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Development of Monteburns: A Code That Links MCNP and ORIGEN2
in an Automated Fashion for Burnup Calculations
by

Holly R. Trellue

ABSTRACT

Monteburns is a fully automated tool that links the Monte Carlo transport code
MCNP with the radioactive decay and burnup code ORIGEN2. Monteburns produces
many criticality and burnup computational parameters based on material feed/removal
specifications, power(s), and time intervals. This code processes input from the user
indicating the system geometry, initial material compositions, feed/removal, and other
code-specific parameters. Results from MCNP, ORIGEN2, and other calculations are
then output successively as the code runs. The principle function of monteburns is to
first transfer one-group cross sections and fluxes from MCNP to ORIGEN2, and then
transfer the resulting material compositions (after wrradiation and/or decay) from
ORIGEN2 back to MCNP in a repeated, cyclic fashion. The main requirement of the
code is that the usér have a working MCNP input file and other input parameters; all
interaction with ORIGEN2 and other calculations are performed by monteburns.

This report presents the results obtained from the benchmarking of monteburns to

measured and previously obtained data from traditional Light Water Reactor systems.

The majority of the differences seen between the two were less than five percent. These




were primarily a result of variances in cross sections between MCNP, cross section
libraries used by other codes, and observed values. With this understanding, this code can
now be used with confidence for burnup calculations in three-dimensional systems. It

was designed for use in the Accelerator Transmutation of Waste project at Los Alamos

National Laboratory but is also being applied to the analysis of isotopic

production/destruction of transuranic actinides in a reactor system. The code has now

been shown to sufficiently support these calculations.




1.0 INTRODUCTION

The past few decades have brought growth in a number of areas, two of which
include the nuclear industry and computer technology. As restrictions placed upon and
costs involved with experimental facilities increase (due to environmental and radiological
health concerns), the value of computer modeling also increases. It has become possible
to model various types of nuclear systems (including full reactor cores) and perform
complex decay and burnup calculations in a matter of seconds. With the increase in
computer technology, the number of computer codes available to perform nuclear-related
calculations has increased, and often the user wants to run two or more codes
concurrently. Thus, many linkage codes have been written to allow concurrent use of
these “main” codes in an automated fashion. Two pbpular codes used in the design of
nuclear systems are MCNP™ and ORIGEN2, and the code presented in this report is a
linkage code for these two “main” codes.’

MCNP (Monte Carlo N-Particle transport code) is widely used to perform
Monte Carlo calculations of neutron, photon, and/or electron transport.!'! MCNP is
primarily used for analyzing the exact geometry and material composition of a system to
determine the behavior of particles in that system (see Section 2.1 for a more detailed
description of MCNP). It cannot, however, determine the effect that irradiation (burnup)
has on the materials within the system (i.e., radioactive decay and burnup calculations).
Instead, this is the function of the code ORIGEN2 (The Oak Ridge National Laboratory
(ORNL) Isotope Generation and Depletion Code), which analyzes the burnup and
concurrent decay of isotopes in a system over time.”) The limitation of ORIGEN2 is
that it does not take into account the geometry of a system. The geometry, among other
things, influences cross sections and neutron fluxes at various positions in the

material/region(s) being analyzed. These geometry-dependent parameters of the system

! Radiation Safety Information Computational Center (RSICC) Code Packages CCC-660 and CCC-371.




can be determined by MCNP. Thus, it is desirable to link MCNP and ORIGEN2 to
allow accurate calculations of spatial isotope generation and depletion in a physical
system.

The basis for the work presented in this paper is the need for a fully automated
linkage code that transfers material compositions and cross sections for any three-
dimensional (3-D) system from MCNP to ORIGEN2, transfers the materials remaining
after irradiation from ORIGEN2 to MCNP, obtains new cross sections, criticality
parameters, and flux/energy spectrums from MCNP, and then transfers materials back to
ORIGEN?2 in a cyclic fashion for as many time steps as needed. Additionally, three other
features related to overall performance were desired: 1) the option to irradiate more than
one material as separate ORIGEN2 analyses from a single MCNP output file and
combine them again after irradiation into a single MCNP input file, 2) the ability to
transfer material from one region in MCNP to another, and 3) the capability to add or
remove specified materials after each step in an automated fashion.

Initially, monteburns was specifically developed for use in the Accelerator

Transmutation of Waste (ATW) project™! because it could combine a detailed 3-D

system model with burnup calculations in an automated fashion. The goal of the ATW
project is to reduce the radiotoxicity of nuclear waste so that the radiotoxicity of ATW-
treated waste after 300 years is less than that of untreated waste after 100,000 years (see
Section 5.1 for more information). For this project, it is desired to have a linkage code
that allows addition (referred to as “feed” in this document) and/or removal of material
either continuously or discretely (all at one time). In addition, the code must be capable
of buming more than one material region in ORIGEN2 and of combining isotopic
compositions for each material into one main MCNP input file for a series of burnup
steps. For ATW, all of these functions are performed and regions of spent fuel are

rotated from the outside to the inside of the system to allow different amounts of




irradiation to occur in each. The code was also designed so that it can be used for reactor
systems, as shown in Sections 4.1 and 5.2.

The name monteburns was chosen because it is a Monte Carlo burnup tool. The
purpose of this document is threefold: 1) to present information relevant to the
development of monteburns (i.e., background/previous work, theory and calculations used
in the code), 2) to display results of benchmark calculations used to verify the

performance of monteburns and of statistical analyses for several input parameters, and

3) to show current and future applications of monteburns.




2.0 BACKGROUND

Over the past few decades, the development of numerous computer codes has
increased the utilization of computer modeling in solving nuclear design problems. For
example, Los Alamos National Laboratory developed a Monte Carlo code, MCNP, which
is used to model particle transport in a variety of nuclear systems. In addition, Oak Ridge
National Laboratory designed a number of codes, including ORIGEN2, the radioactive
decay and burnup code discussed in this document, and the SCALE package, which is a
“Modular Code System for Performing Standardized Computer Analyses for Licensing
Evaluation.” > The SCALE package encompasses a variety of codes, including several
(i.e., MORSE and KENO) that perform Monte Carlo transport calculations, and
ORIGENS-S, which performs radioactive decay and burnup calculations (ORIGEN-S is a
“newer” version of ORIGEN2). Concurrently, many commercial nuclear companies
(both in the United States (US) and Europe), developed their own methods/codes for
analyzing the effects of burnup on a reactor core. Many of these methods have been used
and tested extensively, but many are not publicly available.

There have also been several codes written to link MCNP and ORIGEN2, some of
which are discussed in Section 2.3. However, each of these linkage codes appears to have
been developed for specific purposes and thus has certain limitations. Monteburns was
developed to be as versatile as possible so that it can be applied to a large number of
situations and give the user a variety of choices of operational parameters while
simplifying required user training.

Descriptions of the two codes linked by monteburns, MCNP and ORIGEN?2, are
included below, followed by a discussion of previously developed burnup codes. One of

the main assumptions made by monteburns is that MCNP and ORIGEN2 perform

? Radiation Safety Information Computational Center (RSICC) Code Package CCC-545.




calculations well; benchmarking of them has already been performed, so no additional

benchmarking is necessary.

21 MCNP

MCNP is a transport code that uses the Monte Carlo technique. The Monte
Carlo technique is a statistical method in which estimations for particle characteristics are
obtained through multiple computer simulations of the behavior of individual particles in
a system. The probability that a particle behaves in a certain manner (scatters, absorbs,
fissions) is obtained from the cross sections for the material(s) with which the particle
interacts. For example, if a material is a pure absorber, the probability that a particle
interacting with this material is absorbed is 100%. If the material is both an absorber and
a scatterer, then the probability of absorption is equal to the ratio of the absorption cross
section to the total cross section (absorption plus scatter). It follows that the probability
of scatter is equal to the ratio of the scattering cross section to the total cross section.
After a particle has undergone a scatter, it remains in the system to undergo another
interaction. A Monte Carlo code keeps track of the position of each particle before and
after it scatters and/or is absorbed, as well as any neutrons produced from fission
interactions. If a particle travels outside of the system, then it is considered to have
“leaked.” At the end of the “life” of the particle, it either leaks from the system or is
absorbed in a material. In the case of a neutron being absorbed in fissile material and
causing a fission, the location and number of new neutrons created is recorded.

A Monte Carlo code generates a statistical history for a particle based on random
samples from probability distributions used in calculations to determine 1) the type of
interaction the particle undergoes at each point in its life, 2) the resulting energy of the
particle if it scatters, and/or 3) the number of neutrons it produces if it causes a fission.

Thus, a Monte Carlo code models the series of events that occur in the lives of a large

number of particles to determine the flux of different types of particles in various




locations in the system. The particles of the most interest in criticality/burnup
calculations are neutrons because they are the ones that interact with fissile materials to
produce energy as well as more neutrons.

MCNP is used to model the events in the lives of neutrons, photons, and/or
electrons. The cross sections for the particles are obtained from numerous material cross
section libraries containing a number of isotopes at various operating temperatures.
MCNP uses these libraries in a continuous-energy fashion, which means that it obtains
the specific cross section for a given energy rather than looking at grouped cross section
sets, in which the cross sections represent an average of a particular range of energies.

MCNP can also calculate the effective multiplication factor (k.y) for a system,
which is the number of neutrons produced in one generation divided by the number of
neutrons that existed in the previous generation, indicating how close the system is to
being critical (ks of 1.0). Table 1 shows the condition of a system at various values of
k.. A reactor is typicalfy operated at a kg around 1.0 as the system is self-sustaining at
that point (i.e., requires no new source of neutrons).

MCNP is a valuable tool in that it helps to design a system to operate at a certain
condition. MCNP was developed by personnel at Los Alamos National Laboratory
(LANL), serves a large number of government and institutional organizations, and has
been well maintained and updated. For more information about Monte Carlo codes or

MCNP in particular, see Ref. 1 or 5.

Table 1. Conditions of k.

Value of ks Condition !
Ker < 1.0 Subcritical
keff =1.0 Critical
kg > 1.0 Supercritical "




2.2  ORIGEN2

ORIGEN?2 is a version of the ORIGEN computer code, which is an isotope
generation and depletion code used for performing radioactive decay and burnup analyses
for a material. ORIGEN calculates the concentration of nuclides at numerous points
throughout a decay or irradiation primarily using the matrix exponential method of
equation solving. ORIGEN treats the full isotopic matrix of materials generated through
irradiation by considering time-dependent formulation, destruction, and decay

concurrently. The main calculation performed by ORIGEN is shown in Equation 1.1°!

N L
% = ZinGf,ijq) + O-c.i—l]vi~1¢ + A‘ilvi - Gf,iNi‘Z’ - O-c,i]vi¢ - ;LiNi (1)
J

dNi . . e
where: = = change in concentration of nuclide 1 with time =
t

Formation rate - Destruction rate - Decay rate
Formation terms:

Zy 0 ;IN;¢ = fission yield rate of N; from fissionable nuclides N;
i

G6.,,N,_¢  =transmutation rate of N;; into N; by neutron capture
AN, = radioactive decay rate of N; into N;
Destruction terms:

o, ;N,¢ = fission rate of nuclide N;

'

o, ;N¢ = capture rate of nuclide N; - (n,Y),(n,c),(n,p),(n,2n), and (n,3n)

Decay term:
A;N; =radioactive decay rate of nuclide &,
where: y, = fission yield of nuclide i from nuclide j (obtainéd from libraries)
o, ,; = microscopic fission cross section of nuclide j (cm? - from libraries)
N. = concentration of nuclide j (gram-atoms - calculated)

J




¢ = neutron flux in system (n/cm?-s - input)
O, ;_,= microscopic capture cross section of nuclide i-1

(cm? - from libraries)

A, =decay constant of nuclide i (s - obtained from decay library)

i

The matrix exponential method used to solve this problem with a spectrum-averaged flux

and one-group cross sections is shown in Equations 2 and 3.

N = AN @)
N = Noe 3)
where: N = change of nuclide concentration with time

A =transition matrix with rate coefficients (decay, absorption, fission)

N = vector of nuclide concentrations at time t

No = vector of initial nuclide concentrations

The equation is then solved by obtaining a series expansion for the term e*'.

3
m=0

m!

Sometimes difficulties occur in generating accurate values using the matrix
exponential method, and either the Bateman equations'’! or the Gauss-Seidel iterative
technique’ is applied. The number of nuclides removed from the transition matrix and
processed using the Bateman nuclide chain equations are determined by how many have
half-lives (both absorption and fission) less than 10% of the time interval being

investigated. Thus, having a shorter time interval in ORIGEN allows the Bateman




equations to be used in solving for the concentrations of a larger number of isotopes (as
discussed in Section 3.3). This can be advantageous in that it often allows more accurate
results to be obtained.

The input required for ORIGEN2 consists of three parts: cross section libraries,
information about each decay/irradiation step, and initial material compositions. First,
ORIGEN2 contains over 40 different data sets with one-group cross sections for various
energy/system spectra. The user must decide which one to use, and transfer both the
ORIGEN2 decay library and that cross section library to a file that can be read by
ORIGEN? (typically called fort.9). He/she must then enter identifiers for these libraries
in the main ORIGEN2 input file. Second, this main ORIGEN2 input file must also
contain detailed information required to run the code, including the length(s) of each decay
and/or irradiation, the flux or power associated with each irradiation, and a description of
what output parameters (and units of these parameters) are desired. Finally, the initial
composition of the material being irradiated must be entered. This can either be part of
the main ORIGEN?2 input file, or it can be self-contained in its own file (usually called
Jort.4). The output for ORIGEN2 includes cross sections and fission yields used by the

code as well as nuclide concentrations at each time step as specified by the user.

23 Previous Work

There are two main classes of codes that can be used to perform criticality
calculations for nuclear systems: a Monte Carlo code, and a deterministic code. Monte
Carlo techniques typically produce a statistical approximation of the answer for the exact
geometry of the system, whereas deterministic codes numerically produce an exact
solution of the diffusion and/or transport equations for the problem as modeled.
Deterministic codes generally cannot solve such equations easily for complex geometries,

so approximations on the geometry must be made.l’] Additionally, deterministic codes

generally utilize less accurate cross section data (i.e., grouped versus continuous). With a




Monte Carlo code such as MCNP, a supplemental code, such as ORIGEN2, must be
used to perform burnup analyses, and another code (i.e., a linkage code) is needed to

interact between the two. Examples of such linkage codes include MOCUP,Y

COUPLE,"" and SCAMP,!'!! which are further discussed in the following sections and

are compared in Table 2.

Table 2. Comparison of Linkage and/or Burnup Codes

Description/Comparison

Includes Monte Carlo, 3-D techniques and system-dependent parameters
Links MCNP and ORIGEN? with existing input files for each
Modifies reaction rates, fluxes, and cross sections in ORIGEN2

Modifies nuclide compositions in MCNP after one burnup period

SCALE/ Allows Monte Carlo 3-D modeling and system-dependent parameters
COUPLE Develops multi-group cross sections and neutron fluxes for ORIGEN-S
Modifies cross sections and fluxes at each time step

Is a fully automated suite of programs and requires detailed training
Links MCNP and ORIGEN-S for burnup calculations of LWRs

Transfers material compositions after burnup to MCNP

Does not transfer cross sections or fluxes

HELIOS Performs transport calculations for a two-dimensional (2-D) geometry
CASMO Couples subcomponents to perform fast, efficient calculations
Uses multi-group ENDF" cross section libraries

Does not include system-dependent axial effects

ANDROMEDA?* | Performs one-dimensional diffusion calculations for fast reactors

DANTSYS>/ Calculates criticality parameters using transport theory

ORIGEN2 Multi-group cross sections must be collapsed to one-group for ORIGEN2
Can perform detailed 3-D geometry calculations, but only with difficuity

‘:Fhe United States Evaluated Nuclear Data Files, particularly ENDF/B-V or ENDF/B-VI versions'
Light Water Reactors

® Radiation Safety Information Computational Center (RSICC) Code Package PSR-365.
* http://www .nea.fr/abs/html/nea-0321.html
° Radiation Safety Information Computational Center (RSICC) Code Package CCC-547.
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In contrast, many deterministic codes used by the commercial nuclear industry
(for example, HELIOS[12] and ANDROMEDA4) actually incorporate burnup as well as
criticality calculations. These codes are designed for one- or two-dimensional lattice
geometries and are often large, complex programs to execute. The other way to use a
deterministic code that does not perform burnup calculations (for example, the Diffusion
Accelerated Neutral Particle Transport System (DANTSYS) suite of codes)[13] is to link
it with a burnup code such as ORIGEN2. Although deterministic codes can perform
burnup calculations, they do not have the physical accuracy associated with a Monte
Carlo code that models a detailed, 3-D geometry. These two categories of codes are
discussed in the following sections with examples of each, but these only represent a
small sample of the codes that have been written for burnup analyses; there are most

likely other types of codes not presented here.

2.3.1 Linkage Codes

MOCUP (MCNP-ORIGEN2 Coupled Utility Program) is a MCNP/ORIGEN
linkage code designed to transfer fluxes, reaction rates, nuclides, and cross sections from
MCNP to ORIGEN2 using a number of user-supplied skeleton ORIGEN2 files, which
are then modified with MCNP results. Then it extracts nuclide compositions from the
ORIGEN2 output files and converts them into number densities, which are placed back
into MCNP. However, it requires a certain structure for the initial MCNP input file
(with comments indicating different locations in the file) and requires the user to create
skeleton ORIGEN?2 input files. It does not interact in an automated fashion with MCNP
and ORIGEN2 for more than one time step; instead, the user must run each time step
manually, adding feed materials, removing waste, and/or rotating regions. Although the
MOCUP utility can be very useful for simple analyses involving MCNP and ORIGEN?2,
it does not work well with repeated structures, multi-materials, or the other limitations

discussed previously.
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COUPLE is one of the many modules that exist in the SCALE (Standardized
Computer Analyses for Licensing Evaluation) suite of programs. The purpose of
COUPLE is to produce multi-group cross section libraries from the ENDF data base and
multi-group neutron fluxes, which are required as input for ORIGEN-S, from a detailed
model of the system (typically developed using the SCALE module KENO). This
program, along with other modules in SCALE (such as NITAWL, BONAMI, and/or
XSDRNPM), allows system-dependent design characteristics (such as operating
parameters and material compositions) to influence multi-group cross sections. This
system is fully automated with the feature that a large suite of programs are used to
represent a system as accurately as possible. Unfortunately, although these modules
offer a number of options for performing calculations, they also require extensive, detailed
training to execute properly.

SCAMP (SCALE-to-MCNP Post Processor) was a code written to link
ORIGEN-S and MCNP for Pressurized-Water-Reactor (PWR) fuel assembly
configurations. It transfers actinide and fission product compositions from the SCALE
module ORIGEN-S to MCNP. However, it does not perform automated calculations for
numerous steps or generate spectrum-averaged cross sections from MCNP to ORIGEN-
S. The advantage of this program is that ORIGEN-S uses cross sections representative of

typical PWR systems, whereas the data base for ORIGEN2 may not be as representative.

2.3.2 Discrete Ordinate Burnup Codes

There are a number of discrete ordinate burnup codes used in the commercial
nuclear industry for analyzing the components of a nuclear reactor during operation. Two
such examples are HELIOS and ANDROMEDA.

HELIOS performs neutron and gamma transport and burnup calculations for two-

dimensional lattice geometries. It consists of three different processors: the main

program, a pre-processor, and a post-processor. It was developed by Scandpower A/S




as a two-dimensional collision probability-based transport code. The associated HELIOS
libraries are 34-energy group libraries based upon ENDF/B-VI data for a variety of
temperatures. HELIOS is useful for performing qﬁick calculations for various reactor
physics constants but needs to be coupled with another code to obtain temperature
coefficients or to model 3-D system effects. HELIOS is also fairly expensive to obtain.
Additionally, CASMO, another widely used burnup code in the US commercial nuclear
industry, performs calculations fairly similar to HELIOS.['2]

ANDROMEDA is a one-dimensional multi-group diffusion-burnup code
developed in the Netherlands for use with fast reactor systems. The code is designed
primarily for fuel-cycle analysis of fast breeder reactors by calculating regular and adjoint
fluxes, material bucklings, kinetics parameters, material (fuel or poison) concentrations,
and region dimensions at various steps throughout irradiation. ANDROMEDA collapses
multi-group cross sections to several groups and analyzes cylindrical, spherical, and/or
slab geometries. A variety of multi-group cross section libraries for ANDROMEDA are

available.
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3.0 DESCRIPTION OF CODE/THEORY

Although the linkage and burnup codes discussed in the previous section perform
adequate calculations for the irradiation of materials in a system, they do not provide the
entire range of parameters and functions useful in advanced nuclear burnup problems. For
ATW and certain reactor systems (see Section 5), it is desired to have a code that
performs automated burnup calculations for a 3-D system for more than one time step. It
is also desirable to calculate spectrum-averaged cross sections and fluxes for each of these
burnup steps. The Monte Carlo code MCNP was chosen to model the system because it
is widely known and is capable of modeling in three dimensions as well as calculating
spectrum-averaged cross sections and fluxes in different regions of the system. The code
ORIGEN2 was chosen to perform calculations involving the change of nuclide
concentrations because it is a stand-alone radioactive decay and burnup code with the
characteristic that cross sections and material compositions can each be contained within-
separate input files, making them easy to modify for numerous burn steps.

In addition, it is preferred to have a linkage code involving little interaction with
ORIGEN2 and with the ability to work with any MCNP input file (i.e., no format
requirements for an ORIGEN2 or MCNP input file) without requiring detailed training.
Other desired features include the ability to add and/or remove certain materials in a
system at different burn steps, burn more than one material from the initial MCNP input
file, and rotate materials from one region in the system to another. None of the linkage
codes presented in Section 2.3.1 exhibit all of these options, and the deterministic codes in
Section 2.3.2 do not analyze detailed, 3-D systems easily. Thus, the linkage code
monteburns was designed to model the system accurately, incorporate all desired features,
and make the input and training requirements as simple as possible. This section includes
a brief description of the code, presents the calculations it performs, and describes the

input required by and the output produced by monteburns.
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3.1 Description of Monteburns

Monteburns is a UNIX c-shell command file (see Appendix A) that frequently
interacts with a FORTRAN77°! program, monteb.f, (see Appendix B) to produce
criticality and burnup results based on material feed/removal specifications, power(s), and

time intervals. Figure 1 shows how monteburns interacts with MCNP and ORIGEN2.

MCNP input file

1 ORIGEN2

monteburns

initial material compositions

material compositions
(hdlfway through step)

MCNP
predictor step cross sections and fluxes
(halfway through step)
ORIGEN2
material compositions
next step
* at end of step

Figure 1. Interaction of Monteburns with MCNP and ORIGEN2

The primary way in which MCNP and ORIGEN?2 interact through monteburns is
that MCNP provides spectrum-averaged one-group microscopic cross sections and fluxes
required for ORIGEN2, and ORIGEN?2 provides material compositions halfway through
and at the end of each irradiation step. These calculations may occur more than once
throughout an irradiation period to obtain the best representation for a particular burn

step (see Section 3.3.2 for more information about predictor steps).
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Monteburns acts as a post-processor for MCNP and a pre- and post-processor
for ORIGEN2. For each irradiation step, MCNP is run with material compositions
halfway through the step (obtained from ORIGEN2), and relevant parameters are
extracted by monteburns and input into ORIGEN2. A majority of information desired by
the user is contained in the monteburns output (see Section 3.4), and additional
information can be obtained in the future if desired (see Section 6). Nonetheless,
monteburns was designed to eliminate the user’s need to search through MCNP output
files for results.

In addition, input files for ORIGEN2 are complex to write, and output files
generated by ORIGEN? are bulky and complicated to read. Thus, monteburns eliminates
the user’s need to create his/her own ORIGEN2 input files and to extract information
from ORIGEN2 output files. Monteburns provides a file with cross section and decay
libraries (fort.9), a material composition input file (forz.4), and a main ORIGEN2 input
file (mbori), which contains commands as well as some feed and removal information
(optional). All three of these files are created by monteburns for each material, and they
provide all the information needed to execute ORIGEN2.

The FORTRAN77 program, monteb.f, which interacts with the c-shell file
monteburns, consists of fifteen different parts, each of which performs a different
function. These functions are displayed in the detailed flow chart of the c-shell file
monteburns in Figure 2, where the numbers correspond to the list below.

1. read input parameters,

2. create basic ORIGEN2 input files for each main burn step based on continuous
feed/removal information,

3. put the user’s MCNP input file into monteburns format,

4. create tally requests for MCNP,

5. write ORIGEN2 composition input file, separating natural elements into individual

isotopes,
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10.

11.

