|

KAPL-4823

UC-32
(DOE/TIC-4500-R75)

Monte Carlo Fundamentals
F. B. BROWN and T. M. SUTTON
February 1996
Prepared by
Lockheed Martin Company

KNOLLS ATOMIC POWER LABORATORY
Schenectady, New York

- Contract No. DE-AC12-76-SN-00052

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED M ASTE R
k;/

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Gov-
emment. Neither the United States Government nor any agency thereof, nor any of their employ-
ees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views or opinions of authors

expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.

KAPL-4823 ii

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

WX phw—

CONTENTS

ADSITACL....ceveieirieriieisercnsisstnsstocsisssssstesssnsstssssnssessansssssesssessanssssnsssssssssassesnasesstsesasssensssnanes iv
ITOMUCHON ...v.veeeeurrnecserensesessesesesenssnnsssssesnssessasessssessssessssssessssssasessasssessossssesssensssssesssssasseses 1
Monte Carlo and Transport Equation..........cc.ceeeveeneee 7
Monte Carlo and Simulation.........cccceeeraervecanens 11
Random NUMDET GENETAtIONcoreeerrracseeseasarencrasesssaseesasesssssaressssnssssesnassnssssssansssnassssssas 13
Random Sampling ttsetstesessaesaner st st ssss st seseras et atesaesassratsenasasstesastsnnssratesnanes 24
Computational GEOMELTYccccerrecsiccrnssrscsssaesaresssscsnsesasssacsssossassssssssssasasssssssssnsesstessessssans 43
ColliSion PhYSIiCS...cccverrnesersressissssascnsancsssanosecsssssncas 56
Tallies and Statistical Edits teresnesansssatisarennessnsessnesennessnasss 64
Monte Carlo Eigenvalue CalCulationscc.coeeeecvssectrancresseessaseessasasssasassansas .70
Source Normalization Biascccceceeceerrenerncsorcssecsnsesaens 76
Variance REAUCHONc.ceveeereiseecraerrnsceecseeecarassassanssesessansssessnssnsanssans 79
Multiplied Fixed-Source CalCulationscveovuieveeserisensicscsnsnnsnssesessescsssassessssessesesssnsscsnes 82
Vector and Paralle]l Monte Carlo.......eeeciiirrnnrenssisssiesssissssissnsssnsessssssssssssssssssosssssnsssssnns 83
Overview of RACER Systemccccceevreeseresecescnsseses ..104
REFETENCES.....cccrveerneicnrinnrasarassssaesonessscsonnsonnsosssssassessansossassssassssessassssssases 109

ii KAPL-4823

Abstract

This report is composed of the lecture notes from the first half of a 32-hour graduate-level course
on Monte Carlo methods offered at KAPL. These notes, prepared by two of the principle develop-
ers of KAPL's RACER Monte Carlo code, cover the fundamental theory, concepts, and practices
for Monte Carlo analysis methods. In particular, a thorough grounding in the basic fundamentals
of Monte Carlo methods is presented, including random number generation, random sampling,
the Monte Carlo approach to solving transport problems, computational geometry, collision phys-
ics, tallies, and eigenvalue calculations. Furthermore, modern computational algorithms for vec-
tor and parallel approaches to Monte Carlo calculations are covered in detail, including

fundamental parallel and vector concepts, the event-based algorithm, master/slave schemes, par-
allel scaling laws, and portability issues.

KAPL-4823 iv

Introduction

The Monte Carlo method has been used for over 40 years to solve radiation transport problems in
high energy physics, nuclear reactor analysis, radiation shielding, medical imaging, oil well-log-
ging, etc. Individual particle histories are simulated using random numbers, highly accurate repre-
sentations of particle interaction probabilities, and exact models of 3D problem geometry. Monte
Carlo methods are sometimes the only viable methods for analyzmg complex, demanding particle
transport problems.

The principal limitation on the Monte Carlo method is computer power. To achieve results with
acceptably low statistical uncertainty, it is often necessary to simulate millions of particle histo-
ries, consuming many hours or days of supercomputer time. Monte Carlo methods have been suc-
cessfully adapted to nearly all advanced computer architectures, including vector and parallel
computers. Vector Monte Carlo codes were first developed in the early 1980’s using an “event-
based” algorithm. More recently, parallel Monte Carlo codes have been successful using a “mas-
ter/slave” approach.

This report is composed of the lecture notes from the first half of a 32-hour graduate-level course
on Monte Carlo methods offered at KAPL. The purpose of the course is to provide thorough user
education in Monte Carlo methods so that engineers can make more effective use of KAPL super-
computers. These notes, prepared by two of the principle developers of KAPL’s RACER Monte
Carlo code, cover the fundamental theory, concepts, and practices for Monte Carlo analysis meth-
ods. In particular, a thorough grounding in the basic fundamentals of Monte Carlo methods is pre-
sented, including random number generation, random sampling, the Monte Carlo approach to
solving transport problems, computational geometry, collision physics, tallies, and eigenvalue
calculations. While this material is available in standard references, a concise and coherent over-
view is provided. Furthermore, modern computational algorithms for vector and parallel
approaches to Monte Carlo calculations are covered in detail, including fundamental parallel and
vector concepts, the event-based algorithm, master/slave schemes, parallel scaling laws, and port-
ability issues.

In addition to the lecture notes, a substantial number of references are provided. Included are gen-
eral references on Monte Carlo methods for particle transport problems, random number genera-
tion and random sampling, and Monte Carlo methods for the solution of reactor eigenvalue
problems; as well as open-literature publications on the RACER Monte Carlo code, vector and
parallel Monte Carlo, and related Monte Carlo methods

1 KAPL-4823

KAPL Monte Cario Seminars _ -

Monte Carlo

Fundamentals

Forrest B. Brown
&
Thomas M. Sutton

21

Topics

« Introduction

+ Monte Carlo & Transport Equation

« Monte Carlo & Simulation

» Random Number Generation

* Random Sampling

» Computational Geometry

« Collision Physics

« Tallies & Statistical Edits

» Monte Carlo Eigenvalue Calculations
» Source Normalization Bias

« Variance Reduction

« Multiplied Fixed-Source Calculations
» Vector & Parallel Monte Carlo

« Overview of RACER System

KAPL-4823 2

Introduction o A

A

* John Von Neumann invented scientific computing in the 1940's
* stored programs, "software"
« algorithms & flowcharts
« assisted with hardware design as well

* "ordinary” computers are called “Von Neumann machines"

* John Von Neumann invented Monte Carlo particle transport in the 1840's
» Highly accurate — no essential approximations
* Expensive — typically *method of last resort*

* Monte Carlo codes for particle transport have been proven
to work effectively on all computers

SIMD, MIMD, vector, parallel, supercomputers,
workstations, clusters of workstations,

Introduction -

* Two basic ways to approach the use of Monte Carlo methods
for solving the transport equation:

» mathematical technique for numerical integration
» computer simulation of a physical process
-» Each is "correct”

» mathematical approach useful for:

importance sampling, convergence, variance reduction,
random sampling techniques,

+ simulation approach useful for:
collision physics, tracking, tallying,

. For Monte Carlo approach, consider the integral form of
the Boltzmann equation.

* Most theory on Monte Carlo deals with fixed-source problems.
Eigenvalue problems are needed for reactor physics calculations

3 KAPL-4823

ntrod < AV
) uction 5]
Simple Monte Carlo Example '

1 1
Evaluate G = fg (x)dx, with g(x) = J1-x° a0
0 B
X
o 1
* Mathematical approach:
Fork=1, .. ,N: choose %, randomlyin (0,1)
' N N
G = (1-0) « {average value of g(x)] ~ 1 g(x,) = 1 a2
N kK TN ./ 1-%
k=1 k=1

« Simulation approach:

*darts game"
Fork=1,..N: choose X, and y, randomly in (0,1)
If %+yos1, tallya*hit
G = [areaundercurve] -~ (1¢1)- ni"-m—%fmt-s-
introducti iy AT
- o

Monte Carlo is often the method-of-choice for applications
with integration over many dimensions

examples: high-energy physics, particle transport

byb, by
Evaluate G = ff...fg(rl, Fps -ves Tpg) ArydI,...dry

8,8, &y
where ry, I, ..., Iy are all independent variables

Fork=1,...,,N:

Form=1,.. M: choose R,(nk) randomly in (a,bmn)

N

1 k K k

G ~ (brag.-bwaw * xS o(RYRY, .LRY)
k=1

KAPL-4823 : 4

Introduction — Probability Density Functions w;;;

Continuous Probability Density
* f(x)

. «0sf(x) f(x)

b
* Probability{ asxsb } = f,f(x) dx
a

* Normalization:

f f(x)dx= 1

Discrete Probability Density
{f} k=1...N, where fi = f(x)

f
*0sf,)
* Probability{ x= = f , i 2 ; :
ty{ x=x} = f s —— x
« Normalization: = N
fo=1
k=1
introduction — Basic Statistics -
* Mean, Average, Expected Value
R =u=<x>=E[x]
+ o N .
n= f xf(x)dx [continuous] u= 2 xf [discrete]
-0 k=1

« Variance
var(x) = (x-m2 = o = <(x-w)’> = E[(x-w)?]
+ ‘ N
o? = (x — w) 2 (x) dx o2 = § (x,—m%,
J 2

» Standard Deviation

o = Jo?

* Functions of a Random Variable
Consider g(x), where x is a random variable with density f(x)

+ N
Elg(x)] = fg(x)f(x)dx E[g(x)] = zgkfk
k=1

-0

5 KAPL-4823

introduction

&
&

Iol
The key to Monte Carlo methods is the notion of random sampling.

« The problem can be stated this way:

Given avprobability density, f(x), produce a sequence of X's.
The X's should be distributed in the same manner as f(x).

f(x)

xX=

* The use of random sampling distinguishes Monte Carlo from all other methods
+ When Monte Carlo is used to solve the integral Boltzmann transport equation

~— Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, source,)

— Computational geometry models the arrangement of materials

)

KAPL-4823 6

[11]

Monte Carlo
&

- Transport Equation

Monte Carlo & Transport Equation TN AT
— [12]

Boltzmann Transport Equation — Time-Independent, Linear

w(r,v) = f[f*y(r, V)C(V' =V, F)dv' + Q(r',v)]T(r’ —r,v)dr

where
*W(rv) = particle collision density
* Q(r,v) = source term
«C(V'—v,r') = collision kernel, change velocity at fixed position
sT(F—rvV) = transport kernel, change position at fixed velocity
¥(r,v)
« Angular Flux nLv) = 2
9 YY) = S
: ¥ (r,v)
« Scalar Flux o(rv) = [=2~ dB&, v=v3

KAPL-4823

~

Monte Carlo & Transport Equation ﬁv (131

Source term for the Boltzmann equation

(S(r,v) < Fixed Source

ar,v) = | S(nV) +f‘{"(l’, V)F(V' =V, r)dv' < Fixed Source + Fission

\ |l(J\P(r, V)F (V' = v, 1) dv' « Eigenvalue
where
«S(r,v) = fixed source
*F(V'—v,T) = creation operator (due to fission),
particie at (r,v') creates particle at (r, v)
K = eigenvalue
Monte Carlo & Transport Equation 14

w(r, v) =J'U\p(r, V)C(V' -V, r')dv'+Q(r‘,v)]T(r‘—>r, v)dr

Assumptions
» static homogeneous medium
» time-independent

» Markovian — next event depends only on current (r,v),
not on previous events

» particles do not interact with each other

* neglect relativistic effects

* no long-range forces (particles fly in straight lines between events)
 material properties are not affected by particle reactions

» elc., etlc.

=) can use superposition principle

KAPL-4823 ~ 8

Monts Cario & Transport Equation s
_ i [15)
Basis for Monte Carlo Solution Method

Let p=(rv) and R(p'—p) = C(\)'—-v, T —r,v)

Expand ¥ into components having 0,1,2,...,k coliisions

2) = YW (p), with o(p) - faE T =rvar
k=0

By definition,

¥, (p) = j‘!’k_l (PYR(p' — p)dp'

Note that collision k depends only on the results of collision. k-1,
and not on any prior collisions k-2, k-3, ...

Monte Carlo & T rt Equati < A
o & Transport Equation u@ [16]

Statistical approach to determining ¥,
@, (P) =J‘Pk_1(p')R(p'—’p)dp'

* interpret terms in the following manner:
¥, _,(p') = probability density for occurence of (k-1)% collisions at p'

R(p'— p) = conditional probability that a (k-1)St collision at p'
will resultin a (k) colhsnon atp.

* Monte Carlo method
(1) Randomly sample p' from ¥, _, (p")
(2) Given p', randomly sample p from R (p'—p)
(3) If p lies within dp;atp;, tally 1in bin i
= Repeat steps (1), (2), (3) N times,
then W, (p,)dp, ~ {counts for bini}/N

9 KAPL-4823

Monte Carlo & Transport Equation ' 1

Histories

* After repeated substitution for ¥,

%, (P) =f¥k_1(p‘)R(p'-»p)dp' |

= f---j.q’o(Po)R (Po—~ P R(p; = Ppy)...R(Py_; —P)dPy...dPy _;

« A “history" is a sequence of states (pg, Py, P2, P3s -2)

Pt - = Po p2‘

Pa
p2

For estimates in a given region, tally the occurrences
for each collision of each "history" within a region

Monte Carlo & Transport Equation A7
. FECE e

‘Pk(p) = f---j‘*‘o(po) R (po - pl) R (pl - pz) <R (pk—l - p) dpo---dpk_l

Monte Carlo approach:
* Generate a sequence of states, (pg, Py, ---» P, [i-€., a history] by
— Randomly sample from PDF for source: ¥, (Pg)

— Randomly sample from PDF for k' transition: R (P_1 P

» Generate estimates of results, by averaging over M histories:

= R
'ZIA(pk’ J

M
A= [AG)IZ (P = 52

KAPL-4823 10

{16}

Monte Carlo
&

Simulation

*Simulation is better than reality"

Richard W. Hamming, 1991

Monte Carlo & Simulati T K
ol o mulation (201

Simulation approach to particle transport
« Faithfully simulate the history of a single particle from birth to death
During the particle history,

- — model collisions using physics equations & cross-section data
— model free-flight using computational geometry
— tally the occurrences of events in each region

§ Select source r, Q, E randomly }

1

Track through geometry,
o1 selectcollision site r randomly

)

Collision physics analysis,
select new Q, E randomly

* Repeat the simulation for many histories, accumulating the tallies

~ » Fundamental rule: ’
' Think like a neutron

11 ' KAPL-4823

Monte Cario & Simulation 21]

Source
» Random sampling

E, Q — analytic, discrete, or piecewise-tabulated PDF’s
» Computational geometry
r — sample from region in 3-D space, or from discrete PDF

Tracking
* Random sampling

doglide — distance to collision, from mfp & exponential PDF
» Computational geometry
dgeom — distance-to-boundary, ray-tracing, next-region,

Collisions
* Random sampling

£, Q'-—— analytic, discrete, or piecewise-tabulated PDF’s

* Physics ,
Z, f{n) — cross-section data, angular PDF's, kinematics,
Tallies
« Statistics
Variance Reduction
* Random sampling
Monte Carlo & Simulat -
o o mulation 22]
Single particle f Select source r, Q, E randomly }
* random-walk for particle history Y
. . Track through geometry,
« simulate events, from birth to death » select collision site r randomly
« tally events of interest 7

Collision physics analysis,
select new Q, E randomly

Batch of histories ("generation®)
« random-walk for many particle histories

« tally the aggregate behavior
3#* Loop over timesteps
Overall . . 3% Loop over batches
» timesteps . . % Loop over histories

. . <) random walk

— geometry changes

— material changes . =» update Keff & reaction rates

» fuel depletion ase N
* burnable absorbers =» compute statistics
« control rods =» update number densities,

KAPL-4823 12

Random Number

Generation

*Randomness is a negative property; it is the absence of any pattern.”

Richard W. Hamming, 1991

*... random numbers should not be generated by a method chosen at random.”

D. Knuth, ~1981

Random Number Generators A7
i) [24]

Random Number Generators (RNGs)
» Numbers are not random; a sequence of numbers can be.
* Truly random sequences are generally not desired on a computer.

* Pseudo-random sequences: « repeatable (deterministic)
- pass statistical tests for randomness

*« RNG — function which generates a sequence of numbers
which appear to have been randomly sampled
from a uniform distribution on (0,1).

— probability density for f(x): 1
f(x)

— typical usage in codes: r = ranf()
— also called *pseudo-random number generators" (PRNG)

« All other random sampling is performed using this basic RNG

13 KAPL-4823

Random Number Generators (28]

Most production-level Monte Carlo codes for particle transport
use linear congruential random number generators

Sis1 = [Sij*g + ¢] mod 2™

* robust, 40 years of heavy-duty use
- simple, fast _
« theory is well-understood (e.g., DE Knuth, Vol 2, 177 pages)

« not the "best" generators, but good enough — RN'’s are
used in unpredictable ways during particle simulation

« To achieve reproducibility of Monte Carlo calculations,
despite vectorization or varying numbers of parallel processors,
there must be a fast, direct method for skipping ahead (or back)
in the random sequence.

