distributed Cartesian grid with 2120
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Figure 10: (a) Top: Upscaled permeability distribution for point-distributed Cartesian
grid with 540 gridnodes, and (b) Bottom: Point-distributed Cartesian grid with 540

gridnodes.
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Figure 11: (a) Top: Upscaled permeability distribution for point-distributed Cartesian
grid with 266 gridnodes, and (b) Bottom: Point-distributed Cartesian grid with 266

gridnodes. 1
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Figure 12: (a) Top: Upscaled permeability distribution for point-distributed Cartesian
grid with 140 gridnodes, and (b) Bottom: Point-distributed Cartesian grid with 140

gridnodes.
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Figure 13: Water-cut response of streamline grid compared with fine-scale and point-
distributed Cartesian (a) Top left: 2120 gridnodes (b) Top right: 540 gridnodes (c)
Bottom left: 540 gridnodes (d) Bottom right: 140 gridnodes
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