12.
13.
14.
15.

update the monteburns input file to indicate the current step number and to update
the list of isotopes being tracked,

determine which material is located in each region,

add discrete feed to ORIGEN2 composition input file (if requested by the user),
modify the previous MCNP input file with new material compositions,

modify ORIGEN2 input files for predictor steps to calculate compositions halfway
through each burmn step,

modify ORIGEN?2 libraries with cross sections calculated by MCNP and ORIGEN2
input files with fluxes from MCNP,

calculate the recoverable energy per fission based on the actinide distribution,

perform discrete removal in the ORIGEN2 composition input file,

output results of ORIGEN2, and

calculate the amount of material burned and produced based on feed and inventory
information.

The full range of calculations performed by monteburns is presented in Section

3.2, detailed input requirements are described in Section 3.3, and the results currently

output by monteburns are displayed in Section 3.4.
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1. Read input parameters to determine:

Number of MCNP Materials Being Analyzed (nmat),
Number of Outer Burn Steps (nout),

Number of Predictor Steps (npre),

Current Burn Step (nrst), and
If Intermediate k. Calculations Occur (nkeff; O0=no, 1=yes)

|

X
[ 2. Create basic ORIGEN2 input files J

no

(3. Put MCNP input file into montebumsformat)

! Y

Run MCNP to obtain initial
of materials to put into ORIGEN2 / Obtain files from previous runs7

Y

[ 4. Create limited tally requests for MCNP J

T

( 5. Write ORIGEN2 composition input ﬁleJ
1=0or(nrst+1)
no

Y/ Does yes

[T npre2 =1 i=0?

6. Update input Reduce resulting number
including value of nrst of output files to two
7. Determine which material is locatedin .
each region; Organize files @

yes no
npre2 =npre+l npre2 = npre
\ L= '
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8. Add discrete feed to ORIGEN2 composition input file

€S

discrete
eed exist for, Is
i? nkeff
=17
no :
-
no yes

9. Modify previous MCNP input file with new material compositions

Y

Run MCNP to determine effect(s) of discrete feed

L

yes .
Run ORIGEN?2 for entire step

Y

13. Perform discrete removal

*no

10. Modify ORIGEN2 input
files for predictor step

o Is
nkeff
Run ORIGEN?2 for predictor step ~19?
* yes
9. Modify previous MCNP input file
with new material compositions 9. Modify previous MCNP input file
with new material compositions
4. Create tally requests; Form full MCNP input file Run MCNP for entire step
Run MCNP to calculate cross sections and fluxes j
14. Output results of ORIGEN2

v

11. Modify ORIGEN2 input files *
with cross sections and fluxes

Y

15. Calculate the amount of material burned/produced

12. Calculate recoverable energy per fission Z Save information for a restart case /
o j=i+1 i=i+l o

Figure 2. Monteburns Flow Chart
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3.2 Calculations

The calculations performed by monteburns are divided into six different
categories: recoverable energy per fission, flux normalization, reactor physics constants,

effective multiplication factor, power, and importance fraction.

3.2.1 Recoverable Energy per Fission

The user has two options for calculating the recoverable energy produced per
fission in a system. Either he/she can enter the desired Q-value (the average energy
released by the entire system) into the monteburns input file, or the user can enter the Q-
value for U-235 that he/she thinks is most representative for the nuclear system being
evaluated (preceded by a negative sign in the input file), and the code calculates the
average Q. In this case, the following equations are used by monteburns to calculate the
recoverable energy produced per fission in each material (see Equation 8 for the Q-\}alue

of the entire system) according to the distribution of actinides in that material.

Ors = |0y g5 * O (5)
where: Qs = total amount of recoverable energy produced per fission
Qu.235= recoverable energy per fission for U-235 (input by user -
recommended value is 200 MeV!!6l)
0O,.. = weighting factor to include recoverable fission energy for all

actinides present (calculated by Equation 6)

Qrar = Zq,a,(i) * frar(i) (6)

number of actinides in material (calculated by ORIGEN2)

where: n
q,a(i)= ratio of recoverable energy per fission for isotope i divided by the

recoverable energy per fission for U-235 (see Table 3)
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Jfrai) = ratio of fissions resulting from isotope i to total number of

fissions (calculated by Equation 7)

fnliy = 21D )
> (0r(i) * (i)

where: ofi) = spectrum-averaged one-group microscopic fission cross section of

isotope 1 (calculated by MCNP)
n(i) = number density of isotope 1

(calculated by ORIGEN?2 in units of gram-atoms)

Next, the average energy produced per fission for the system as a whole is calculated.

(Qﬁsj *(prll' *ij *Vj)

M

1}

1

Qave =7
((p,{ x5 % Vj)

Mz

Jj=1
where: Q,,. = average recoverable energy per fission for entire system (MeV)
Qns’= average recoverable energy per fission in material j (MeV)
(calculated by Equation 5)

@’ = neutron flux (n/cm’-s) in region containing material j

(calculated by MCNP)
¥/ =macroscopic fission cross section of material j (cm™)
(= Y 0r()) * n(i) - obtained from ORIGEN? files)
i=l1
¥/ = volume of all cells containing material j (cm®)
(calculated by MCNP or input by user)
m = number of materials being analyzed (input by user)
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Table 3. Fraction of Recoverable Energy Per Fission for Certain Actinides Divided
by the Recoverable Energy Per Fission for U-235

IL Isotope Fraction!!”” Isotope Fraction
Th-227 0.90 Pu-240 1.04
Th-229 0.92 Pu-241 1.05
Th-232 0.96 Pu-242 1.06

l Pa-231 0.95 Am-241 1.05
Pa-233 0.98 Am-242m 1.06
U-232 0.96 Am-243 1.07
U-233 0.99 Cm-242 1.06
U-234 0.98 Cm-243 1.07
U-235 1.00 Cm-244 1.08

| U236 1.00 Cm-245 1.00
U-237 1.01 Cm-246 1.10
U-238 1.02 Cm-248 1.12
Np-237 1.01 Cm-249 1.13
Np-238 1.02 Cf-251 1.15
Pu-238 1.02 Es-254 1.18

I Pu239 1.04

" The fractions displayed here are an average of the fractions calculated for thermal and fast spectrums

3.2.2 Flux Tally Normalization

For each material j, the flux used in ORIGEN2 (see Equation 1) is calculated from
the flux tallied by MCNP and is either normalized per MCNP fission neutron for a
“kcode” source definition or per MCNP source neutron for “nps” source definition, both

according to Equation 9.

p=¢,*C )
where: @ = true value of the flux (normalized to system power)
¢, = flux tally normalized per fission or source neutron (from MCNP)
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C = the neutron source term (calculated by Equation 10 or 11)

When an MCNP input file with a “kcode” (criticality) source definition is used, the flux is
normalized per fission neutron, and the value of k.¢ and its associated error are found in

the MCNP output file. In this case, the value of C is given by Equation 10.

3 v* P*¥10°W/ MW
(1.602* 1072 T/ MeV)* kefr * Quve

(10)

where: v = average number of neutrons produced per fission
(calculated by Equation 12)
P = total power (MW) of system (input by user)

k.; = effective multiplication factor (calculated by MCNP)

When the MCNP input file has a “nps” source definition, the flux is normalized per

source neutron, and the value of C is instead:

C= src* P*10°W / MW an
floss * (1.602 %1072 J/ MeV) * Quve
where: src = weight of source neutrons (approximately equal to one)
(calculated by MCNP)

floss = weight of neutrons lost to fission (calculated by MCNP)

The reason that the equation for the neutron source term has the variable k. (or
floss/src, which represents the fraction of neutrons lost in fission in a “nps™ source
definition) in the denominator is that it modifies the value of the neutron flux of systems
not modeled at critical. For a “kcode” problem, the flux calculated by MCNP is

normalized per fission neutron, which assumes that the number of neutrons that fission in
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the system modeled are representative of how many fission to produce the given steady-
state power level (steady-state power is only produced at critical). However, if the
system is subcritical, then the flux normalized per fission neutron is only a fraction (Ke¢r)
of the flux produced at steady-state because only that fraction (ki) of neutrons in a
steady-state system are represented. Dividing by k.s increases the value of this flux
appropriately.  Similarly, the relative number of fission neutrons produced in a
supercritical system are greater than those in a reactor at steady-state, so the flux must be
reduced to accurately reflect power production. Additionally, a system designed to be
subcritical (such as ATW) must rely upon source neutrons to remain at steady-state, and
these neutrons are not included in the flux calculated by MCNP. Again, in both cases,
dividing by ks produces the desired result.

The condition of a system not only influences the neutron flux in each region but
also the energy spectrum. If the system modeled is subcritical but the actual system is
critical, then the spectrum of the modeled system may not be representative of the actual
one, cross sections may be inaccurate, and incorrect ratios of fission, capture, and leakage
may be obtained. These three are competing processes that produce different nuclides (or
none in the case of leakage) such that the resulting isotopic compositions of the system
are affected by any misrepresentation of the spectrum. However, monteburns is not
designed to account for such a spectrum shift in either direction. Instead, it only accounts
for a linear change in the true flux as a function of 1/k.. For a system designed to be
subcritical (such as ATW), this effect is not as dominant because it does not have to be
modeled exactly at critical throughout life to be representative of the actnal system. In
either case, it is recommended that user model a system such that k. at all time steps is

as close to true values as possible so that the correct spectrum and results are obtained.
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3.2.3 Reactor Physics Constants

For both types of source definitions, the value of v (number of neutrons produced

per fission) is calculated from results in the MCNP output file. For a “kcode” source

definition, it is calculated using Equation 12.

U = kgy * src/floss (12)
where: src = weight of source neutrons (approximately equal to one)
(calculated by MCNP)

floss = weight of neutrons lost to fission (calculated by MCNP)

For a “nps” source definition, the value of v is:

v = fsrc/floss (13)

where: fsrc = weight of source neutrons gained in fission (calculated by MCNP)

For either type of MCNP input file, the number of neutrons produced per neutron

destroyed (1) in a material is:

_ (Vor + 2.0 * On2n) (14)
(Cy + 07 + On2n)

where: o; = fission cross section of material (calculated by MCNP)
0, = (n,y) cross section of material (calculated by MCNP)

C.;: = (n,2n) cross section of material® (calculated by MCNP)

® Additional cross sections for neutron interactions producing neutrons (i.e., (n,3n), (n4n), etc.) are
assumed to be negligible.
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3.2.4 Effective Multiplication Factor
The value of the effective multiplication factor for a “nps” source definition must

be calculated from the value of the net multiplication obtained from MCNP output:

ko= _(fmult-1) (15)
(fmult - 1/0)

where: fmult = net multiplication in the system (calculated by MCNP)

The relative error (o) associated with kg is then:

o= {_(fmult*(1+err) - 1) - kyyllkyy (16)
(fmult *(1+err)- 1/v)

where: err = relative error associated with net multiplication in system

(calculated by MCNP)

3.2.5 Power

Finally, the power produced by each material is:

Quve * ¢/ * 37 * Y/ %1.60219%107° ]/ MeV)

17
10°W/ MW a7

pi b

where: P = power produced by material j (MW)
¢

neutron flux (n/cm’-s) in region containing material j

(calculated by Equation 9)

3.2.6 Importance Fraction

A key factor in balancing accuracy with execution time in monteburns is
determining the number of isotopes for which spectrum-averaged one-group cross

sections are calculated in MCNP. It is important for isotopes to be included in MCNP
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for two primary reasons: they may significantly affect the system flux spectrum and
reactivity, and/or an MCNP modified spectrum-averaged one-group cross section
produces more accurate transmutation and fission rates in ORIGEN2. For some isotopes
it may be important to modify this cross section, while for others, the default ORIGEN2
value may be used with little effect on the accuracy of the solution. Thus, it is inefficient
to calculate a spectrum-averaged one-group cross section for every isotope included in the
associated MCNP libraries because it increases execution time, although this can be done
if desired. Isotopes are deemed “important™ in two ways. The first way is to explicitly
list an isotope in the monteburns input file (i.e., designate it as an “automatic” isotope);
this insures that spectrum-averaged one-group cross sections are calculated for this
isotope during each burn step (and that this isotope is included in the primary
monteburns output). The other way in which an isotope is deemed “important™ is based
on a user input variable called the importance fraction.

If an isotope contributes a fraction to the system neutron absorption, fission,
mass, or atom density higher than the importance fraction, then this isotope is deemed
“important,” and a spectrum-averaged one-group cross section is calculated in MCNP and
modified in ORIGEN2. If any of the values calculated by Equations 18-21 (fraction of
absorption, fraction of fission, weight fraction, and atom fraction respectively) are greater
than the value of the importance fraction assigned by the user, then the isotope is
considered “important” and is included in all transfers between ORIGEN2 and MCNP for

the remainder of the run.

f(ow)i = _n_&_d"*g_"_’_ (18)
Z(gadi * Ou)
i=1

Floy= 80470 (19)
Y (gadi* o)
i=1
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gadi* A;

W= — (20)
z (gad:* A)
i=1
o= 2% 1)
2 gadi
i=1
where: n = total number of isotopes in system (input by user)
f(o,);= fraction of absorption that isotope i contributes to system
gad; = amount of isotope in system (gram-atoms)
(calculated by ORIGEN2)
O, = microscopic absorption cross section of isotope i
(obtained from ORIGEN?2 library or calculated by MCNP)
f(op; = fraction of fission that isotope i contributes to system
O; = microscopic fission cross section of isotope 1
(obtained from ORIGEN?2 library or calculated by MCNP)
w; = weight fraction of isotope i in system
A; = atomic weight (grams) of isotope i (calculated by monteburns)
a; = atom fraction of isotope i in system

In this document (and within monteburns), the word “absorption” solely refers to
capture interactions (primarily (n,y)) and excludes the probability of fission.
Nonetheless, both types of interactions influence the value of k. ¢ and what occurs to the
neutrons in a system (i.e., if a neutron is absorbed in a material, its “life” ends, whereas if
that absorption leads to fission, it produces even more neutrons as a result). If an isotope
significantly contributes to either one or both of these areas, it is included in further

MCNP calculations.
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Not all isotopes produced from irradiation interactions are included in the initial
ORIGEN2 cross section libraries and are thus not deemed “important” by their
absorption or fission contribution because their cross sections are effectively zero. If
such an isotope comprises a significant portion of the material (either by weight or atom
density), then it should also be included in MCNP because it could significantly
contribute to interactions in the system. Thus, if the weight and/or atom fraction of an
isotope in ORIGEN?2 is greater than the importance fraction, then the isotope is also
passed back to MCNP. Additionally, even if an isotope does not have an absorption or
fission fraction greater than the importance fraction but still exists in a material in
significant amounts, it may still contribute to scatter interactions in the system. By
allowing the atom and weight fractions to be included in “importance” checks for an

isotope, such a potential scatterer can be included.

33 User Input

The user must generate two to four different input files before executing
monteburns. The two required input files are the MCNP input file (designated here by
mbfile but can be any name up to 8 characters), and a general monteburns input file (this
must have the same prefix “mbfile” with an extension of “.inp” for a name of mbfile.inp).
For many complex burnup scenarios, the user must also generate a feed input file (with a
name of mbfile.feed), which contains detailed instructions for monteburns at each time
step (i.e., time interval, power, material feed/removal). The only case in which a feed
input file is not required is for a constant power burn with no material feed or removal.
Finally, monteburns uses one other input file, mbxs.inp, which contains a list of default
MCNP cross section identifiers for isotopes that may be produced in the irradiation

process and are not initially specified by the user.
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3.3.1 MOCNP Input File

The MCNP input file represents the system being analyzed, including the
geometry and compositions of materials. There is no required format of this input file in
monteburns, except that material numbers must not be greater than 100 and user tally
cards cannot have numbers greater than 100 (this is to keep monteburns tallies from
interfering with user input). This file must run in MCNP (for example, complete enough
active cycles to produce a “final result” for ke in a “kcode” problem) before it can work

In monteburns.

3.3.2 Monteburns Input File

The following pages list input parameters required for monteburns that must be
provided by the user in the monteburns input file. These input parameters are read in
free format, but they must be in the order listed below (for more information, see the
Monteburns User’s Manual'®). In addition, sensitivity analyses were performed for
several input parameters to see how their values affected results. The outcome of these
analyses is located in Section 4.2.1.

e Number of MCNP Materials - this indicates the number of materials the user wants
to irradiate from the MCNP input file (i.e., transfer back and forth between MCNP
and ORIGEN2).

¢ MCNP Material Number(s) - the identification number of the material(s) in the
MCNP input file for which a burnup analysis is desired (the average flux for all cells
and parts of a repeated structure or lattice with this material are obtained). Note: the
number of entries here must equal the number of MCNP materials entered above.

e Material Volume(s) - the sum of the volume (cm®) of all cells in the MCNP input
file for each material number(s) listed above (again, the number of entries must equal
the number of MCNP materials). If the user enters a value of 0.0 for one or more of

these, then the volume calculated by MCNP is used (if it exists). However, often the
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geometry is too complex for MCNP to calculate the volume, in which case, unless the
user has input a non-zero volume for that material number, an error message appears,
monteburns terminates, and it must be rerun with non-zero values. Additionally, in
most cases of repeated structures, MCNP calculates the volume of cells containing a
given material incorrectly. For each of these cases (and for any other instances the
user desires), the user must enter the sum of the volumes of cells containing each
material being analyzed.

Total Power of System - the power (MW) generated by the entire system
represented in the MCNP model (note: this is not necessarily the same as the power
generated solely by the materials burned in monteburns). This value, along with the
recoverable energy per fission, is used to normalize the flux from MCNP in each
burned region for ORIGEN2. This flux is then converted to fission power and
output. Additionally, the user can enter the fraction of this power to be used during
each outer burn step (if power 1s not constant over the entire burn) in the feed input
file. By entering a power fraction of zero for a step, then it effectively becomes a
decay-only step, which is useful for analyzing cooling periods of systems. Note: the
value of fission power output is subject to statistical errors and may not be exactly
the same as the power input. Increased statistics in MCNP may minimize this
problem, but nonetheless, the user should check the value of power output to ensure
that it is close to the amount of power desired.

Recoverable energy per fission - this value represents the average recoverable
energy per fission (Q) in MeV in the aforementioned MCNP model. If the user does
not know the exact amount of energy generated by a combination of several isotopes,
then he/she can enter the recoverable energy per fission for U-235 in that system (see
Equations 5-8). WARNING: the fissile isotopics used for the calculation of Q are
based only on the materials burned by monteburns. If the fissile isotopics of the

entire systemn are significantly different from the fissile isotopics of the materials
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burned, then the average value of Q may be in error, thus the flux normalization may
be incorrect (although in most cases this should be a relatively small effect).

Total number of days burned - this number represents the length of time for which
a material is irradiated in ORIGEN2 (or the decay time if power equals zero). If the
user provides a feed input file, then the irradiation lengths (in days) for each outer
burn step (described below) must be provided in this file. Otherwise, the total
irradiation time (in.days) is entered in the monteburns input file.

Number of outer burn steps - this number indicates how many outer burn steps are
desired. If a feed input file exists, then this must equal the number of steps described
in the feed input file. If a feed input file does not exist, then the length of the
irradiation period for each outer burn step equals the total days burned divided by the
number of outer burn steps. Each of these steps represents a time period for which a
burnup calculation is performed and representative cross sections are obtained (the
burn step then uses spectrum-averaged one-group cross sections calculated at a
predictor step halfway through that step). Each outer step can also indicate the
addition and/or removal of a material.

Number of internal burn steps - this is the number of additional times into which
the irradiation period is divided for ORIGEN2 calculations. As mentioned in Section
2.2, the results obtained from ORIGEN2 (and as a result, monteburns) may be more
accurate ’if long irradiation periods are broken up into smaller lengths of time,
especially at the beginning of a system’s life. This is because the Bateman equations
and/or the Gauss-Seidel iterative technique are used to solve for compositions of
materials when the half-life of an isotope is less than 10% of the irradiation interval.l®!
Additionally, the physics and composition of materials in the system may change
significantly with time. Thus, the user can specify that the outer burn steps be

divided into even smaller time segments for use in ORIGEN2. In addition, there is
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virtually no penalty on execution time by using smaller time steps in ORIGEN2
because most of the execution time lies with MCNP.

Number of predictor steps - this is another variable affecting the éccuracy of the
results. As the isotopic composition of a material changes during an irradiation step
(both due to burnup and potential variances in continuous feed from beginning to
end), the cross sections may change as well. To obtain the most accurate results,
spectrum-averaged one-group cross sections for a burn step should represent an
average over the time interval. In a monteburns calculation, ORIGEN? is run halfway
through each outer burn step, and the resulting isotopics are used in MCNP to
calculate spectrum-averaged one-group cross sections and fluxes for that sfep. Then
a complete ORIGEN2 run is performed with the new values to determine final
compositions. This assumes that the isotopics of the system at the midpoint are a
reasonable approximation of the isotopics over the entire burn step and that cross
sections are representative of the step (actually it is only important that the neutron
flux energy spectrum is representative of the entire burn step). The user must be
aware of this assumption, and consequently, ensure that burn intervals are not too
long.

If the initial cross sections for a step are not accurate, then the ORIGEN2
compositions halfway through the step may not be a good representation of the burn
step. Thus, it is often beneficial to perform a “predictor” step (derived from a basic
form of the predictor-corrector method!®) to calculate cross sections more than once
at the midpoint of a burn step and to compare the neutron energy spectrum and
isotopic compositions halfway throﬁgh the step (these values are printed in the
output files) to make sure that the final cross sections are representative of the
system at that step. The number of times for which cross sections are calculated
halfway through each step is the number of predictor steps. Executing multiple

predictor steps increases the accuracy of the burnup calculation because the
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spectrum-averaged one-group cross sections used to perform the predictor step
approach the ones calculated by the predictor step (i.e., they converge). In addition,
monteburns automatically adds a predictor step for the initial burn step because the
actual spectrum-averaged one-group cross sections for a system may be different than
those supplied in the chosen default ORIGEN2 library. For all subsequent burn
steps, monteburns uses the modified spectrum-averaged one-group cross section
library from the previous burn step, thus an extra predictor step is not required.

Step to restart after - a user can use this parameter to restart a run that ended
unexpectedly, or to branch off from a previous monteburns run with different input
variables (for example, if k. drops too low during the n™ burn step, the user can
change the feed rate for the n™ step and restart from the previous step). The “restart
step” indicates the outer burn step after which monteburns should start, using all
previously created input files and results for the outer burn steps up to that point.
To use this variable effectively, all input files that were created by monteburns during
the previous run must remain in the directory in which monteburns is running (most
of these appear in the tmpfile subdirectory of the main directory). If a restart run is
not being performed, then the “restart step” value should be zero. This value gets
modified during each step to reflect the value of the current step.

Number of ORIGEN2 library - this number represents the number of the ORIGEN2
library from which initial one-group cross sections are obtained (these values are then
modified to be system-dependent as calculated by MCNP tallies after the first step
for “important” isotopes). The ORIGEN2 manual® contains a list of over forty
different cross section libraries (with two-digit identifiers) from which the user can
choose for different types of systems. The value of this two-digit identifier must be
entered by the user.

ORIGEN? library location - this line of input must contain the location of the

ORIGEN?R libraries (both decay and cross section ones) in the user’s file space or in
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the directory of another user on the system that has the library files. This way, only
one user on a UNIX operating system needs to have a copy of the libraries.
Importance Fraction - this value represents the lower limit (tolerance) for the
importance of one isotope relative to the rest of the system based on results obtained
from ORIGEN2 and MCNP. If an isotope contributes a large enough fraction (i.e.,
greater than the importance fraction) to absorption or fission interactions, mass, or
atom density (see Section 3.2.6 for more information), then the isotope is considered
“important.” Flux and one-group spectrum-averaged cross sections tallies are then
performed in MCNP for this isotope. If the importance fraction is zero, then all
activation, fission products, and actinides generated in ORIGEN2 are tallied (excepf
those for which no MCNP cross section exists - see Section 3.3.4 for more
information). If the importance fraction is one, then no isotopes are deemed
“important” except those specified as “automatic” in the input. Additionally, it is
advised that the initial ORIGEN2 library be somewhat representative of the system,
or “important” isotopes may not be properly identified. The only way to absolutely
“avoid this problem is to track every isotope or to generate a problem specific library
with a previous run of monteburns that replaces the original default ORIGEN2
library.