Random Nuﬁbor Generators P
22y [26]
Linear Congruential PRNGs

* due to Lehmer, 1949
* most common method, excellent (when not abused)
Sp <« initial value

* Method:
| 'k < sk/p

Sie1e— [gesc+clmodp

where
Sk, 9, C, p = integers, rg = real

s, =seed
g = generator, or multiplier
¢ =increment

p = modulus
fk = psuedo-random number, Osr, s 1

'mod p = *remainder after division by p”,
absolutely no roundoff is permitted

» Muttiplicative: c¢=0

* Mixed: c>0

KAPL-4823 ' ’ 14

Random Number Generators P
225 [27]

Example #1: Si41 «~ [gesx+c] modp

with g=47,¢c=1, s5=1, p=100

s(0) = 1 '
- s(1l) = (47x1 + 1) mod 100 = 48 mod 100 = 48
s(2) = (47x48 + 1) mod 100 = 2257 mod 100 = 57
s(3) = (47x57 + 1) mod 100 = 2680 mod 100 = 80
s8(4) = (47x80 + 1) mod 100 = 3761 mod 100 = 61
s(5) = (47x61 + 1) mod 100 = 2868 mod 100 = 68
s(6) = (47x68 + 1) mod 100 = 3197 mod 100 = 97
s8(7) = (47x97 + 1) mod 100 = 4560 mod 100 = 60
s(8) = (47x60 + 1) mod 100 = 2821 mod 100 = 21
s(9) = (47x21 + 1) mod 100 = 988 mod 100 = 88
8(10) = (47x88 + 1) mod 100 = 4137 mod 100 = 37
8(11) = (47x37 + 1) mod 100 = 1740 mod 100 = 40
8(12) = (47x40 + 1) mod 100 = 1881 mod 100 = 81
s(13) = (47x81 + 1) med 100 = 3808 mod 100 = 8
8(14) = (47x8 + 1) mod 100 = 377 mod 100 = 77
8(15) = (47x77 + 1) mod 100 = 3620 mod 100 = 20
s(l6) = (47x20 + 1) mod 100 = 941 mod 100 = 41
s8(17) = (47x41 + 1) mod 100 = 1928 mod 100 = 28
8(18) = (47x28 + 1) mod 100 = 1317 mod. 100 = 17
8(19) = (47x17 + 1) mod 100 = 800 mod 100 = 0
8(20) = (47x0 + 1) mod 100 = 1 mod 100 = 1
8(21) = (47x1 + 1) mod 100 = 48 mod 100 = 48
8(22) = (47x48 + 1) mod 100 = 2257 mod 100 = 57
etc.
Random Number Generators iy AV
' 2o
Example #2: Sks1 < [G°sk+c] modp
with g=5,¢=1, 80=1, p=100
s(0) = 1 .
8(1) = (5x1 + 1) mod 100 = 6 mod 100 = 6
8(2) = (5%6 + 1) mod 100 = 31 mod 100 = 31
8(3) = (5x%x31 + 1) mod 100 = 156 mod 100 = 56
8(4) = (5%x56 + 1) mod 100 .= 281 mod 100 = 81
s(5) = (5x81 + 1) mod 100 = 406 mod 100 = 6
s(6) = (5%x6 + 1) mod 100 = 31 med 100 = 31
etec.
Example #3: Sks1 — [Qesk+c] modp
with g=5,¢=0, sp=1, p=100
s(0) = 1
s(1) = (5x1) mod 100 = 5 mod 100 = 5
s8(2) = (5x5) mod 100 = 25 mod 100 = 25
8(3) = (5x25) mod 100 = 125 mod 100 = 25
s(4) = (5x25) mod 100 = 125 med 100 = 25
etc.

15 - KAPL-4823

Random Number Generators

‘Linear Congruential PRNG - Selecting g, ¢, p, 8o
Sk < [gesc+c] modp

« For theoretical & practical considerations in selecting g, ¢, p, S,

see D. E. Knuth,

- Modulus (p):

— choose p =28

— simplifies "mod p"— discard all but the N least significant bits

— simplifies division by p — shift the “point” left by N bits :

— N should be as large as possible, to maximize the period — N > 35 is best.

(29]

— Usually, choose N to be number of bits in largest positive integer, for efficient computing

< Generator (g), Initial Seed (sg), & Increment (c) :
— choose g & ¢ to maximize the period
- large g is best to reduce serial correlation
— obviously, g=1 or g=0 are bad
— For ¢ = 0 (multiplicative PRNG):

choosing (1) gmodB=3o0r5
v 22; 2°=°dd

results in: period = 2N2, the maximum possible period.

- For ¢ >0 (mixed PRNG):

choosing (1) c relatively prime to p
iz 8:1} to be a multiple of every prime factor of p
3 1) to be a multiple of 4 If p is a muitiple of 4

results in: period = 2N, the maximum possible period.

Random Number Generators

Multiplicative congruential method — Lehmer
Si;1=9°*S; + ¢ mod 2™, 0<S;<2™
g =S/2™ ’ O<E<1

Typical parameters

fso]

2" period g <
RACER (KAPL) 247 245 84,000,335,758,957 0
RCP (BAPL) 298 8 291 59,482,192,516,946
MORSE (ORNL) 247 245 515 0
MCNP (LANL) 248 24 519 0
VIM (ANL) 248 246 519 0
RANF (CRAY) 248 246 44,485,709,377,909 0
— (G. Marsaglia) 232 232 69069

KAPL-4823 16

Random Number Generators Tz AR »
. : B By
Aside ...

‘For the multiplicative congruential method,
why is the period limited to a maximum of 2N2 27

8K,1 — g°Sk mod p, $p0dd, gmod8=3o0r5

* All 8,'s are odd, g is odd
= g5, will always be odd, reduces period by a factor of two.

* For g mod 8 = 3, trailing bits of g are (...011)
g'sc= (-.01)(...11) = (...11)

g'sc= (..011)(....01) = (...01)
= next-to-last bit of s, wili not change, reduces period by a factor of two.

* For g mod 8 = 5, trailing bits of g are (...101)
gsg = (..101)+(..1x1) = (...1x1)
g'sx = (..101)%(...0x1) = (...0x1)

=> third-to-last bit of s, will not change, reduces period by a factor of two.

Random Number Generators T AP
P 2
Example -~ CYBER-205 RANF
Sk« [ge8c+c] modp
FORTRAN META
common /g8ranfc/ seed LOD s_descr, s *load the seed
r = ranf() EX g, 84000335758957 'generatoi:
EX e, 65489 wexponent, 2+**-47
MPYL g, 8, 8 *mult, keep last 47 bits
STO0 s_descr, s *store new seed
PACK e, 8, r vinsert exponent
ADDN r, , T *normalized result
Note: g} O<r<t
scalar fiming -320 ns / pm
) to vectorize — "unroll* or *replicate®, vector timing ~30 ns / m
How long will the PRNs last ?
time to generate ALL 2%° RNs
Sharp EL-515s 1Myr
CYBER-205, scalar 4 mos
CRAY-1, vector 15 days
CYBER-205, 2-pipe vector 12 days
CYBER-205, 4-pipe vector 6 days
CRAY-XMP/48, vector x4 3 days
CRAY-2, vector x 4 30 hr
ETA-10, vector x 8 13 hr
cray-c80, vector x 16 4 hr
17 KAPL-4823

Random Number Generators o A
EP

[33]
Other PRNGs
» Middie-square method: Sk, = middle digits of 5,2
* Quadratic-congruential: Skeq = [@vs2 + bsy + c)mod p
» Modified Middie-square: Sie1 = [See(si+1)] mod p
* Additive: Ske1 = [Sc+Sxilmodp
» Additive (or Shift): S, = [sk,i+sk_i]modp
* Generalized Additive (or Shift): 8¢ = [&4Sk.q +82Sk2 ... 85ki] modp
» Quasi-random sequences
eetc,, ofc.,
Testing PRNGs
sze Knuth, Vol. 2, pp. 38-113
 Empirical Tests: _‘
Chi-square test Kolmogorov-Smirnov test Frequency test
Coupon Golleciorisst " Riah test Maximum-of- tost
ggl.lision test Serial Correlation coefficients
« Theorstical Tests
Spectral test Serial Correlation (global) etc.
Random Mﬂbu Gonorfton — Reproducibllity ‘ . é’? ﬁ@ (28]

Reproducibility of a Particle History
* use separate, distinct random sequence for each particle

« starting seeds for separate particles are separated by “stride"

stride

cesesresssssesssasesonsse
4 4)

seeds fJ:r particle k seeds fc.!r particle k+1

* stride should be large enough to prevent overlap (for most histories)
— 1000 is common for reactor analysis problems

» splitting & variance reduction not needed for in-core physics
* reduces total random number usage

— 4,297 is the “old" default for MCNP & VIM
— 162,917 is the default for MCNP & ViM

« prepared for lots of splitling & variance reduction
* potential for lots of secondary patrticles

KAPL-4823 18

R —_ R e
andom Number Generators — Reproducibility

[35]
Parallel processing
particle
* take "super-stride” in random sequence -
for particles on each processor sessvessvecse
particle
- processor stride . / sesds
o ifiprasssns e sl assiiipoassoscipessssolfiiraseiivemsesndis-
4 M }
particles for processor | particles forl processor i+1
Eigenvalue Problems
particle
* batches of particles Veraieaceee
distributed among parallel processors / —
processor
DT . v
* seeds for each ettt
particles
batch stride _
l-I".l..l.l-l"l.III*'.I;.I'.- "'ll"“’..“'""“4""""’
prbcauon for batch m ' proceuors]for batch m+1
Random Number Generators — Skip Ahead i AY
el

To skip ahead k steps in the random sequence, [initial seed] -» [k seed]
Sk = g'Skq+c mod2™
= g*(g'Sko+c) +c mod 2™
= g(....g(g(gSg*c)+c)+c)) +c mod 2™
= gkeSy + ceo(g“'+g*%+....+g+1) mod2™
= gf«Sy + ce(g®1)/(g-1) mod2™
« Periodic sequence:
negative skip k,, equivalent to positive skip (period - k)

« Can skip from any seed directly to any other:
initial seed =» #"seed for # particle on m*"" processor in n’ batch
particle i =» particle j
batch i =» batch j

« All arithmetic must be performed mod 2™, without truncation or roundoff

Sx = GKSy + C(k mod 2™

19 KAPL-4823

— — . Ve 173
Random Number Generators — Skip Ahead — Computing G(k)

87
Define G(k) = g mod 2"
m =32 or 48 (typical), based on the size of a computer word
2™ < k < +2™, based on desired "stride”
Denote the j™ bitof k by kp;, so that
k= 2™ kmy + 2™%Kmay + ot 2k + 2%k
Substituting into G(k) yields
m-1 .
| kyp?
G(k) =g mod 2" = gi=° mod 2"
‘ m-~1 i
=} (gz)klil mod 2"
i=0
Efficient algorithms for evaluating G(k) can be formulated using only m steps
Random Number Generators — Skip Ahead — Computing G(k) (s8]

Enumerating a few terms of G(k) makes the algorithm obvious
04 = ()0 + (g () +()nen(g?™)fm mos 27

Note that kp=0 or kp=1, sothateachterm (g")k[il evaluates to either 1 or g"

Algorithm G:
G « 1, h « g, i — k+2™ mod2™
while i>0
if i=odd: G « Gh mod2™
h « h? mod 2™
i — [i/2]
Remarks

* Algorithm G terminates after m steps, rather than k steps

* Negative strides are trivial, due to periodicity: G(-s) = G(2™-s)

KAPL-4823 20

Random Number Generators — Skip Ahead — Computing C(k) ’ ,

[39)

c(ggk__ 11) mod 2"

Define C (k)

c-(1+g+g2+ga+...+gk'1) mod 2"

The series for C(k) can be evaluated recursively, similar to G(k), in m steps:

Algorithm C:
C«0, fec, heg, i« k+2™ mod2™
while i>0 ‘
if i=odd: C« Ch+f mod2m
f « f(h+1) mod2™
h « h? mod 2™
i« li/2]

» Since most of the common random number generators use c =0,
Algorithm C is generally not required.

* Algorithm C can be included with Algorithm G, at very little extra cost .

Random Number Generators — Examples — Computer Codin AT
P P g 140}

Computer Coding

* All integer adds & multiplies must be performed exactly (mod 2™),
without truncation or roundoft

*For m =< 32, reasonably portable coding is straightforward in C
*For m> 32, orfor Fortran coding
— split integers into “high" & “low" pieces

'— perform modular arithmetic — straightforward (but tedious)
= see Hendricks, Trans ANS 62, 283, 1990 —
same techniques can be used for arbitrary skips

— For Fortran, reasonably portable coding, except:
» Sparc2, rs6000, indigo, “double precision”

* Cray: *real

21 ' KAPL-4823

Random Number Generators — Examples — Computer Coding <3
= A

[41]
R. N. Generator for 32-bit machines (sparc2, rs6000, indigo,)
§ « 69069+s + 1 mod 2% |
static unsigned long seed_c=1;
static double norm=(1./4294967296.);
Random Number Generator=) double cranf_(void) { :
) nsigned long g=69069, c=1;
_c =g*seed_c + ¢
return ((double} seed_c *norm);
Routine for Arbltrary Skips = void cranfjump_(unsignedlong *seed,
double *ump,
unsigned long *newseed) {
unsigned long j, gen=1, inc=0, g=69069, c=1;
3 *ump <0) j="jump + 4294967296.;
se J = *jump;
: for(; i jo>=1){
Compute: Y anm
T i j&1) { |)
gen= 9* : inc =in¢
gen =gen'g;
inc = c(g*-1)/(g-1) }
¢ *=g+1;
g*=g
newseed = gen (*seed) + inc;
Random Number G tors — Examples — Testing & Timi <o AT
lom Number Generators mples esting ming [42]
Fortran, 48-bit generator: g=5'%, c=0, m=48 (VIM & MCNP)
C, 32-bit generator: g=69069, c=1, m=32 (from Marsaglia)
Sparc2 [s6000/350
C, 32-bit
random number 1.0us Tus
skip forward, average for +1...10°% 7.4ps 10 ps
skip backward, average for -1...-1 05 40 us 20 us
Fortr_an, 48-bit
random number 3.6us 23ps
skip forward, +152,917 163 us 78 us
skip backward, -152,917 458 ps 215us
skip forward, average for +1...10° 160 us 75 us
skip backward, average for -1...-10% 695 us 232 ps
skip forward, +1,152,917 189 us 90 us
skip forward, +1,152,917, brute force 4.1 sec 2.6 sec
skip backward, -1,152,917 456 us 210 us
skip backward, -1,152,917, brute force 8 year 5 year
KAPL-4823 : 22

Random Number Generators — Summa T A
L . [43]

« Algorithms for direct skip-ahead in the random sequence are
simple, fast, convenient,, for modern Monte Carlo codes

« Arbitrary positive or negative strides can be taken,
without precomputing or hardwiring specific constants

« Direct skip-ahead simplifies the initialization of
random numbers for each particle, especially for parallel processing

+ Algorithms described are currently used in:
parallel VIM — ANL — Sun, rs6000, SP1 ,
RACER — KAPL — Cray, Meiko CS1 & CS2, Sun, SGI,
KENO-Va — CSN (Spain) — Convex-C3440

f4a)

23 KAPL-4823

' 48]

Random
Sampling

*Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin."

J. Von Neumann, 1951

Monts Carlo & Random Sampling [a6]
A
Probability Density Function (PDF)
* (%)
*0sf(x) b
* Probability{ asx=sb} = ff(x) dx £(x)
a
* Normalization:
X —»
: f f(x)dx= 1
Cumulative Distribution Function (CDF)
x 1
+F(x) = J‘f(x‘) dx'
2o F(x
+0=sF(x)s1
d 0
*0Os< d—x'F (X) X —>»

*F(=x=) =0 F(x)=1

KAPL-4823 24

Monte Carlo & Random Sampling A7
[:B [47}
Monte Carlo Codes

Categories of Random Sampling
» Random number generator =» uniform PDF on (0,1)
» Sampling from analytic PDF’s =» normal, exponential, Maxwellian,
« Sampling from tabulated PDF’'s = angular PDF’s, spectrum,

For Monte Carlo Codes...
« Uniform random numbers, E, are produced by the R.N. generator on (0,1)

» Non-uniform random variates are produced from the &’s by

— direct inversion

— rejection methods

— transformations

— composition (mixtures)

— sums, products, ratios,
— table lookup + interpolation
— lots (!) of other tricks

* < 10% of total cpu time (typical)

. Random Sampling Methods A%
-:f 48]

Pseudo-Random Numbers

* Not strictly "random®, but good enough
— pass statistical tests 1
— reproducible sequence f(x)
* Uniform PDF on (0,1)
« Must be easy to compute
1
Multiplicative congruential method F (x)
* Algorithm
S¢ = initial seed, odd integer, <M ¢

Sk=G°Sk_1 modM, k=1,2,

Ex=Sk/M
Usage
* In algorithms, usually denote RN uniform on (0,1) by §
« In codes, invoke basic RN generator: r=ranf()

« Each new usage of £ or ranf() generates a new RN

25 KAPL-4823

Random Sampling Methods ﬁ% (48]
Direct Sampling

Direct Solution of

ReF (8) .

Solve for x: E= ff(x')dx'
Sampling Procedure: 1 l /-

* Generate & | O S

* Determine x such that F(X) = & F(x

0 Y

Advantages : X X

» Straightforward mathematics & coding
« *High-level® approach

" Disadvantages
.« Often involves complicated functions
* In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

Random Sampling Methods . (501
B

| Rejection Sampling

Von Neumann

..... it seems objectionable to compute a
transcendental function of a random number.*

Select a bounding function, g(x), such that
' ec-g(x) =f(x) forall x
* g(x) is an easy-to-sample PDF
Sampling Procedure: | L9 ..
- sample X from g(x): %G~ (§,)

* reject
etestt E,-cg(%) s f(X) f(x)

B EEEEEN)

if true =p accept X, done ", ept
if false -»reject X, try again
Efficiency
n = % of trials accepted = ff(x)dx /fcg (x) dx
Advantages
« Simple computer operations
Disadvantages '

« "Low-level" approach, sometimes hard to understand
« Will be inefficient if cg(x) and f(x) do not have "similar" shapes & ranges

KAPL-4823 26

Random Sampling — Discrete PDFs i51]
Discrete PDF’s

« Discrete PDF
{fc }, wheref,=f(x), k=1,..,N

kaO
N f(x)
fi =1 7 ' 7 ! |
j=1 X X2 X3 XN x—»
* Discrete CDF
1 S/ P—

{Fi}, where F, = Ef., k=1, ..., N-1
, F;

=1 F(x) F,
and F,
Fo = 0, 0 |

X —>
Fn=1 Fy
Random Sampling — Discrete PDF: : T AT
a ampling scr 3 152]
Sampling from Discrete PDF’s — Conventional Procedure
Direct Solution of %« F ' (8) ! F"I
E aww ™ -“\““F‘““
(1) Generate & F (x) F, Y
(2) Determine k suchthat F, _,<sE<F, F, \:'
(3) Return X = x, ' ° Xy X2 X3 XNy,
p'{
Step (2) requires a table search
« linear table searches require O(N) time — use when N small
* binary table searches require O(InoN) time — use when N large
For some discrete PDFs, F,'s are not precomputed.
« linear search, with F,'s computed on-the-fly as needed
27 KAPL-4823

Random Sampling — Discrete PDFs -
Example — Sampling from Discrete Uniform PDF

Discrete Uniform PDF £(x)
fk=1/Ns k=1,.-.,N 1/N I ! ! l

1
Sampling procedure: E ?:s(-) “‘“‘\,__I"'"
X ™
N
Could use table search method, ol L)

Easier, for this special case:

K< [1+NE], where |y] is the “floor* function,
largest integer <y

Note: mustbesurethat |1+NE]<N

Random Sampling — Discrete PDFs 54]
§
Examples — Sampling from Discrete PDFs

Multigroup scattering
* inelastic scatter from MUFT-group g to MUFT-group @’

« thermal scatter from THAV-group g to THAV-group g’

09—'9'

2%
k

fg. = , where g'=1, ..., Gyyav for thermal,
=g, ..., Gyurr for inelastic,

cery GTHAV for thermal,
...y GmurT for inelastic

g
g
k
k

Dy —-

Selection of scattering nuclide for a collision

K
N(k)oé)
t = —_— where k=1,..,K
(k)) . . -
N og K = # nuclides in composition
kK=1

KAPL-4823 : 28

Random Sampling — Discrete PDFs

fs5]

Sampling from Discrete PDF’s — Alias Method
Any discrete PDF can be converted into “Alias sampling” form
original PDF: {f}, k=1, .., N

where fi = probability of selecting x = x;

aliased PDF: {9% ik} k=1,..N
where % a = prob. of selecting X = x;
1
N

*(1-q,) =prob. of selecting X = X,

Alias sampling procedure:

Select uniformly for k: | ke|1+Ng, |
Select either k orits "alias” i'.(: if §,< . i‘u-x‘.(,

otherwise, X<« X

-..{continued on next page)

Random Sampling — Discrete PDFs [56]
Sampling from Discrete PDF’s — Alias Method (continued)

Why bother with "alias sampling® ?

= No table search needed, requires O(1) time

=} Sampling time is constant & independent of size of PDF

= Vectorizes completely & efficiently

=) Fastest possible way to sample discrete PDFs

= invented by Brown (who later found out Walker did it 3 yr earlier)

Creating the "aliased PDF" amounts to converting an N-way tree from

arbitrary branching probabilities with single outcomes
to

uniform branching probabilities with dual outcomes

(See FB Brown & RACER coding for the set up algorithm)

q x‘
)|
discrete PDF [~ X aliased PDF [7a™
f; 1/3 -‘l-;;» Xig)
n—-—»nn;* X2 --’.--"‘.75-”. 92
2 o
[xs
--f---'- X3 -T/;-ﬁ" e
3 . ‘_>1_q3 Xj(3) '

29 KAPL-4823

Random Sampling — Continuous PDFs 157]
Examples — Sampling from "Histogram" PDFs

kf,
< fz
ty
fa

fs
Xo X X2 X3 Xq Xg

Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from uniform PDF within bin

+ Discrete PDF: Py = fioo (X=X) k=1,.,N

— generate &
— use table search or alias method to select K

* Uniform sampling within bin K:

— generate E
— then,
XX+ (X—%g_E
Random Sampling — Continuous PDFs v (s8]
Examples — Sampling from Linear PDF on (0,1) .
f(x) = 2x, O<xs1 2
X x f(x) ‘
2
F(x) = ft(x') dx = [2x'dx' = x
o]
Direct Sampling: 1
solving F(X) = & or X«—F (E) F(x)
gives:
%« JE
Examples — Sampling from x" PDF on (0,1)
f(x) = (n+1)x", O<xs1
F (X) - xn +1 1
n+i

Solving F(X) = E gives: X<E

{Note: only for O<x<1, does not apply to general intervals !)

KAPL-4823 30

Random Sampling — Continuous PDFs AR
I59]

Examples — Sampling from Arbitrary Linear PDF
. 1

fa

X

Scheme 1 Scheme 2

Decompose into uniform + linear } Decompose into linear + linear

p1 =1, (b-2) 1 i py =1, (ba)/2
P2 = (f-fa) (b-2) /2 po =fy (b-a) / 2
P1+pz=1 P1+pz=1

9 =p I + P [t =p DN + po.A

Sampling scheme: Sampling scheme:
if € <p;, X<—a+ (b-a)k, if & <Py, X«<b-(b-a)fE,
else Xea+(b-a) fE,] | else Rea+ (b-a),fE
Random Sampling — Conti PDFs T AT
andom Sampling ontinuous [60]
Examples — Sampling from Piecewise Linear PDF ts
f2
t, %
fo
13 .
Xo . X Xz X3 Xa X5 Xg
Two-step sampling: (1) Sample from discrete PDF to select a bin

(2) Sample from linear PDF within bin

' (f+f_y)
* Discrete PDF: Py =—>5 —" (X =X _1)» k=1,..,N
— generate £

— use table search or alias method to select K

* Linear sampling within bin K:

— generate & o,
— then, it g i et (X =%_1) /&
otherwise » i‘—xk—l + (Xk-xk_l)./%_z

31 : KAPL-4823

Random Sampling — Continuous PDFs

Exarhples — Sampling from Exponential PDF

f(x) = xe ¥, o0sxso»

X

F(x) = [f()dx = 1-e7**
frooa - 1-¢

Direct Sampling:

solving E = 1-e* gives: X<« —A-In(1-E)

Although (1-E) =E,
both § and (1-E) are uniformly distributed on (0,1),
so we can use either in the random sampling procedure

EBCP e

(i.e., the numbers are different, the distributions are the same) ‘

X« —A-Ing

Random Sampling Examples — Direct vs Rejection

Example — 2D Isotropic

B =x, =V
Rejection (o/d vim) »

SUBROUTINE AZIRN VIM(S, C)
IMPLICIT DOUBLE PRECISION (A-H, 0~2)
100 R1=2.*RANF() - 1.
R1SQ=R1*Ri
R2=RANF ()

EFEP e

R28Q0=R2*R2

REQ=R15Q+R280Q
Ir(1.-R5Q) 100,105,105
105 8=2.*R1*R2/RSQ
C=(R28Q-R18Q) /RSQ

RETURN
END

Direct (racer, new vim)

subroutine azirn_new(s, ¢)
implicit double precision (a-h,0-2)
parameter (twopi = 2.%3.14159265)
phi = twopirranf()

c = cos(phi)

s = sin(phi)

return ’

end

KAPL-4823 32

Random Sampling Examples — Direct vs Rejecti T AT
ng ples rect vs Rejection § (63]
Example — Watt Spectrum
—ab/4
f(x) = 22— ¢ “®sinh /bx , 0<x
(x) T Jbx <
Rejection {(menp)
» Based on Algorithm R12 from 3rd Monte Carlo Sampler, Everett & Cashwell
*Define K = 1+ab/8, L =a{K+ (K>-1);;,}, M=Lra-1
*Set x<« -logg,, y < —logg,
olf {y-M(x+1)}2sblLx, accept: return (Lx)
otherwise, reject
Direct (new vim)
« Sample from Maxwellian in C-of-M, transform to lab
We a(- logg, - logk, cos’ ’2-'33)
X W+ &2_b+ (28 _ 1) Ja’bw (assume isotropic emission from fission fragment
4 4 moving with constant velocity in C-of-M)
» Unpublished sampling scheme, based on original Watt spectrum derivation
Random Sampling Examples — Di Rejecti iz AT
om Sampling mples rect vs Rejection (64]
- Example — Linear PDF
- H(x) = 2x, O0sxs1
Rejection

(strictly — this is not “rejection”, but has the same flavor)
if & =&, then X<§,
else X <E,

or
X« max (g, &)

or

X <[5, -5

Direct
F(x) = x2, 0=sx=x1

X JE

33 KAPL-4823

<3, =33
Random Sampling Methods [65]

Probability Density Function Direct Sampling Method

Linear: = f(x) = 2x, O<x<1 x— &
Exponential: f{(x) = e, 0<x X « —logg
2D Isotropic: _1 _ U+ cos2xE,
f(ﬁ) Y p=(uv) v« sin2nE,
3D Isotropic: - ; ue2g -1
’ f(&) = ax’ Q=(uv,w ve J1-u’ cos2at,
; w-—-Jl-u2 sin 2xE,
Maxwellian: 2 Jg /T " | x+ T(-logg, - logt,,cos?%
f(x) =TTl 0<x (-1ogt, ~logt,cos?3E;)
Watt S _aw4 _ w e« a| - logk, - logk, cos? Xt
Spectrum: f(x) =2—¢ sinh.Bx, 0<x (~1o08, -togt;coc” 55
na’b azb 2
X W+ T+ (2&4-1)Jya'bw
Normal: 1 _3()_(-_;:.)2 Xe—pu+0o F2log§1 cos2xE,
f(x) = e’ o
Random Sampling — Computer Implementati ' < A7
andom Sampling omputer implementation (6]

Machine Considerations

Vector Hardwai'e

» Since ~1980, direct methods have been recommended ,
for vectorization & high performance on cray, cyber-205, sx-3, cm-2,

=» Vector concepts apply directly to pipelined RISC cpu's
(e.9., rs6000, i860, Fujitsu p-vp,...)

Math Libraries
* Many routines in math libraries are now table-driven, hence very fast

-» fast sin, cos, sqrt, log, & exp functions

RISC + Compiler Technology

+ Pipelining, concurrent ops, simple instructions, register-to-register ops,
64-bit hardware, better instruction scheduling,

-» fast arithmetic (even for double-precision)
=» Today, the most expensive operations are
— load/store (memory access)
— IF...GOTO... (flush/fill instruction stack)

KAPL-4823 34

Random Sampling — Computer implementation A
i

_ (67}
Software Considerations
“Rules of thumb" for M.C. algorithm design have changed
“"N‘Evemake the square root of a random ,numb'er’"'
« Avoid using 8in-cos, La%i‘z'(.....
» Use IF...GOTO, voi
Wers are cheap, anthméttmsexgensnve
Direct sampling methods have advantages
* Clear, succinct coding — easier to verify & maintain
» Cpu time is comparable to rejection
« Direct methods vectorize efficiently
Random Sampling — Stratified Sampling {68]
If a specific number of samples, M, is needed from a single distribution:
* Naive approach — repeat the sampling procedure M times
« Stratified sampling approach = inl Dbt e N
\
— partition the sample space into M Eradn- :
disjoint regions of equal probability o ~ '
F(x) \
— produce 1 sample from each region \
\
_ \
ES‘ D 2:/ F- X
« Stratified sampling considerations %

— F(x) must be known & easy to partition

— The number of partitions, M, must be known in advance

— Must be relatively easy to sample within each given partition
— Stratification improves the “coverage”

— Stratified sampling reduces variance, at little or no computing cost

35 KAPL-4823

Random Sampling — Rejection Method (69]

Rejection sampling methods are useful when it is difficult or.
impossible to invert F(x), or when F(x) is not known

Example — Selection of initial source sites

Y2
» select a trial site: - Y X) source
V/ regions
. , e e
XX+ (X—-X,) - & ©e6ee
Vey +(y-y) %, 1
Xy X2
«if (X y) isinside shaded region, then accept (Xx,y).
Otherwise, reject (X,y) and repeat.
Rejection rhethods are generally not used in KAPL Monte Carlo,
- since they are not well-suited to vectorization.
Exceptions: _
« Selection of source sites
— every site, for neutrons from fixed-source
— sites for initial batch only, for neutrons from fission
* Delta-Tracking
Random Sampling — Weighted Sampling < AT
andom Sampling eight ampling 7ol
It is sometimes useful to sample from an alternate PDF
f(x)
f(x)dx = | ——=% dx = h
(x) dx [g(x)]g(x) X (x) g (x) dx

& then "correct" the result via either weight factors or a 2nd sampling stage

Weighted Sampling
* To sample X from f(x),

— first, sample X from g(x)
_right answer _ f(X)
wrong answer g (X)

— then, multiply the "weight" assigned to x by

* Note that g(x) must be >0 whenever f(x)>0.
» Also, g(x) must be normalized so that fg (x)dx = 1

* Example — survival biasing of collisions

z
= = isthe probability of surviving.

if a collision occurs, P, ..o b

Instead of sampling the outcome, always choose survival & multiply the “weight” by Pg,nive

KAPL-4823 36

Random Sampling — References i A
' b

* L. Devroye
n-Unifor do iate G ion
Springer-Verlag, New York (1986)
* C. J. Everett & E. D. Cashwell

Third Monte Carlo Sampler, LA-9721-MS,
Los Alamos National Lab. (1983)

* D. E. Knuth
ing, Volume 2 —
Seminumerical Algorithms, Addison-Wesley (2" ed., 1981)

* H. Kahn

Applications of Monte Carlo, AECU-3259,
Rand Corporation (1956)

« J. von Neumann . v
Various Techniques Used in Connection with Random Digits,
NBS Applied Mathematics Series 12 (1951) ‘

* G. Marsaglia & T. A. Bray

A Convenient Method for Generating Normal Variables,
SIAM Review, 6 (1964)

Random Sampling . A
2 [72]

Weighted Sampling Example — Effective Free-gas Model for Scatter with Bound Hydrogen

* Given a nsutron with initial energy E;, Ej > .625eV

* For scattering with free hydrogen (target-at-rest), PDF for scatter to E is
1

fFREE(Eo—»E) = —(—), 0sEsE,
» For scattering with bound hydrogen (free-gas), PDF for scatter to E is
erf JE/KT
down-scatter: 'BOUND (E0 -E) = m’ 0<E=<E,
up-scatter: fBOUND(EO"' E) = 6(E~EO), E>E,

P (upscatter) = q%
+ Sampling scheme for E, fi:
First, sample E,{i using target-at-rest scattering model.
’ ‘ Then. i E <VP (upscatter), set Eo Ep i « 1, then exit
Otherwise, modify weight by factor
: fsounnl Eo ~ E) _erf JE/KT
fFREE(Ep— é) T 1-kT/(2Ey)

and set .+ Pgoynp(Eg— E)

37 : KAPL-4823

Random Sampling — Tracking : . ol
Sampling the free-flight distance, s

* To simulate the free-flight of particles through the problem geomeitry,
need to randomly sample the distance to collision

* PDF for free-flight distance s, along current direction:

f(s) = exp(fZT(x) dx)

—If =1 (x) is constant within a reglon, 1
~ the PDF for that region smphfles to f(s) = 3-exp (=1 -8)
Zy

— Sampling procedure is then: § « —i,-- Ing
T

. For multlple regions, can stop at each boundary & redetermine S.
Why is this OK ? 5

~— Note that probability of traversing distance =s =1 - Ee—zxdx = e 28

— For 2 regions, note that 0

~ZXy e—zx2 = e—z (x1 + xz)

e = probability of traversing both regions

Random Sampling — Delta Tracking ' A%
[::B [74]
*Regular" Tracking _

» Move particles through one region at a time, until collision occurs
+» Can be expensive if many regions must be traversed before collision

S
f(s) = exp[f):.r (x) dx] s = distance along flight path
Z1(

* "Regular* tracking procedure, when Z; constant within each region:

— Sample afiight distance § using =, for current region: &« -El- Ing
T
—Hif §<d,_ g ary» Move the particle by § along current direction,
then exit & analyze the collision

— Otherwise, move the particle by d
repeat until collision

boundary along current direction,

KAPL-4823 38

Random Sampling — Delta Tracking {continued]

[75]
Delta Tracking
* A type of rejection method for sampling the free-flight distance
* Also called Woodcock tracking, fast tracking, or hole tracking
* Useful when Z. varies rapidly over the flight path
3=
A L
f(s) = El-;exp (-x*-s), s = distance along flight path
* For delta tracking, a fictitious cross-section Z* is used, rather than Z.(s)
— 3* should be chosentobe = 2. (s) for all possible points along path
— 3* may be a function of particle energy, or not
— Z* = 3;(s) +Z;(s) = constant, Z;(s) =0 for all s>0
where Z (s) = cross-section for “delta-scattering"”,
: i.e., scatter with no change in energy or direction,
a fictitious scattering event, or "pseudo-collision”
Random Sampling — Delta Tracki t < AT
andom Sampling racking [continued] 7e)

Delta Tracking procedure:
* Z* = Z.(s) +Z,;(s) = constant

* I*23,(s) and Z;(s) 20 forall s>0

~

* To sample fhe distance to collision, §, using delta tracking,
play the following rejection game:

—set §«0

— repeat the following steps until a (real) collision occurs:

« sample a flight distance X using =*: X« —2—1* Ing
e§e—S§+X
25 (8) . L
« with probability ST reject the collision site & repeat.
otherwise, accept§ & analyze the collision

39 KAPL-4823

Random Sampling — Delta Tracking [continued] ﬁfg

Delta tracking can be effective if at least some of the following are true:

* The cost of locating a particle position in the problem geometry is small,
relative to the cost of computing many distances

* Z* is not too different from the “average" X, (s)

* 1/2* is large compared to distances between geometric boundaries

=» All of these considerations are (usually) true for fast neutrons in grid regions

Delta tracking can be ineffective if a few small regions have very large =,

* Results in =*» Z;(s) for most regions,
so that efficiency of rejection sampling is low

If the cross-sections are continuously-varying functions of position,
then delta-tracking may be the only feasible method for sampling s

- Same delta-tracking procedure is used if cross-sections vary
continuously with position &/or energy.

« Can even be used when the cross-sectlons are not known in advance,
so fong as the maximum cross-section can be determined.

Random Sampling — Delta Tracking [continued]
. X
Proof: Delta-Tracking is an unbiased method

~ for sampling the free-flight distance

Consider the probability of traversing a distance s SR "
along the flight path without undergoing a =
(real) collision, P(s).

* Z* = Z;(s) +3,(s) = constant, Z* =31 (s) and X;(s) =0 foralls>0

* For convenience, define optical thicknesses for real scatter & delta scatter:

s ' s
t(s) = [Z(x)dx Ty (8) = [Z(x)dx
oo e
Note that, by definition, Z*s = t(S) +14(S) and T*sz=1(S)

* For a particular flight, there could be exactly 0, 1, 2, , @ pseudo-collisions
before a real collision occurs.

KAPL-4823 40

771

(78]

Random Sampling — Delta Trackin continued s s
g g [)| [79]

*Let P(s|n) = probability of traversing distance s along the
flight path with exactly n pseudo-collisions

Then, P(s) = 2P(s|n)
n=0

P(s|0) = e*s

S S
P(s|1)= fP(x]O) =, (X) P(s -x|0)dx = fe'z**za(x) e [sX)dx =1y (s) e
0 0

s S

P(si2) = [P(xI1Z, (0P (s-x|0)dx = 7 (x) €22, (x) et e Xl
’ 0 0
S

= fra (X) Z4 (x) e~*%dx =
0

[t (s)] ze—z*s
2

_ (81",
P (s|n) =jiP(x|n—1)26(x) P(s-x|0)dx = ___ﬁ_re-}: s
Random s-mpling — Delta Tracking [continued] (8]

* Then, the total probability of traversing a distance s
without undergoing a (real) collision is

® n
P(S) = EP(SID) = Z Eﬁ)_]_e-z*s = eta(s)e—z‘s

n!

= exp (t4(s) —Z*s) = exp [—1;(s)] = exp[—f):.r(x)dx]
‘ 0

=» This is the correct result, identical to the "Regular Tracking" procedure.

41 ~ KAPL-4823

Random Sampling — Splitting & Russian Roulette o1
Combined Russian Rouletting & Splitting

* Russian Roulette = — kill off some particles, but conserve total weight

— to save computing time, roulette “unimportant* particles
+ Splitting — create extra identical particles, but conserve total weight

— to reduce variance, split particles if weights *too large*
« Definitions
wgt = Particle weight
For the region containing the particle:
Whigh = upper bound on weight, if wgt larger — split
Wiow = lower bound on weight, if wgt lower — roulette
Waye = Weight to assign survivors, Wioy < Waye < Whigh
Then,
wgt / w,ye = probability of surviving split/roulette

For each region, choose W,y based on region "importance” (using adjoint
function, if known). Choose Wiy, & Whigh 2-5 times lower or higher.