The user must also decide how to deal with fission products. If the user enters
the importance fraction as a positive value, then only those fission products deemed
“important” are included in MCNP. However, since MCNP cross sections for many
fission products do not exist, monteburns contains the option to lump all fission
products together as one sum (except for those fission products, if any, designated as
“automatic” in the montebﬁrns input file) by using a negative value here. These
lumped fission products are then given one of two general fission product cross
sections in MCNP - the average fission product from Uranium-235 and the average

fission product from Plutonium-239 (these have the identifiers 45117.90c and
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46119.90c respectively!'l). The fraction of the total fission product mass separated
into each category is determined by comparing the number of fissions that result from
isotopes with an atomic number less than or equal to that of uranium (92) to those
that occur in other transuranic actinides with an atomic number greater than 92.
Intermediate flag - this flag indicates whether intermediate k. calculations are
performed. Normally, MCNP is only run once per predictor step, and these runs
occur halfway through each outer bumn step (i.e., halfway through each irradiation
period). However, it is often desired to obtain a value of k. at the beginning and/or
end of each burn step. When the value of this parameter is one, these additional
MCNP calculations are performed. Neither cross sections nor fluxes are recalculated
by MCNP for these runs, so ORIGEN2 results are not influenced. The only purpose
“intermediate” MCNP calculations have is to provide the value of k. at more than
one point during each outer burn step to see how the system changes. When a
discrete feed addition (see Section 3.3.3) occurs, three MCNP runs are performed for
the step (at the beginning, middle, and end); otherwise two MCNP runs are performed
(at the middle and end) because the beginning value of k. equals the ending value of
K¢ from the previous step. If the value of this parameter is zero, then only one
MCNP run is performed for each outer burn step (in the middle) regardless if discrete
feed occurs.

Number and list of automatic tally isotopes for each material - this integer
represents the number of isotopes/elements for which the user wants tallies to be
performed in MCNP and results written to monteburns output files (i.e., automatic
“important” isotopes). The user must then enter the MCNP identification number
for each of these isotopes/elements (these can indicate library preference and/or
temperature dependence). It also allows the user to use a cross section not specified
in the default cross section file discussed in Section 3.3.4, mbxs.inp (i.e., the cross

section identifier listed here has precedence over the one in mbxs.inp).
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3.3.3 Feed Input File

The purpose of a feed input file in monteburns is to list the lengths of each time
step, to vary the fraction of power generated by the system during each time steps, to
shuffle materials from one region to another, and/or to specify amounts of materials to
add to or remove from the system during each outer burn step. The user can also specify
continuous or discrete (all at one time) feed (addition of isotopes) and/or removal (of
specified elements) for each material at each time step in this file. First, for each outer
burn step and (excluding the first two items) material, the user enters the following
parameters:

e length of the irradiation (in days),

e fraction of power produced relative to the total power entered in the monteburns
input file,

e region in which each material is located,

e feed group (defined below),

e feed rate(s) (both beginning and ending rates for continuous and a flag and a rate for
discrete),

e removal group (positive for continuous feed, negative for discrete), and

e removal fraction (the fraction of each element removed (for example, a fractional

removal of 0.9 means that 90% of the removal group is removed and 10% remains)).

The next part of the feed input file allows the user to enter information about the
~feed group(s). This includes:
e the number of feed groups,
then, for each feed group,

¢ the number of isotopes in that group, and
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e a list of those isotopes (atomic number followed by atomic mass number (for
example, 92235 for U-235)).

Continuous feed occurs at several points throughout the irradiation process, the amount

of feed being interpolated from the beginning and ending rates, and discrete feed occurs all

at the beginning.

The final part of the feed input file consists of information about the removal
group(s), including:

e the number of removal groups,

then, for each removal group,

e the number of ranges of elements to be removed,

e the range(s) of elements (for example, 28 to 68 means that all elements between nickel
and erbium are removed (which represents a majority of fission products), the two
ranges 28 to 42 and 44 to 68 mean that all fission products in this same range except
technetium (Z=43) are removed, and the range 43 to 43 indicates that only the element
technetium is being removed).

For continuous removal (a removal group number greater than 0), the appropriate

elements are removed both after the halfway predictor step and at the end of the burn

(simulating continuous removal), whereas for discrete removal (a removal group number

less than 0), the elements are removed only at the end of the burn step.

3.3.4 Identifier Input File

The identifiers used to recognize isotopes in MCNP are different than those in
ORIGEN?2. Thus, monteburns is designed to determine which identifiers to use for each
code. In ORIGEN?2, the identifier is simply the atomic number followed by the atomic
mass number and a “0” for most isotopes (metastable isotopes are followed by a “1”).

MCNP not only requires the atomic number and atomic mass number but also a cross
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section identifier. A file containing a list of default MCNP identifiers for aH isotopes
used or potentially created by decay or mradiation processes must be present in the
directory in which the user is running (Note: cross section libraries for many fission
products may not exist and obviously cannot be listed here). This file is named mbxs.inp
and can either be provided by the user or obtained with the source code and modified by
the user as necessary. For any isotopes deemed “important” by monteburns but do not
have a cross section identifier in this file, monteburns gives a warning that the cross
section is not found, continues to use the default ORIGEN2 cross section, and does not
transfer the material to MCNP. The identifiers in this file can either be cross section
libraries provided by MCNP, or they can be ones generated by the user with ENDF
libraries and/or the code NJOY,” or ones from other sources. In fact, the user is
encouraged to use a code such as NJOY to generate temperature-dependent cross section
libraries, which can then be used by MOCNP/monteburns to process temperature-
dependent data. In addition, mbxs.inp must include the general fission product identifiers
45117.90c and 46119.90c for MCNP if the lump sum of fission products option is used
(as discussed in Section 3.2.6 and 3.3.3).

There are a number of elements in MCNP for which “natural” cross sections exist.
However, ORIGEN2 does not recognize natural elements, so monteburns contains data to
separate natural elements into individual isotopes. If a natural cross section exists in the
MCNP input file, monteburns separates this element into its isotopic components, and
then ORIGEN2 bums these isotopes individually (with the default ORIGEN2 library
cross sections). After the ORIGEN2 burn, monteburns then lumps them back into the
element's natural isotopics for use in MCNP. Although this may not be completely

accurate because the initial ORIGEN2 cross sections are not modified by MCNP (i.e.,

7 Versions of NJOY are available at the Radiation Safety Information Computational Center (RSICC) as
codes PSR-171 and PSR-355. ‘
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they are not fully representative of the material in the system), it is dictated by the lack

of MCNP cross sections for many individual isotopes.

34  Output

Two large, primary output files are produced by monteburns. These output files
consist of the name of the MCNP input file created by the user followed either by the
extension “.mbout” or “.mbchk.” For each of the output groups listed below (except the
first two, which contain system, not material dependent parameters), results appear for
each monteburns material/region being analyzed. Note: this is not necessarily the same as
the initial MCNP material number assigned to each region due to shuffling between
regions. The user must keep track of each MCNP material individually through the
various regions when shuffling occurs.

The first output file, mbfile.mbout, contains the results displayed below for each
outer burn step:

e  Monteburns MCNP k. Versus Time - a list of the cumulative time (in days) over
which irradiation has occurred as well as the effective multiplication factor (k.g),
associated relative error, v (see Equations 12 or 13), average recoverable energy per
fission calculated by monteburns (see Equations 5-8), and n| for the system (see
Equations 8 and 14 respectively).

o  Monteburns MCNP K. at Beginning of Step - a list of the cumulative time of
irradiation (in days) that has occurred before each step begins as well as the effective
multiplication factor, relative error, and v at the beginning of each outer burn step

(after discrete feed occurs). This data 1s only included in the output if discrete feed is

used and intermediate k.¢ calculations are requested.
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For each material and outer burn step, the following parameters are output:

¢  Monteburns Transport History - the recoverable energy per fission (see Equation 5),

neutron flux (see Equation 9), macroscopic fission cross section (Xf), power
generation, burnup )(in gigawatt-days per metric ton heavy metal (i.e., actinides)
(GWd/MTHM)), capture - (n,Y), fission - (n,f), and (n,2n) cross sections, fission-to-
capture ratio, and 1 (see Equation 14) for both the material as a whole and the
actinides only.

Monteburns Flux Spectrum - the pefcent of neutrons with energies in each of the
following ranges: 0t00.1eV,0.1to1 eV, 1 to 100 eV, 100 eV to 100 keV, 100 keV
to 1 MeV, and 1 MeV to 20 MeV. To obtain a more detailed spectrum, the user must
enter his/her own tallies into the MCNP input file or modify monteburns to provide

the values desired.

The following results are provided for each “automatic™ isotope in each material for each

outer burn step:

Monteburns One-Group (n,y) Cross Sections - the value of the microscopic capture
cross section (0.). This capture cross section is assumed to be equal to the (n,y) cross
section for the isotope, which is its primary constituent. Other reactions, such as
(n,p), (n,d), (n,t), etc. may contribute to the total capture cross section, but not in
significant amounts.

Monteburns One-Group Fission Cross Sections - the value of the microscopic

fission cross section (Og).
Monteburns Fission-to-Capture Ratio - the ratio of the microscopic fission cross
section to the microscopic capture (n,y) cross section (Cy /G.).

Monteburns Grams of Material at Beginning of Steps - this represents the amount

of material (in grams) that exists in the system at the beginning of each step.
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Monteburns Grams of Material at End of Steps - the amount of material (in grams)
at the end of each step.

Monteburns Grams of Feed - the amount of material (in grams) added to the system.
Monteburns Grams Produced (or Destroyed) - the amount of material (in grams)
produced (or destroyed if the output is negative) during irradiation. The
interpretation of this data may depend on feed, removal, and/or material shuffling.
Summary of Inventory/Feed/Production - the total amount of material in the
system at the beginning and end of monteburns (not of each step), the amount added
through feed, and the net change. The interpretation of this data may also depend on
feed, removal, and/or material shuffling.

Feed Rate - the average continuous feed rate (in grams per day).
Production/Destruction Rate - the rate of change (in grams per day) of material
produced to that destroyed during irradiation. The interpretation of this data may
depend on feed, removal, or material shuffling.

Feed Input File - if it exists, this file is included at the end of this output file so that
the user can determine what feed parameters he/she used to produce the results

presented in this output file.

In the second output file, mbfile. mbchk, many intermediate results from the

execution of monteburns are listed. In this output file, the following results are reported

for each monteburns material analyzed for each predictor step:

Monteburns Spectrum for Each Predictor - the percent of neutrons with energies in
each of the following ranges: 0 to 0.1 eV, 0.1to 1 eV, 1 to 100 eV, 100 eV to 100
keV, 100 keV to 1 MeV, and 1 MeV to 20 MeV. This can be used to determine if

smaller time intervals or more predictor steps need to be run.
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Monteburns Grams at Midpoint - the amount of each isotope (in grams) present
halfway through the irradiation for both the predictor and the actual steps. The grams
of each automatic “important” isotope present halfway through each predictor step
are listed first for each outer burn step followed by the composition of these isotopes
halfway through the actual step. This way the user can determine if the predictor
step(s) provided enough accuracy or if more predictor steps (or smaller time intervals)
are needed. If the two values for any isotope are significantly different, then
monteburns should be rerun using more predictor steps or outer burn steps to obtain
more representative cross sections.

Importance Fraction of Isotopes Sent From ORIGEN2 to MCNP - the isotopes
deemed “important,” both automatically and through the importance fraction. This
list contains the total mass of the isotope in the specified region and the contribution
of each isotope in the following four categories: absorption, fission, mass fraction, and
atom fraction. For example, if the fission column for an isotope reads 0.1, then 10%
of the fissions resulted from this isotope. This file also includes a warning message if
an isotope deemed “important” by monteburns or “automatic” by the user is not

found in the MCNP cross section library used by monteburns.
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4.0 BENCHMARKING/STATISTICS

One of the most important aspects of developing a new computer code is
benchmarking it against existing experimental data and/or published calculations from
other codes. The linkage code monteburns is no exception. To show that it is capable of
performing burnup calculations well, a variety of test cases were run. Statistical analyses
were also performed for selected input parameters and various system models to
determine how they affect the outcome. Results from the benchmarking and the

statistical analyses are presented in this section.

4.1 Benchmarking

The benchmarking process for monteburns used five different test cases,
representing a variety of burnup scenarios. These test cases show the versatility of
monteburns in performing all types of burnup calculations. First, changes in the
concentrations of uranium and plutonium isotopes were calculated as a function of
burnup, and then both a pin in a simple cell geometry énd a full reactor assembly were
- analyzed. The first three test cases examined a PWR system and low-enriched uranium
(LEU) fuel, the fourth involved a Boiling Water Reactor (BWR) system, and the fifth
used mixed-oxide (MOX) fuel. The broad range of these cases is useful in showing the
validity of monteburns in handling a variety of parameters. All cases were modeled using
temperature-dependent cross sections derived from the ENDF/B-V data set and
processed by NJOY 'Y Brief descriptions of these five test cases are:
1. Uranium and Plutonium Isotopic Concentrations as a Function of Burnup

. Composition of Isotopes in a Fuel Pin at Fixed Burnups

2
3. Concentrations of Isotopes in a PWR Lattice at Fixed Burnups
4. Power Distribution of Pins Within a Small BWR Lattice

5

. Activity of MOX-Based Spent Fuel After Removal from a Reactor
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4.1.1 Isotopic Concentration

The first test case involved tracking the weight percents of several uranium (U)
and plutonium (Pu) isotopes as well as fission products (FPs) in a typical PWR system

as a function of burnup.

4.1.1.1 Description

A number of textbooks and other sources have published this information, and one
representative figure!’! was compared to the results obtained by monteburns for a
standard Westinghouse PWR assembly.!') The monteburns output is shown in Figure
3a, and the isotopic concentrations calculated by basic burnup equations in Ref. 7 appear

in Figure 3b.

4.1.1.2 Results
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Figure 3a. Calculated Isotopic Distribution as a Function of Burnup as Predicted
by Monteburns
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Figure 3b. Published!”! Isotopic Distribution as a Function of Burnup

The differences seen for actinides are discussed in terms of two categories:
resonance self-shielding, and cross sections. Then variances in fission product

concentrations are discussed.

4.1.1.3 Resonance Self-Shielding

Figures 3a and 3b display fairly similar results, with the exception of the isotopes

Pu-240, Pu-241, and Pu-242. This variance was expected because, as the text in Ref. 7

states, the burnup equations that generated Figure 3b used one-group effective thermal

cross sections for a PWR and did not account for resonance absorption, self-shielding, or
the change in cross sections with burnup as monteburns does. When a system 1is initially
started, it has a thermal spectrum, which means that a majority of neutrons in the system
are at relatively low energies and are more likely to be absorbed than if they were at higher

energies (the absorption cross section is higher at thermal energies because of 1/v
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effects!!® (i.e., cross sections are indirectly proportional to neutron energy)). As burnup
in a system increases, the number of isotopes built into the system also increases. The
creation by fission and absorption of additional isotopes adds new resonance energies to
the system in the resonance region (approximately 0.1 eV to 3 keV).['’! Neutrons created
by fission typically have energies greater than 50 keV, and as they slow down (assuming
enough moderator exists), they can be absorbed in resonances. If many of these neutrons
are absorbed in the first (highest energy) resonance, then the neutron flux that would
otherwise go to resonances at lower energies (and consequently, the total amount of
resonance absorption) would decrease. The flux around this resonance is also depressed
because many neutrons at that energy are absorbed, decreasing the flux seen by the fuel.!!
Thus, resonance self-shielding (as this process is called) can significantly decrease the
neutron flux in regions of multiple, closely-spaced resonances.

The one-group cross section for an isotope is calculated by weighting the
absorption cross section at each energy by the neutron flux at that energy, and having low
fluxes at energy(ies) with large absorption cross sections (i.c. resonances) decreases the
overall one-group absorption cross section of many actinides. The energy spectrum then
either becomes more soft or more hard, depending on the ratio of neutrons that exist in the
thermal energy region (below the resonances) to those in the fast region (above the
resonances).

Additionally, as plutonium is built into the system during irradiation, the energy
spectrum of neutrons somewhat hardens because the absorption cross sections of several
plutonium isotopes are larger than those of uranium ones, and a large thermal resonance
exists for Pu-239 and Pu-241 at an energy lower than that of the resonances of U-235 and
U-238 (about 0.1 eV compared to around 5 eV). Thus, the neutron flux in both the
thermal and the resonance regions decreases with burnup because as additional plutonium
is built into the system, more absorption occurs (due to a larger absorption cross section),

and the spectrum slightly shifts to higher energies.
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The effects of resonance self-shielding are especially significant for Pu-240, which
has a large absorption cross section at resonance energies, but as burnup increases, the
cross section of this isotope significantly decreases (363 to 92 barns) due to resonance
self-shielding. Figure 3¢ shows the variance in the compositions of Pu-240, Pu-241, and
Pu-242 between the concentrations calculated by the equations in the reference (eq) and
those calculated by monteburns (mb). The amount of Pu-240 calculated by monteburns
was greater than that calculated by the equations in Ref. 7 because less of it was depleted
through absorption interactions (i.e., G, was lower). It follows that the concentrations of
Pu-241 and Pu-242 were smaller in monteburns than the referenced equations because less
of them were built up from neutron absorption in Pu-240. However, all concentrations

seen in Figure 3a do match those obtained using another code, CELL."
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Figure 3c. Differences in Higher Isotopes of Plutonium
" eq means the equations in the reference and mb stands for monteburns




4.1.1.4 Cross Sections

Another parameter compared in this analysis was the fission-to-capture ratios of
the uranium and plutonium isotopes analyzed (see Table 4a). The fission-to-capture ratio
in Ref. 7 for U-235 was smaller than the ratio calculated by monteburns at the various
burn steps. This means that more fissions occurred per U-235 atom in monteburns than
in the reference, causing more to be burned (as can be seen by comparing Figures 3a and
3b). The fission-to-capture ratio of U-238, however, decreased slightly with burnup,
which means that the rate of capture slightly increased relative to the rate of fission,
producing a few more plutonium atoms in monteburns. In addition, the fission-to-capture
ratios of plutonium isotopes increased slightly as a function of burnup in response to the
decrease of the absorption cross sections due to resonance self-shielding. For Pu-240,
even though its fission-to-capture ratio increased, its probability of fission was so small
that it was still not depleted as rapidly as when constant cross sections that did not

account for resonance self-shielding were used and more transmutation occurred.l”!

Table 4a. Comparison of the Change in the Fission-to-Capture Ratio in
Monteburns with Burnup to Thermal Ones Used in Ref. 7

Isotope Monteburns Published
Change in o;/0, o/t
“ U-235 4.54 to 4.60 4.17
U-236 0.035 to 0.043 -
 U-238 0.109 to 0.108 -
l Pu-239 1.74 to 1.81 1.84
Pu-240 0.0025 to 0.006 -
Ik Pu-241 2.68 10 2.73 2.66
Pu-242 0.012 to 0.014 -

" 01 /0 is the fission-to-capture ratio of the isotope.
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Another difference seen in this analysis was that the absorption cross sections
used by monteburns were not as large as those given in the reference (see Table 4b). This
was because the reference used constant, thermal cross sections for PWRs most likely at
room temperature (i.e., an energy of 0.0253 eV), whereas monteburns calculated
spectrum-dependent cross sections at actual temperatures. This higher temperature
affected the cross section in two ways. First, higher temperatures cause resonances to
broaden, increasing resonance absorption in the system. Second, as the temperature of
the moderator increases, its density decreases, causing less of it to be present, and
absorption cross sections decrease because neutrons are not slowed down as effectively.
The result of these two effects is that a one-group cross section can either increase or

decrease with temperature (in this case they decreased).

Table 4b. Comparison of the Change in the Absorption Cross Section in
Monteburns with Burnup to Thermal Ones Used in Ref. 7

Isotope Monteburns Published FI

“ Change in G, A
U-235 58 to 66 556
U-236 9 to 6 124
U-238 ~1+/-0.05 2.23

[ Pu-239 ~190 +/- 15 1620

[ Pu-240 363 to 92 260

|¥ Pu-241 166 to 192 1570
Pu-242 35 10 26 381

" 6. is considered here to be the total effective microscopic absorption cross section (i.e., capture + fission)
in bamns (b), but in the remainder of the document, absorption solely refers to capture interactions

4.1.1.5 Fission Products
The change in relative concentrations of fission products calculated by
monteburns matched almost identically to those produced using thermal cross sections

and the equations in the reference. To model the amount of buildup of all fission

products (and not just those with cross sections in MCNP), the lump sum fission
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product option in MCNP was used (see Section 3.3.2 for a description). This test case
showed that this option in monteburns did calculate fission product compositions
correctly.  Unfortunately, it adversely affected uwranium and plutonium isotopic
compositions. Either the absorption cross sections of these general fission products were
too large relative to the rest of the system, or the atom densities of fission products
calculated by MCNP were too large (see Section 4.2.1.3 for more information). In either
case, the addition of these lump summed fission products caused the k¢ of the system to
decrease significantly as a function of burhup. A subcritical system significantly alters
the neutron energy spectrum, influencing the value of the spectrum-averaged one-group
cross sections as well as the relative ratios of fission, capture, and leakage. Because this
system was modeled as an infinite lattice with no leakage, simply the ratio of fission to
capture was altered, causing too little U-235 to be depleted and too many plutonium
isotopes to be built up. Thus, the results presented in this test case were obtained from
two different runs; one to obtain actinide concentrations as a function of burnup for a
near-critical system, and one to calculate the change in the total fission product

concentrations with burnup.

4.1.2 Pin-Cell Burnup

The next test case compared results from monteburns to experimental data and
results from previous calculations using other codes for a simple fuel pin within a square-
pitched cell (pin-cell geometry). The Organization for Economic Cooperation and
Development/Nuclear Energy Agency (OECD/NEA) Bumup Credit Calculational
Criticality Benchmarks are a compendium of calculations performed by 16 different

(201 The purpose of these

organizations (21 sets of results) and measured burnup data.
benchmarks was to determine if various computer codes/models could accurately calculate
the composition of spent fuel assemblies for the Burnup Credit program. Results from

Burnup Credit Benchmark Phase I-B were used in the benchmarking process for
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monteburns to determine if similar nuclide concentrations were calculated as a function of
burnup for a simple pin-cell geometry. The percent errors in this case were calculated
relative to the measured data, and the results obtained by monteburns were compared to

the data published by other organizations and codes.

4.1.2.1 Description

The pin-cell geometry used for this benchmark case consisted of a fuel pin
(initially comprised of UQ,) with a thin layer of cladding (Zircaloy-2) surrounded by
water in a square-pitched cell (see Figure 4). Reflective boundary conditions were used
on all four edges to simulate that the pin was infinitely surrounded by similar pins. The
parameters used for this test case are given in Table 5, and the input files used to run
monteburns for this test case appear in Appendices C-E (which is why detailed geometry

information is provided for this test case and not the others).

Cladding

Figure 4. Pin-Cell Diagram
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Table 5. Parameters for Test Case #2

Parameter'*" Value Parameter Value
Fuel Density 10.045 g/cc || Length of Irradiation - Cycle 1 | 306 days
Water Density 0.7569 g/cc || Time Between Cycles 1 and 2 | 71.0 days
Rod Pitch 1.5586 cm || Length of Irradiation - Cycle 2 | 382 days
Rod Outside Radius 0.559 cm Time Between Cycles 2 and 3 | 83.1 days
Rod Inside Radius 0.493 cm Length of Irradiation - Cycle 3 | 466 days
Fuel Pellet Radius 0.4782 cm || Time Between Cycles 3 and 4 | 85.0 days
Active Fuel Length 347.2 cm Length of Irradiation - Cycle 4 | 461 days
Effective Fuel Temp. 841 K Length of Final Cool-Down 1870 days
Cladding Temperature 620 K Boron Concentration - Cycle 1 | 331 ppm ~
Water Temperature 558 K " Boron Concentration - Cycle 2 | 470 ppm
Ending Fuel Bumup for | 27.35 | Boron Concentration - Cycle 3 | 504 ppm
Scenario A (GWd/MTHM)

Ending Fuel Burnup for | 37.12 Boron Concentration - Cycle 4 | 493 ppm
Scenario B (GWd/MTHM)

" ppm (or parts per million) means the grams of boron particles per million grams of water in the system

The soluble boron concentration in the water was fixed for each burn step and was
not burned (the ability to change the composition of material in a region during burn steps
without burning the material is one of the unique features of monteburns). 1f the boron
were burnéd, the ratio of Boron-10 to Boron-11 throughout the burn step would have
been affected because Boron-10 burns faster than Boron-11, and the results would not
have reflected a representative neutron spectrum due to an inaccurate boron composition.
In a reactor system, the coolant flows in and out of the reactor vertically and does not
stay in one location for too long to be irradiated (it only takes the coolant about 0.7
seconds to flow through the reactor (see Equation 22)). Thus, it was assumed for this
test case that the boron concentration going in was fixed as natural boron (about 20% B-

10 and 80% B-11) and that it came out at the same concentration.
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t_p*A*L
of

where: ¢ = time coolant spends in core (s) = 0.7 s

density of coolant = 0.7569 g/cm?® 2%

= cross sectional area of coolant flow = 50,500 cm? for a PWR!

length of fuel rod = 347.2 cm 2%

of = coolant flow = 19*10° g/s 2%

The isotopic compositions (in mg/g initial UO,) resulting from burnup calculations
in monteburns for two different scenarios appear in Tables 6a and 6b. The values
calculated by monteburns, the measured data from Ref. 20, the percent error between the
two (calculated using Equation 23), and the range of values calculated by other

organizations are all listed in these tables.