» Combined game for split/roulette:

if wgt <w,, Or Whigh < wgt,

create n particles of weight waye, where n <« wgt +&
: wIVQ

Random Sampling — Applications

Gl
52
D

f82]
Random Sampling in RACER

* Source
— Fixed sites — uniform PDF + rejection
— Fission sites — discrete PDF + stratified sampling
— Energy — piecewise-linear PDF (binary table search + linear PDF)
— Direction — isotropic 3D PDF

* Tracking
— free-flight distance — exponential PDF
— delta-tracking — rejection sampling of pseudo- & real collisions

* Russian Roulette & Spilitting
— discrete PDF + weights

» Collisions

— Survival biasing — weights

— Select phase & nuclide — discrete PDF (on-the-fly)

— Epithermal)
« Scattering angle — equally-probable histograms (uniform discrete PDF + uniform in bin)
* Inelastic; energy — discrete PDF (aliased), then uniform within group

n2n — weights

» modified free-gas — weights

— Thermal
*» multigroup — discrete PDF for group-to-group (aliased), linear PDF for p
* S(a,B) — discrete PDF (aliased) & uniform PDF sampling

— Direction — polar angle from uniform PDF

— Fission bank — discrete PDF + weights

KAPL-4823 42

=

- Computational

Geometry

Computational Geome : TN AT
2 kil [84]

Engineering Model vs. Computational Model

engineering computational engineering
model mode! model

+ Model Generétion

— focus on engineering productivity
— describes "reality” to computer
— interactive, batch, or CAD

» Large-scale Computation

— focus on efficiency & capabilities

— data structure should be compact & regular
— computational model often hidden from user
— best reference: source coding

* Post-Processing |

— interpretation of results
— visualization

43 KAPL-4823

Computational Geometry T

- Element geometry

fuel control bumable
rod ‘ rod ’ absorber

* Elements -» Assemblies

» Assemblies - Core

Model Construction
Geometry Computation

» Core + peripherals =» 3-D Model

Computational Geometry A7
=P
Physics
* how far to collision ?
« which nuclide ?
* new E, direction ?
* secondaries ?
* survival ?
Geometry / \ Edits
* where is the particle ? « tally events of interest
« what will it hit next ? R » * compute (esl._llt§
* how far to boundary ? * computte statistics
+ what's on other side 7 * balances
« performance stats

rep, vim, sam-ce, mcnp, tart, morse, Keno,
tripoli, monk6, andy, racer, o5r, recap, ...

Development of particular capabilities is driven by applications:

« Shielding & experiment analysis

— iregular geometry
— moderate number of regions
— few compositions

= focus: convenient, flexible input for arbitrary geometry
» Reactor core analysis

— regular geometry
— many regions (up to ~10%)
— many compositions (up to ~10°)

= focus: automated processing for repeating, detailed geometry

KAPL-4823 44

fes]

[86]

Computational Geometry 871
RACER Computational Algorithm — Geometric View

repeat for all batches
repeat for all cross-section supergroups
repeat until neutrons are gone
repeat until collision
repeat for surfaces of 3-D region
« distance calculation

1 reactor
repeat while in grid calculation
« distance calculation ** 4
repeat for figures in grid region " ~10° distance
repeat for quadrics in figure calculations
« distance calculation ™*
« boundary cross
« neighbor search
* roulette
« collide
* roulette
= if delta-tracking, "locate” only
Computational Geometry ' “’g)
B AT C

RACER Computational Events

45 KAPL-4823

Computational Geometry ‘ 'm]
RACER — General Geometry Capabilities '

3-D general geometry

- allowed surface types:

general planes, sphere, right circular cylinder,
right elliptic cylinder, ellipsoid, skewed cylinders,
general 3-D quadratic
« 3-D regions (sectors) defined by lists of surfaces (with sense & BC)
« Sectors may be combined into edit-media
~+ Neighbor lists built dynamically

Sectors may have embedded detailed grids

« |attice (need not be rectangular)
* general rotation/translation/scaling toffrom 3-D geometry
.« lattice "boxes" may contain arbitrary sets of quadratics
» detailed lattice regions may be assigned to arbitrary edit-media
Delta-tracking or surface-to-surface tracking, variable by energy

« Delta-tracking — also called "Woodcock tracking" or "hole geometry”

large problem example: > 5000 3-D sectors, >107 detailed regions

COmpuhtlon-l Goomotry ﬁrg [m]
F

RACER 3D Geometry

Surface -

* Linear or quadratic polynomial, in absolute coordinates (x,y,z)
Fxy,2) =ax® + by? + cz? + dxy + eyz + fzx + gx + hy + iz +

* — Normalization is arbitrary

— RACER Convention: factor of leading 2" order term
is positive, usually =1.0
— Surface is defined by: F(x,y,2) =0

 Surfaces are infinite in extent

- Sense:

— relationship between a point in space (xq,¥0,2¢) & a surface F(x,y,2)

— point (Xg.Yo2g) is inside if F(xoyo2zo) <O
outside it F(Xo.Yo0:Z0) >0
on if F(Xo,Vo,Zo) =0

KAPL-4823 : 46

Computational Geometry

RACER Surface Equations

Dubﬂptlon

general plane

Computational Geometry

o1}

Equation: F(_x.y,z) =0

ax+by+cz+d=0

2 right cylinder a(x+b)2 + {y+c)2 +d=0

3 cylinder skewed in Z a(x+b-;»cz)"’ + (y+d+e2)? + =0

4 sphere | (x+8)? + (y+b)2 + (z+c)2 +d =0

5 ellipsoid a(x+b)? + cly+d)? + e(2+9)2 + g =0 7
€ general 3-D quadric aC+by?+cz2 +dxy +eyz+fzx+ gx+hy +iz+j=0
7 pair of z-independent planes (x+by+c)2-d? =0

11 x=constant piane x+d=0

12 y=constant plane y+d=0

13 z=constant plané z2+d=0

14 z-independent plane Xx+by+d=0

21 pair of planes parallel to YZ (x+c)2-d2 =0

22 pair of planes parallel to XZ (y+c)2-d?=0

[s2]

RACER 3D Geometry

Side

Sector

« half-space, defined by signed surface number
+7 = { (xy,2) | Fy(xy,2)>0 }

eg.,

« 3-D region, Iintersection of sides
— note: sectors are defined only by the intersection of sides;

unions of sides are not allowed

« defined by list of sides
e.g., Sector3 ==> -1, +4, +7, -523, -734

» Sense:
— relationship between a point in space (Xo,y0.2Zo) & a sector

— point (Xg,Yo:Zo) IS inside if all surface-senses match,
: outside otherwise

- edit medium number

- importance region number

- boundary conditions for each surface (R,E,P,N)
- embedded geometry (grid) — optional

« attributes:

47 KAPL-4823

Computational Geometry B*fg (s3]
Sector Geometry — Examples
Example 1

Surface 1: sphere

Sector1: -1 Vs 77

surface #

Example 2

Surface 1: sphere
Surface 2: plane

‘Sector1: -1, -2
B8
Example 3

Surface 1: sphere
Surface 2: plane
Surface 3: plane

Sector 1 : -1, -2

Sector2: -1, +2, +3 2///,
Edit-medium1: 1, 2 X+,

sectors

Computational Geometry

Sector Geometry Example: Box with a Hole

» Define surfaces:

planes: 1,2,3,4 (sides)
56 (top, bot)

sphere: 7

(probiem origin at lower rear)

» Define sectors
Sector 1: inside the sphere 7

Sector 2: inside the box, but
outside the sphere +7, +1, +2, -3, -4, +5, -6

« Assign properties to each sector
— define the boundary conditions for each surface of the sector

— assign an edit-medium number to the sector
— assign a composition (material) to the edit-medium

— assign an importance region number to the sector

KAPL-4823 48

Computational Geometry A7
i:p fes]

Sector Geometry — Miscellaneous

+ Sectors do not have to be convex regions
Sector1: +1, -2, -3, +4, +5, +6
Sector2: -5
Sector3: -6

» Sectors may be infinite in extent
— For 2-D problems, sectors do not need a "top” & "bottom"

» Adjoining sectors must share a common surface (with opposite senses)

— No gaps or overlap permitted 7
— "Similar" surfaces must be combined

must be the same

« Sectors cannot be defined as unions of sides surface number

— Not a valid sector:
— Note: can do this by combining sectors into edit-media

Computational Geometry - [96]
Sector Geometry — Lists, Logic, Lookups
Sector Data Surface Data
Sector | Edit | PO | Sides sides Surface [Surface] Surface
number { medium region pointer list number | type | Coefficients
1 3 1 1 .3 1 3 ab,c
O . 5 1 4 -2 2 5 ab,cde
3 1 1 8 -—wiL -1 3 1 abcd
4 1 2 17 -3 - 4 1 ab,cd
5 1 3 19 +5 5 2 ab
. . . =17 == 6 1 ab,c,d
: : : : L» -4

Distance
Calculations

(X,y,z), (U,V,W) ——————

49 KAPL-4823

Computational Geometry . 971

‘Distance Calculations in 3D Geometry

3D Surface: F(xY, z) =0

"linear” -» VF = constant
quadratic - VF = f(x,v,2), V2F = constant
Distance Calculation

* 8 = directed distance from (xo,¥0.2¢) @long (uv.w) to F(xy.2)

= smallest positive rootof F (xo +8U,Y, +8V,2,+ sw) =0

recast as .
G (0) +fa—3ds' =0, where G(s) = F(X,+8u,y,+8V,2Z,+5W)
0
« then 2
' 14 2.r8 _
[5—Gas2 (0)]s + [a_sG (0)]5 +[G(0)] =0
. Or’ '
As2+2Bs+C = 0, D = B2-AC
[continued]
Computstional Geometry : i AT
fse
Distance Caiculations in 3D Geometry [continued]
*As2+2Bs+C = 0, D = B2-AC
* 27 combinations of A, B, C >0, <0, =0
* only 12 yield valid solutions:
s = ”ic‘ if (A=, C<0, B>0) or (A=0, C>0, B<0)
-B-J/D

Y if { A>0, C>0, B<0, D>0) or {A<0,C>0, B>0, D>0)
or (A<Q, C>0, B<0, D>0) or (A<0, C>0, B=0,D>0)
-B+

A if (A>0, C<0, B>0, D>0) or (A>0,C<0, B<0, D>0)
or (A>0, C<0, B=0, D>0) or (Ac<0, C<0, B>0, D>0)
or { A>0, C=0, B<0O, D>0) or (A<D, C=0,B>0,D>0)

= o otherwise

o

« Use known surface-sense, §, to solve roundoff problems & eliminate tolerance check

' __C_ P -

$ = 2 i (A=0,D50)
- ‘B;Jﬁ i (A=0, D>0, §>0)
- -a;./ﬁ i (A=0, D0, § <0)
= ® otherwise

s =8 if s>0

= ® otherwise

« Distance to Sector Boundafy = minimum s for all surfaces of sector

KAPL-4823 50

Computational Geometry {9}

Sector Tracking — outline of calculation

IND « pull from event-stack * get neutron pointers

ISEC « ISECSTK(INDX) * get sector from neutron-stack
DSECSTK(INDX) < infinity « inilialize distance results
LSECSTK(INDX) <0 « indtialize pointer results

LSt < LSIDISEC(ISEC) « pointers to 1st side of sectors
LS2 < LSID2SEC(ISEC) * pointers to last side of sectors

g Do While any LS1 <LS2
. * SELECT neutrons with more sides

INDK «- INDX(LS1<S2) « get neutron pointers
ISURK« ISURSEC(LS1(LS1<LS2)) * get signed surface numbers
For Each Surface Type J
. + SELECT neutrons with surface type
INDJ « INDK({ TYPE(ISURK)=J) « get neulron pointers
{SURJ « ISURK(TYPE(ISURK)=J) « get signed surface numbers
* particular surface type
b & 4 « gtk(INDJ) * GATHER neutron position
uvw « stk(INDJ) * GATHER neutron direction
AB.... « coef(ISURJ) * GATHER equation coefficients
DISTJ « distance caic * compute distance, vector
DISTK(INDJ) « DISTJ * save dislance, temporarily
where DISTK < DSECSTK(INDK) + smallest distance, so far ?
DSECSTK(INDK) « DISTK * SCATTER distance
LSECSTK(INDK) < LS1 * SCATTER pointer
Eé1 -~LS1+1 « bump pointers to surfaces
Computational Geometry TN A
[100]
RACER Embedded Lattice Geometry
Grid: « embedded within 3-D sector

« detailed 2-D geometry extruded, axially uniform
« 2-D mesh of parallel lines, need not be rectangular

L]

» grid lines are clipped at grid boundaries

* local coordinates — origin at lower left corner

» general transformation to/from 3-D: rotate, reflect, scale, translate
« grid box may contain composition or embedded figures

« very compact storage, much faster tracking

Figure: « arbitrary types and numbers of 2-D quadrics
- constraint: quadrics do not intersect within grid box
+ local coordinates
« translate toffrom grid coordinates
« clipped at grid box boundaries

“Quadrics: - general 2nd order surfaces, F(x.y)
' * local coordinates
« clipped at grid box boundaries

51 KAPL-4823

Computational Geometry

RACER Grid Geometry

 Within a grid box, quadric surfaces can be
nested. Inner surfaces overlay outer ones.

» Quadrics are clipped at grid box boundaries

* Quadrics &annot intersect within a grid box.
Extra grid lines must be inserted at
intersections.

« Lines which are not parallel to the grid must
be represented by infinite ellipses

« A single figure can be repeated via translation

to different grid boxes (no rotation) [E’ B
Computstional Geometry [102]
Location & Distances within Grids
« Location — determine grid-box (i,j) ¥s =y
. . . - 4 :
i: Dbinary search to find x-interval containing x y;
j: binary search to find y-interval containing y zf
Xg X2 X3 XgX5 Xg
+ Distance to boundary of grid-box
— use signs of (u,v) to select the next x-bound & y-bound:
if u<0, x-x, otherwise x«x,, Yier
if v<0, ye« Y otherwise y« Yis1 /(‘)
— compute x-distance & y-distance =y
X=X ¥~
q9% == dv=¥Tx Y X Xiet

— if grid-box contains quadrics, compute g-distance, dg

— distance to next grid-boundary = dgig = min(dy, d, dg)

—d = min(dsectofl dgﬂd)

KAPL-4823 | 52

Computational Geometry T AT
[103]
Grid Tracking
Grid Entry: » transform (x,y,z) and (u,v,w) from 3-D to local
* (u,v,w) not normalized

X 9, 9 93X 94 u 9; 9; G3ju

y =195 96 971|Y +19g v =195 9¢ 97|1V

2 Jara 199910) |? Jsector 912 W lara 199 910 811f ¥ fsector

Grid Locate: * binary searches of x &y grid-line intercepts

Grid Distance: - select x &y grid-lines using signs of u &v
+ simple distance calculation (if not using delta-tracking)

Figures: » for each figure, check all quadrics

Quadrics: s translate x &y
« compute distance (if not using delta-tracking) & sense

4 -Lookups: » edit-medium, composition
Grid Exit: « transform back to 3-D, if collision or grid boundary cross
Computational Geometry [104]
RACER Boundary Conditions — for Each Surface of Sector ‘
Normal: « continue neutron flight, no action at boundary
Exit: « leakage out of problem, tally & kill
Reflect: «Plane— ax+by+cz+d=0, with a2+b%+c?=1
U- -u- a
v =y -2(au+bv+cw)-[bj]
(WiNew (WoId c

« Cylinder— a(x+b)2+ (y+c)2+d=0

-U- -u- X
Ux+Vv

v =y —ZLT’T-H . H

WiNew [WiOId 0

Periodic: -« rotate about point (x;,y,0) by angle e, with C, = cose, S = sin6
X Cp quO X-Xg X, ’ u Cp -spo u
y =SpCp0y-yp +yp v —SpCPOV
Zlnew LO O 3 2 Joud LO WiNew L0 0 1j{wlom

53 KAPL-4823

Computational Geometry

Neighbor Search
» When aregion boundary is reached, what's on the other side ?
Easy Case Hard Case
' B
A B A e
—f D
comm———— E

» Most codes build *neighbor lists* during tracking
— for each boundary surface of region, remember list of neighbors
— initially, neighbor lists are empty

— check regions having surface in common until one
is found satisfying all sense conditions

— save it
—_ Iater, check neighbor lists first, if necessary do search

*» Neighbor search is expensive at first, cheap later

« Tracking speeds up as calculation progresses

Computational Geometry :

Miscellaneous Topics

* Axially varying compositions
— *axcomps®, permuted compositions

* "Strong" sense checking & distance calculations
* "Lost" particles

* Reference points

* Source volumes

* 3-D grid for "site-plot* & fission-matrix

* Importance regions

« "Slice" plots

KAPL-4823 : 54

[10s)

[106]

Computational Geometry 107

3-D Geometry Schemes — Variations

Combinatorial Geometry (e.g., MAGI, MORSE)
« pre-defined primitives ("bodies" -- box, sphere, cone, ...)
* Boolean operations on primitives
— intersection, union, complement operations on bodies

Constructive Solid Geometry (e.g., CSG algorithms for graphics)
« pre-defined primitives (box, sphere, ...)
) ~ *general Boolean operations
— intersection, union, compiement operations on primitives
& objects constructed from primitives

MCNP Geometry
« user-defined primitives ("cells” — list of signed surfaces)
* Boolean operations
— intersection & union of surface half-spaces
— compiement of another cell

Sector Geometry (e.g., O5R, RACER)
« user-defined primitives ("sectors” -- list of signed surfaces)
* Boolean operations

- intersection (only) of surface half-spaces
— unions of sectors achieved via “edit-media"

Hole Geometry (e.g., MONK, RACER)
« anything & everything imaginable (MONKE6)

Computational Geometry i AT
[108]
3-D Geometry Scheme Comparison
Combinatorial Geometry RACER 3D Geometry
« define BODIES * define SURFACES
rect. parallelepiped,box, general planes,
sphere,right ciec. cyl., sphere,right circ. cyl.,
right eliipt. cyl..ellipsoid, right ellipt. cyl., ellipsoid,
trunc. cone, wedge, skewed cylinders,
U:::::rut arbitrary convex polyhedron general 3-D quadratic
« define INPUT ZONES « dofine SECTORS {AND,NOT)
composition number list of SURFACES (with sense & BC)
importance region number importance region number
fist of BODIES
AND, NOT, OR operators « define EDIT-MEDIA
composition number

list of SECTORS (OR operator)
list of regions in embedded GRIDS

» construct CODE ZONES
list of BODIES
AND, NOT operators only
composition number
: importance region number
Cod POl regl
Level * dotailed calculations - detailed calculations
distance to each SURFACE of distance to each SURFACE of
each BODY in CODE ZONE SECTOR
* SURFACE definitions implicit, * BODY definitions are implicit,
inferred from BODY input inferred from SECTOR/SURFACE input
. * "input details" are different
Comments « detailed calculations are essentially equivalent

55 : KAPL-4823

ZP nog

Collision

Physics

Collision Physics (0]
Epithermal Energy Range

« continuous energy neutrons & cross sections
« elastic scattering

- assume free nucleus at rest (E >> kgT)
- conserves kinetic energy and momentum of neutron + nucleus
» scattering from H bound in H,0O
- accounts for chemical binding
* inelastic scattering
- forms compound nucleus, kinetic energy is not conserved
- multigroup treatment
- no upscattering allowed in epithermal range in RACER

Thermal Energy Range - Multigroup Method

» multigroup neutrons & cross sections
» only collisions with ‘moderators’ result in an energy change
- upscattering and downscattering
- P, angular distribution
« scattering from non-moderators is isotropic in the LAB system

Thermal Energy Range - Continuous Energy Method
« continuous energy neutrons & cross sections
« scattering handled explicitly for each type
- coherent elastic (Bragg)
- incoherent inelastic (S (c,))
- incoherent elastic

KAPL-4823 ' 56

Collision Physics - Epithermal < AT
1
Elastic Scattering From a Free Nucleus at Rest

o _4{_"
m (]

V=0 : i .\
v
pre-collision post-collision
LAB System

« scattering angle 6, is sampled in the COM system
* azimuthal angle ¢ is uniformly sampled between 0 and 2=
* exit energy E” is determined by

A2 +2Ap +1
(A+1)? Ve
G
A=M/m, u, = cosd *—> z
o = cost, - O
« LAB scattering angle is determined by ’ 7
B = _{:_AL_ . v’°
,,Az +2Ap, +1 pre-collision post-collision
COM System
Collision Physlés - Epithermal e
B a2

Legendre Expansion of the Scattering Cosine Distribution
o{r,) = cross section dependence on the cosine of the scattering angle in the COM system

f(r,) = o (k) /o = scattering cosine pdf, where o -fldp.co (np)
f = fi . du P, (1) f(u,) =t Legendre moment
-» Legendre moments are part of the basic cross section data.

Given the moments, the pdf can be reconstructed, i.e.

fu = 3 B P ().
n=0

In practice, only a finite number of moments are known, so that

N
fug ~ 3 e Py
n=0

= RACER can utilize Legendre moments up to the 204,

57 KAPL-4823

Collision Physics - Epithermal 3]
Selection of the Center-of-Mass Scattering Cosine

 generate up to (typically) 31 equally-probable step functions
» randomly select one of the 31 angular ‘bins’

« uniformly sample scattering cosine between p, and w, ¢

cork
T o e e —
|
B L | 4
-8, -
1,..,31 : -
o - 1 1 sl
-1 R Bt 1 L Hwy=-1 # Myl na=1
Special cases:
4 i 'y
Py: or Isotropic:
-1 I - >
-1 1 -1 1 -1 1
Collision Physics - Epithermal e P
[114]

Epithermal Scattering From Bound Hydrogen

» for scattering from H in H,0, the effect of the H-O bond must be accounted for
* Nelkin water model

— the proton is treated as a sum of § harmonic oscillators
* one translational mode
» one rotational mode
« three vibrational modes

— the effective temperature is thus given by

KgToy = ke T, o024 +0. 0176coth(°'1025) +0.0129¢0th| 0. 03)

18 KgT kBT
» Cady prescription
— PDF for exit energy
faounp (E—~E) = 8(E-E), E>E

erf! 7k Teﬁ!
fBOUND(E—»E') = B % Tﬁ/2 , EsE

ko T
B " off
PIEPE C Bk T2
~» implemented in RACER usmg weight modification
— scattering cosine in LAB system is set to average value for bound H downscattering
e . ‘o k Te" F off 8XP (-E/ ksTeff)
BOUND ~ YFREE =xE' erf(] /kB eff)

' -— scattering cosine in LAB system is set to 1 for upscattering

KAPL-4823 58

Collision Physics - Epithermal P
(i (18]
Epithermal Inelastic Scattering : :

Erop (0V) Epot (8V)
20,000,000 7,788,000
7,788,000 6,065,000
6,085,000 4,724,000
4,724,000 3,679,000

« based on top 25 MUFT groups f
:
4
5 3,679,000 2,865,000
6
7
8
9

(need not correspond to
supergroups)

» alias sampling from discrete 2,865,000 2,231,000

i 2,231,000 . 1,738,000
PDF to ge:(exit group 00 1353000
. (Pg ~gr 9= g) 1,353,000 1,054,000
10 1,054,000 820,800
" 820,800 639,600
. . .t 12 639,600 J
* if g'= g,exit energy E" is 13 497,600 0770
uniformly sampled between 14 387,700 302,000
EQ d EQ 15 302,000 235,200
£ bot @N top 16 235,200 183,200
17 183,200 142,600
18 142,600 111,100
e = -1 R 19 111,100 86,520 -
- ifg'=g,E is uniformly sampled 20 86520 67 300
between incident energy E and 21 67,380 40,870
E% ot 22 40,870 24,790
23 24,790 15,030
24 15,030 98,119
. . . 25 9,119 5,531
* history weight is changed to account '
for (n,2n) reactions
* isotropic in LAB or COM systems
(user selectable)
Collision Physics - Thermal <A AY
me)

Neutron Thermalization

* neutron energy comparable to kgT
=) upscattering is important
* neutron energy < chemical binding energy

=» cannot use target-at-rest kinematics

—scattering from molecules
* elastic
- entire molecule recoils
- neutron can gain or lose energy
* inelastic scattering
- change in vibrational and/or rotational quantum states of molecule
- neutron can gain or lose energy
-—scattering from crystals
* elastic
- entire crystal recoils
- negligible neutron energy change
« inelastic
- emission or absorption of phonons
- neutron can gain or lose energy

» neutron de Broglie wavelength comparable to interatomic spacing

=» quantum interference effects—Bragg scattering from crystalline materials

59 KAPL-4823

‘Collision Physics - Thermal - Multigroup -

Multigroup Thermal Treatment

» typically used for E <0.625 eV
» multigroup method (typically 32)

« all ‘isotopes’ classified as either moderators or non-moderators

— scattering from non-moderators
» isotropic in LAB system
* no energy change
-— scattering from moderators
* muitigroup energy transfer kemnels
= multigroup P angular distributions

« upscattering allowed, but not back into epithermal range

Collision Physics - Thermal - Multigroup ‘trg

Scattering From Moderators
« assume that the double differential scattering cross section o (E — E, u) is known

* approximate using a P4 expansion
(E=E,p) -éco(E—- £) *f—,,"x(E"E')“
0 (E—=E)= 2nfduo(E —=E,n
o, (E~E)= 2nfduuo(E - £,

* average over groups
- total scattering cross section
Ef w E, _
e f dEde‘Q (E)o,(E—E) |/ f dE¢ (E)] , ¢ = spectral weighting function
Eg 4 O EO 1
- ot L egendre moment

Eg Eg¢ Eﬂ
v JE[dE¢(E)o°(E—-E)]/[f dEO(E))
E

E,_, €yt

- 18 Legendre moment

g'-1

[E, Eg E,
. JeE [dE'fdM(E)uoo(E—-E',u)J/[f dE¢(E)]
Bior Ega 9-1

-» Note: The upper limit of the integrals over E” are assumed to go to infinity for g" = 1.

KAPL-4823 60

Collision Physics - Thermal - Multigrou, T
y = [119] .

Scattering From Moderators (cont.) -

« the P1 approximation to the group-averaged double differential scattering cross section is:

g—g g}
g-g . _ 9|% 11 39
o (w) =0 [cg]2“[2-!»203__9,“]

« thus, given a scattering from the moderator in group g:

g-—g
[}

~— sample the exit group from the discrete pdf 0 7 g=1..,¢

e
~- sample the scattering cosine from the linear pdf % + %";Tg-“

%
— uniformly sample the azimuthal angle on (0,2r)
Collision Physics - Thermal - Continuous Energy T AT
B 20

Continuous Energy Thermal Treatment
« typically used for E < 0.625 éV
+ neutrons and cross sections are continuous in energy
. differeﬁt scattering types are treated explicitly
— coherent elastic (Bragg)

— incoherent elastic
— incoherent inelastic

« upscattering allowed, but not back into epithermal range

61 KAPL-4823

Collision Physics - Thermal - Scattering Types

[121]

Scattering From a Single Nucleus at Rest
« asymptotic neutron wave function is given by

¥ ==L [y, () +9, (0]

, 5
(2x) a
Yo(n) = e’ - incident wave function
1 ikr A2
Yo

v, (r) = f(8-)2e = scattered wave function
o(@-2) =@’
« solve Schridinger equation

W 2
[_ 5—V +V(r)]1v(r) = Ey(r)
8n m,

. 2nm “(Il' - I"I
v = —1—e* T 'f

- A5V ()W (¥), m = reduced mass,
(2 h k= (2n i E/h)
* make Born approximation
1 ik-r. .
Y{r) « e ' inintegrand
(2

» use Fermi pseudopotential

V() = ;nllaﬁ (r), a=scattering length
T
« final result:

o a2
‘ 0’—&(-00

' Collision Physics - Thermal - Scattering Types A7
FFEP e
Scattering From Two Nuclei '

* wave function
Y1) = yo(r) +y ()

¢ incident wave function
ik
% (r) =e z
* scattered wave function
Ve (N =y, (N +y,(n)

a ik(r-gsineeosw)
Wl () -"'Tle 2)

a, ik(r+Jsinocose)
v, (e -Te

* scattering cross section)
2 -
a;+a,-2aa,

o(0,9) = l%]\P,;(r)f = +a1322[cos(k2-—-dsin9cosq>)]2

2
<> interference effects
sifay=ap 5
0(8,9) = 0,2 cos(S'sinocosg)]
KAPL-4823 62

|

Collislon Physics - Thermal - Scattering Types
5
Scattering From N Fixed Nuclei

N kg2 |
2 ae
ne1

N 2 1
D %*R
=1

[123]

(6,9 = &

Z|~

nucleus

N
@=5 38, ()=
n=1

rearrange

N

iK-R,2 1 1,2
o(8,9) = Ojnc* Teony 2 ' %inc™ 4_,;((- <a)2) Scon™ 75 (@)

n=1

it 6, = 0= coherent elastic scattering

Collision Physics - Thermal - Scattering Types A
FR (=

[124]

General Case of Scattering From N Nuclei

* in general, we have
o(E~E,B-0) =g

mc(

E-EB,0-+8)+0, , (E-E,Q-0)

coh(
~E DD _cincFI ® i(K-r-2xet/h)
O (E—E, Q=T = T E.w_“dtfdre G (r,1)

g, i B
Opon (E—~E, QD) = _:‘j_;"Jgil_ 3 atfare' " M r,y

N
Gy(nt) = § D [dr(8(r+R, (@) -P)5(r-R, (1)
nN=1

N N

ey =53 3, far(s(r+ Ry (@) -r)8(F R, (1))
N=1mw=1

emE-E, Ksu2nm(v-Vv)/h

i(K-r-2xet/h) G.(r
(3 *

10 1/ (K- 1-2xet/h)
S, (K,e) -5 _mdtfdre 1), S(K ¢) P -wdtfdre G(r,t)

» for some materials, we may define

P28, (K.e), S(a,p) = kgTe?”

S (. B) = kgTe

nk?

-» this representation is used for incoherent inelastic scattering

S(K,e)

p= -e/kaT

63 KAPL-4823

[::§ [125]
Tallies
&
Statistical Edits
Tallies and Statistical Edits [126]

Tallies

» analog Monte Carlo
— each history is assigned a ‘weight’ of 1
— final event estimator
« follow each history until it terminates by absorption or leakage
« if termination by leakage, tally 1 leakage
« if termination by absaorption, tally
- za’]/Za for all nuclides j in the region where the absorption occurred

- 'v}:f/}:a

— guarantees that absorptions + leakages = source + (n,2n) exactly
« weighted Monte Carlo
— each history is initially assigned a weight (w) of 1
— at each collision:
» employ collision estimator
-tally wZ, i/ Z, forall reactions x and nuclides j in the region where the collision occurred

- collision estimator is usually best for optically thick regions

* reduce the weight by multiplying by the nonabsorption probability, w « w (1 — Z/Z)
=> survival biasing
— for each flight (collision-to-collision, boundary-to-collision, etc.)
+ employ path-length estimator
- tally wszx"- for all reactions x and nuclides j in the region (s = path-length of flight)
- path-length estimator is usually best for optically thin regions
— terminate histories using Russian Roulette
— better estimator is a linear combination of collision and path-length estimators
= combining coefficients are chosen to minimize variance
» combining coefficients are edit-quantity-dependent
— absorptions + leakages = source + (n,2n) on the average

KAPL-4823 64

Taliles and Statistical Edits T A
, 127
Introduction to Statistics

Characterizing Random Data)
Given a set of N random values {xl, Xy «.s Xy} + OO can calculate:

* sample mean

nei3e

i=1
* sample variance

N
2 1 2
i =l
I =

=> for truly random data with pdf p(x):
(m)=E[m] = q, y.-fdxxp (x) =mean

(sz) = E[sz] = 02, 02 -fdx (x—n) 2p (x) = variance

Tallies and Statistical Edits A7
B 28]

Introduction to Statistics

Central Limit Theorem
As the sample size N increases, the distribution of the sample mean m of a sample drawn from almost any

distribution approaches a normal distribution with mean . and variance o2/N.

P(m) PM)| N

2 p(m) p(m)
0

| =N

1 2 3 m 4+ 2 a3 m ¢ 2 3 ®m 4 2 3 M

Confidence Intervals
« the 95% confidence intervals dgs are given by
dgs=ty_,;5/ N, tn.1 = Student's t factor for N-1 degrees of freedom
Given a sample mean m, with sample variance s, there is a 95% probability that the population mean u
lies in the interval {m-dgs,m+dgs].

Test for Normality
» the skewness coefficient ¢ {<c> = 0 for normal distribution) -

N
1 1 3
¢= SRy =™
s i=1

« a confidence interval is doubtful if c>= (1.96) 2[%’&%’)— (marked with a " in RACED)

* a confidence interval is probably meaningless if 2= (281)2 [:' (:: 11) (::23)] {marked with a “?7)

65 KAPL-4823

Tallles and Statistical Edits < {129]
RACED Output

Single Estimators

« RACER supplies RACED with one value of a reaction rate, x;, for each of N non-discarded batches i

* RACED computes N
) ’ _1
~— the sample mean: m= NExi
i=1
2 1 N 2
— the sample variance; s= N_:ilE, (x,-m)

— the 85% confidence interval: dgsmty 8/ /N

) N
— the skewness coefficient: ¢ = ois > (;

« RACED outputs the mean along with the 85% confidence interval and an indication of its uncertainty

Tallies and Statistical Edits o, W 5%
n3o]
RACED Output
Double Estimators
» RACER supplies RACED with path-length and collision estimators, x; and y;, for each batch i
+» RACED computes
— the sample means: Nzx and my Nzy'
i=1 i=1
2 1 o 2 2 1 N 2
- the sampie variance: = NI 2 x-m,)" and s = 'N—_IE (y;-m,)
2 1 N
~—the covariance: Sy = N_—'TX (-m,) (y;~m,)

* these are used to compute the minimum total variance and corresponding mean

— mean: m = am,+ (l-a)m
- minimum variance: s2 = azsz+ 2a(1- a)s + (l—u)zsi
2 2
s, -8, .
a= TL—L, but set to 0 if negative and to 1 if > 1
‘ sx--2sxy+sy
—the 95%c. i.: dyg=ty_,5/4N

— the skewness coefficient is obtained in an analogous manner
< RACED outputs the mean along with the 95% confidence interval and an indication of its uncertainty

KAPL-4823 66

Tallies and Statistical Edits AT
— Hl6
RACED Output

[131)

Combination Edits
» combination edits are sums of other edits, i.e.
X = 2 X Y= Z Yji
j€ combination j € combination

X, Yji = estimators of quantity j in batch i
* the sums x; and y; are analyzed using the usual procedures for single and double estimators

Ratio Edits

* ratio edits are ratios of other edits

* ratio edits use a single estimator only

* let x; and y; be batch i single estimator values for the numerator and denominator, resp., of the ratic

—RACEDcomnutes
1 1 N
m, = -ﬁzxiandmv = ﬁEyi
i=1 i=1
2 1w 2 2 1 2., 2 19
sy = N—:—lzl 04-my°, s, = ;,—_-321 (y-m) ", & 5, = mzl (x,=m,) (y;=m,)
I = i= I =
—these are used to obtain
« the mean of the ratio: m = mx/my
2 2 21
m\2| s 2s s
« the variance of the ratio: s = (m—x) _’;-E‘_%‘nl+_Yi
y my X7y my

* the 95% confidence interval: dy =ty s/J/N

Tallles and Statistical Edits [132]
RACED Output ’

Notes:

* the single estimator procedures are used If:
— delta tracking is being used

— the bigdepl option is being used (estimator is average of path length and collision estimators)

» for double estimators, separate minimum o? linear comblnations are found for each quantity
— energy-integrated values will not in general equal the sum over edit groups
- combination edits will not in general equat the sum of the constituent edits

— ratio edits will not in general equal the ratio of double estimators

67 KAPL-4823

T nd Statistical Edits : < AY
allies and Statistica [133]

Source Correlation Correction of Confidence Intervals
« For iterated-source problems, the batch-wise results are correlated

— starting locations for a batch are sampled from the fission sites of the previous batch
— this leads to a bias in the confidence intervals

« For iterated-source problems, RACED optionally applies a correction factor to the oonﬁdence intervals
* The true sample variance can only be found by analyzing resuilts from independent calculations
m; = result from job j (all J jobs are |denucal except for random number sequences)

s“2=—1-12(m -m?2, m--zm

l =
~— the expected value of s is o2
* The apparent sample variancé is coﬁ'\puted as if the batch-wnsa results in a single job were uncorrelated

x;i=resultfrombatch|of)obj m.:lzxij

2
Sui = N(N= 1)2"‘»

— the expected value of s |s cia. but oia is not equal to ui

« An approximate relatl:nshlp between the true and apparent variances is

-1
2 2 2 : " .
o, = %a [1 + ﬂkzl (N -k)yk] , where y, is the correlation coefficient lag k

2 i=1

* RACED correction:
— make the approximation y, = V-1 (A7) , where A, /), = dominance ratio (default ~ 0.9)

— approximate the true variance by
2y 1

2 2
Su = max[sl‘i [1 -.—(m;-)-] ,S'q]

Tallles and Statistical Edits

[134]

Source Normalization Bias
Source of Bias
* In a real reactor at steady state, the number of neutrons/generation fluctuates about a mean value

* in RACER, the number of starting histories per batch is constant
— prevents extinction or overfiow of population
— simplifies algorithm

— leads to a bias for eigenvalue problems, if not corrected, since all starting distributions
are (unfairly) given equal weights
Bias Correction in RACED
Define:

/N
= (H ki) = geometric average of batch multiplication factors

i-1 i-1
. k.
i-1 .
Ml=l: Mi=(||kj)/K = I I-K!.|>1
I=1 i=1
Edit the weighted batch averages
N

= (S (34

« For ratio edits the numerator and denominator are corrected separately

* The source normalization is normally turned on for iterated-source calculations
* It is turned off when the bigdepl option is being used

* it can optionally be turmned off for any calculation

KAPL-4823 68

Tallies and Statistical Edits

Propagation of Error
» General Equation
X=X (Yp Vz, (I yn)

X ox 2 o wo?
2 2 ayiay' vy’ YW Y
examples.
- sum of two quantities
X=Yy+2Z
2 2 202 2
Ox = Oy+ O'yz+dz
— product of two quantities
X =yz
2 22 2 22
o, =2z oy+2yzoyz+y oz
« Equation for Uncorrelated quantities
X = X(¥¥g s ¥p)

2 fox 22
cx—izla_yi Yi

example:
~ difference of two estimators
X=Yy-2
2 2,2
Ox = Oy + Oz

[135)

= These exprassions are in terms of o2, but similar relations hold for the square of the confidence intervals.