% Error = (Calculated/Measured - 1) * 100% (23)

The geometry used in this test case, an infinite lattice of fuel pins, was not
completely representative of the actual system in which the measured fuel pin was
burned. Thus, the main purpose of this test case was not necessarily to analyze how well
it represented an actual fuel pin, but to show that monteburns calculated results of
burnup calculations within the range of values calculated by other codes using the same
geometry. The only difference between the system modeled in monteburns and that
described in the reference is that it was difficult to obtain the exact amount of burnup in
monteburns that was specified in the problem. This is because monteburns requires the
user to input the total system power, irradiation time, and fraction of power produced in
each step, and it then calculates how much power is generated by each region (see

Equations 9-17). The resulting flux is subject to statistical errors and may not correspond
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to the exact flux and power specified in the input, but this problem can be corrected by

running MCNP with better statistics. The actual burnups calculated by monteburns for

Scenarios A and B in this test case were 27.34 and 37.38 GWd/MTHM respectively,

which were fairly close to the specified inputs of 27.35 and 37.12 GWd/MTHM

respectively.

4.1.2.2 Results
Table 6a. Results and a Comparison of Experimental Data for Scenario A

Isotope Monteburns Published Value | % Error | Range of Values from
Value (mg/g UOy) | (mg/g U0, (207 Other Codes!?"!
U-234 0.156 0.160 245 0.1330 to 0.1750
U-235 8.10 8.47 -4.32 7.445 t0 8.661 |
U-236 3.21 3.14 2.09 3.128t03.540 |
U-238 838 843 -0.50 836.7t0841.5 |
Np-237 0.286 0.268 6.65 0.2527 t0 0.3396 "
Pu-238 0.095 0.101 6.12 | 0.05721 t0 0.1083
| Pu-239 3.94 4.26 -7.50 3.660 to 4.690 j"
Pu-240 1.68 1.72 -2.00 1.573 to 1.860
Pu-241 0.663 0.681 2.72 0.5310 to 0.7335
Pu-242 0.308 0.289 6.65 0.2000 to 0.3192
Am-241 0.232 N/A N/A | 0.2269 to 0.2598
Am-243 0.0411 N/A N/A | 0.03480 to 0.04672
Mo-95 0.563 N/A N/A 0.5590 to 0.5795
Tc-99 0.595 N/A N/A 0.5648 to 0.6904
Cs-133 0.866 0.850 1.91 0.6820 to 0.8640
| Cs-135 0.376 0.360 4.46 0.3728 to 0.3959
Nd-143 0.611 0.613 -0.36 0.6040 to 0.6792
Nd-145 0.511 0.510 0.19 0.4984 t0 0.5151
Sm-147 0.160 N/A N/A 0.1564 10 0.1932 ||
Sm-149 0.00157 0.00290 -45.76 | 0.001626 to 0.002900
Sm-150 0.180 0.207 1322 | 0.1713 t0 0.2146
Sm-151 0.00890 N/A N/A | 0.006376 to 0.01413
Sm-152 0.0858 0.0870 -1.35 0.07947 to 0.1073
" Eu-153 0.0830 0.0790 511 | 0.06730 to 0.08921
l Gd-155 0.00394 N/A N/A | 0.001507 to 0.005762
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Table 6b. Results and a Comparison of Experimental Data for Scenario B

Isotope

Monteburns
Value (mg/g UO,)

Published Value
(mg/g UO,) I

% Error

Range of Values from
Other Codes!®”

U-234

0.133

0.140

-5.05

0.1080 to 0.1570

U-235

4.67

5.17

-9.66

4.022 to 5.510

U-236

3.62

3.53

2.68

3.526 to 3.930

U-238

830

833

-0.28

829.2 to 836.0

Np-237

0.407

0.356

14.38

0.3560 to 0.4919

Pu-238

0.182

0.189

-3.84

0.1144 to 0.2069

Pu-239

4.03

4.36

-7.46

3.710 to 4.877

Pu-240

2.18

2.24

-2.47

1.996 to 2.347

Pu-241

0.866

0.903

-4.05

0.7510 to 0.9846

Pu-242

0.619

0.576

7.41

0.4200 to 0.6347

Am-241

0.294

N/A

N/A

0.2880 t0 0.3418

Am-243

0.108

N/A

N/A

0.09637 to 0.1391

M0f95

0.735

N/A

N/A

0.7214 to 0.7545

Tc-99

0.782

N/A

N/A

0.7327 to 0.8372

Cs-133

1.12

1.09

2.55

0.8784 to 1.117

Cs-135

0.419

0.400

4.79

0.3967 to 0.4317

Nd-143

0.711

0.716

-0.76

0.7013 to 0.8254

Nd-145

0.655

0.653

0.26

0.6326 to 0.6600

Sm-147

0.170

N/A

N/A

0.1659 to 0.2201

Sm-149

0.00164

0.00300

-45.18

0.001736 to 0.003092

|
|

Sm-150

0.247

0.271

-8.96

0.2.297 to 0.3152

Sm-151

0.00958

N/A

N/A

0.008614 to 0.01571

Sm-152

0.104

0.104

-0.20

0.09761 t0 0.1416

Eu-153

0.123

0.109

13.17

0.09960 to 0.1309

Gd-155

0.00703

N/A

N/A

0.002538 to 0.01028 |

The results calculated by monteburns fell within the range of values calculated by

other codes for both scenarios with the exception of the fission products Cesium (Cs)-

133 and Samarium (Sm)-149. However, neither of these two isotopes’ compositions

were too far out of range, which means that monteburns represented the system just as

well as or better than the other burnup codes. It is difficult to calculate fission product




concentrations accurately (as discussed in Section 4.1.2.5), so this benchmark was indeed
considered to be successful.

The results of calculations performed in monteburns for Scenario A matched the
measured results from this test case to within a 5% error for most isotopes with the
exception of Neptunium (Np)-237, Pu-238, Pu-239, Pu-242, Europium (Eu)-153,
Samarium (Sm)-149, and Sm-150. The errors seen in these calculations could be a result
of four different effects: 1) the system, as modeled, was supercritical and produced a
different spectrum than was seen experimentally, 2) the recoverable energy per fission
may not have been represented correctly, 3) incorrect fission yields in ORIGEN2, and 4)

statistical errors.

4.1.2.3 Differences in Energy Spectra

First, the simple system modeled in this test case was an infinite pin-cell
geometry and did not represent the exact spectrum that would have been seen with a pin
taken from an experimental reactor operating at steady-state. A pin in an actual reactor
would be subject to the influences of other poisons (besides soluble boron) in the system,
and the effects of leakage would decrease the relative reaction rates of fission and capture
because it is a competing process. However, in this infinite lattice of fuel pins, no leakage
occurred, so the fraction of neutrons that would have previously left the system
contributed to fission and capture interactions instead. This could explain why more U-

235 was depleted in monteburns than experimentally.

4.1.2.4 Recoverable Energy Per Fission

The second source of error could have been that the value input in monteburns for
the recoverable energy per fission may have been too low. In monteburns, the user has
the option to input the recoverable energy per fission for U-235, and the actual

recoverable energy per fission (Qg¢) in the system is scaled relative to the presence of
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other actinides in the system and the ratio of their recoverable energies to that of U-235
(see Equations 5-7). For this case, an estimated value of 200 MeV was used.l'¥ Thus,
because only 200 MeV was generated per fission, a larger number of fissions were
required for a given power level than if a larger value, such as 202 MeV, were entered.
For example, results from using 202 MeV showed that U-235 was not burned as quickly
because fewer total fissions occurred. However, the fission-to-capture ratio of each
actinide remained the same even though the recoverable energy per fission changed, so the
plutonium isotopes still did not build up as much as in the measured data. In either case,
it was difficult to justify using a higher recoverable energy per fission in this test case
without experimentally showing that a PWR system provides that much more energy per

fission.

4.1.2.5 Fission Yields

Third, for both scenarios the compositions of Sm-149, Sm-150, and Eu-153
calculated by monteburns at the end of the irradiation were smaller than measured results
(by almost a factor of 2 for Sm-149 although much better for the other two). This is
probably a result of estimations of the fission yields made by ORIGEN2 for these
isotopes. For example, the total fission yield from Pu-239 for Sm is around 0.2% in the
ORIGEN2 libraries while it is 0.7% experimentally,’?!! causing fewer Sm atoms to be
produced in monteburns than experimentally. However, this is a facet of the code
ORIGEN2 and cannot currently be modified by monteburns, so these errors must be
accepted. Additionally, the ratio of fissions due to Pu-239 versus Pu-241 may also have
affected the results. The fission yields of both Sm-149 and Sm-150 are slightly greater
from Pu-239 than Pu-241 according to the relevant ORIGEN?2 library. Because excess
Pu-242 was produced, it was assumed that a great deal of Pu-241 was also produced

(although it was depleted rather quickly). Thus, more fissions probably occurred from

Pu-241 than Pu-239 in the modeled system than the measured one, and fewer Sm-149 and
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Sm-150 atoms were produced. The errors associated with Eu-153 and other fission
products were probably a result of similar reasons. Fortunately, ORIGEN2 contains
more representative fission yields for a majority of the fission products, overall producing

acceptable results (i.e. < 5% error).

4.1.2.6 Statistical Variances

The last possible source of error could have been a result of the statistical
variances involved with obtaining spectrum-averaged, one-group cross sections in MCNP,
which were produced using tally cards. The accuracy of these depend on the statistics
with which MCNP was run and the accuracy with which it calculates fluxes in each
region. For example, Pu-238 displayed a 6.12% error in Scenario A but only a 3.84%
error in Scenario B. The accuracy to which the ENDF/B-V cross section set(s)
represented resonances may also have affected the outcome. Either way, variances in
cross sections may have altered the amount of resonance absorption versus self-shielding

and influenced results.

4.1.2.7 Additional Burnup

For Scenario B, a number of additional actinides had errors greater than 5%. This
case involved higher burnups than Scenario A as well as a larger variance between the final
burnup in monteburns and measured data, so greater percent errors were expected. This
was because variances in cross sections and fission yields became more prominent as
power times time increased because each burn step became relatively longer (in terms of
GWd) to make differences more prominent. In this scenario of the test case, it was
particularly obvious that U-235 was burned faster using monteburns than experimentally,
creating almost a 10% error. This was again due to the reasons discussed previously.

However, all actinides still fell within the range of computational values produced by

59




other codes for both scenarios, showing the validity of monteburns in modeling the

system described by the reference.

Overall, the ability of monteburns to calculate the change in composition of a
system with burnup has been shown to be fairly good and within the range of values
calculated by other codes. More accurate answers may be obtained using better statistics
(as further discussed in Section 4.2) or by modeling the entire system rather than just one

fuel pin to represent a more accurate spectrum and to include the effects of leakage.

4.1.3 Assembly Burnup

The purpose of the third test case was to compare the burnup results calculated

by monteburns to experimental values for a full PWR assembly.

4.1.3.1 Description

The assembly modeled in this example was H.B. Robinson’s Unit 2, which uses a
Westinghouse 15x15 fuel lattice, and the assembly layout is shown in Figure 5 (for
detailed information, see Ref. 19). This test case studied four different scenarios, each
with a different final burnup. To simulate an assembly located in the middle of a reactor
with identical assemblies surrounding it, reflective boundary conditions were placed on all
four sides of the assembly.

This model was considered to be more accurate than the simple pin-cell one in
Test Case #2 because burnable poisons as well as guide and instrumentation tubes were
represented, thus, the spectrum of the system should have been more accurate. However,
the same number of outer burn steps were used for each scenario with increasing amounts
of power times time, so representative cross sections were calculated over a shorter time
frame in the first scenario and over a longer one in the last one. The same average boron

concentration was also used for each but probably represented the middle two cases best.
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Figure 5. Layout of Assembly for Test Case #3

The system turned out to be slightly supercritical for the first scenario and
slightly subcritical for the last one, so the resuits for the middle two cases were expected
to be better than for the first and last. Again, there were difficulties achieving the exact
amount of burnup specified in the input, but the values were fairly close nonetheless
(16.00, 23.84, 28.64, and 31.86 GWd/MTHM compared to 16.02, 23.81, 28.47, and
31.66 GWd/MTHM for Scenarios 1-4 respectively). |

4.1.3.2 Results

One rod within this assembly was measured for isotopic content, and the

measured results for this rod were compared to those calculated by monteburns in Tables
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7a and 7b (in g/g UO,) for the four burnup scenarios. The percent errors displayed in

these tables were calculated using Equation 23.

Table 7a. Results for Burnups of 16.00 and 23.84 GWd/MTHM (g/g UO,)

“ Burnup

16.00 GWd/MTHM

23.84 GWd/MTHM

II

Isotope

monteburns

published!!*]

% error

monteburns

published!”!

U-235

0.0110

0.0107

2.62

0.00751

0.00721

% error l
411

U-236

0.00212

0.00219

-3.37

0.00266

0.00274

-3.09

U-238

0.848

0.847

0.17

0.842

0.847

-0.53

Pu-238

2.89E-05

2.83E-05

2.29

7.01E-05

6.95E-05

0.83

Pu-239

0.00371

0.00364

2.01

0.00407

0.00402

1.31

Pu-240

0.00114

0.00109

4.22

0.00170

0.00167

1.61

Pu-241

3.25E-04

3.04E-04

7.04

5.29E-04

5.04E-04

4.97

Np-237

1.51E-04

1.55E-04

-2.76 || 2.46E-04

2.60E-04

-3.55

Tc-99"

6.06E-06

5.44E-06

11.35

8.76E-06

8.09E-06

834 |

Cs-137"

0.0353

0.0359

-1.64

lI

0.0527

0.0539

222 ﬂ

Table 7b. Results for Burnups of 28.64 and 31.86 GWd/MTHM (g/g UO,)

Burnup

28.64 GWd/MTHM

31.86 GWd/MTHM

Isotope

monteburns

published!"'!

% error

monteburns

published!"”!

% error

U-235

0.00603

0.00618

2.44

0.00515

0.00486

5.98

U-236

0.00285

0.00282

1.24

0.00295

0.00300

-1.51

U-238

0.838

0.834

0.54

0.835

0.842

-0.89

Pu-238

1.06E-04

1.14E-04

-7.01

1.33E-04

1.30E-04

1.97

Pu-239

0.00431

0.00439

-1.77

0.00445

0.00420

6.00

Pu-240

0.00199

0.00197

1.14

0.00218

0.00212

2.65

Pu-241

6.49E-04

6.81E-04

-4.72

7.11E-04

6.92E-04

2.71

Np-237

3.11E-04

3.04E-04

2.45

3.59E-04

3.33E-04

Tc-99"

1.03E-05

8.95E-06

14.94

1.13E-05

1.01E-05

7.91 '

11.9ﬂ

Cs-137°

0.0631

0.0627

0.70

0.0703

0.0713

-1.44 |

“The units for these are given in Curies/gram UO; (Ci/g) instead of g/g UO; like the other isotopes.




As can be seen from these tables, the percent error associated with a majority of
the isotopes in these cases was below 5% with the exception of several actinides and the

fission product Technetium (Tc)-99.

4.1.3.3 Actinides

In each burnup case, at least one actinide concentration resulted in a percent error
greater than 5%, but none consistently produced poor results. These errors were
probably a result of any or all of the reasons presented in Test Cases 1 and 2 (ie.,
resonance self-shielding, cross sections, inaccurate system modeling, variances in
recoverable energy per fission, statistics, etc.). Because the first scenario was slightly
supercritical and the last subcritical, the spectrums were probably not representative of a
steady-state system, and cross sections may have suffered accuracy as a result. This is
- probably a result of differences in the locations of resonances and the amount of
resonance absorption versus self-shielding that occurred. For example, in Scenarios 1, 2,
and 4, too much U-238 was depleted, producing excess Pu-239, and in Scenario 3, too
little U-238 was depleted, not producing enough Pu-239 or higher plutonium isotopes. In
contrast, too much U-235 was depleted in Scenario 3 because Pu-239 did not contribute
to as many fissions as it should have, and excess U-236 was produced. In turn, not
enough U-235 was depleted in Scenarios 1, 2, and 4 because too much Pu-239 and Pu-241
fissioned, resulting in too little production of U-236. This probably means that in
Scenario 3, the absorption cross section of U-235 was too large compared to that of U-
238, whereas in the other test cases, it was too small. Thus, the number of U-235
captures appeared to be indirectly proportional to the number of U-238 captures in this

test case, and in all scenarios were slightly different than the actual system.
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4.1.3.4 Fission Products

The percent errors associated with the concentration of Tc-99 were around 10-15
percent for each burnup case. There are three potential sources of error for this
calculation. First, the fission yields for Tc-99 used by ORIGEN2 may not have been
truly representative of the probability that it was produced by fission (as discussed in
Section 4.1.2.5). Second, the absorption cross section calculated by monteburns for Tc-
99 may have been too small because not enough of it was transmuted to Tc-100. Finally
(but least likely), the concentration of Tc-99 was given in Ci/g UQ, instead of g/g UO, as
the actinides were, and the conversion may have been performed incorrectly. Monteburns

outputs the concentrations of isotopes in grams, so it was converted from grams to Curies

by multiplying by the specific activity of Tc-99 (see Equation 24 1*4),
% 23
SA = i.l%_ ~ 1.7e-2 Ci/g for Tc-99 (24)

where: S4 = specific activity (Bg/g) (where 1 Ci = 3.7*¥10'° Bq 1**))
M = atomic weight of isotope = atomic mass number = 99 for Tc-99

T = half-life of isotope in seconds = 2.13*10° years !!

However, the errors associated with the fission product Cs-137 were less than
2.5% using the same ORIGEN?2 library and specific activity equation. Therefore, the
errors associated with Tc-99 were more likely a result of the differences in the fission
yields or cross sections. Even a 10-15% error for a fission product was not considered to
be too unreasonable in this analysis considering all the uncertainties and potential

statistical errors involved.
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4.1.3.5 Comparison to SCALE

The percent errors seen using the code SCALE were similar to those obtained
from monteburns. For Tc-99 the average percent error was 11.7% in SCALE and
between 8-15% in monteburns. Similarly, the errors associated with the other fission
product, Cs-137, were only on average, 1.2% in SCALE and between 0.7 and 2.5% in
monteburns. This means that the two codes produced similar results, which is probably
because the same (or similar) fission yields and/or cross sections were used in each (this is
because ORIGEN-S, the code used by SCALE containing fission yields, is simply a
newer version of ORIGEN2, which is used in monteburns) as well as the same model.
The largest percent errors seen in SCALE for actinides were associated with Pu-239, Pu-
241, and Np-237 (8.2%, 5.4%, and 11.1% respectively) for this test case, and comparing
these to Tables 7a and 7b, monteburns performed as well as SCALE for burnup
calculations. A more accurate system model would be needed to match measured results

more closely.

Overall, modeling a full reactor assembly proved to be more accurate than just
modeling an infinite lattice of identical fuel pins, and it was shown that monteburns

performs calculations for a given system model just as well as a code such as SCALE.

4.1.4 Power Distribution

One of the many capabilities of monteburns is that it can calculate the amount of
power produced in each region/material of a system given the total system power. Power
distribution is important because it determines how much energy is released from each
region, thereby indicating which one(s) is depleted the fastest. It does this by obtaining
the flux and macroscopic fission cross section tallies for the region(s) of interest from
MCNP, “normalizing” these values, and then calculating the power in each region from

these results (see Equations 9-17 for more information).
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4.1.4.1 Description

The test case used to validate this calculation modeled a sample 3x3 BWR
assembly with eight fuel pins on the outside and a rod capable of containing burnable
poison in the middle.”®! The layout of the 3x3 assembly is shown in Figure 6, and the
pins are numbered according to three different regions. The average power produced per
pin in the assembly was calculated, and then the power produced by a pin in each region

was divided by this average.

Fuel Rod Centerpin With
or Without Gd

Figure 6. 3x3 Assembly

4.1.4.2 Results

Table 8 displays the differences between the results calculated by monteburns and
the range of values obtained using other codes given in Ref. 23 for both a scenario with

gadolinium (Gd) in the center pin and one without. This table shows that the power

distributions for both caSes fell within the range of published values, indicating that not

only does monteburns perform power distribution calculations correctly, but it also

analyzes a BWR fuel assembly well.




Table 8. Pin Power Distribution

Fuel Pin Analyzed Monteburns Value” Published Range of Values ?* |
Pin 1 with 3% Gd 1.055 1.053 to 1.062 i
Pin 2 with 3% Gd 0.437 0.413 to 0.460
Pin 3 with 3% Gd 1.086 1.082 to 1.087
Pin 1 with 0% Gd 1.031 1.029 to 1.032
Pin 2 with 0% Gd 0.766 0.766 to 0.779
Pin 3 with 0% Gd 1.028 1.026 to 1.027

“This is the average power produced per pin in each region divided by the average power produced per pin
in the 3x3 assembly.

Additionally, it shows that the continuous pointwise cross sections output as one-group
in MCNP produce compatible results to the group-wise ones used by the other codes in

this reference.[’]

4.1.5 Activity Calculation

One of the proposed future uses of monteburns is to provide activation and/or
decay powers of materials (see Section 6.0). To do this, the activities of various isotopes
in a material must be calculated. This test case compares the activity of a spent fuel
assembly containing MOX fuel after irradiation in monteburns to published results from
SCALE. The purpose of using MOX fuel in this test case was to show the versatility of

monteburns in calculating the burnup of plutonium- as well as uranium-based fuels.

4.1.5.1 Description

First, the composition of the material after irradiation was calculated using
monteburns, and then it was converted and output as activity as a function of decay time
using ORIGEN?2 (although only the activity immediately after removal is compared here).
This information can be used to generate dose rates as a function of cooling time for a
spent fuel assembly, which could be useful in both repository analyses and proliferation

1ssues.
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4.1.5.2 Results

The differences between monteburns and published values using SCALE are

shown in Table 9 for a Combustion Engineering System 80+ PWR System containing

mixed-oxide (MOX) fuel.? The percent difference between the values calculated by

monteburns and those given in Ref. 24 for SCALE were calculated by Equation 23, where

the measured value was replaced by the SCALE value.

Table 9. Results from Activity Calculation

| Activity (Ci) Monteburns SCALER % difference
IL H-3 3.48E+02 2.76E+02 26.09
Kr-85 2.85E+03 2.69E+03 5.99
Kr-85m 5.25E+04 5.07E+04 3.47
Rb-86 4.91EH2 3.72E+02 31.88
Kr-88 1.27E+05 1.30E+05 -2.08
Sr-89 1.66E+05 1.69E+05 -1.66
Sr-90 1.94E+04 2.00E+04 295 |
Y-90 2.00E+04 2.03E+04 -1.38
Sr-91 2.35E+05 2.45E+05 -4.24
Y-91 2.39E+05 2 46E+05 -3.05
Y-91m 1.36E+05 1.42E+05 -4.01
Sr-92 2.80E+05 2.90E+05 -3.59 f
i Y-92 2.82E+05 2.91E+05 -3.13 |
Y-93 3.60E+05 2 45E+05 46.86 JI
Nb-95 4.54E-+05 4.56E+05 -0.44
Nb-95m 3.21E+03 5.21E+03 -38.35 f
Zr-95 4.52E+05 4.58FE+05 -1.35 |
Zr-97 4.93E+05 4.86E+05 1.42 “
'r Mo0-99 5.65E+05 5 89E+05 -4.13
Tc-99m 4.99E+05 5.22FE+05 -4.35 {
Rh-105 4.41E+05 4.99E+05 -11.64 1
Rh-105m 1.39E+05 1.45E+05 -4.21 “
Ru-105 4.96E+05 5.10E+05 -2.71
Ru-106 3.76E+05 3.74E+05 0.61 i
| Sb-127 4.52B+04 | 3.86E+04 17.10 |
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Table 9 (cont.)

[ Activity (Ci) Monteburns SCALE?" % difference
Te-127 4.61E+04 3.84E+04 20.03
Te-127m 6.40E-+03 6.69E+03 -433
Sb-129 1.24E+05 1.22E+05 1.97
Te-129 1.23E+05 1.17E+05 4.87
Te-129m 1.86E+04 2.41E+04 -22.86
I-131 3.39E+05 3.43E+05 -1.28
Xe-131m 3.80E+03 4.47E+03 -14.92
1-132 4.78E+05 4.90E+05 -2.45
Te-132 4.65E+05 4.76E+05 -2.29
I-133 6.31E+05 6.52E+05 -3.22 i
Xe-133 6.02E+05 6.55E+05 -8.05 *
Xe-133m 1.89E-+04 2.16E+04 -12.50
t Cs-134 8.41E+04 7.03E+04 19.59
Cs-134m 2.13E+04 1.31E+04 62.75
I-135 5.90E+05 6.24E+05 -5.40
Xe-135 5.12E+05 4.80E+05 6.56
Xe-135m 1.38E+05 1.52E+05 -9.01
Cs-136 4.70E+04 4.17B+04 12.71 |
Cs-137 5.53E+04 5.70E-+04 -2.98 f
Ba-140 5.13E+05 5.44E+05 -5.64 J
La-140 5.32E+05 5.55E+05 -4.14
Ce-141 4.90E+05 5.00E+05 -2.08
La-141 4.86E+05 4.96E+05 -2.08
| Ce-143 4.19E+05 4.29E+05 -2.28
Pr-143 4.19E+05 4.21E+05 -0.40
Ce-144 3.51E+05 3.51E+05 -0.11
Nd-147 1.99E+05 2.05E+05 -3.12
Np-238 2.23E+04 3.48E+04 -35.98
Pu-238 1.29E+03 1.24E+03 - 427
Pu-239 9.15E+02 8.93E+02 2.41 |
Pu-240 1.11E+03 1.10E+03 0.55 i
Am-241 6.07E+02 6.96E+02 -12.83
Pu-241 2.74E+05 2.76E+05 -0.91
Cm-242 8.37E-+04 8.05E+04 3.93
L Cm244 4.68E+03 2.87E+03 62.96
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Table 9 shows that the percent differences associated with most of the actinides
(with the exception of Np-238, Am-241 and Cm-244) were less than 5%, but they were

larger for some of the fission products.

4.1.5.3 Actinides

The percent differences seen for all plutonium isotopes and most other actinides
were less than 5% (excluding Np-238, Am-241, and Cm-244), showing the validity of
both codes in performing burnup calculations involving major system isotopes in the
given geometry. Because this test case was not compared to experimental data, the causes
of errof discussed in Test Cases 1-3 were minimal here. Instead, errors associated with
Np-238, Am-241, and Cm-244 were most likely due to variances in cross sections and the
ways the codes model an assembly with reflective boundary conditions. SCALE uses
multi-group cross section sets, whereas monteburns uses one-group spectrum-averaged
ones obtained from continuous-energy data in MCNP. SCALE also typically uses the
Monte Carlo code KENO, whereas monteburns uses MCNP. Additionally, even though
results from the two codes were comparable, they may not complement measured data as
well without a better system model.

The Am-241 concentration in monteburns was probably smaller than that in
SCALE because not enough Pu-241 was present to decay by beta emission to Am-241,
which was probably a result of fewer neutron absorptions in Pu-240. Another
explanation could be that the Am-241 absorption cross section was larger in monteburns
than in SCALE, producing higher actinide concentrations while depleting Am-241. This
explanation is probably more likely because the monteburns concentrations for Cm-242
and Cm-244 were larger than those in SCALE. By the absorption of a neutron, Am-241
is transmuted to Am-242, which beta decays to Cm-242; Cm-242 then absorbs neutrons
to create Cm-244. The small concentration of Am-241 in monteburns relative to SCALE

also contributed to the relatively small concentration of Np-238 (Am-241 decays by
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alpha emission into Np-237, which absorbs a neutron to become Np-238). As the Am-
241 concentration was relatively low in monteburns, the resulting decay process

produced less Np-237, and in turn, féwer Np-238 atoms.

4.1.5.4 Fission Products

Fission products with a deviation greater than 5% between SCALE and
monteburns include: Ba-140, Cs-134, Cs-134m, Cs-136, H-3, I-135, Kr-85, Nb-95m, Rb-
86, Rh-105, Sb-127, Te-127, Te-129m, Xe-131m, Xe-133, Xe-133m, Xe-135, Xe-135m,
and Y-93. From a list of 53 different fission products, having only 19 with a percent
difference over 5% and only 13 gfeater than 10% is pretty good. This means that
monteburns calculated almost 75% of all fission product concentrations fairly well (less
than 10% difference) in comparison to SCALE and about two-thirds of them to a less
than 5% difference. The deviations seen with these fission products were probably due
to fission yield and/or cross section variances between the two codes. Thus, having

relatively good results for 75% of the fission products was considered to be acceptable.

Overall, the results obtained using monteburns were fairly close to those expected
for each test case, and a majority of them were within a relative error/difference of 5% of
measured results. Almost all were within the range(s) of published calculations from
other codes. First, the change in relative concentrations of uranium and plutonium
isotopes were comparable to those referenced.[”” Next, a full assembly model was shown
to produce better results than a pin-cell geometry due to a more accurate spectrum
representation.  Finally, more similarities were found when comparing results from
monteburns to calculations performed with another code (such as SCALE) using the same
geometry/model than comparing to measured results from a rod irradiated in a full reactor

system influenced by leakage, interfacing between assemblies, and other features.
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Both PWR and BWR cases were tested in monteburns, along with both uranium-
and plutonium-based fuels. The technique used in monteburns for generating cross
sections differed from what other codes such as SCALE use (i.e., one-group spectrum-
averaged ones obtained from continuous energy data versus multi-group ones), but the
differences between the two did not appear to be significant. Thus, monteburns was
considered adequate for the problems presented here. Unfortunately, there is not
currently any readily available experimental data for a fast system, such as that used in
ATW, so no benchmarks were performed for one. However, it is assumed that since the
code has been shown to work well for a thermal system, it can calculate decent results for

a fast system as well.

4.2 Statistical Analyses

Another important aspect of developing and/or running a computer code is to
determine how statistics affect the results. The term statistics, when used in reference to
monteburns, refers to how results vary using different input parameters or modeling a
system in different ways. To test this variance, several of the test cases discussed in the
previous section were further examined. No MCNP statistical runs are presented here;
many of these have already been performed by others in the industry (for example, Ref.

11).

4.2.1 Input Parameters

The input parameters analyzed for their effect(s) on statistics were: the number
of outer burn steps, the number of internal burn steps, the number of predictor steps, the
importance fraction, and the recoverable energy per fission. The majority of tables in this
section show both the measured and calculated values for Scenario 1 of Test Case #3 at a
burnup of ~ 16 GWd/MTHM for four different isotopes: U-235, U-236, Pu-239, and

Pu-240. Unless otherwise stated, the number of internal burn steps was 80, the number
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of outer burn steps was 8 (4 irradiation, 4 decay), the number of predictor steps was one,
the importance fraction was 0.01, the U-235 recoverable energy per fission was 200
MeV, the number of neutrons per cycle was 1000, the number of active cycles was 100,

and the number of skipped cycles in MCNP was 15.

4.2.1.1 Number of Outer and Internal Burn Steps

The first parameter a user typically wants to determine in monteburns is the
length of the time intervals over which irradiation occurs. There are two input parameters
that can affect this length of time: the number of outer burn steps, and the number of
internal burn steps. First, using more outer burn steps not only decreases the length of
each time interval but also increases the accuracy of the system because the spectrum-
averaged one-group cross sections for the system are updated more frequently
(consequently increasing the run time). Second, the way to use shorter time steps in
ORIGEN2 without having to perform additional MCNP runs is through the use of
internal burn steps. The more internal burn steps used, the shorter the time intervals for
each ORIGEN?2 irradiation. As discussed in Section 2.2, this is important because
ORIGEN?2 performs different calculations (i.e., the Bateman equations versus the matrix
exponential method) for isotopes with half-lives less than 10% of the time interval.[%!
Thus, using shorter time intervals may provide more accurate results for the problem.
The optimum number of internal burn steps should also depend upon whether continuous
or discrete (all at one time) feed is used. By using continuous feed with different
beginning and ending feed rates, it was assumed when designing monteburns that it would
be necessary to break the time steps in ORIGEN2 into even shorter periods. This is
because the amount of feed added during each internal bum step is interpolated from the
beginning and ending feed rates for that outer burn step and averaged over each internal

burn step.
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For the first scenario of test case #3 (a discrete feed case), the effects of the
number of outer and internal burn steps on the results are shown in Tables 10a and 10b
(these were performed with forty internal burn steps and eight outer burn steps
respectively). Results for a continuous feed case (representing ATW, which will be

discussed in Section 5.1) are then displayed in Table 10c.

Table 10a. Comparison of Results as a Function of Number of Outer Burn Steps

Experimental (grams/ 5360 1097 1823 - 546
Results assembly)

# of Outer Length of U-235 U-236 Pu-239 Pu-240
Burn Steps ORIGEN2
steps (days)
8 6.09 1860
16 3.04 1880
24 2.03 1870

Table 10b. Comparison of Results as a Function of Number of Internal Burn Steps

Experimental (grams/ 5360 1097 1823 546
Results assembly)

# of Internal Length of U-235 U-236 Pu-239 Pu-240
Burn Steps ORIGEN2
steps (days)
121.75
60.88
40.58
30.44
24.35
12.18
8.12
6.09
4.87




Table 10c. Results as a Function of Internal Burn Step for Continuous Feed

(grams)
#ofInternal | Lengthof | U-238 | Pu-239 Pu-240
Burn Steps | ORIGEN2
steps (days)
10 122 | 7.97E+2 1.70E+5 2.08E+5 1.79E+4
I’ 20 6.09 7.93E+2 1.68E+5 2.07E+5 1.76E+4
30 4.06 7.97E+2 1.71E+5 2.07E+5 1.79E+4
I 40 3.04 7.95E+2 1.70E+5 2.08E+5 1.79E+4 ||

Surprisingly, all three of these tables show little increase in accuracy with more
than the minimum required number of outer or internal burn steps (i.e. two for discrete
feed and ten for continuous feed!'®) for these sample test cases. The number of outer
burn steps is thus recommended to be the lowest needed to represent all system changes.
For example, in this case, eight were required because there were four irradiation cycles
with different amounts of power and soluble boron as well as a cooling period following
each. It also appeared that using only two internal burn steps for the discrete feed case
with a thermal spectrum (with an irradiation period of about 120 days) and using ten for
the continuous case with a fast spectrum (corresponding to a length of approximately 12
days each) produced as good of results as using more. Thus, for similar cases to those
presented here, it is recommended to use the minimum number of internal burn steps even
though using additional internal burn steps does not significantly affect the run time.

Additionally, this test case at least showed that the results obtained from
monteburns for both a fast and thermal spectrum were consistent if not influenced by
changes in the number of burn steps. Nonetheless, the user should verify that the number
of burn steps used provides enough accuracy for his/her specific system and associated
irradiation periods. This is because ORIGEN2 may still produce poor results for
irradiation periods greater than 125 days (the maximum studied here was 121.75 days) or

for other types of systems or problems (such as decay-only over thousands of years).
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4.2.1.2 Number of Predictor Steps

The next parameter analyzed was the number of predictor steps. For each
predictor step during each outer burn step (with the exception of the first step, in which
case an extra predictor step is run - see Section 3.3.2), MCNP is run to obtain one-group
spectrum-averaged cross sections. Thus, increasing the number of predictor steps
increases the degree to which the cross sections calculated by MCNP represent the

average system spectrum for the step, but it also increases the run time of the problem.

The results from this analysis appear in Table 10d.

Table 10d. Comparison of Results as a Function of Number of Predictor Steps

(grams/assembly)

Experimental
Results

5360

1097

1823

546

Predictor
Steps

U-235

U-236

Pu-239

Pu-240

0

5540

1050

1870

450

1

5500

1060

1860

569

2

5500

1060

1870

580

With eight outer burn steps and eighty internal burn steps, a large difference was
seen between using zero and one predictor step because cross sections were calculated
only once in the former case (i.c., only for the first step) and nine times in the latter. This
indicates that it is indeed important to calculate cross sections several times throughout an
irradiation. However, the difference between using one and two predictor steps was
minimal, meaning that the one-group spectrum-averaged cross sections calculated with
one predictor step were fairly good representations of the system at each step. Because
the run time significantly increases with each predictor step, it was found that for this
system and others studied thus far, there is no advantage in using more than one predictor

step per outer burn step. Again, the differences may have become more definitive if a




case with a longer time interval and/or fewer required outer burn steps had been studied
(however, one was not used because experimental data for such a system was not readily
available). Either way, the user is advised to make sure that one predictor step is
adequate enough for his/her system by comparing the flux spectrum and isotopic
compositions (in mass) halfway through each predictor and actual step to obtain the best

results.

4.2.1.3 Importance Fraction

Another input parameter varied in this statistical analysis was the importance
fraction. This effectively selects which fission products are passed back to MCNP from
ORIGEN?2. If this value is positive, then individual fission products are passed back to
MCNP (assuming their cross sections exist), allowing temperature- and system-
dependent parameters to influence these individual fission product cross sections. If this
value is negative, fission products produced in ORIGEN2 are added together as a total
mass and sent back to MCNP as one of two general fission product representations
(those from U-235 and those from Pu-239) at room temperature (see Se(;tion 332). In
‘this case individual fission product cross sections in ORIGEN2 are not updated because
only general lumped sum ones are used in MCNP and cannot effectively replace
individual ones in ORIGEN2. Results from this statistical analysis appear in Table 10e.

The lower the value of the importance fraction, if positive, the smaller a
contribution an isotope has to make to the system in either absorption or fission
interactions, mass, or atom density (see Equations 18-21) to be included in MCNP.
Surprisingly, the most accurate results for this analysis occurred when the importance
fraction was relatively large (0.1 or 1.0). This is because a steady-state spectrum was
best represented in these cases. The system[19] was initially modeled near critical, and as
the number of fission products added to the system increased (i.e., a 1ower importance

fraction), keff decreased because the fission products absorbed many neutrons that would
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Table 10e. Comparison of Results as a Function of Importance Fraction

(grams/assembly)
Experimental | 5360 1097 1823 546 |
Results
Importance U-235 U-236 Pu-239 Pu-240
fraction
i 1 5480 1060 1820 560
" 0.1 5470 1060 1810 565
0.001 5550 1060 1900 565
“ 0.00001 5520 1070 1910 573
-0.1 6690 1050 4340 539
I -0.01 6690 1050 4340 554

have otherwise contributed to fission. Thus, the spectrum and/or cross sections were no
longer representative of the system at steady-state. If this case could have been modeled
more accurately (i.e., include leakage and interaction with the sides of the reactor core),
then as more fission products were added to the system, then the spectrum would have
been more accurate and better results would have been obtained (to represent what
actually occurs in a reactor).

In this analysis the lump sum option for fission products (i.e. a negative fractional
importance) produced poor results. This lump sum option in monteburns means that all
fission products are combined into two general representations, homogenizing an
otherwise heterogeneous combination of fission products. It produced poor results
because the general fission product cross sections in MCNP appear to have either
relatively large absorption cross sections or large atom densities compared to the case(s)
where fission products are assessed individually in MCNP. As the mass of summed
fission products increased with burnup, the absorption and fission interactions that
occurred in U-235 and Pu-239 in MCNP decreased because too many neutrons were
absorbed by the lump fission products instead. Additionally, more U-238 was

transmuted to Pu-239 than should have been. This may have been because absorption
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resonances exist at slightly larger energies for U-238 than U-235 and Pu-239 (above 10
MeV®!) and many neutrons were absorbed there instead of in resonances at lower
energies (this could be due to resonance self-shielding, less available moderation to slow
neutrons down, and/or a shift in the energy spectrum of the system). Fewer neutrons
existed in the resonance regions of U-235 and Pu-239 compared to U-238, so their one-
group absorption cross sections decreased and less U-236 and Pu-240 was formed. In
contrast, Pu-240, which also has absorption resonances in this higher energy range, was
transmuted more quickly than in the case of individual fission products (i.e., a positive
importance fraction).

The addition of fission products in the actual steady-state system also induces the
effects discussed above, but the general fission product representations in MCNP seemed
to exaggerate it. There are potentially two main explanations for this poor representation:
the effective absorption cross sections of these two general fission products were too
large relative to others in the system being studied, or the atomic weights used by MCNP
to convert the weight percents obtained by monteburns into atom densities for Monte
Carlo calculations were too small. The latter would occur if the average weights of fission
products produced by ORIGEN2 were larger than the representative ones in MCNP,
causing the atom density of fission products to be too large and too much absorption to
occur (atom density is inversely proportional to atomic weight). Upon examination, the
total weight of fission products with an atomic mass above 117 (the weight of Pu-239
general fission products) was about 1.5 times that of fission products with atomic masses
below 115 (the weight of U-235 general fission products), whereas more than half of the
fissions occurred from U-235. This probably resulted from the fact that many higher
actinides (such as Pu-241, americium, etc.) fissioned along with U-235 and Pu-239,
producing fission products with larger atomic weights than those representative of Pu-
239 (which is what they lumped together as). The ending result was that the atomic

weight of the representative fission product for Pu-239 was too small and the atom
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density of this fission product was too large, adversely affecting the spectrum of the

system. In addition, using the lump sum option does not allow individual fission product

cross sections to be modified in ORIGEN2, also decfeasing the accuracy of the

calculations. Overall, the user is not recommended to use the lump sum option for a
reactor system unless he/she completely understands the implications.

Additionally, the only effect of a negative importance fraction is in determining
the contribution that actinides must make to the system to be passed back to MCNP (i.e.,
individual fission products are no longer included in the MCNP input file because a lump
sum is used instead). The results for U-235, U-236, and Pu-239 were not affected when
the importance fraction went from negative 0.1 to negative 0.01, but those for Pu-240
were affected, most likely because additional actinides were included in MCNP. Such an
increase was also seen for Pu-240 as more actinides were added to the system with a
positive fraction importance (at least from 1 to 0.1 and 0.001 to 0.0001). This increase

was not seen between 0.1 and 0.001, probably due to statistics.

4.2.1.4 Recoverable Energy Per Fission

The last input parameter varied in this statistical analysis was the value of the
recoverable energy per fission (Qgg) input by the user for the actinide U-235. The input
value of Qg was varied between 190 and 210 MeV, and the value of Qg calculated by
monteburns at the end of the irradiation period was about 4 MeV greater than the input
value (see Table 10f for results) due to the contribution of other actinides in the system.
The number of fissions that occur in a system are determined by the required power level
of the system and the value of Qgs. The more energy released by each fission (i.e., the
larger Qg is), the fewer fissions that must occur to meet the overall power requirement.
This means that the amount of material burned is lower, causing the final concentration of
fissile material initially in the system (i.e., U-235) to increase proportionally with the

value of Qg;.




Table 10f. Results as a Function of Recoverable Energy Per Fission (g/g UQ,)

(grams/assembly)
Experimental | 5360 1097 1823 546 =]
Results
Input Qg U-235 U-236 Pu-239 Pu-240 | Ending Qg
(MeV) (MeV) J
I 190 5310 1090 1890 603 194
195 5370 1090 1870 591 199
| 198 5490 1060 1870 571 202
i 200 5500 1060 1860 569 204
202 5530 1060 1840 552 206 |
205 5590 1050 1840 548 209 |l
210 5730 1030 1830 532 214 |

Additionally, the fission-to-capture ratios in the system analyzed here were only
a little smaller for the higher values of Qg than the lower ones, so the number of captures
that take place are also proportional to the number of fissions. When fewer fissions were
required (i.e., higher value of Qys), fewer absorptions occurred in U-235, and less U-236
was produced. Similarly, less Pu-239 and Pu-240 was produced because the number of
absorptions in U-238 was also proportional. Thus, the concentrations of U-236, Pu-239,
and Pu-240 decreased as the value of Qg increased (meeting measured results for Pu-239
and Pu-240). However, lower values of Qg produced more comparable results for U-235
and U-236. Thus, the user should probably use the accepted value of 200 MeV although

he/she can enter higher or lower values to tailor the results for specific isotopes.

4.2.2 System-Dependent Changes

One of the largest factors that contributes to errors in monfeburns is the geometry
and material compositions modeled in the system. Although it is primarily up to the user
to model the system correctly, a few suggestions are presented here. In particular, the

factors discussed in the section are: modeling a system as accurately as possible, using
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temperature- and material-dependent factors, and applying appropriate axial boundary

conditions.

4.2.2.1 Modeling a System

First, in modeling most reactor systems, it is difficult to include all the details that
keep the system at steady-state throughout its life (i.e., keeping track of each rod
individually, adding fresh fuel, rotating fuel from one region to another, adjusting the
position of the control rods as a function of burnup, changing the soluble boron
concentration, etc.). To avoid such complications, computer models commonly combine
rods/assemblies into lumped regions, make control rods stationary, and use an average
boron concentration in the moderator throughout each burn step. Modeling a larger
representative system (i.e., an infinite lattice of assemblies) produces better results than
modeling a smaller system (i.e., an infinite number of fuel pins together) because it can
take more system-dependent effects into account (i.e., burnable poison fuel rods, conirol
rods, instrumentation tubes, etc.) and more easily keep the model at steady-state. This
difference was seen in Test Cases #2 and 3, where both a pin and an assembly case were
presented. Because the compositions of surrounding fuel pins in Test Case #2 were not
known, it was not possible to model the case as accurately as an assembly to get better
results (although neither model would account for leakage or other system-dependent
effects). However, it was possible to adjust the amount of soluble boron in the water
surrounding the pins to produce a representative spectrum of a critical system (excluding
leakage considerations). As can be seen from Table 11, answers were closer to measured
values in this system than with the referenced input parameters (although these were used
in the test case for a better comparison to the other codes). This is because with a kgt

around 1.0, a more realistic spectrum and more representative cross sections were

obtained.

82




Table 11. Results as a Function of K ¢ and Cross Section (Test Case #2, Scenario

A - mg/g UO,)
Parameters U-235 U-236 | Pu-239 Pu-240
measured value 8.470 3.140 4.264 1.719
K¢ from 1.3 to 1.0 8.104 3.206 3.944 1.685
k. around 1.0 (ENDF/B-V) 8623 3.178 4.112 1.701
K¢ around 1.0 (ENDF/B-VI) 8.463 3.178 4.072 1.681

However, the best spectrum would have been obtained by using a detailed reactor core
model, including water surrounding the assembly, the pressure vessel, efc., to account for
leakage and other total system effects.

In addition, a comparison of ENDF/B-V and ENDF/B-VI cross sections was
performed (see Table 11). The ENDF/B-V libraries produced better results for U-235,
but the ENDF/B-VI libraries produced better results for Pu-239 and Pu-240. This is
because it has been shown that the neutron flux associated with U-235 in ENDF/B-VI is
greater than that in ENDF/B-V in some energy ranges (for example 10 to 10 and 0.1 to
1 MeV), while the neutron flux associated with U-238 in those energy ranges is about the
same in both ENDF/B-VI and ENDF/B-V.”¥ Thus, more U-235 is burned in ENDF/B-
VI than ENDF/B-V and less Pu-239 and Pu-240 is created. This reduction in plutonium
1sotopes could also be a result of the fact that their neutron fluxes in this same energy
range in ENDF/B-VI were also higher than those in ENDF/B-V, possibly causing more
plutonium atoms to be depleted and matching measured results better. Nonetheless, it is
up to the user to determine which data set to use.

In the future it is advisable to model an entire system with as realistic a spectrum
as possible to produce the best results in monteburns. However, modeling a complex
system in MCNP can also significantly increase the run time required, so the user must

weigh the benefits of each model against the consequences.
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4.2.2.2 Temperature- and Material-Dependent Parameters

Next, the effect of using temperature- and material-dependent parameters in
modeling a system is also important. Along with using temperature-dependent cross
sections in MCNP (typically processed by NJOY), the temperature of each cell (in MeV)
should be included in the MCNP input file using the TMP card.!l! To show this, Test
Case #4 with gadolinium in the center pin was run with both temperature-dependent
cross sections (xs) and the TMP card in MCNP, temperature-dependent cross sections

without this card, and neither. In addition, effect of using S(c,B) treatment for the light

water in the system was studied. S(o.,B) treatment accounts for the binding effects of
hydrogen and oxygen nuclei in light water at thermal energies.® This binding affects
interactions between thermal neutrons and the material and can be important for LWR
systems. The three analyses discussed above used S(o,p) treatment, and the case with
temperature-dependent cross sections and the TMP card was rerun without S(c.,B)

treatment to complete the comparison. The results from these analyses are in Table 12.

Table 12. Effect of Temperature on Power Distribution

Power | With Temp. | With Temp. | No Temp. | No S(o,B) Published

Fraction | Dep. xsand | Dep. xs; no Dep. Treatment Range of

TMP card TMP card Values

I}Region 1 1.055 1.048 1.063 1.054 1.053 to 1.062%'
Region 2 0.437 0.485 0.402 0.477 0.413 to 0.460

Il Region3 1.086 1.081 1.087 1.077 1.082 to 1.087 |

As expected, the greatest accuracy was achieved when temperature-dependent
cross sections, the TMP card, and S(a.,B) treatment were used. In fact, monteburns did
not even calculate a power distribution in the correct range when temperature-dependent

cross sections were included without the TMP card. When neither were included, the




results were close to the published range but were not within it. S(c.,f) treatment slightly

decreased the accuracy of the results, but not as much as using all temperature parameters
for this particular case. Other cases and/or increased/decreased statistics may produce
better results or may not make the outcome as exaggerated as it appears here.
Nonetheless, it is recommended to include temperature-dependent cross sections, the

TMP card, and S(«,B) treatment in the MCNP input files analyzed by monteburns to

obtain the correct power distribution and other results.