[136)

KAPL-4823

- Monte Carlo

Eigenvalue Calculations

Eigenvalue Calculations

P
Eigenvalue Problems — Reactor “criticality"

¥ (p) =J\P(P')R(P'-'P)dp'+kl- (p)F(p' = p) dp’

lrey
off

Y =ReW4

Generation Model

w0+ L Reg@+D, L gL g®
K(l)
off

(i+1) 1 -1 0] M Q) |
v = —[I-R] Few Ke,f=ﬁ=-\p dpdp
Keff
Monte Carlo approach:
» Guess ‘P(o) . Kﬁ?f)
* Follow a "batch"” of histories, estimate lIf('), Ké?f
* Repeat until converged
» Discard initial batches

* {terate, accumulating scores — until variances are small enough

KAPL-4823 70

137}

[138]

Eigenvalue Caiculations

[139]
Single particle
« random-walk for particle history {Select source r, Q. E randomly |
* simulate events, from birth to death !
. Track through geometry,
* tally events of interest o select collision site r randomly
!}

Collision physics analysis,
select new Q, E randomly

Batch of histories ("generation®)
« random-walk for many particle histories

« tally the aggregate behavior
Overall
« timesteps #* Loop over timesteps
- material changes . . % Loop over histories
« fuel depletion : : : ..) random walk
* bumable absorbers . . .
+ control rods . . = update Keff & reaction rates
. =» compute statistics
. «p update number densities,

Eigenvalue Calculations — Convergence
[140]

Monte Carlo Eigenvalue Calculations

J
8,

- |
iteration, | —
+ D = number of initial "contaminated" batches to discard

* N = number of batches to keep, for averaging resulits
D & N determined by heuristics, not theory:

» should have pD « Opatch? where p is the dominance ratio, &

Opatch IS Std. dev. in Kyaeh

 should have N»25 , sothat o's are small & reliably estimated

» use larger N on weekends,

.....

KAPL-4823

Eigenvalue Calculations — Convergence

1.04

[141)

K-effective — batchwise

1 M =1,000 histories/batch

Batchwise K ==

D= 10 batches discarded
N = 1,000 batches kept

K-effective — cumulative

0.98

0975

Eigenvalue Calculations — Convergence

1.04

1000

(142

K-effective — batchwise

098

0.96

M = 10,000 histories/batch oo

995

D = 10 batches discarded
N = 100 batches kept

099

K-effective — cumulative
0985

098

0975

KAPL-4823

80

72

Barchwise K«
100 120
100 120

Eigenvalue Calculations — Convergence <o A
.

[143]
1.04
Batchwise K aane
10
K-effective — batchwise .
a8
0.96
M = 20,000 histories/batch o5
10 20 30 40 50 60
. 0.995
D = 10 batches discarded
N = 50 batches kept
099
K-effective — cumulative
0.965
098
0975
0 10 20 30 40 50 60
Eigenvalue Calculations — Bias — Overview < AT
: . a4
Bias
* K = eigenvalue from a single Monte Carlo calculation
» Repeat the calculation Jtimes (with different random numbers)
«If
Jll_l‘:'le z K = Kexact
i=1
then the Monte Carlo algorithm is unbiased
Eigenvalue Calculations
« Unaccelerated power method sV = s HE ~ndr
K
* Typical Monte Carlo algorithm
— follow batch of M histories — store fission sites in a "bank"
— from M’ banked sites, randomly choose M to start next.batch
» Source renormalization [M'—=M] introduces bias
— needed to prevent population explosion or extinction
73 KAPIL -4823

Eigenvalue Calculations — Bias — Overview (145]

Theory
' * Discrete M C: Gelbard & Prael (1974), Brissenden & Garlick (1986),...
* Continuous M C:2 Sutton & Brown (1991),
(o]
sbias = -~ o [sum of correlation coeff's between batch k's)
eff
0 ﬂ
. S |
2K gg¢ 2 Pl .
, i=1 1000 particles / generation
* Smaller M
M = histories / generation 10 particles / generation
=» larger bias in kgg i
_ .. -=q2e; I ig}--- Bias
- larger bias in source I
0.94 096 098 y 1 b.-l:tfm:m

Practice Kq# (generation)
» bigger, faster computers «» larger batches (M >> 1,000)

» negligible bias in Kg¢
Eigenvalue Calculations — Blas — Overview T ST
‘ - nag
Eigenvalue vs 1/batch-size
0987 v ——
0806 i~

oss4 } "N
.,\I\
\~\~.
.
oss3 | patey
S
.
osez | T
e
"{"\-\
oss | . -
.98
° 0.02 0.04 0.06 0.08 (¥}
1/ (particles/generation)

KAPL-4823 74

Eigenvalue Calculations — Bias — Overview AR
(i [147]
Theory

* Discrete M C: Gelbard, Brown, & Gu (1993)
Ok s

* Bias in region source = - * [sum of correlation coeff's between

off batch k & region source]

okos '
-=2NR

zk,ﬁ_z ks
i=1

» Smaller M (M = histories / generation)
=» larger bias in region source

*» For reasonable assumptions (verified for many test cases),
(bias (bias

o)Reglon Source o) Eigenvalue

Practice
* bigger, faster computers =» larger batches (M _>> 1,000)
* negligible bias in eigenvalue -» negligible bias in region sources
« similar reasoning should (?) apply to other reaction rates

Elgenvalue Calculations — Bias — Overview TN A
2 [148]

Source shape for various batch sizes
0.04 r Y T -y

Qa0s ¢

0.0 p

0025 p

a2 b

10 particies/generation —+—
20 particles/generation ay—

50 particles/generation —g—
10000 particies/generation -

Q015 &

001 ¥

0.005 p

position

75 KAPL-4823

Source Nomalization Bias [149]

Source Normalization Bias

Source Normalization Bias [150]
Derivation |

The transport equation can be written in integral form in terms of the source density as
() = %fdr’é(r)H(r‘-r).
Consider a Monte Carlo caiculation where
(™ :
s(m (r) = E wi(m)b(r— ri(m)) = fission bank for batch m
i=1

w{™ = fission production weight at fission site i of baich m

r™ = location of fission site i of batch m.

Now, assume that the Monte Carlo algorithm is such that
J(m)
w'™/ S wi('") = probability that a particular history in batch m-+1 will begin at r'™
i=1
and thus

(m)
s(m+l) n = "Jd"'s (FYH(r—r) .

JNe™ (1)
fdrs‘"‘) D)

where e(m) (r) is a random function with zero mean.

KAPL-4823 ' 76

Source Normalization Bias [151]

Now define a normalized distribution
s(® = (™ @M\,
and define a fluctuating component of the Monte Carlo source distribution so that
. s™ (1) aNs(r) + Nt ™ (). :
Substitute into
smeD () _ }Jdrs(m) (;:')H(r —-7) . Jﬁs‘"" .
f ar'st’ (r)

expand in powers of 1/./N, reiaiﬁing only terms of order 1/N, and ensemble average to obtain
s(r) = %fdr‘s(r)ﬂ(r -1 —NI—JdVA(r,) fdr (G (L)

™Yy = fdr(;('"’ (MA@, +e™ ().
Now, let v
s(r) = é(r)+-:]sf(r).
Substitute, retaining term to 1/N, to get
N PO 1 s
#() = Z[1-TITfdr €T (), where TF(r) = 2fdr [H(Y 1) -3 (VIF(1).

I “F
Source Normalization Blas ' [152]

Now, define the eigenvalue bias as
AhmA-f = %fdrs'(r).
and we find that
1 -1
A\ = -;l—ifdr[l—l‘] I‘fdf‘(t(r)t(r‘))

- _Ni ar 3 r'fdr(t(r)?;(r'))

i=1

L D e (MED o (M)
e dr.zfdr‘(t N7 (M).

j=1
Finally, use
-&rdrs (m) " = %Jdr[Ns)+ Jﬁt(m) (r)]
so that

m _ s 1 pp.(m)
A A J_Nrdr!; (r)

and
@«
Al = —; { (}'(m _ i) ().(m) - i)) = (sum of all eigenvalue covariances)/(true eigenvalue)
j=1
=» For RACER, and the number of histories/batch currently used for design calculations, the bias
appears to be completely negligible.

77 KAPL-4823

Source Normalization Bias

[153)

MacMillan’s Correction

The Monte Carlo iterative scheme may be represented as

(m)
dr's r)H(r—r)
= .".‘r - ((m) + Jﬁe(m)
f dr'S" T (r)
The ideal (unbiased scheme), would be

g™+l .

rgoa (™ .
gmen [w8 T OHE

WNe'™ () .
where the number of histories/batch can fluctuate, and where the true eigenvalue X is unknown.
Comparing the two operators, we can see that they differ by the factor

fdrs"") ("IN 5 m

Py i
MacMillan's scheme approximates this by
A(m)
™ 17/M°
m=1

[154]

KAPL-4823 ’ 78

' Varlance Roducﬁm

Variance Reduction

Variance Reduction

Stratified Sampling
Consider the integra!

_G =f;dxg(x).-
The Monte Cal:‘o evaluation is
G530
n=1
with variance
2 _174,..2 2
o = N[‘;dxg x)-G]

Stratified sampling:
» divide domain into M intervals m

* perform N, trials in each interval (mNm = N)

 compute the integral

m=1 M

Xm 2
2 NL[AxmLm_ldxgz(x) —Gm] s0

2

79

[158]

[1s6]

KAPL-4823

Variance Reduction (157]

Importance Sampling

Consider \ho function g(x) and PDF p(x) defined on the interval {a,b]:
s the mean s

= faw 090
« the variance is

o’ = (g - (g)’

(5= j: dxp ()97 (%)
Now, suppose we use instead the PDF q(x) to chose the random numbers on [a,b]:
* assign each trial a “weight” w(x) = p(x)/q(x)
* the mean is unchanged

faamwmge = fawmgw = (@

a a

« the variance is

b 2
5= f dxq(x)w’ (x)g° (x) - [f dxq (X)W(X)Q(X)]

- faxa0 289 - (@]

* if q(x) is chosen to be p (x) g (x) /(g) then the variance will be zero (however, {g) is not known)

= To minimize the variance, choose q so that pg/q is approximately constant.
Sample more in the “important” regions.

Variance Reduction » : [158]
Splitting and Rouletting

Goal: Track histories that will contribute significantly to the desired results, and don’t track those
that will not—but do so in a way that is unbiased.

* define a minimum (wi,,}, “average” (wy,e), and maximum weights (wj,) for each region & energy range
« following each boundary crossing and collision '

— if the history weight (w) is less than wioy
- roulette
— terminate the history with probability 1 - w/wg,e
- if it survives, increase the weight to w,y,

— if wis greater than wy;
- split
—replace the original history with I_W/waveJ new histories
— create yet another new history with probability (w/w,) ~ Lw/ wavej

- assign the new histories each a weight of wg,,
« rouletting increases the variance
« spiitting reduces the variance
« splitting requires additional storage

+ if done properly, the use of splitting and rouletting decreases the cpu time required to achieve a variance

KAPL-4823 80

Variance Reduction <t AP
[159]
Additional Variance Reduction Methods

* survival biasing

Instead of terminating upon an absorption, always scatter with reduced weight

< exponential transform

modify total cross section as X, = Z,[1-pQ- 8]
0= p <1 = adjustable parameter

8 = neutron direction

g, = preferred direction

* correlated sampling
maintain some correlation (e.g., random number sequence) between unperturbed & perturbed calcs.

Variance Reduction E‘? Aﬂﬁ {160}
importance Sampling
Consider the fixed source problem

Y(R) = de'K(R' =+ R)y(R) +S(R)

X-denp(R)x(R) '

y (R) =collision density at phase-space point R

S(R) = first-flight collision density due to fixed sources
X = desired functional (e.g., reaction rate)
x{R) = contribution to functional due to a collision at R

Decompose the kernel
K(RR—»R) = (1-a(R))k(R'—R)
a(R) = absorption probability at R
k(R'— R) = normailized kernel

Now, define altered quantities
a (R) mx (R) /¢t (R)

k(R'—=R) =k(R' — H)\pT(R)/dek(R' —R)yT(R)
§(R) =S (R)y1(R)/[dRS (R)y! (R)

where the adjoint function Y1 (R) satisfies
‘qn‘(n) = [dRK(R—~R)yt (R) +x(R)

=» A Monte Carlo calculation using the altered quantities (and with appropriate weights) produces the
corract result with every history! Of course, the adjoint is never exactly known.

81 KAPL-4823

Multiplied Fixed-Source

Calculations

Muttiplied Fixed-Source Calculations

Physical Problem: subcritical system with an extraneous source

RACER Method:

* total number of histories/batch = constant = N
*N=S+F

S = number of histories from fixed-source
F = number of histories from induced fission source

8 and F may vary from batch to batch
*(F) = kN

+{S) = (1-K)N
* k = (expected # of neutrons due to fission)/(total # of neutrons)

RACER Algorithm:
1) firstbatch: F1 = 0; Sy =N
2) estimate k .
« if in discarding stage, ki = F,/N

» otherwise, use cumulative value
3) subsequent batches

Fior = [KiN+8]
Sis1 = N-Fiy
& = random number on (0,1)

* Note: the spectra used for the fixed and fission sources may be different.

KAPL-4823 82

J [162)

[163]

Vector & Parallel

Monte Carlo

Vector & Parallel Monte Carlo — Introducti A
arallel uction [164]

Trends in Computing Technology

« Commodity chips:
— CPU power - ~2Xx gain/18 months
— Memory density = ~2Xx gain/18 months
« Supercomputers: =» ~4yr development time
» UNIX operating systems + networking =» distributed computing

Need to reduce Monte Carlo uncertainties by 2x ?

« Wait 3-4 years for new computer

or
» Use parallel &/or vector processing now
Ailternatives
» CRAY Supercomputers - real supercomputing
* Moderately Parallel computers -» cheap supercomputing (?7)
» Workstation Network - free supercomputing (??)

83 KAPL-4823

Vector & Parallel Monte Cario — Introduction.

' s

Scientific Computations — State-of-the-Art

Supercomputer Advances:

32 ——— Number of
Processors
16
8
4 585 Single-Processor
w7 Speed
2 i3/
X0,
1 Cray-1
1975 1985 1985
Single-Processor Speed: 20yrs = 4X

Number of Processors: 20yrs = 32-64 X

= Parallel & vector processing are now "routine”
& necessary for high-performance computing

Vector & Parallel Monte Carlo — Introduction

[1es)
Characterize computers by:

* CPU:
* Memory:

scalar, superscalar, pipelined, vector, RISC, CISC,
shared, distributed, cache, banks, bandwidth,
bus, switch, ring, grid,

« |Interconnects:

Basic types, with examples:

Traditional Distributed
« €DC-6600 <D Memory ¢Zpd) P -+ CPYD
* CDC-7600 Paraliel
* CYBER-205 * Mai
» workstations [Mem | : w;"‘:h‘;f‘e:' 2 ['vem] [Wem] | Mem]
Shared Clustered
Memory ces Shared
Paraliel Memory
* CRAY-xmp « cluster of
*CRAYymp [Mem 1 supers &/or
* CRAY-C90 super-Ws's
* super-ws

KAPL-4823

84

Vector & Paralliel Monte Carlo — Introduction AR
2]y [167]

Particle transport Monte Carlo is naturally parallel
each particie in problem is independent

* Fixed-source problems:
each particle in generation is independent

« Eigenvalue problems:

= Particle histories can be analyzed in parallel

Monte Carlo is often the first use for advanced computers
—_ compabt coding, little I/O, simple paraliel algorithm

« Easy to port
* Flexible — independent histories on each node
« Big payoff — bigger & faster calculations

Computational considerations
— hours / days / weeks of computing

» Expensive
» Compact — moderate memory size
* CPU-intensive — very little /O or communications
T(computation) >> T(communications)
Vector & Parallel Monte Cario — Vector Processing .
pi-D nes)
veCtor ProceSS|ng Vector Functional Unit
* Fortran
do j=1,L
a(j) = b(j) + c(j)
enddo
* Timing
Tvector = lstanup + L toperation
» Speedup
' Lt aar- tecal
S = Tscatar/ Tvector = i +staatr 2P = fsﬁﬂ
startup vector-op vector-op
o
3
i

Vector Length
85

KAPL-4823

Vector & Parallel Monte Carlo — Vector Processing)

[169]
Vector Operations
» Gather — form a contiguous vector from data in arbitrary locations
doj=1,L b(): 7, 5 3 6 1, 14
i0: 4, 1, 2, 4, 4
a(j) = b(i())
enddo a(): 6, 7, 5 6, 6
» Scatter — disperse vector data to arbitrary locations
doj=1,L b: 1, 2, 3 4
i0: 4, 1, 2, 5
a(i()) =b()
enddo a(): 2, 3 7, 1, 4 17, ..
Vector & Parallel Monts Carlo — Vector P ! i AT
» araliel Monte Carlo e T Processing .[1701
Vector Operations

= Mask — either/or selection of data from two vectors

doj=1,L
if(test(j)) then test): T, T, F, F, T
c(j) = a() a(): 0, 1, 2, 3, 4
else b(): 5, 6 7, 8 9
c(j) = b()
endif
enddo c(): 0, 1, 7, 8, 4

» Compressed Index Generation — find the indices of selected items in a vector

k=0
do j=1,L test): T, T, F, F, T
-if(test(j)) then
k=k+1
indx(k) = j
endif k: 3
enddo indx(): 1, 2, 5

KAPL-4823 , 86

i - AR
Voctcsf & Parallel Monte Carlo — Vector Processing _ A

The Tally Locp (scalar)
* Indexed accumulation

do j=1 ,L
sum(i)) = sum(if)) + r()

enddo
* Used to tally particle scores into bins, for overall results
» Tally operations account for 1-10% of time

* Not readily vectorized (some tricks for Cray-C90)

Vector & Paraliel Monte Carlo — Vector Processing A
5

Writing Efficient Vector Coding

* Clean loops — structure & indent (Good-looking code runs faster!)
* Innermost loop should be the vector loop
» Avoid IF tests, unless strictly "either/or"
* Never use "GO TO" statements
- » No subroutine calls
* No user-defined function calls
* No recursion (ie, forward-stores or backward-fetches)
« Timing estimates:

— Count all operations inside Idop, including both branches for IF's.
— Multiply by vector length & clock cycle time.

— Measure. If much different from estimate, find out why !

[171]

[172]

87 ‘ : KAPL-4823

Vector & Parallel Monte Carlo — Vector Processing ‘?

Amdahl’s Law

« If a computation has fast (vector) & slow (scalar) components,
the overall calculation time will be dominated by the slower component

» Speedup = T'fL_f_/ﬁ' where f = fraction vectorized
(1-1) + R = max speedup from vector
for R=10 for R=w
i S 1 S 1_ s i S -
20% 1.2 80% 53 20% 1.3 90% 10
40% 1.6 95% 6.9 40% 1.7 95% 20
60% 22 95% 9.2 60% 2.5 99% 100
80% 36 99.5% 9.6 80% 5 99.5% 200

* For effective vector performance, must vectorize everything !

Vector & Paralisl Monte Carlo — Vectorization

Vectorized Monte Carlo

« Monte Carlo { Select source r, Q, E randomly §
: : \ y
Simulate neutron behavior Track through geometry,
by random-walk. » select collision site r randomly
)

Collision physics analysis,
selectnew Q, € randomly

J

« Conventional Monte Carlo

Analyze many events for one neutron, repeat for other neutrons
* Vectorized Monte Carlo
Analyze many neutrons forone event, repeat for other events

=> Event-based algorithms developed by Kalos, Brown/Martin, Bobrowicz

KAPL-4823 88

[173]

[174]

Vector & Paraliel Monte Cario — Vectorization A
[175]

Monte Carlo is difficult to "vectorize"

* Branching, data retrieval, & arithmetic operations vary for each particle,
depending on location, type of collision, code options, etc.

* Typically, ~ 1/3 of essential Fortran statements are IF-tests,
which inhibit vectorization

- * Not useful: — "automatic vectorizers"
— syntactic hand-vectorization by programmers

[In early 1980s, LANL tried each approach with menp =» 2X slower]

Method for Vectorizing Monte Carlo
1. Use supercomputer with vector hardware for data-handling
2. Deliberate & careful development |
3. Restructure the database
4

Restructure & rewrite the Monte Carlo code

[176]

Vector & Parallel Monte Carlo — Vectorization : < A7
Method for Vectorizing Monte Carlo

1. Use supercomputer with vector hardware for data-handling

« Only ~40% of operations are floating-point arithmetic (*, +,-, /, sqrnt)
* 40-60% of operations involve data-handling, indexing, selection,
« Must have hardware support for data-handling (gather, scatter, mask, compressed index, ...}

2. Deliberate & careful development

« Start small, with few options

* No committees !

« Focus effort on total vectorization

« Build gradually, restructuring as needed for new features

* Debugging is extremely difficult — test everything, separately & integrated

3. Restructure the database
« Unified data formats, with no special cases
« Arrange for simple & logical direct addressing using vector gather operations
« Use some new (but equivalent) physics, if necessary
4. Restructure & rewrite the Monte Carlo code
» "Top-down" development, based on event-driven algorithm
* Use some new (but equivalent) physics, if necessary

« Avoid rejection methods for random sampling
* "Vectorize” the IF-tests by data mation, extra computation, or new algorithms

89 KAPL-4823

Vector & Parallel Monte Carlo — Vectorization A
5P

[177]

Vectorizing IF-tests

In Mont}e' Carlo codes, IF-tests arise in the context of:
implicit loops, conditional coding, code options

implicit loops

« Logic of the form “loop UNTIL"

* Usually coded as "IF GOTO" & backward branch, instead of "DO"

» Number of passes is generally not known in advance

» Some particles satisfy the exit conditions on first pass, others take many passes

* Vectorize by:
— Data motion — rearrange the particle data after each pass (eg, event-driven algorithm)
— Extra computation — dummy ops on "finished" particles till all are done
~— Different math/physics — eliminate impilicit loop (eg, direct sampling instead of rejection)

Conditional coding
« Selective operations of some particles, but not others

= Vectorize by:
— Gather / Operate / Scatter
— Rearrange selective ops into series of “either/or" ops using vector masks
— Generalized equations, without special cases

Code options
* Easy — one test/branch for all particles

Vector & Paraliel Monte Cario — Event-driven Algorithm o = 1%
= (78]

Monte Carlo — Vectorization

Conventional Algorithm

history event sequence

1 sfctfbfbfcifbk ™

2 sIbfcicibibifbik

3 sIbIfbitbk

L §IbK .
5 sfcfcfctftbftbfctbfbk

Event-Based Algorithm

history event sequence

cfb-~fb-f~-~-~~-cfbk
~f-cf-cfbfbf-~~-bk
fb~fb=-==m===~-= Kk

k

- e e ar e e e m ar e @ e w e

~cf-cf~cfbfbfcfb~-~£fbk
vector event sequence
sfbcftbcfbcftbfbfcfbkfbk

[F 0 S S

anonnon

Lo W T W W

oCov
t

KAPL-4823 90

Vector & Paraliel Monte Cario — Event-driven Algorithm

RACER Computational Events

[179]

Vector & Paraliel Monte Carlo — Event-driven Aigorithm .

o)

Monte Carlo — Vectorization

Event-Driven Algorithm:

Event Queues

Event1 [TTTTTIT]
Event2 [TTTT]

EventS [TTTTITTIITIT]
Event4 [T T TTIITTI1]

etc.

while events are pending:

— select event (1,2,3,...) with largest event-queue
— execute the event:
* Pull N painters from event-queue
« Gather attributes for N particies from stack
* Analyze event — vector calculation
* Scatter modified attributes to stack
 Push pointers onto next event-queue

91

pointers to particles

particles <

Particle Stack

Attributes <
X,y,Z,u,V,W,E,...

KAPL-4823

Vector & Parailel Monte Carlo — Event-driven Algorithm

RACER — Code Organization

[181]

Model Event Neutron
Properties Analysis Attributes
7 “\ soessssasersesstn 7 Ny
Secto XYZ.E
Geometry
* SURFACE
* SECTOR
* GRID
Compositions
* MATERIAL
Edit Specs
« EDITS
Tally Scores
Physics Data
+ Cross-sections
* Probabilities
» Angular PDFs
s....efc
'y vy
\ v
Vector & Parallel Monte Carlo - Event-driven Algorithm < AN
f162]
% Loop over timesteps
. # Loop over batches
. . =) select starters
. . % Loop over edit-groups
. J . =} clear edit-group tallies
. . . % Loop over super-groups
. . . o =» get o's, f{w's,
. . . . = clear event-queues :
. . . . =» push to event-queues: s pointers to neutrons in supergroup
. . . . % Loop until event-queues are empty
. «» select event with longest pending queue
. «» pull from event-queue: pointers to neutrons
. = gather: needed neutron attributes
. =» analyze event & tally
. =) scatter: - updated neutron attributes
. «» push 10 next-event queue: pointers to neutrons

. . =) update eigenvalue, results, stats

. =» depletion

KAPL-4823 92

Vector & Parallel Monte Carlo — Vectorization AT
225 [183]

Monte Cario — Vectorization
Status

* Vectorized Monte Carlo, with event-driven algorithms,
was proven to work effectively in ~1980 on Cray-1 & Cyber-205

* Large speedups (20x or more) were demonstrated
in production Monte Carlo codes, on real problems

* Relatively easy to migrate to MIMD or mixed MIMD/SIMD architectures
* Very few large production codes have adopted this approach

What'’s the problem ?
» Must restructure the entire database & rewrite the entire code
» Large amount of people-time , =» expensive

"Why change something that works? - QA work

Vector & Paraliel Monte Carlo — Parallel Processin < A
2 [184]

Parallel Programming

SIMD Machines
* Fine-grained parallelism, low-level
* Vector algorithms & programming

MIMD Machines & Distributed Systems

Specify Decompose Analyze Collect
) Physical Computational Sub-domains Problem
! Problem Problem in Parallel Results

« Coarse-grained parallelism, high-level

« Ideal for loosely-coupled machines & méssage-passing libraries
pvim, p4, MPIl, express, lam, parmacs,

93 ' KAPL-4823

Vactor & Parallel Monte Carlo — Parallel Processing

Physical Problem

« 3-D geometry, continuous-energy physics
*vim—ANL, racer—KAPL, mcnp—LANL

Conventional Solution Algorithm

[185])

« Random walk for neutrons

. { Global
Tallies

« Tally events of interest

Parallel Algorithm

« Distribute neutrons to different processors
« Local tallies on each processor
« Combine local tallies into global results

Status Local

Tallies |

 racer — in production use,
Cray-C90, Cray-YMP, Meiko-CS'1

Global
Tallies

* vim — in testing,
workstation network & IBM-SP1

* menp — in production use,:
workstation network, Cray-YMP

Local
Tallies

Vector & Parallel Monte Carlo — Paraliel Processin A%
:

Monte Carlo — Parallel

Master-slave approach

* Master
— Control
—All /O

* Slaves
— computations

Master process Slave process

% Loop over timesteps

. #* Loop over batches

. . =) select starters

. . % Loop over chunks
» o « pfindareadysiave <& T ~
. < send starters to slave

¥ Loop forever
. =} initialize tallies
. % Loop over chunks, till done
> om ‘e= b toll master: ready for work
: s receive starters from master
. . # Loop over historles in chunk
. . . «» random walk for 1 history

. . % Loop over slaves . . cee

. . . = collect slave tallies g, . eee

- Y e o - ’ ”’ ‘ t

. . <% update eigenvalue, results, stats .e .~ = send tallies to master

KAPL-4823 94

[186]

Vector & Parallel Monte Carlo [187]
3
racer — Parallel / Vector Performance

» Measured performance =p histories / minute

*» 3-D full-core PWR test problem

« Fixed number of histories/processor

* Range in performance spans 1000x [8 hr Cray-C90] ~ [1 yr workstation]

- 18407

Cray-C90/16 - 25K hist/proc ages
Cray-YMP/B - 16K hist/proc +@s+
Meiko-CS1 (1860) - 4K hist/proc wgw

Historles / Minute

1 10 100
Number of Processors
Vector & Parallel Monte Carlo <Ton AT
[188]

Vector & Parallel Monte Carlo — IsSUes '

« Hierarchical parallelism

* Shared memory vs distributed memory
« Parallel speedup & scaling

» Software & Portability

» Reproducibility

95 KAPL-4823

Monte Carlo Algorithms: Vector & Parallel < L
— —_— 9]
Scalar Monte Carlo Parallel Scalar Monte Carlo

Loop over batches }.oop over batches

° . Loop over particles, N at a time

. {.oop over particies . .

o . . . scalar scalar ... scalar

. . analyze many events . . cpu-1 cpu-2 .. cpu-N

. . for 1 particle history . baad

- paraliel = 1 particie per CPU,

scalar analysis
high-level: parallel
low-level: scalar
Vector Monte Carlo Parallel Vector Monte Carlo
Loop over batches Loop over batches
¢ : . Loop over events
Loop over events . .
. . . . vector vector ... vector

. . vector analysis of 1 event . . cpu-1 cpu-2 ... cpu-N

. . for many particle historles . haed

o parallel = many particles per CPU
vector => events on each CPU
high-level: paraliel
low-level: vector

" Vector & Paraliel Monte Carlo — Hierarchical Parallelism

f10]

RACER paraliel algorithm

High-level:
s independent tasks + message-passing

« distribute histories among processors
» Master / Slave algorithm

~— Master: control, distribute work, collect results
~ Slaves: compute particle histories, no communication with other slaves
Mid-level:

(next) = independent tasks + shared memory
* *macro-tasking"

* several slaves share memory, take turns on “critical regions®

x Low-level:
* "microtasking”
» split each DO-loop into pieces, compute, synchronize

V Low-level:
« vectorlzation, within each slave process
« Event-based algorithm (Brown/Martin, 1981)

— vectorize events independently (collision, 3D flight, boundary, ...)
— create & manage queues of particles waiting for each event

KAPL-4823 , 96

Parallel Monte Carlo Algorithms — Alternatives for Shared-Memory T2 L
: ﬂ§ [191]
Shared memory usage
Algorithm decisions: Privatedata vs. Shared data
Issues: overall memory size, data coherency, memory contention,
lock/unlock overhead, portability
BACER — 1986 f‘,"""' memory
* benchmarks * LOCK I" SERREERARAY r sach CPU
o % « mem access a13lc. BERK
Cray-XMpP Bt v Ak e .o I DU gy Ao
RACER — 1987
rivate memol
* Cray-XMP or sach CPU v
memory shared
by all CPU’s
BACER — 1988,..today
* Cray-YMP private memory
* Cray-C90 for sach CPU
* super-WsS
Parallel Monte Carlo Algorithms — Distributed Memory & Clusters < AV
[192]
Distributed memory usage
Algorithm decisions: private data (only)
Issues: local memory size
BACER — 1989...today
. rivate me
. VV.S' ':;ucﬂs:,’ 2 For each Cgl‘rw
Clustered Shared-Memory
Algorithm decisions: Private data vs. Shared data
issues: overall memory size, data coherency, memory contention,
lock/unlock overhead, _portabili
BACER — (soon)
« Next super ivat
. S'rlyt-CB(; ws ° LOCK : fp;r .-ZJ'EP"&'? v
« cluster of super- . .
- cluster of anything . UNLOOK el :;:l\rgpﬂ";:ud

97 KAPL-4823

Parallel Monte Carioc — Speedup & Scaling

Performance Measurements

* Metrics

« Fixed Overall Work

Speedup

Sn

Efficiency my

— Efficiency decreases with N
— Speedup (eventually) drops
— Example:

constant — # histories/batch

T1/TN
Sy /N

N = # processors

variable — # histories/processor (~1/N)

* Fixed Work per Processor
— Efficiency approx. constant with N

— Speedup approx. linear with N

— Example:

Parallel Speedup & Scaling

variable — # histories/batch (~N)
constant — # histories/processor

= called "scaled speedup”

Master / Slave Algorithm

KAPL-4823

« Master

— control
— distribute work
— collect results

« Slaves

— compute particle histories

— no communication with other slaves

Ts

Te

.

e

A,

o

Tr

L

A-

/\'

i

-

distribute

work

compute
histories

98

collect
results

[193)

184]

Advanced Compute < A |
. ompren P pes
*Parallel” Message Passing
Most parallel computers support

concurrent message-passing
between separate pairs of nodes

ﬁA
ﬁB
ﬂc

t=

"Serial" Message Passing

But, multiple messages to a
single node are (almost always)
handled sequentially

ﬁ A
' —p- B
t-
Paraliel Spesdup & Scaling ﬁ,_g ﬁé [196]
3 .

For a given physical problem,
» computation time ~ number of histories (M)

* Define:
1 = number of histories in job (fix.src.) or batch (eig.)
for calculation using 1 slave
N = number of slave processes
My = number of histories per slave
in job (fix.src) or batch (eig.) using N slaves
Ty = total time required for My histories = Tg + T + T,
*Fixed Size” Problem: My = My/N
= Constant number of particles in job (fix.src.) or batch (eig.)
» Goal of parallel calculation: same work, Jless time
"Scaled” Problem: . My = M,

~ « Constant number of particles per slave
*» Goal of parallel calculation: more work, same time

29 ' KAPL-4823

Parallel Speedup & Scaling — Eigenvalue Problems

[197]
Ts Te T _
<Ml'..- ‘bﬁ-*|.- i
W em— ss 4} 0> W em— a0)} otc.
M ran b M .-l..é:
t, = cputime per history, ,
depends on: physics, geometry, Fortran compiler,
machine speed & architecture,
computer coding, random straggling, etc.
L = amount of tally data per slave, proportional to # regions
Tg =~ O negligible — send coordinates to slaves
T, ~ s+ L/r s = latency, r = streaming rate
Te =~ Myt
T = Mt /N (fixed size)
T cale - M, (scaled)
Paraliel Speedup & Scaling . o AT
- t1se

Scaling Models for Parallel Eigenvalue Calculations

Broblem Message
Size Passing Barallel Speedup
fixed Sux = T1/TN™
. serial Stixsor = T4/ (0 + TyN + NT;) = N/(1+cN?)
* parallel Stixpar = T1/ (0 + TN + T,) = N/(1+cN)
scaled Secale = NTy / Tytcte
" serial Sscaleser= NT1 / (0 + Ty + NT;) = N/(1+cN)
" parallel Sscalepar= NT1 /(0 + Ty + T;) = N/(1+c)

c=(s+Lir)/ (Mty)

KAPL-4823 100

Paraliel Speedup & Scaling ' (199]
Scaling Models for Parallel Eigenvalue Calculations

Lroblem size communications Speedup
fixed ~ serial S=N/(1+cN?) b
fixed parallel S=N/(1+¢cN) é 'I
scaled serial S=N/(1+cN)) é |
scaled parallel S=N/(1+¢c) é
Scaling Models for Parallel Fixed-source Calculations -
for long calculations: S~ N i

N = number of slaves
c= (s+L/r)/ (Mty)

Scaling — Limits & Metrics (200]

Parallel Eigenvalue Calculations

Fixed size, serial messages s
S = N/(1+cN?) 1
2Ve
| N
i
ve
Scaled size, serial messages :
1/c = L
S = N/(1+cN) 1/ 20 /
Y N

N = number of slaves
c= (s+L/r)/ (Mty,)

101 KAPL-4823

Scaling — Limits & Metrics (201]
Parallel Eigenvalue Calculations — scaled size, serial messages

S = N/{1+cN)
S <= 1/¢ N = number of slaves
max =
c= (s+Lir)/ (Mt,)
N1/2 = 1/¢
Examples:
* VIM, TREAT problem
Sun Sparc2 workstation cluster c=.0043 Smax = 233
rs6000/350 workstation cluster c=.011 Smax = 93
SP1, using ethernet - c=.014 Smax = 70

SP1, using EUIH comm. c=.00134 S, =748

« RACER, “typical” large problem

100 K histories/min, 20 K histories/slave
32 MB tally data, r ~ 1800 MB/sec

Cray-C90, using SSD for messages ¢~.001 Smax ~ 1000
(16 processors, max)

Vector & Parallel Monte Cario

Software & Portability Issues

EF [202]

Portability

* Best bets (for now) - Fortran-77 + C + message-passing
_or =» Fortran-77 + C++ + message-passing

» Maybe - Fortran-80 + C

* Gamble -» vendor-specific languages, new languages

* Not likely = "automatic® parallelizers

"Standard" message-passing packages

* pvm = from Oak Ridge & Univ. Tennessee

mpi <» "Message-Passing Interface", draft standard
* pé =» from Argonne

* express =» commercial product, Parasoft

Performance using distributed computing
* Minimize communications
* Minimize disk /O (master only ?7?)