4.2.2.3 Axial Boundary Conditions

Another parameter that can contribute to the accuracy of the results is the axial
boundary conditions used in the model. For the models used in all the test cases
discussed in Section 4.1, reflective boundary conditions were placed on all six sides of the
system being analyzed to simulate that it (i.e., either a pin or an assembly) was one
within an infinite lattice of similar ones. These models were consistent with those
described in the referenced input in the radial direction, but how the other codes modeled
the system in the axial direction was unknown. Because the composition of the material
at the ends of the fuel rods in the experimental system was also not specified in the
referenced input, it was assumed that all neutrons were reflected back into the rod once
they reached the ends (i.e., no leakage occurred). This assumption may not have been
fully representative of the experimental reactor because some amount of leakage probably
did occur. To quantify this effect, Scenario B of Test Case #2 was rerun with reflective
boundary conditions in the axial direction, 10 cm of water on the ends of the each fuel rod,
and a vacuum at both ends of each fuel rod (to simulate the maximum amount of leakage).

The results of this analysis compared to measured data appear in Table 13.
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Table 13. Results of Changes in Axial Parameters (mg/g UO,)

{sotope

Reflected

Water

Vacuum

Measured

U-235

11.70

11.50

11.60

12.95

U-236

9.08

9.06

9.06

8.84

Np-237

1.02

1.04

1.03

0.89

Pu-238

0.46

0.46

0.46

0.47

Pu-239

10.10

9.99

10.10

10.91 |

Pu-240

5.47

5.48

5.53

5.61]

Pu-241

2.17

2.12

2.14

2.26

This table shows that the differences in the axial representation of the system
actually had little effect on the results, although the case with reflective boundary
conditions did come the closest to the measured results. This either means that the
material at the ends of the fuel rods in the measured system was probably a large scatterer
and effectively sent a majority of the neutrons back into the pin, or the pins were long
enough that axial edge effects were not important. The amount of leakage that actually
occurred was probably slightly larger than that portrayed by reflective boundary
conditions and smaller than that with water. Thus, the use of reflective boundary

conditions in the axial direction is justified for the test cases in Section 4.1.

Overall, using the best statistics possible without compromising the run time is
the key to obtaining the most efficient results. Both by determining optimum input
parameters and by modeling the system most effectively, good statistics can be obtained.
However, using good statistics often means increasing the required run time of the
problem. It is thus up to the user to determine required statistical accuracy and balance

this against the run time.




5.0 APPLICATIONS OF MONTEBURNS

Monteburns was written to be applicable for a wide variety of systems, including
both reactor and accelerator-driven problems. One of the limitations of other linkage
codes between MCNP and ORIGEN2 (discussed in Section 2.3.1) is that they can only
be used for relatively simple geometries and may not be applicable for more than one
burnup step in an automated fashion (i.e., decay periods following multiple irradiation
periods, etc.). Monteburns was written to be flexible and accommodating to any type of '
MCNP input file and irradiation information to minimize limitations, and it is still being
modified to incorporate additional options. Two examples of applications for which
monteburns is currently being used in the Nuclear Design and Analysis Group (TSA-10)
at Los Alamos National Laboratory are presented in this section. These are the
Accelerator Transmutation of Waste (ATW) project and non-fertile (i.e., non-uranium)
fuel applications. Although representative, they are not inclusive of the full spectrum of
problems to which monteburns can be applied in other groups, laboratories, and

industries.

5.1 Accelerator Transmutation of Waste

One of the largest issues currently being addressed in the nuclear industry is what
should be done with radioactive waste. Included in this category is spent fuel, which is
contained in fuel assemblies removed from nuclear reactor cores after irradiation. This
fuel contains significant amounts of plutonium, numerous actinides, and fission products,
some of which have relatively long half-lives. The purpose of the ATW project is to
design a system to enhance repository performance by reducing long-term radiotoxicity of
spent fuel and other high-level wastes by three orders of magnitude (i.e., after processing
in ATW, this waste after 300 years should have a lower toxicity than untreated waste

after 100,000 years). &1
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For this purpose, the following goals were set for the project:

o Destroy over 99.9% of residual actinides
Destroy over 99.9% of technetium and iodine (long-lived fission products)
Separate strontium and cesium (short-lived fission products that significantly
contribute to the heat loading of the repository)
Separate the uranium from the other spent fuel so that it can be stored or re-used and
to reduce the amount of plutonium produced during transmutation
Produce electricity (destruction of actinides could potentially produce energy, which

could both power the accelerator and be sold)

The ATW system would be powered by a high-power prbton linear accelerator

similar to the one being considered for the Accelerator Production of Tritium (APT)
project. A pyrochemical spent fuel treatment/waste cleanup system would be used to
process the materials remaining after irradiation. The waste itself would be contained in
solid waste pins with a configuration similar to the one in Figure 7. The waste
transmutation region is designed as three separate zones, where pins in Zone 2 have been
irradiated for a cycle in Zone 3, and pins in Zone 1 have been irradiated for one cycle in
Zone 3 and one cycle in Zone 2. Once these pins are burned in Zone 1, the material is
processed so that the actinides are concentrated to obtain the desired reactivity, and the
waste is refabricated into pins and inserted as “fresh” waste into Zone 3. The spallation
target would be a heavy metal target made of liquid lead-bismuth eutectic (LBE), which
helps produce a high intensity neutron source for the outer zones. The system would
operate in a subcritical regime and with a fast neutron spectrum, which allows for more
efficient destruction of actinides because the fission-to-capture ratio of many plutonium

isotopes and higher actinides is larger at fast energies.




Spallation

Target

Reflector

Figure 7. Sample of core configuration for ATW

Monteburns can incorporate all aspects of this design; it moves material from one
region to another in MCNP and analyzes the burnup in as many materials as desired for
each irradiation step before transferring the resulting material compositions back to
MCNP for further analysis. According to preliminary calculations, the following resuits
were both desired and achieved:

e A2 GW,ATW can burn almost any combination of higher actinides at a rate of more
than 500 kg/yr. with a minimum cycle length of 100 days; ’

e Technetium can be used as a burnable poison and to harden the spectrum; Tc-99 can
be transmuted at a rate greater than 40 kg/yr.; and

¢ The harder the neutron spectrum, the more efficiently ATW destroys higher actinides

because the fission-to-capture ratios of the actinides increase.

Using four-month (121 day) cycles and the feed specified in Table 14, the amount

of transmutation/destruction experienced by various actinides in ATW are shown in Table
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15. Positive values in this table correspond to production and negative ones to

destruction.

Table 14. Feed Material for ATW (kg)

Cycle | U-238 | Np-237 | Pu-238 ] Pu-239 | Pu-240 | Pu-241 | Pu-242 ] Am-241 ]| Tc-99 | actinide
1 0 0 0 0 0 0 0 0 0 0
2 100 18 6 207 96 32 19 21 22 502
3 88 16 5 182 84 28 17 18 19 441
4 81 15 5 166 77 25 16 17 18 403
5 76 14 4 157 73 24 15 16 17 382
6 73 13 4 149 69 23 14 15 16 363
7 70 13 4 144 67 22 14 14 15 351
8 68 12 4 141 65 22 13 14 15 342
| 67 12 4 138 64 21 13 14 15 336
{t 10 66 12 4 136 63 21 13 14 15 33]
R 66 12 4 135 62 21 13 14 14 328 i
12 65 12 4 134 62 21 13 13 14 325 |
IL 13 65 12 4 133 62 20 12 13 14 324 1'
14 64 12 4 132 61 20 12 13 14 322
15 64 12 4 132 61 20 12 13 14 321 |
16 64 12 4 131 61 20 12 13 14 319 ||
17 64 11 4 131 61 20 12 13 14 318 ||
18 64 11 4 131 60 20 12 13 14 317 1'
19 63 11 4 130 60 20 12 13 14 316
| 20 63 11 4 130 60 20 12 13 14 316 ||
21 63 il 4 129 60 20 12 13 14 315 |t
22 63 11 4 129 60 20 12 13 14 314 ||
23 63 11 4 129 60 20 12 13 14 313
24 63 11 4 129 59 20 12 13 14 312
25 62 11 3 128 59 20 12 13 14 312
26 62 11 3 128 59 20 12 13 14 311
27 62 11 3 128 59 20 12 13 14 310 ||
28 62 11 3 127 59 20 12 13 14 310 ||
29 62 11 3 127 59 20 12 13 14 309 w
Itso 62 1] 3 127 |59 19 12 13 14_|_309
31 62 11 3 127 59 19 12 13 14 308
32 62 11 3 126 58 19 12 13 14 307 |
33 61 11 3 126 58 19 12 13 14 307 i
34 61 11 3 126 58 19 12 13 14 306 |t
35 61 11 3 126 58 19 12 13 14 306
|L 36 61 11 3 126 58 19 12 13 13 305
i 37 61 11 3 125 58 19 12 13 13 305
i 38 61 11 3 125 58 19 12 13 13 304
it 39 61 11 3 125 58 19 12 13 13 304
I 40 61 11 3 125 58 19 12 13 13 303
Il total | 2570 461 144 5280 | 2440 808 | 493 528 565 | 12800
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Table 15. Amount of Material Produced(+)/Destroyed(-) by ATW (kg)

Fcycle U-238 | Np-237 | Pu-238 | Pu-239 | Pu-240 | Pu-241 | Pu-242 | Am-241 | Tc-99 | actinide "
1 -149 -17 10 214 7 -19 3 21 21 -380
2 -156 -16 11 -201 4 -18 2 -20 -20 -388 |l
3 -159 -16 10 -193 -12 -17 1 -19 -19 -396 |t
4 -100 -16 8 -190 -20 -16 0 -18 -19 -344 i
5 -88 -15 6 -182 26 -16 -1 -17 -19 -333
6 -81 -15 4 -173 -32 -16 -1 -16 -18 -323
7 -76 -14 2 -163 -36 -16 -2 -16 -17 -315
8 -73 -14 0 -160 41 -16 2 -15 -18 316
9 -70 -13 -1 -155 -43 -17 -3 -15 -18 314
10 -68 -13 -2 -152 -47 -17 4 -15 -18 313 ]
11 -67 -13 -3 -149 -50 -18 4 -14 -18 -312 "
12 -66 -13 -3 -145 -51 -18 -5 -14 -17 -310
13 -66 -12 3 -141 -52 -18 -5 -14 -17 -307 “
14 -65 -12 4 -137 -52 -18 -5 -13 -17 -304
15 -64 -12 4 -138 -54 -18 6 -14 -17 -307
16 -64 -12 4 -137 -55 -19 6 -13 -17 -308
17 -64 -12 4 -134 -56 -18 -7 -13 -16 -305
18 -64 -12 4 -133 -35 -19 -7 -13 -16 -303
19 -64 -12 4 132 -57 -19 -7 -13 -16 -303
20 -63 -12 4 -137 -58 -20 -8 -14 -17 313 )]
21 -63 -11 4 -130 -57 -19 -8 -13 -16 -304 "
22 -63 12 4 -131 -58 -19 -8 -13 -16 -306
23 -63 -11 4 -130 -57 -19 -8 -13 -16 -304 4,
24 -63 -11 4 -129 58 -20 -8 -13 -16 -305
25 -62 -11 4 -130 -57 -20 9 -13 -15 -305 ||
26 -63 -12 4 132 -59 -19 9 -13 -16 -307
27 -62 -11 -4 128 -58 -19 9 -13 -15 -303
|| 28 -62 -11 4 -129 -58 -19 9 -13 -16 -305
i 29 -62 -11 4 -127 -58 -19 9 -12 -15 -302 JI
30 -62 -11 -4 -129 -59 -20 -9 -13 -15 -306
It 31 -62 -11 4 -128 -58 -19 -10 -13 -15 304 |l
|k32 62 | -11 -4 -129 -59 -20 -10 -13 -15 -308 j'
33 -62 -11 4 .| -130 -60 -19 -10 -13 -15 -308
34 -61 -11 -4 -127 -59 -20 -11 -13 -15 -305 1'
35 -61 -11 4 -126 -59 -20 -10 -13 -15 -303
36 -61 -11 4 -129 -59 -19 -11 -13 -15 307 f
37 -61 -11 -3 -124 -58 -19 -11 -12 -14 -301
I 38 61 -11 -3 -126 -58 -19 -11 -13 -14 -301
39 -61 -11 4 -127 -60 -19 -11 -13 -15 -305
{40 -61 -11 4 -127 -60 -19 -11 -13 -15 -306 i
fl_total | -2006 | -495 64 | -5731 | 1962 | -738 | -257 564 | -658 | -12587 |

With an initial system input of about 2300 kg of actinides and 700 kg Tc-99 and a
steady-state feed rate of approximately 320 kg of actinides and 14 kg Tc-99 per four-
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month cycle, over 900 kg of actinides and around 45 kg of Tc-99 are destroyed per year.

This successfully exceeded the goals of 500 kg and 40 kg per year, respectively.

5.2 Plutonium Destruction

Although monteburns was initially designed for the ATW project, it has been
expanded (and tested as shown in Section 4.1) for reactor uses. One of the current uses of
monteburns in a reactor-based system is to study various parameters and fuel cycle
concepts for their effectiveness in the destruction of plutonium. There is a great deal of
reactor-grade plutonium currently contained in spent fuel that may become a proliferation
risk in the next century if it is not destroyed. In addition, there are about 50 metric tons
of surplus weapons-grade plutonium in the US being proposed for disposition, possibly
in a reactor.*”)

Studies are currently being performed to determine the best way of destroying this
plutonium, including examining different fuel forms, plutonium isotopic compositions,
and neutron energy spectra. Figure 8 shows the percentage of plutonium destroyed in
each system as a function of burnup. Unless stated otherwise, the parameters used in

this figure were: non-fertile fuel (described below), reactor-grade (RG) plutonium, and a

light-water reactor system.

5.2.1 Fuel Form

First, the two fuel forms being investigated are: MOX fuel (monteburns
calculations for this fuel were demonstrated in Test Case #5), and non-fertile (NF) fuel
(plutonium dioxide (PuQ,) in a calcia (CaO)-stabilized zirconium dioxide (ZrO;) matrix
with an erbia (ErO,) poison).'2) The MOX fuel modeled in this analysis consisted of
93w% depleted uranium oxide and 7w% RG PuO,, and the non-fertile fuel was comprised
of 7w% RG PuO,, 1w% ErO,, 85.6w% Zr0O,, and 6.4w% Ca0O. The purpose of using

“non-fertile fuel for the destruction of plutonium is to transmute plutonium actinides
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without building them. The absence of uranium in the NF fuel leads to a lack of
production of plutonium due to transmutation of the uranium isotopes, and hence to
higher destruction rates. Thus, from Figure §, it can be seen that the non-uranium-based

NF fuel allows better net plutonium destruction than MOX fuel and should be further

considered for this purpose.
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Figure 8. Plutonium Destruction as a Function of Burnup

5.2.2 Isotopic Composition

Second, the initial plutonium isotopes in the fuel also influence how effectively
plutonium is destroyed. This is because the fission-to-capture ratio of every plutonium
isotope is different, and the higher this value is, the more fissions occur relative to

transmutations, and the more plutonium is destroyed (instead of higher actinides built
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up). The two plutonium isotopes with the largest fission-to-capture ratios are Pu-239
and Pu-241 (see Table 4a for sample values) because they are fissile isotopes. Thus, the
more Pu-239 and Pu-241 that exist in the plutonium relative to other plutonium isotopes
(such as Pu-238 and Pu-240), the faster the plutonium fissions and is destroyed. Some
plutonium can also be destroyed through decay of Pu-241 to americium, but not as fast as
that which fissions. However, specifying the composition of the plutonium isotopes in
the material is not an option, so although this is not an input parameter, it is shown here
solely for comparison purposes. The two types of plutonium compared in this example
were reactor-grade plutonium (with a representative composition of 1.57w% Pu-238,
57.54w% Pu-239, 26.65w% Pu-240, 8.85w% Pu-241, and 5.39w% Pu-242), and
weapons-grade plutonium (with an average composition of 93w% Pu-239 and 7w% Pu-
240).

As expected, the weapons-grade plutonium was destroyed faster than the reactor-
grade because it initially contained more fissile Pu-239 atoms than non-fissile Pu-240
ones. Pu-240 is more likely to transmute than fission, so a material starting with more
Pu-240 has only one main chance to fission (when it is Pu-241) before it transmutes to
higher actinides whereas Pu-239 atoms have two main chances (Pu-239 and Pu-241). The
number of fissions that take place in the system must be the same in both cases, so higher
actinides are probably contributing to relatively more fission interactions in the former

case than in the latter case, which is why less net destruction of plutonium occurs.

5.2.3 Energy Spectrum

Finally, the energy spectrum of neutrons in the system in which the fuel is being
irradiated also contributes to the results. The three different spectra analyzed in this
example were a representative light-water, heavy-water, and fast system. The first two

of these systems were modeled in monteburns as one assembly of NF fuel surrounded by

a matrix of system-representative fuel assemblies (i.e., LEU fuel in a PWR™®! for the




LWR case and depleted-uranium CANDU assemblies'®”! for the heavy water case) to
keep the kg of the system around 1.0. The third, a fast system, was difficult to model in
MCNP without a detailed system design for this purpose, so an ORIGEN2 run using
cross sections representative of the Fast Flux Test Facility (FFTF) was performed
instead.

By comparing the LWR RG Pu case to the CANDU and Fast cases run with RG
Pu, Figure 8 indicates that the heavy-water (CANDU) system was the most effective in
destroying plutonium, which is probably a result of the fact that fission-to-capture ratios
were greater for it than for the light-water system (see Table 16). This is because a
heavy-water system has a more thermal spectrum than a LWR, and neutrons probably
avoid many of the absorption resonances. In addition, neutrons can be absorbed in
hydrogen at thermal energies in a LWR system, whereas they are absorbed and/or fission

in plutonium isotopes instead in the heavy-water system.

Table 16. Fission-to-Capture Ratios of Isotopes in Each Spectrum

Isotope Light-Water | Heavy-Water Fast I
U-235 341053 4.46 t0 5.64 3.8 I
Pu-239 1.78 to 1.88 ~1.98 459 |
| Pu-241 2.77t02.75 | 2.91t02.78 6.02 |

Table 16 also indicates that the fission-to-capture ratios for the plutonium
isotopes in the fast system were also relatively large, which means that the neutron
energies were large enough that they avoided resonances altogether and primarily fissioned
instead. Thus, plutonium should have been destroyed more quickly with this fast system
than the thermal ones, but Figure 8 shows that this is not the case at high burnups. This
is probably because the fast system was modeled in ORIGEN2 instead of monteburns,

and system-dependent effects were not taken into account as a function of burnup. The
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results from this example shows the importance of using monteburns instead of just
ORIGEN2. Nonetheless, a LWR is the most probable system that would be used for the
destruction of plutonium because some are already operating in the US Even though a
heavy water system may produce slightly better results, there are a number of political
hurdles that must be addressed before a heavy-water reactor is built in the US or the
Canadian CANDU reactors can be used.

In conclusion, the reason that monteburns is ideal for this type of analysis is that
it models any type of system accurately and provides spectrum-dependent fluxes and
cross sections for a system at each irradiation step. As such, the effect of each parameter
varied in this example influences the results in the most realistic computer model possible.
In particular, for a system with plutonium in the form of NF fuel, the power produced in
the fuel decreases significantly over time (thus other types of material besides NF fuel
must be present in a reactor to keep it critical), and the fuel reaches fairly large burnups.
The flux distribution as well as the cross sections change significantly with this power

loss. It is important to use a code such as monteburns that can account for such changes.
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6.0 LIMITATIONS OF AND FUTURE WORK FOR MONTEBURNS

One limitation of monteburns is that it is currently designed to run only on a
UNIX system. Not all users may have this type of system, and monteburns is not yet
capable of running on VMS or PC systems. Significant changes must be made to the
command file (currently a c-shell file), and minor modifications must be made to the
FORTRANT77 file so that the code can operate on any type of machine and/or system.

Monteburns currently only extracts a few reactor physics constants (1}, v, etc.)

from MCNP output files. It can, however, be modified in the future to extract more
values, depending on what uses the program may eventually have. It may also be
modified to calculate activation and decay powers, and the input may be simplified
further to make it even more user-friendly. Any of these suggestions should enhance the
capability and versatility of the code.

Another modification that could be made to monteburns is to allow it to interface
with another burnup code besides ORIGEN2. Examples of such codes include ORIGEN-
S (part of the SCALE package) and CINDER90 (primarily used for calculations involving
accelerator-driven systems).!'”? Whether the benefit of this addition is great enough to
offset the additional requirement of more complex input has yet to be determined. All of
these limitations can be resolved by modifying the FORTRAN77 program and/or the c-
shell executable. |

Throughout this document, references to resonance self-shielding and the variable
increase or decrease of cross sections with burnup are mentioned. However, no detailed
analyses were performed to determine how resonances affect the value of the flux or the
effective cross sections. A detailed analysis could be performed in the future to study
these affects and determine exactly why the results presented in this document were
obtained. This, along with the activities discussed above, constitutes the proposed future

work activities for monteburns.
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7.0 CONCLUSIONS

This document provided a thorough description and benchmarking results of the
automated burnup code monteburns, which links the transport code MCNP and the
radioactive decay and burnup code ORIGEN2. This linkage code was designed to limit
the amount of information the user is required to input and still perform detailed,
automated burnup calculations for any type of system and number of irradiation periods.
The advantages it has over other burnup codes are: 1) it allows the user to model a
detailed, 3-D system, 2) it modifies material cross sections as a function of burnup and
flux distributions within a system, 3) it offers a variety of options and allows system
changes to be made frequently throughout a burn interval, and 4) it is fully automated and
relatively easy to learn. The purpose of this document is not only to serve as a thesis but
is also to assist those who plan to use monteburns by providing a validation of the code
and discussions of “tricks” found useful when running the code.

Monteburns is comprised of a combination of a c-shell UNIX executable file and a

FORTRANT77 program and primarily acts as a pre- and post-processor for ORIGEN2

and a post-processor for MCNP. The main calculations that it performs are: 1) the
recoverable energy per fission according to the distribution of actinides in the system, and
2) the conversion of the flux calculated by MCNP for a region(s) to the actual flux seen
by that region as well as the power produced by the region. Only two main input files
are required for monteburns (others are optional): 1) a working MCNP input file, and 2)
a monteburns input file containing a list of parameters relevant to the system being
analyzed. A number of variables are currently output, including reactor physics
constants, cross sections, and compositions of materials in the system before and after
each step. The code is frequently being updated and modified to suit user’s needs and
desires.

The most important portion of this document is the benchmarking section, which

showed that monteburns performs burnup calculations just as well as or better than those
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performed using other codes. Different geometries, fuel types, and reactor systems were
modeled and compared to measured and/or published calculations from other codes, and
the errors/differences obtained by these comparisons were all considered to be acceptable.
In addition, a number of statistical analyses were performed for monteburns, both to
analyze the effect(s) of several input parameters on the results and to describe the
importance of modeling the system as accurately a fashion as possible. Some examples of
problems for which monteburns is currently being used were presented as well, along
with suggestions of future work that may be performed for monteburns.

In conclusion, the code monteburns has now been described and benchmarked for
the burnup scenarios in Section 4.1. It produces comparable results to other well-known
burnup codes, such as those in the SCALE suite of programs. Monteburns is a
straightforward yet versatile solution requiring little training other than that required for
MCNP and will soon be publicly available through the Radiation Safety Information
Computational Center (RSICC) at Oak Ridge National Laboratory.
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APPENDIX A. LISTING OF C-SHELL FILE MONTEBURNS

#1!/bin/csh

# Version 4 September 1998
date

cp $1.inp mb.inp

#

# File management —----—-——-——mm— e
if (-e $1.feed) cp $1.feed feed
if (-e tmpfile) then

else

mkdir tmpfile

endif

#

# Get shell variables —----~-—- o mm e~

monteb a

@ nout = “awk '$2 == "nout" {print int($l1)}' ./tmpfile/params’

@ npre = ‘awk '$2 == *"npre" {print int($1)}' ./tmpfile/params’

@ nrst = ‘awk '$2 == "nrst" {print int($1)}' ./tmpfile/params’

@ nkeff = “awk '$2 == "nkeff" {print int($1l)}' ./tmpfile/params’
@ nmat = “awk '$2 == "nmat” {print int($1)}' ./tmpfile/params’
echo Snout $npre S$nrst $nkeff S$nmat

# .

echo ...MonteBurns: Write natural element and origen input files
monteb e

monteb 5

#

if (Snrst == 0) then

# Set up initial run —---—~--——mm—m
# ..Backup fort.9

#

@ i3 = 1

while ($i3 <= $nmat)

if (-e fort.9.0) then

cp fort.9.0 fort_$i3.9

else

cp fort_$i3.9 fort.9.0

endif

@ i3 ++

end

echo ...MonteBurns: Delete 0ld MCNP Files

if (-e mbmcm ) rm mbmcm

if (-e mbmco ) rm mbmco

if (-e mbmcr ) rm mbmcr

if (-e mbmcs ) rm mbmcs

echo ...MonteBurns: Check Print Card and create skeleton mcnp input
monteb 1 <$1

echo ...MonteBurns: Run MCNP Input Module to get initial comps
mcenp ix n=mbmc

echo ...MonteBurns: Write tally file tal2.inp

# Get number of predictors from status
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monteb 2 <mbmco

echo ...MonteBurns: Write initial origen comp file fort.7 and nat isos
monteb 4 <mbmco

@ i1 = 0

else

#

# Set up restart run ~—-—-————— - mm———— o ——
@ il = Snrst + 1

@ i3 = 1

while ($i3 <= S$nmat)

cp ./tmpfile/fort9_$i3.S%nrst fort_$i3.9

cp ./tmpfile/fort7_$i3.S%nrst fort_$i3.7

if (-e ./tmpfile/mbori_$i3.$il.tmp) then

else

cp ./tmpfile/mbori_$i3.$il ./tmpfile/mbori_$i3.$il.tmp
endif

@ i3 ++

end

cp ./tmpfile/mbmc.$nrst mbmc

cp ./tmpfile/mbinp.$nrst mb.inp

endif

#

# Beginning of outer loop —-——————--——-—-————————
while ($il <= S$nout)

#

echo ...MonteBurns: Begin outer loop $il
#

# tally nrst in mb.inp so monteb knows what step
#

if ($i1l > 0) monteb 9

" .