KAPL-4823 102

Vector & Parallel Monte Carlo
3
Parallel Monte Carlo — Reproducibility

Eigenvalue Calculations

* Power iteration
=» Histories within a batch are independent— analyze in paraliel
=» Successive batches are not independent— analyze sequentially

iy » Large batch size
=» maximize parallel efficiency & performance
= Side effect: reduced bias in M.C. eigenvalue & shapes -

Reproducibility

» Must get identical results (bit-for-bit) using 1 or many processors
* A solved problem, see
*Reproducibility & Monte Carlo Eigenvalue Problems,”
F. B. Brown & T. M. Sutton, Trans. Am. Nucl. Soc. €5, 235 (June 1992)

=» special random number generators -
= reorder fission-site bank at end of batch

Vector & Paraliel Monte Carlo

Reproducibility & Monte Carlo Eigenvalue Calculations

» Difficulties: — Random number usage by each particle
— Ordering of particles in *fission bank"

[N /1
p;vﬂk\ » R iféjj

J L

« Require identical results if calculation repeated
(with same random numbers)

— with different number of processors

— with different vector length limits :

— with different "supergrouping” of cross-section data
=» use a separate random seed for each particle

P00 00 G OGO OO O COOOPO PGPSO PEOORPPOES OO RSN TSES

* | «— Seeds for particle k —» | « Seeds for particle k+1 — | « Seeds

=» unique reordering of fission bank at end of each batch
Brown & Sutton, Trans. Am. Nucl, Soc. 65, 235 (1992)

[203]

[204]

103 KAPL-4823

RACER Monte Carlo System — Overview

RACER Monte Carlo = 3-D reactor physics analysis

OSR

1965
ORNL
scalar

cdc-6600

STEMB

1970
KAPL
scalar

cdc-6600,

cdc-7600,
cyber-205

 ——

STEMB/
MCV

1982

KAPL
4 M

vactor

cyber-205

 Extensively benchmarked vs experiment & real reactors

» Most-used KAPL code: ~30-40% of all Cray time

Focus for RACER development:

=> very large & detailed 3-D reactor physics problems

RACER Monte Carlo System — Modules

KAPL

paraliel &
vector

cray-xmp,

cray-ymp,
cray-c80

NOVAN

RAD1 MASKER

KAPL-4823

new deplation timestep

MCVMP |—»MCMASTER]

- [MCSLAVE

[mcStAVE!

=

[206]

RACER Monte Carilo Syste:) . Tom AP
— f207]

Module Development History (dates are very approximate)
Datapool: 1965 Kazmierczak, Warrington,, Austin
Datatran: 1965 Kopp, Selengut, Schilling, (Cecil invented it)
OS5R: 1965, Coveyou, Irving, Freestone, Kam (ORNL)

(scalar M.C.)
| RAD1: 1970 Beam, Kopp, Crawford,.....
EVDF: 1970 Reynolds, Lubitz, Stieglitz,
STEMB: 1972, Speers, Tuecke, Ellis, MacMillan, Bischoff,

Kalos, Cady, Nelkin, Mendelson, Howe,,
Austin, Kudlacik, Muro, Hurley, Schindler,

MCV: 1982, Brown (2-D, grid, vector M.C.)

MCVLS: 1983, Brown (multiple 1-D problems, LF/SSF)

RACER2D: 1984, Brown (cross-sections & depletion)

RACER3D: 1986, Brown (3-D general geometry)

RACER: 1988,..... Brown, Bischoff, Sutton, Ballinger, Schindler, Kelly
RACER Monte Carlo System — Modules . (208]
NOVAN ~— initialize Datapool & read thermal multigroup cross-sections
RAD1 ~— 2-D geometry setup
PLOT20 —2.Dpictures
GEOST ~— construct 3-D geometry from 2-D RAD1 model (MASKER, PPLOT, ZONAX)
GRIDOSR ~— process 2-D RAD1 geometry into “grids” (GRELARE)

GENSEC — 3-D surface equations & sector definitions (MODSEC, REPLACE)

DCELL ~— subdivide 2-D M.C. geometry & edits to match NOVA

MOTIVE — prepare description of cross-section data, or TAPES/TAPES libraries
MORSIN2 ~— assign edit media, compositions, importances, source,

UBAR — linkage from NOVA depletion to Monte Carlo

AFRFP — setup lumped muitigroup background fission product cross-sections

METOR — setup energy mesh, edits (isotopic, comb, ratio,), edit groups, & misc. input
GEOMF — reformat 3-D geometry data '
GEOMK ~— compute areas & volumes

105 KAPL-4823

RACER Monte Carlo System — Modules 4? “%f

[209]
LOADS — edit material loadings
PREFU -~ collect data for plotting
SLICE — 2-D slice plots, line drawings
MCCOoP —_— 2-‘D slice plots, color
RACER3D ° — collect & reformat data for Monte Cario
MCVMP — start the Monte Carlo programs
MCMASTER — master process for Monte Carlo
MCSLAVE -~ glave process for Monte Carlo
RACED — edit the results from Monte Carlo
CNVRG — convergence plots, selected data vs batch
SUMDT — retrieve selected results into Datatran lists
CKNORM ~— detailed comparison of Monte Carlo & diffusion results
DPOSR — linkage from Monte Carlo to NOVA depleﬁbn
SIDER — depletion
Conclusions (230]

KAPL-4823

Parallel Monte Carlo codes (menp4a, kerid, vim, racer, ...) are now
running on many parallel computers (cray, meiko, intel, convex, cms, ...)
& workstation networks

Master/slave algorithmé are simple, easy to implement, & scale well
for eigenvalue problems.

C%mmunications bottlenecks at the master process are not a problem
today:

— ethernet is fast enough for 10’s of slaves

— FDDI, EUIH, & other schemes should permit 100’s of slaves

The major limitation on parallel Monte Carlo today appears to be
memory size — each node must contain entire problem & tallies

106

Conclusions 211

Vector & parallel computing have side-benefits:
» reduces convergence problems
* Larger batches + more baiches «» < reduces bias
* better correlation corrections

* *Unthinkable” problems become routine

Proven Monte Carlo algorithms exist for
*» SIMD, MIMD, & mixed MIMD/SIMD supercomputers & MP computers

+ MIMD distributed processing on a network of machines

Challenges [212]
Parallel algorithms which scale to 1,000's or 1,000,000's of nodes

* "master-siave” algorithm on 1,000,000 Intemet nodes could take ~ 1 year to start
* UNIX socket connections — limits master to 10's or 100’s of nodes

=» develop hierarchical parallelism, *clusters-of-clusters"
=» parallel histories + geometric decomposition (?)

Algorithms with load-balancing & fault-tolerance
« "Virtual supercomputer® can change continuously
=» recover from lost nodes & hardware failures
=» dynamic load balancing
=» cooperate with distributed queuing systems

Acceleration for eigenvalue calculations

=» automated procedures for discarding initial batches
=» importance sampling or *fission matrix"

Methods for eliminating bias

Iimproved methods for estimating variance, corrections for correlation

107 KAPL-4823

KAPL-4823

108

References

General References on Monte Carlo Methods for Particle Transport Problems

[1] L. L. Carter and E. D. Cashwell, Particle Transport Simulation with the Monte Carlo
Method, ERDA Critical Review Series, TID-26607, National Technical Information Ser-

_ vice, Springfield MA (1975). .

{2] E.D. Cashwell and C. J. Everett, AM_M_DMMMQM_IJQQM_L
dom Walk Problems, Pergamon Press, London (1959).

[31 J.J. Duderstadt and W. R. Martin, Transport Theory, John Wiley & Sons, NY (1979).

[4] G. Goertzel and M. H. Kalos, “Monte Carlo Methods in Transport Problems,” in Progress
in Nuclear Energy, Series I, Physics and Mathematics, Vol. 2, (1958).

[S] J. H. Halton, “A Retrospective and Prospective Survey of the Monte Carlo Method,”
SIAM Rev. 12, 1, (1970).

[6] J.M.Hammersley and D. C. Handscomb, Monte Carlo Methods, John Wiley & Sons, NY
(1964).

[7] M. H. Kalos and P. A. Whltlock Monte Carlo Methods, Volume I: Basics, John Wiley &
Sons, NY (1986). -

[8] E.E.Lewis and W. F. Miller, Jr., Computational Methods of Neutron Transport, American
Nuclear Society, Inc., LaGrange Park, IL (1993).

[9] I Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon
Calculations, CRC Press, Ann Arbor, MI (1991).

[10] S. Nakamura, Computational Methods in Engineering and Science, R. E. Kneger Pub.
Company, Malabar, FL (1986).

[11] R. Y. Rubinstein, Simulation and the Monte Carlo Method John Wiley & Sons, NY
(1981).

[12] Y. A. Schreider, The Monte Carlo Method, Pergamon Press, NY (1966).

[13] J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems,
Addison-Wesley, Reading, MA (1969).

[14] J. Wood, Computational Methods in Reactor Shielding, Pergamon Press, Oxford (1982).

General References on Random Number Generation and Random Sampling Methods

[15] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY (1986).
[16] C.J. Everett and E. D. Cashwell, “A Third Monte Carlo Sampler,” LA9721-MS, Los Ala-

mos National Laboratory, Los Alamos, NM (1983). _

[17] H. Kahn, “Applications of Monte Carlo,” AECU-3259, Rand Corporation, Santa Monica,
CA (1954).

[18] D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms,
Addison-Wesley, Reading, MA (1981).

[19] E. J. McGrath and D. C. Irving, “Techniques for Efficient Monte Carlo Simulation,”
ORNL-RSIC-38, Vols. I-III, Oak Ridge National Laboratory, Oak Ridge, TN (1975).

109 KAPL-4823

General References on Monte Carlo Methods for the Solution of Reactor Eigenvalue Prob-
lems

[20] R. C. Gast and N. R. Candelore, “Monte Carlo Eigenfunction Strategies and Uncertain-
ties,” in Proc. NEACRP Meeting of a Monte Carlo Study Group, ANL-75-2, Argonne
National Laboratory, Argonne, IL (1974).

[21] D. C. Irving, R. M. Freestone, and F. B. K Kam, “O5R, A General Purpose Neutron
Monte Carlo Code,” ORNL-3622, Oak Ridge National Laboratory (1965).

[22] M. H. Kalos, F. R. Nakache, and J. Celnik, “Monte Carlo Methods in Reactor Computa-
tions,” in Computing Methods in Reactor Physics, Gordon and Breach, NY (1968).

[23] . Lieberoth, “A Monte Carlo Technique to Solve the Static Eigenvalue Problem of the

~ Boltzmann Transport Equation,” Nukleonik 11, 213 (1968).

[24] M. R. Mendelson, “Monte Carlo Criticality Calculations for Thermal Reactors,” Nucl. Sci
Eng. 32, 319-331 (1968).

[25] H. Rief and H. Kschwendt, “Reactor Analysis by Monte Carlo,” Nucl. Sci. Eng., 30, 395
(1967).

[26] E. R. Woodcock, et al, “Techniques Used in the GEM Code for Monte Carlo Neutronics
Calculations in Reactors and Other Systems of Complex Geometry,” in Proc. Conf. Appli-

cations of Computing Methods to Reactor Problems, ANL-7050, Argonne National Labo-
ratory, Argonne, IL (1965).

Open-Literature Publications on the RACER Monte Carlo Code, Vector and Parallel Monte
Carlo, and Related Monte Carlo Methods

[27] D.J. Kelly, “Depletion of a BWR Lattice Using the RACER Continuous-Energy Monte
Carlo Code,” Proceedings of the ANS Intl. Conf. on Mathematics & Computation, Reac-
tor Physics, & Environ. Analyses, April 30-May 4, Portland, Oregon (1995).

[28] C.T. Ballinger, “The Direct S(a,) Method for Thermal Neutron Scattering,” Proceedings
of the ANS Int. Conf. on Mathematics & Computation, Reactor Physics, & Environ.
Analyses, April 30-May 4, Portland, Oregon (1995).

[29] F. B. Brown, “Random Number Generation with Arbitrary Strides,” Trans. Am. Nucl. Soc.

: 71, 202 (1994).

[30] S. Matsuura, F. B. Brown, and R. N. Blomquist, “Parallel Monte Carlo Eigenvalue Calcu-
lations,” Trans. Am. Nucl. Soc. 71, 199 (1994).

'[31] T. M. Sutton and F. B. Brown, “Parallel Monte Carlo for Reactor Calculations,” Proceed-
ings of the ANS Topical Meeting on Advances in Reactor Physics, April 11-15, 1994,
Knoxville, TN (April 1994).

[32] F. B. Brown, K. L. Derstine, and R. N. Blomquist, “Distributed Computing and Nuclear
Reactor Analysis,” Proceedings of the ANS Topical Meeting on Advances in Reactor
Physics, April 11-15, 1994, Knoxville, TN (April 1994).

[33] R. N. Blomquist and F.B. Brown, “Parallel Monte Carlo Reactor Neutronics,” Proceed-
ings of the Society for Computer Simulation Meeting on High Performance Computing
‘94, April 11-15, 1994, La Jolla, CA (April 1994).

(34] F. B. Brown and J. L. Vujic, “Comparison of Direct and Rejection Sampling Methods,”
Trans. Am. Nucl. Soc. 69, 223 (Nov. 1993).

KAPL-4823 110

(33]

[36]

(37]
[38]

391
[40]

[41]
[42]
[43]

[44]

[45]
[46]

[47)
(48]

[49]
[50]
(51}
[52]
[53]

[54]

E. M. Gelbard, F. B. Brown, and A. G. Gu, “Estimation of Fission Source Bias in Monte
Carlo Eigenvalue Calculations,” Trans. Am. Nucl. Soc. 69, 201 (Nov. 1993).

F. B. Brown, “Monte Carlo Neutronics Simulations on Parallel and Distributed Comput-
ers," invited paper presented at the siam Conference on Simulation and Monte Carlo
Methods, San Francisco (Aug. 1993).

F. B. Brown and T. M. ‘Sutton, “Reproducibility and Monte Carlo Eigenvalue Calcula-
tions,” Trans. Am. Nucl. Soc. 65, 235 (June 1992).

R. G. Gamino, F. B. Brown, and M. R. Mendelson, “A Monte Carlo Green’s Function
Method for 3-D Neutron Transport,” Trans. Am. Nucl. Soc 65, 237 (June 1992).

W. R. Mattin, J. A. Rathkopf, and F. B. Brown, “The Impact of Advances in Computer
Technology on Particle Transport Monte Carlo,” Proceedings of the ANS Topical Meeting
on New Horizons in Radiation Protection and Shielding, Richland WA (April 1992).

F. B. Brown, W. R. Martin, and J. A. Rathkopf, “Particle Transport Monte Carlo and Par-
allel Computers,” Proceedings of the Argonne Theory Institute on Parallel Monte Carlo
Simulations, Argonne National Laboratory (August 1991).

W. R. Martin and F. B. Brown, “Monte Carlo Methods for Particle Transport,” Trans. Am.
Nucl. Soc. 60, 336 (1989).

F. B. Brown and F. G. Bischoff, “Computational Geometry for Reactor Applications,”

Trans. Am. Nucl. Soc. 57, 112 (1988).
F. B. Brown, “Present Status of Vectorized Monte Carlo,” Trans. Am. Nucl. Soc. §5, 323

(1987).

W. R. Martin and F. B. Brown, “Present Status of Vectorized Monte Carlo for Partlcle
Transport Analysis,” International Journal of Supercomputer Applications, Vol. 1, No. 2,

11-32 (June 1987).

F. B. Brown, “Vectorization of 3-D General-Geometry Monte Carlo,” Trans. Am. Nucl.
Soc. §3, 283 (1986).

F. B. Brown and W. R. Martin, “Monte Carlo Methods for Vector Computers,” J. Progress
in Nuclear Energy, Vol. 14, No. 3, 269-299 (1984).

F. B. Brown and M. R. Mendelson, “Vectorized Monte Carlo Applications in Reactor
Physics Analysis,” Trans. Am. Nucl. Soc. 46, 727 (June 1984).

F. B. Brown, “Vectorized Monte Carlo Methods for Reactor Lattice Analysis,” Proceed-
ings ANs Topical Meeting on Advances in Reactor Computations, Salt Lake City, Utah,
108-123 (March 1983).

F. B. Brown, “Vectorized Monte Carlo Methods for Reactor Lattice Analysis,” KAPL-
4163, Knolls Atomic Power Laboratory, Schenectady, NY (March 1983).

F. B. Brown, “Development of Vectorized Monte Carlo Algorithms for Reactor Lattice
Analysis,” Trans. Am. Nucl. Soc. 43, 377 (1982).

F. B. Brown, “Vectorized Monte Carlo,” Ph. D. dissertation, University of Michigan, Ann
Arbor, Michigan (1981).

F. B. Brown, W. R. Martin, and D. A. Calahan, “Investigation of Vectorized Monte Carlo
Algorithms,” Trans. Am. Nucl. Soc. 39, 755 (1981).

F. B. Brown, W. R. Martin, and D. A. Calahan, “A Discrete Sampling Method for Vector-
ized Monte Carlo Algorithms,” Trans. Am. Nucl. Soc. 38, 354 (1981).

F. B. Brown, D. A. Calahan, W. R. Martin, et al, “Investigation of Vectorized Monte Carlo
Algorithms” working paper presented at the DOE Conference on High Speed Computing,
Gleneden Beach, Oregon (April 1981).

111 KAPL-4823

[55] C.L.Ellis and D. B. MacMillan, “O5R Users Manual,” KAPL-M-6741, National Techni-
cal Information Service, 5285 Port Royal Road, Springfield, VA 22161 (1967).

KAPL-4823 112

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