# determine material in each MCNP region
#

if ($il > 0) monteb c

@ i3 = 1

while ($i3 <= Snmat)

if ($il1l > 0 ) then

mv ./tmpfile/mbori_$i3.5il.tmp ./tmpfile/mbori_%$i3.$il

cp ./tmpfile/mbori_$i3.%$il mbori_%i3

@ nval = “awk '$2 == "nval" {print int($1)}' ./tmpfile/param3_85i3"
#

# see if the game material is present in each region and if not,
# copy new material to current $i3 value fort.7 file

#

if (Snval == 0) then

cp fort_$i3.7 fort_$i3.7.tmp

cp mnat_$i3.tmp mnat_$i3.t.tmp

else .

if ($nval != $i3) then

cp fort_S$nval.7 fort_$i3.7.tmp

cp mnat_s$nval.tmp mnat_S$i3.t.tmp
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else

cp fort_$i3.7 fort_$i3.7.tmp
cp mnat_$i3.tmp mnat_S$i3.t.tmp
endif

endif

endif

@ i3 ++

end

@ i3 =1

while ($i3 <= S$nmat)

if ($il1 > 0) then

mv fort_$i3.7.tmp fort_$i3.7
mv mnat_$i3.t.tmp mnat_S$i3.tmp
endif

cp fort_$i3.7 fort_$i3.4

@ i3 ++

end

#

if ($il == 1) then

@ npre2 = $npre + 1

else

@ npre2 = S$npre

endif

if ($il == 0) @ npre2 =1

#

@ i2 =
@ ndsc
@ i3 =1

while ($i3 <= $nmat)

if (-~e ./tmpfile/param_ $i3.$il) then

@ ndisc = ‘awk '$2 == "ndisc" {print int($1)}' ./tmpfile/param_$i3.$il1"
if ($ndisc == 1) then

€@ ndsc = 1

endif

endif

@ i3 ++

end

if ($ndsc == 1) then

echo ...Monteburns: Add discrete feed to fort.7

monteb b

@ i3 =1

while ($i3 <= S%nmat)

mv fort_$i3.7.tmp fort_$i3.7

cp fort_$i3.7 fort_$i3.4

[

0

@ i3 ++

end

if (Snkeff == 1) then

echo ...Monteburns: Add discrete feed to mcnp input file
monteb 7b

cp mbmc. tmp mbmc.skl
cp mbmc.skl mbmc.temp
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@ i3 = 1

while ($i3 <= $nmat)

cat mb7t_$i3.out mb7_%i3.out > mb7t_$i3.tmp

mv mb7t_$i3.tmp mb7t_$i3.out

cat mbmc.temp mat_$i3.inp > mbm.tmp

mv mbm. tmp mbmc.temp

@ i3 ++

end

mv mbmc.temp mbmc

echo ...MonteBurns: Run MCNP for discrete feed
if (-e mbmcm) rm mbmcm

if (-e mbmco) rm mbmco

if (-e mbmcr) rm mbmcr

if {(-e mbmcs) rm mbmcs

mcnp n=mbmc

monteb 6b

cat mbllt.out mbll.ocut > mbllt.tmp

mv mbllt.tmp mbllt.out

cat mbl3t.out mbll.out > mbl3t.tmp

mv mbl3t.tmp mbl3t.out

endif

endif

#

# Determine grams of feed at the beginning of each step
monteb 8b

@ i3 =1

while ($i3 <= $nmat)

cat mbl2t_S$i3.out mbl2_3%$i3.out > mbl2t_$i3.tmp
cat mbl2a_$i3.out mbl2x $i3.out > mbl2a_$i3.tmp
mv mbl2t_$i3.tmp mbl2t_%$i3.out

mv mbl2a_$i3.tmp mbl2a_$i3.out

@ i3 ++

end

#

# Begninning of inner loop ~——————————————— o~
while ($i2 <= S$npre2)

if ($il > 0) then

echo ...MonteBurns: Run origen predictor $i2 for outer $il
@ i3 =1

while ($i3 <= S$nmat)

cp mbori_$i3 mbori

cp fort_$i3.9 fort.9

cp fort_$i3.4 fort.4

origen2 <mbori >mboro

mv fort.9 fort_$i3.9

mv fort.7 fort_$i3.7

@ i3 ++

end

endif

echo ...Monteburns: Determine important players / make new mcnp mat
monteb 7m
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cp mbmc. tmp mbmc.skl

echo ...MonteBurns: Write new mcnp tallies and cat new mcnp input
monteb 3

echo ...MonteBurns: Create complete MCNP input file

cp mbmc.skl mbme

@ i3 =1

while ($i3 <= S$nmat)

cat mb7t_$i3.out mb7_%i3.out > mb7t_$i3.tmp

mv mb7t_$i3.tmp mb7t_%$i3.out

cat mbmc mat_$i3.inp tall_$i3.inp tal2_$i3.inp tal3_$i3.inp > mbmc.temp
mv mbmc.temp mbmc

rm tall_$i3.inp tal3d_3$i3.inp

@ i3 ++

end

echo ...MonteBurns: Run MCNP

if (-e mbmcm ) rm mbmcm

if (-e mbmco ) rm mbmco

if (-e mbmcr ) rm mbmcr
)

if (-e mbmcs rm mbmcs

ncnp n=mbmc

echo ...MonteBurns: Modify orig xs file fort.9 and mbori with new flux
monteb 6m

@ i3 =1

while ($i3 <= S$nmat)

if ($i1 > 0 ) mv mbori_%$i3.tmp mbori_$i3

mv fort_$i3.9.tmp fort_$i3.9

cat mbda_S$i3.out mbé6_S%i3.out > mbda_S$i3.tmp
mv mbda_$i3.tmp mbda_S$i3.out

@ i3 ++

end

@ i2 ++

end

cat mbllt.out mbll.out > mbllt.tmp

mv mbllt.tmp mbllt.out

if ($i1l == 0) then

if ($nkeff == 1) then

cat mbl3t.out mbll.out > mbi3t.tmp

mv mbl3t.tmp mbl3t.out

endif

endif

# End of inner loop —-~-———-—-mmmmmmm e e
#

if ($i1 > 0) then

echo ...MonteBurns: Run origen to compare 1/2 way comps
@ i3 =1

while ($i3 <= Snmat)

cp fort_$i3.9 fort.9

cp fort_$i3.4 fort.4

cp mbori_3$i3 mbori

origen2 <mbori >mboro

mv fort.7 fort_$i3.7
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mv fort.9 fort_$i3.9

@ i3 ++

end

#

monteb 8e

@ i3 =1

while ($i3 <= S$nmat)

cat mb4b $i3.out mb5_$%i3.out > mbdb_$i3.tmp
mv mbdb_S$i3.tmp mb4b_S$i3.out

@ i3 ++

end

#

# Remove 1/2 way predictor stuff in mbori
monteb 0

@ i3 =1

while ($i3 <= S$nmat)

mv mbori_$i3.tmp mbori_$i3

echo ...MonteBurns: Run origen for complete outer step $il
cp fort_$i3.9 fort.9

cp fort_$i13.4 fort.4

cp mbori_$i3 mbori

origen2 <mbori >mboro

mv fort.7 fort_$i3.7

mv fort.9 fort_$i3.9

cp fort_$i3.9 ./tmpfile/fort9_$i3.s5il

@ i3 ++

end

#

# Save stuff for restart -----------m———e——-
#

cp mbmc ./tmpfile/mbmc.$il

cp mb.inp ./tmpfile/mbinp.$il

#

# Calculate k-eff at end of burn step ~-----

#

if ($nkeff == 1) then

echo ...MonteBurns: Determine important players / make new mcnp mat

monteb 7e

cp mbmc . tmp mbmc.skl

cp mbmc.skl mbmc.temp

@ i3 =1

while ($i3 <= S$nmat)

cat mb7t_$i3.out mb7_%i3.out > mb7t_$i3.tmp
mv mb7t_$i3.tmp mb7t_$i3.out

cat mbmc.temp mat_$i3.inp > mbm. tmp

mv mbm.tmp mbmc.temp

@ i3 ++

end

mv mbmc.temp mbmc

echo ...MonteBurns: Run MCNP for complete outer step $il
if (-e mbmcm ) rm mbmcm
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if (-e mbmco ) rm mbmco

if (-e mbmcr )} rm mbmcr

if (-e mbmcs ) rm mbmcs

mcnp n=mbmc

monteb 6e

cat mbllit.out mbll.out > mbllt.tmp
mv mbllt.tmp mbllt.out

endif

#

# Remove discrete removal group elements
#

monteb d

@ i3 = 1

while ($i3 <= S$nmat)

if (-e fort_S$i3.7.tem) mv fort_$i3.7.tem fort_$i3.7
cp fort _$i3.7 ./tmpfile/fort7_%$i3.%$il

@ i3 ++

end

endif

#

monteb 8e

@ i3 =1

while ($i3 <= S$nmat)

cat mb5t_S$i3.out mb5_%i3.out > mb5t_$i3.tmp
cat mb5tx_S$i3.out mb5x_$i3.out > mbbtx $i3.tmp
nv mb5t_$i3.tmp mb5t_$i3.out

mv mb5tx_$i3.tmp mb5tx_$i3.out

@ i3 ++

end

if ($i1 > 0) then

monteb z

@ i3 = 1

while ($i3 <= $nmat)

cat mb9t_$i3.out mb9_S$i3.out > mb9t_s$i3.tmp
mv mb9t_$i3.tmp mb9t_$i3.out

@ i3 ++

end

endif

#

# Copy to output files --—-—————=~--————c——
@ i3 =1

while ($i3 <= S$nmat)

cat mblt_$i3.out mbl_S$i3.out > mblt.tmp

mv mblt.tmp mblt_$i3.out

cat mbét_$i3.out mb6_S$i3.out > mbét.tmp

mv mbé6t.tmp mb6t_$i3.out

cat mb2t_S$i3.out mb2_$i3.out > mb2t.tmp

mv mb2t.tmp mb2t_S$i3.out

cat mb3t_S$i3.out mb3_$i3.out > mb3t.tmp

mv mb3t.tmp mb3t_$i3.out

cat mb8t_$i3.out mb8_$i3.out > mb8t.tmp
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mv mb8t.tmp mb8t_$i3.out
cat mb4b_S$i3.out mb4_S$i3.out > mbdb.tmp
mv mbdb. tmp mbd4b_$i3.out

@ i3 ++
end
#
@ il ++
echo $nout $il
- end
# End of outer 1loop —~————-—-ommmm e e
@ 13 = 1

while ($1i3 <= S$nmat)

cat mbl mblt_$i3.out > mbl.tmp
mv mbl.tmp mbl

cat mb2 mb2t_$i3.out > mb2.tmp
nmv mb2.tmp mb2

cat mb3 mb3t_$i3.out > mb3.tmp
mv mb3.tmp mb3

cat mbd4a mbda_S$i3.out > mbda.tmp
mv mbda.tmp mbda

cat mb4db mb4b_S$i3.out > mbdb.tmp
mv mb4b.tmp mbidb

cat mb5 mb5t_$i3.out > mb5.tmp
mv mb5. tmp mb5

cat mbé mbé6t_S$i3.out > mbé6.tmp
mv mbé6.tmp mbé

cat mb7 mb7t_$i3.out > mb7.tmp
mv mb7.tmp mb7

cat mb8 mb8t_S$i3.out > mb8.tmp
mv mb8.tmp mbs

cat mb9 mb9t_S$i3.out > mb9.tmp
mv mb93.tmp mb9

cat mbl0 mbl0t_Si3.out > mblO.tmp
mv mbl0.tmp mblO

cat mbl2 mbl2t_$i3.out > mbl2.tmp
mv mbl2.tmp mbl2

@ i3 ++

end

if ($nkeff == 1) then

cat mbllt.out mbl3t.out > crit
else

cp mblit.out crit

endif

cat crit mbl mb6 mb2 mb3 mb8 mbl2 mb5 mb9 mbl0 > $1.mbtmp
cat mb4a mb4b mb7 > $1.mbchk

if (-e feed) then

cat $1.mbtmp feed > $1.mbout
else

mv $1.mbtmp $1.mbout

endif

#
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txt2ps-sw $1.mbout
txt2ps-sw $1.mbchk
txt2ps-xs $1.mbout
txt2ps-xs $1.mbchk
#

echo ...Monteburns:

date

> Sl.ps

> Slc.ps
> $1.pss
> $lc.pss

Completed
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APPENDIX B. LISTING OF FORTRAN77 PROGRAM MONTEBF

c23456789*123456789*123456789*123456789*123456789%123456789*%123456789*12

c Version 4 September 1998
c For info please contact Dave Poston (505)-667-4336 - poston@lanl.gov
c or Holly Trellue (505)-665-9539 - trellue€@lanl.gov
c
c...MONTEB call a variety of subroutines based on call line ARG
c
common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter, ninner,
& npre,nrst, frimp,nauto(49) ,ntot (49) ,nkeff,nisn (999, 49),
& nisnr(999,49)
common /mbinp2/niso(999,49) ,nisor(999,49),title,o0lib, locale,posit
character niso*10,nisor*6,title*72,0lib*2,locale*72,posit*1l
c
c...Read in command line argument getarg for sun, igetarg for HP
c
character arg*8
call getarg(l,arg)
c call igetarg(l,arg,l)
c

c...Read in input file into common block data from standard input
{(initial

c... read (with arg = a) is different than preceding ones b/c nauto
Cc... has not yet been defined.
c

if (arg.eq.'a'.or.arg.eq.'wparams') then
call read

else
call readco
endif
c
c...execute based on arg
c
if (arg.eq.'l'.or.arg.eq. 'pcard’) call pcard
if (arg.eq.'2'.or.arg.eq.'wtally2') call wtal2

if (arg.eq.'3'.or.arg.eq.‘'wtally') call wtally
if (arg.eq.'4'.or.arg.eq.'worcomp') call worcom

if (arg.eq.'5'.or.arg.eq.'worinp') call worinp
if (arg.eq.'6b'.or.arg.eq.'worxsb') then
posit = 'b’

call worxs

elseif (arg.eq.'6m’'.or.arg.eq.’'worxsm’') then
posit = 'm’
call worxs

elseif (arg.eq.'6e'.or.arg.eq.'worxse') then

posit = ‘'e'
call worxs

endif

if (arg.eq.'7b'.or.arg.eq. 'wmcinpb') then
posit = 'b’
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call wmcinp

elseif (arg.eq.'7m'.or.arg.eq.'wmcinpm') then
posit = 'm'
call wmcinp

elseif (arg.eq.'7e'.or.arg.ed.'wmcinpe') then

posit = ‘e’
call wmcinp

endif

if (arg.eq.'8b'.or.arg.eq.’'gramsb') then
posit = 'b’

call grams
elseif (arg.eqg.'8e'.or.arg.eq.'gramse') then

posit = 'e’
call grams
endif

if (arg.eqg.'9'.or.arg.eq.'wmbinp') then
nrst=nrst+1

call wmbinp
end if
if (arg.eq.'0'.or.arg.eq.'rmhalf’) call rmhalf (nmat)
if (arg.eq.'b'.or.arg.eq.'discrete') call discr
if (arg.eq.'c’'.or.arg.eq. 'region') call region
if (arg.eq.'d'.or.arg.eq.'discremo') call dremo
if (arg.eq.'e'.or.arg.eq.'natelem') call natele
if (arg.eq.'z'.or.arg.eq. ‘'burncalc') call burnca
c
c...Write variables 'params’' to be read by shell and make more detailed
Cc... user's input file
c
if (arg.eqg.'a'.or.arg.eq. 'wparams') then
call wparam
call wmbinp
endif
c
end
c
c23456789*%123456789*123456789*123456789*%123456789*123456789*123456789*12
c .

c...WPARAMS writes scratch file containing variables to be read by
c...shell with the AWK command

C
subroutine wparam
common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter, ninner,
& npre,nrst, frimp,nauto(49),ntot (49} ,nkeff,nisn(999, 49},
& nisnr(999,49)
c

open (11, file='./tmpfile/params', status='unknown')
write (11,902) nouter

write (11,903) npre

write (11,904) nrst
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write (11,905) nkeff
write (11,906) nmat
close (11)

902 format (i4,' nout')
903 format (i4,' npre')
904 format (i4,' nrst')
905 format (i4,' nkeff')
906 format (i4,' nmat')
return
end
c
c23456789*123456789%123456789*%123456789*123456789*123456789*123456789*12
c
c...READCOM reads in common block data from input file
c
subroutine read
common /mbinp/nmat,mt (49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto(49) ,ntot(49) ,nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,o0lib, locale,posit
character niso*10,nisor*6,title*72,0lib*2, locale*72,posit*1l
character nisor5*5,met*1

. .Read mburn input file, read twice to get niso & nisn, have to
..read as real variable first and then convert to integer so that it
..works both on Sun and HP.

nNoonona

open (1ll1,file='mb.inp',status='o0ld")
read (11,'(a72)') title
read (11, *) nmat
do 20 j=1,nmat
20 read (11,*) mt(3)
do 30 j=1,nmat
30 read (11,*) voli(3)
read (1l1,*) pow
read (11,*) qu235
read (11,*) days
read (11,*) nouter
read (11,*) ninner
read (11, *) npre
read (11,*) nrst
read (11, '(a2)') olib
read (11,'(a72)') locale
read (11,*) frimp
read (11,*) nkeff
do 60 j=1,nmat
read (11,*) nauto(j)
ntot (j) = nauto(3j)
do 60 i=1,ntot(3)
read (11, '(al0)') niso(i,]j)
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backspace (11)
read (11,'(£f6:1)') x
60 nisn(i,j)=x
close (11)
c

Q

...Assign origin iso names
c
do 10 j=1,nmat
do 10 i=1,ntot{j)
nisor5=niso(i,j)
met='0"
if (nisor5.eq.'95242') met='1"
10 nisor(i, j)=nisor5//met

do 15 j=1,nmat

do 15 i=1,ntot(j)

nisnr(i,j)=nisn(i,j)*10

if (nisnr(i,j).eq.952420) nisnr(i,j)=nisnr(i,j)+1
15 continue

return

end
c
c23456789*123456789*%123456789*123456789%123456789*123456789*123456789*12
C
C...READCOM reads in common block data from input file

c
subroutine readco
common /mbinp/nmat,mt(49),voli(49),pow,qu235, days,nouter, ninner,
& npre,nrst, frimp,nauto(49) ,ntot(49) ,nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,o0lib, locale,posit
character niso*10,nisor*6,title*72,0lib*2, locale*72,posit*1l
character nisor5*5,met*1
c .
c¢...Read mburn input file, read twice to get niso & nisn, have to
c...read as real variable first and then convert to integer so that it
c...works both on Sun and HP.
c

open (11,file='mb.inp',status='o0ld')
read (11, '(a72)') title
read (11,*) nmat
do 20 j=1,nmat
20 read (11,*) mt(3)
do 30 j=1,nmat
30 read (11,*) voli(j)
read (11,*) pow
read (11,7*) qu235
read (11,*) days
read (11,*) nouter
read (11, *) ninner
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read (11,*) npre
read (11,*) nrst
read (11,'(a2)') olib
read (11, '(a72)') locale
read (11,%*) frimp
read (11,*) nkeff
do 60 j=1,nmat
read (11,*) nauto(j)
read (11, *) ntot(3j)
do 60 i=1,ntot (3}
read (11,'(al0)') niso(i,j)
backspace (11)
read (11,'(f6.1)') x

60 nisn(i,j)=x

close (11)
c
C...Assign origin iso names
c
do 10 j=1,nmat
de 10 i=1,ntot(3)
nisorS=niso(i,Jj)
met='0"
if (nisor5.eqg.'95242') met='1"
10 nisor(i,j)=nisor5//met
c
do 15 j=1,nmat
do 15 i=1,ntot(3j)
nisnr(i,j)=nisn(i,j)*10
if (nisnr(i,3j).eqg.952420) nisnr{(i,j)=nisnr(i,j)+1
15 continue
c
return
end
c

c23456789*123456789*123456789*%123456789*123456789*%123456789*%123456789*12
c

c...PCARD checks mecnp input file for print card, and alters or adds one
C...{only run once at beginning of monteburns)
c

subroutine pcard

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days, nouter, ninner,
& npre,nrst, frimp,nauto(49) ,ntot{(49),nkeff, nisn(999,49),

& nisnr(999,49)

common /mbinp2/niso(999,49),nisor(999,49),title,o0lib, locale,posit
character niso*10,nisor*6,title*72,0lib*2,locale*72,posit*1l
character ju5*5,3ju80*80,m(20)*1,filelt*12,file2t*12

character file3t*12,fileda*12,filedb*12,fileb5t*12, filebx*12
character file7t*12,file8t*12, fname*12,£fil112t*12,£fill12a*12

open (12, file='mbmc', status='unknown')
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10 k=k+1
read (5,'(a5)',end=15) jub
if (juS.eq.'print') ni=k
goto 10
15 rewind (5)
20 do 30 n=1,k-1
read (5, '(a80)') ju80
if (n.ne.ni) then
write (12, '(a80)') 3ju80
else
write (12,'(a8)') ‘’print 40’
end if
30 continue
if (ni.eq.0) write (12, '({(a8)') 'print 40’

c
close (12)
c
c...Remove mt card and write mbmc.skl
c
open (11,file='mbmc’',status='0ld"')
open (12, file='mbmc.skl’', status='unknown')
c
iflag=0
n =20
40 read (11, '(20al)',end=50) (m(i),i=1,20)
ifd = 0
nogo=0
do 45 i=1,20
45 if (m(i) .ne.' ') nogo=1
c
c...Determine numerical value of material
c
if (nogo.eqg.0.and.iflag.eg.l) goto 40
if (m(l).eqg.'m') then
iflag = 1
do 47 i=6,2,-1
if (m(i).eqg.' ') ii=i
47 continue
matr=0
do 48 i=2,ii-1
48 matr=matr+ (ichar (m{(i))-48)*10** (ii~-1-1)
c

Cc... Identify if MCNP material is one of the user requested materials
c
do 49 j=1,nmat

49 if (matr.eqg.abs{mt(j))) ifd=1

end if
c
c... Print 1lines excluding user-specified material identifiers to
skeleton
c
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if (ifd.eq.0) then
backspace(11)
read (11, '(a80)') ju80
write (12,'(a80)') juB0
goto 40
else
c
c... If MCNP material is equal to user specified one, then print
material
c... identification cards to appropriate output file. Remove blank
lines
c... from end of MCNP input file
c
do 52 j=1,nmat
if (matr.eg.abs(mt(j))) then
if (j.1lt.10) then
fname = 'mat_'//char(i+48)//' .inp"’
elseif (j.ge.l0) then
jl = j/10
32 = j - 31*10
fname = 'mat_'//char(j1+48)//char(j2+48)//'.inp"
endif
open (13, file=fname, status="'unknown')
n=n+1
endif
52 continue
endif
backspace(11)
read (11,'(a80)') 3u80
write (13,'(a80)') juB0
51 read (11,'(20al)') {(m(i),i=1,20)
nomat=0
nomat2=0
do 53 i=1.,5
53 if (m(i).ne.' ') nomat=l
do 54 i=1,20
54 if (m(i).ne.' ') nomat2=1
if (nomat.eq.l.or.nomatZ2.eq.0) then
backspace (11)
goto 40
else
backspace (11)
read (11,'(a80)') jus0
write (13,'(a80)') ju80
goto 51
endif
50 close(12)
close (11)
c
c... Create ocutput files and label them. "mbllt.out" does not depend on
the
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c... material, the others do. mbl3t.out contains only beginning of step

c
if (frimp.lt.0.) frimp = abs{frimp)
open (14,file='mbllt.out’',status='unknown')
write (14, '{(a72)') title
- write (14,961) pow,days,nouter,ninner,npre, frimp
write (14, '(a33)') ‘'Monteburns MCNP k-eff Versus Time'
write (14, '(a34,a28)') ' days k-eff rel err’,
& ! nu avQfis eta'
close (14)
c
open (14,file='mbl3t.out', status="'unknown')
write (14,'(/,a42)') 'Monteburns MCNP k-eff at Beginning of Step'
write (14, '(a34,a6)') * days k-eff rel err',
& ! nu'
close (14)
c
C... Create file names
c
do 70 j=1,nmat
if (3.1t.10) then
filelt = 'mblt_'//char(j+48)//'.out"
file2t = 'mb2t_'//char(j+48)//'.out’
file3t = 'mb3t_'//char(j+48)//'.out’
fileda = 'mbda_'//char(j+48)//'.out’
filedb = ‘mb4b_'//char(j+48)//'.out’
fileS5t = 'mb5t_'//char(j+48)//'.out’
file5x = 'mbb5tx_'//char(j+48)//'.out’
file7t = 'mb7t_'//char({j+48)//'.out’
file8t = 'mb8t_'//char(j+48)//'.out’
fill2t = 'mbl2t__'//char(j+48)//'.out"
fill2a = 'mbl2a_'//char(j+48)//'.out"
elseif (j.ge.l10) then
il = j/10
3j2 = j - ji*io
filelt = ‘mblt_'//char(jl+48)//char(j2+48)//'.out"
file2t = 'mb2t_'//char(j1+48)//char(j2+48)//' .out"
file3t = 'mb3t_'//char(jl+48)//char(j2+48)//'.out’
fileda = ‘mbda_'//char(jl+48)//char(j2+48)//'.out"
file4db = 'mbdb_'//char(jl1+48)//char(j2+48)//' .out"
file5t = 'mb5t_'//char(j1+48)//char(j2+48)//"'.out’
file5x = 'mb5tx_'//char(jl+48)//char(j2+48)//"'.out’
file7t = 'mb7t_'//char(ji+48)//char(j2+48)//'.out"
file8t = 'mb8t_'//char(jl+48)//char(j2+48)//"'.out’
£filil2t = 'mbl2t_'//char(jl1+48)//char(j2+48)//*'.out’
fill2a = 'mbl2a_'//char(jl+48)//char(j2+48)//'.out!
endif
c

open {14,file='mbl',status='unknown’)
write (14,'(/,a29)') 'Monteburns Transport History '
close (14)
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open (14,file=filelt,status='unknown')

write (14,'(/,a29,al12,1i3,11x,al4,32x,a20)")

& 'Monteburns Transport History ',

& 'for material',j, 'total material', 'for actinide

write (14, '(a31,a51,a50,a17)"') Qfis Flux SigmaF',
& ' Power Burnup n,gamma n, fission fis/cap',
& ! n2n eta n, gamma n, fission fis/cap',
& ' n2n eta'

clogse (14)

open (14,file='mb2',status="'unknown')

write (14,'(/,a4l)') 'Monteburns l-group n,gamma Cross Sections'
close (14)

open (l1l4,file=file2t,status='unknown')

write (14,'(/,a33,a21,i3)")

& 'Monteburns l-group n,gamma Cross °,

& 'Sections for material',j

write (14,'(3x,a9,30(1x,a9)})') (niso(i,j),i=1,nauto(j))

close (14)

open (14,file='"mb3', status='unknown’)

write (14,'(/,ad4l)') 'Monteburns l-group Fission Cross Sections'
close (14)

open (14,file=file3t,status='unknown')

write (14,'(/,a33,a21,i3)")
& 'Monteburns l-group Fission Cross ',
& 'Sections for material',j

write (14,'(3x,a9,30(1x,a9))') {(niso(i,j).,i=1,nauto(3))

close (14)

open (14,file='mbda’',status='unknown')

write (14,'{/,a72)') title

write (14,961) pow,days,nouter,ninner,npre, frimp

write (14,'(ad43)') 'Monteburns Spectrum for Each Predictor Step’
close (14)

open (14,file=fileda,status="unknown')

write (14,'(/,a30,a27,1i3})")
& 'Monteburns Spectrum for Each ',
& 'Predictor Step for material',j

write (14, '(a63)"')
& ' <.lev <lev <100eVv <100keV <1MeV <20MeV'!
close (14)

open (14, file='mbdb', status="'unknown')

write (14,'(/,a29)') 'Monteburns Grams at Midpoint'

close (14)

open (14,file=filedb, status="'unknown')

write (14,'(/,a29,al13,1i3)")
& 'Monteburns Grams at Midpoint',
& ' for material:',j

write (14, '(a40)') 'lst row is actual, 2nd row was predicted:’
write (14, '(3x,a9,30(1x,a9))') (niso(i,j),i=1l,nauto(j)), 'actinide"
close (14)

open (14,file='mb5', status="'unknown')

write (14,'(/,ad44d)")




& 'Monteburns Grams of Material at End of Steps'

close (14)

open (14,file='mbl2', status=‘unknown')

write (14,°'{/,a50)")

& 'Monteburns Grams of Material at Beginning of Steps’
close (14)

open (14,file=filebt, status="'unknown')

write (14,'(/,ad44,al3,i3)")

& 'Monteburns Grams of Material at End of Steps®,

& ' for material',j

write (14, '(3x%,a9,30(1x,a9))') (niso(i,j)},i=1,nauto(3j))},‘actinide"
close (14)

open (14,file=fill2t,status='unknown')

write (14,'(/,ad47,al3,i3})")

& 'Monteburns Grams of Material at Begin. of Steps',

& ' for material',j

write (14, '(3x%x,a9,30(1x,a9))') (niso(i,j),i=1l,nauto(j)), 'actinide’
close (14)

open (l4,file=fileb5x,status='unknown’)

write (14,'(/,ad4,al3,i3)")
& 'Monteburns Grams of Material at End of Steps',

& ' for material',j
write (14, '(3x,a9,30(1x,a9))') (niso{i,j),i=1,nauto(j})),'actinide’
close (14)

open (14,file=fill2a,status='unknown')

write (14,'(/,ad7.,al3,i3)")
& 'Monteburns Grams of Material at Begin.of Steps',
& ' for material',j

write (14, '(3x%x,a9,30(1x,a9}))') (niso(i,j),i=1l,nauto(j)), 'actinide’
cloge (14)

open (14, file='mb7',status='unknown')

write (14,'(/,a35,a28,1i3)') 'Fractional Importance of Radionuclid’
& ,'es Sent From ORIGEN2 to MCNP'

close (14)

open (14,file=file7t,status='unknown’')

write (14,'(/,a60,/,a20,1i3)")

& 'Fractional Importance of Radionuclides Sent From ORIGEN2 to ',

& ' MCNP for material', ]

write (14,'(/,a5,a62)') ‘'step#’',
& ' isotope grams mass fra atom fra capture fission®
close (14)

open (14, file='mb8', status=‘unknown’)

write (14,'(/,a35,al12,i3)') 'Monteburns Fission-to-Capture Ratio’

close (14)

open (14,file=file8t,status='unknown’)
write (14,'(/,a35,al3,i3)"')

& 'Monteburns Fission-to-Capture Ratio’,

& ' for material', 3
write (14, '(3x%x,a9,30(1x,a9))*') (niso(i,j),i=1,nauto(j))
close (14}
961 format (/'Total Power (MW) =',lpel0.2,° Days =',lpel0.2,/
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& '# outer steps =',i2,', # inner steps =',i3,

& ', # predictor steps =',1i2,/
& 'Importance Fraction = ',0pf6.4/)
70 continue
c
return
end
c
c23456789*123456789*%123456789*123456789*%123456789%123456789*%123456789*12
c
c...WTALLY2 writes the tally cards to tal2.inp which is appended
c...to mcnp input file, and creates new mbmc file that does not
C...include tallied materials (run only once at beginning of monteburns)
c
subroutine wtal2
character ju6*6,tcell(999,49)*6,ncell*6,filebt*12,£file2*12
common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto(49),ntot(49),nkeff, nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,o0lib, locale,posit
character niso*10,nisor*6,title*72,01ib*2, locale*72,posit*1
dimension vol(49),ntc(49)
c
c...Determine cells to tally
c
40 read (5,'(a6)') jué
if (jub.ne.'lcells') goto 40
c
read (5,'(///})")
50 read (5,'(i6,a6,15,1x,1p3el2.5)") n,ncell,nmt,aden, gden,voll
do 55 j=1,nmat
if (nmt.eqg.abs(mt(j))) then
ntc(j)=ntc(j)+1
tcell(ntc(3j),j)=ncell
vol(j)=vol(j)+voll
end if
55 continue
if (n.ne.0) goto 50
c
c...Write tally2 file
c

do 100 j=1,nmat
if {(37.1t.10) then
file2 = 'tal2_'//char(j+48)//'.inp’
file6t = 'mbét_'//char(j+48)//'.out’
elseif (j.ge.10) then

31 = j/10

j2 = j - 31*10

file2 = 'tal2_'//char(jl+48)//char(j2+48)//'.inp'
filebt = 'mbét_'//char{jl+48)//char(3j2+48)//'.out’

endif
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if (voli(j).ne.0.) vol(j)=voli(j)

if (vol(j).eq.0) then
write (6,%*) '***** MB ERROR: No tally volume’
stop

end if

open (11,file=file2, status='unknown')

...Write energy tallies (tally numbers range from 14 to 494)
{1l to 49 represents material number)

0000

write (11,911) (10+3)
911 format (‘'c¢‘'/'f',i2,'4:n (')}
do 80 i=1,ntc(j)
80 write (11,912) tcell(i,J)
912 format (7x,a6,' ')
write (11,913)
913 format (14x,')?*)
write (11,915) (10+3), (10+3),vol(3). (10+3)
915 format ('fc’',i2,'4 MonteBurns Energy Spectrum Tallies'/
& 'sd',i2,'4 ' ,l1lpel2.5/
& 'e',i2,'4 1.0e-7 1.0e-6 1.0e-4 1.0e-1 1.0 20.0")
C
C...Write header for xs tallies
c
write (11,911) (50+3)
do ‘90 i=1,ntc(j)
90 write (11,922) tcell(i,3)
922 format (7x,a6,' ')
write (11,923)
923 format (14x,°')"')
write (11,924) (50+35), (50+3),vol(]), (50+3)
924 format ('fc',i2,'4 MonteBurns Cross Section Tallies'/
& 'sd',i2,'4 ',lpel2.5/'fm',i2,'4 (1))

c

open (l1l4,file='mbé',status="unknown')

write (14,'{(/,a24)') ‘*Monteburns Flux Spectrum'

close (14)

open (14, file=fileét, status='unknown')

write (14,'(/,a25,al2,i3)') 'Monteburns Flux Spectrum ',

& 'for material',j

write (14, '{(a63)')

& ' <.lev <lev <100eVv <100kev <1MeV <20MeV'

close (14)

100 continue

close (11}
c

return

end
c
c23456789*%123456789*123456789%123456789%123456789*123456789%123456789*12
c
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. .WTALLY writes the tally cards to tall.inp and tal3.inp which
.are appended to mcnp input file

subroutine wtally

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto{49) ,ntot(49),nkeff,nisn(999,49),
& nisnr (999, 49)

common /mbinp2/niso(999,49),nisor(999,49),title,0lib,locale,posit
character niso*10,nisor*6,title*72,0lib*2,locale*72,posit*1
character filel*12,file3*12

Write tally files 1 and 3

ii = 100
ij = 900
do 100 j=1,nmat
iflag = 0
if (3.1t.10) then .
filel = 'tall_'//char(j+48)//'.inp’
fileld = *'tal3_'//char{j+48)//'.inp*
elseif (j.ge.10) then
il = j/10
32 j - ji*10
filel = 'tall_'//char(31+48)//char(j2+48)//'.inp’
file3 = 'tal3_'//char(jl+48)//char(j2+48)//'.inp"
endif
open (11,file=filel, status='unknown')
open (12,file=file3, status="'unknown')
do 90 i=1,ntot(j)
ii=1i+1
write (11,901) ii,niso(i,J)
901 format ('m',i3,4x,al0,"’ 1.0")

Equate (n,t) reaction to (n,alpha) for Lithium-6
All others are true (n,alpha) cross sections

if (nisn{i,3j).eq.3006) then
write (12,920) ii

elseif (nisn(i,j).1lt.89000) then
write (12,921) ii

elseif (nisn(i,3j).ge.83000) then

iflag = 1
write (12,922) ii
endif

90 continue
ij = ij + 1
if (iflag.eq.l) write (12,923) ij
write (12,923) abs(mt(j))
close (11)
100 continue
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-2 is the total capture cross section

c
c 16 is (n,2n) cross section
c 105 is (n,t) cross section
c 107 is (n,alpha) cross section
c 103 is (n,p) cross section (for activation products)
c 17 is (n,3n) cross section
c -6 is the total fission cross section (for actinides)
c 452 is nu bar - only used for verification purposes
c
920 format (8x,'(1 ',i3,' (102) (16) (105) (103))")
921 format (8x,'(1 ',i3,' (102) (16) (107} (103}})")
922 format (8x,'(1 ',i3,' (102) (16) (17) (-6))")
923 format (8x,'(1 ',i3,' (-2) (16) (452) (-6))")
c
return
end
c
Cc23456789*123456789*123456789%123456789*123456789*123456789*123456789*12
c
c...WORCOMP writes composition input file for origen fort.7, which is
c...read by origen as fort.4. Units are g-atoms (grams / atomic mass)
c...(one time execute at beginning of monteburns)
c
subroutine worcom
c
dimension nuc(99,49),£(99,49),gden{(49),vol{49),nc(99),£fn(99)
dimension ij(49),nelem(999,49),nisop(999,49),atomfr(999,49,20),
& nisot(999,49,20),naix(999,49,20),iflag(999,49),gmat (999,49,20),
& aix(999,49,20)
character ju6*6,3ul0*10,met*1l,ninat*10, fname*12, fnat*12,
& fmenp*12, nmcnp*20
common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto(49) ,ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,0lib, locale,posit
character niso*10,nisor*6,title*72,0l1lib*2,locale*72,posit*1
c
10 read (5,'(32x,a10)') julod
if (julO.ne.'mass fract') goto 10
c
c...Read mass fractions for material
c
ifd = 0
read (5,%*)

20 read (5,'(16,5x,4(6x%,15,2%x,1pell.5)}")
& mtn, (nc{i), fn(i),i=1,4)
ii =0
im = 0
do 25 j=1,nmat
if (mtn.eqg.abs(mt(j))) then
do 22 i=1,4
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nuc(i,j) = nc(i)
22 f(i,3j) = fn(i)

nmt = j

im = 1

ifd = ifd + 1
endif

25 continue
if {(im.eq.0) goto 20

30 1ii=1i+4
read (5,'(a6)') jué
if (jub.eq.'lcells') then
ii=ii-4
ij{(nmt) = ii
goto 42
else
backspace (5)
endif
read (5,'(ie6,5x,4(6x%,15,2x%x,1pell.5))")
& mtn, (nuc{i,nmt), £(i,nmt),i=1+11,4+ii)
if (mtn.gt.0.and.mtn.ne.abs(mt(nmt))) ii=ii-4
if (mtn.eqg.0.and.nuc(4+ii,nmt).ne.0) goto 30
ij(nmt) = ii
if (ifd.ne.nmat) then
backspace(5)
goto 20
endif

...Determine gram density and volume of cells (for now just 1)

0

40 read (5,'(ab)') jué
if (ju6.ne.'lcells') goto 40

42 read (5,'(///)")
50 read (5,'(216,i5,1x,1p3el2.5)"') n,ncell,nmt,aden, gdenl,voll
do 51 j=1,nmat
if (nmt.eqg.abs(mt(j))) then
vol(j)=vol(]j)+voll
gden(j)=gdenl
end if
S1 continue
if (n.ne.0) goto 50
c
C...Make sure isos have been read correctly, erase spurios readings
c

do 80 j=1,nmat
do 52 i=1,4+i35(3)
nogo=0
if (nuc(i,j).lt.1000) nogo=1
if (nogo.eq.l) nuc(i,j)=0
52 continue
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...Write grams of material to fort.7 (origen comp file) or mnat.tmp
...if a natural iso appears in mcnp input file

Q000

if (voli(j).ne.0.) vol{(j)=voli(])
voli(j) = vol(3)

call wmbinp
c
if (j.1t.10) then
fnat = 'mnat_'//char(j+48)//'.tmp’
fname = 'fort_'//char(3+48)//'.7"'
elseif (j.ge.l1l0) then
jl1 = j/10

32 = 3 - 31*10
fnat = 'mnat_'//char(jl+48)//char(j2+48)//'.tmp"
fname = ‘fort_'//char(jl+48)//char(j2+48)//'.7"
endif
open (11, file=fname, status="unknown")
open (12, file=fnat, status='unknown')
do 58 i=1,4+ij(3)
iflag(i,j) = 0
if {(nuc(i,j)-1000*(nuc(i,j)/1000).eg.0.and.nuc(i,j).gt.0) then
open (16,file="natelem', status="unknown')
read (16,*)
read (16,%*)
54 read (16,*) nelem(i, j)
read (16,*) nisop(i,J)
do 56 n=1,nisop(i,])
56 read (16,'(i5,3x,£f10.5)"',err=56,end=53)
& nisot{i,j,n),atomfr (i, j,n)
if (nelem(i,j).eq.nuc(i,3j)/1000) then
iflag(i,3j) =1
goto 53
else
goto 54
endif
53 close (16)
open (13,file="mbxs.inp',status='unknown')
1ifd=0
55 read (13,*,end=57) nixs
if (nixs.eqg.nuc(i,j)) ifd=1
if (ifd.eqg.0) goto 55
backspace (13)
read (13,'(al0)') ninat
write (12, '(i2,4x%,al0)') nelem(i,j).ninat
57 if (ifd.eq.0) write (6,%*)
& '****%% MB WARNING: Natural iso xs not found ',nuc(i,j)
close (13)
elseif (nuc(i,j).ne.0) then
if (§.1t.10) then
fmcnp = 'menp_'//char (j+48)//'.inp’
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elseif (j.ge.10) then
jl = j/10
j2 = 3 - j1*10
fmenp = 'menp_'//char(jl+48)//char(j2+48)//'.inp"
endif
open (17, file=fmcnp, status='unknown')
open (13,file='mbxs.inp',status=‘'unknown’)
ifd=0
66 read (13,*,end=67) nixs
if (nixs.eq.nuc({i,j)) ifd=1
if (ifd.eg.0) goto 66
backspace (13)
read (13,°'(al0)') nmcnp
write (17, '(a5,2x,a2l1l0)') nmcnp(l:5), nmcnp
67 if (ifd.eg.0) write (6,*)
& r**¥F% MB WARNING: Iso xs not found ',nuc(i,j)
close (13)
end if
58 continue
close (12)
close (17)

c...Write non-actinides to fort.7, sort numerically for xs file read

do 65 k=1,4+ij(5)
nmin=99999
ni=0
do 60 i=1,4+ij(3)
a=float (nuc(i,j))-float (1000* (nuc(i,j)/1000))
if (nuc(i,j).lt.83000.and.nuc(i,j).gt.1000) then
if (nuc(i,j).lt.nmin) then
nmin=nuc (i, j)
if (iflag(i,j).ne.l) then

ai=a

else
do 59 n=1,nisop(i,])
naix(i,j,n)=nisot(i,j,n) - 1000* (nisot(i,j,n)/1000)

59 aix(i,j,n) = float(nisot(i,j.n))
& - float (1000* (nisot(i,j,n)/1000))
endif
ni=i
end if

end if
60 continue
if (ni.gt.0) then
kxs=1
met='0"
if (iflag(ni,j).eqg.1l) then
do 62 n=l1l,nisop(ni,Jj)
gmat(ni,j.,n) = f(ni,j)*gden(j)*vol(]j)/aix(ni,j.n)
gmat(ni,j,n) = gmat(ni,j,n)*atomfr(ni,j,n)
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if (naix(ni,j,n).lt.10) then
write (11,912) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni, j,n)
elseif (naix(ni,j,n).1t.100) then
write (11,913) kxs,nelem{ni,j),naix(ni,j,n),met,gmat{ni,j,n)
else
write (11,914) kxs,nelem(ni,j),naix(ni,j,n),met,gmat (ni,j,n)
endif
62 continue
else
gma=f (ni, j)*gden(j)*vol(Jj)/ai
write (11,911) kxs,nuc(ni,j),met,gma
endif
nuc(ni, j)}=0
end if
65 continue

C...Write actinides to fort.7, sort numerically for xs file read

do 75 k=1,4+ij(3)
nmin=99999
ni=0
do 70 i=1,4+ij(3)
a=float{(nuc(i,j))-£float(1000* (nuc{i,j)/1000))
if (nuc(i,j).ge.83000.and.a.gt.0.) then
if (nuc(i,j).lt.nmin) then
nmin=nuc(i, j)
if (iflag(i,j).ne.l) then
ai=a
else
do 69 n=1,nisop(i,]j)
naix(i,j,n)=nisot(i,j,n) - 1000*(nisot(i,j,n)/1000)

69 aix(i,j,n) = float(nisot(i,j,n))
& - float (1000* {nisot(i,j,n)/1000}))
endif
ni=i
end if
end if

70 continue
if (ni.gt.0) then
kxs=2
met='0"
if (nuc(ni,j).eq.95242) met='1l"
if (iflag(ni,3j).eqg.l) then
do 72 n=1,nisop(ni,3)
gmat (ni,j,n) = f(ni,j)*gden(j)*vol(j)/aix{(ni,j,n)
gmat{ni,j,n) = gmat(ni,j,n)*atomfr(ni,j,n)
if (naix(ni,j,n).1t.10) then
write (11,912) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni,j,n)
elseif (naix(ni,j,n).1t.100) then
write (11,913) kxs,nelem(ni,j),naix(ni,j,n),met,gmat{ni,j,n)
else
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write (11,914) kxs,nelem(ni, j),naix(ni,j,n),met,gmat({ni,j, n)
endif
continue
else
gma=£ (ni, j)*gden(j)*vol(j) /ai
write (11,911) kxs,nuc{ni,j),met,gma
endif k
nuc(ni, j)=0
end if
continue
write (11,'({(al2)*) '0 O 0 O
close (11)
911 format (i4,16,al,lpel2.4,
& ' 0 0.0000E+00 0 0.0000E+00 0.0000E+00")
912 format (i4,i3,'00',il,al,lpel2.4,
& 0 0.0000E+00 0 0.0000E+0O0 0.0000E+00")
913 format (i4,i3,'0',i2,al,1lpel2.4,
& 0 0.0000E+00 0 0.0000E+00 0.0000E+00")
914 format (i4,i3,i3,al,lpel2.4,
& ' 0 0.0000E+00 0 0.0000E+00 0.0000E+00*)
80 continue

return
end
c
c23456789*%123456789*123456789*%123456789*%123456789*123456789*%123456789*12
c
...WORINP writes the origen input files.
...put GTO 9 card 1/2 way for predictor step.
...Do not write over restart files

subroutine worinp

common /mbinp/nmat,mt{49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto(49),ntot (49),nkeff,nisn(999,49),
& nisnr (999, 49)

common /mbinp2/nisc(999,49),nisor(999,49),title,o0lib, locale,posit
character niso*10,nisor*6,title*72,0lib*2,locale*72,posit*1
character libnam*80,xslib*6,1ib(99)*10, decayl*80

character ju3*3, fname*22, flname*22, file9t*12,dec80*80

integer end,olibn

dimension day(99),nfeed(99,49),gf1(99,49),g£f2(99,49),mfeed(10),
& kfeed(10),kfeedl1(10,30),kfeed2(10,30),tmst(99),
& ifeed(10,30), ffeed(10,30),tfeed(999,49),ttfeed(999,49),

& nf1(99,49),rf(99,49),pfra(99),1b(99,4),nmt (49)

itwo=2

if (olib(2:2).eq.' ') olibn=ichar{olib{(1:1))-48

if (0lib(2:2).ne.' ') olibn=(ichar(olib(1:1))-48)*10+
& ichar(olib(2:2))-48




c...Add cross section values to existing fort.9 file, which previously
only
Cc...contained the origen2 decay library.
o
open (15,file='"fort.9.0',status="unknown')
xslib(l:4)="orig"
xslib(5:6) = 0lib(1:2)
do 2 i1=72,1,-1
if (locale(i:i).eq.' ') end=i-1
2 continue
decayl = locale(l:end)//'/orig2l"
open (12, file=decayl,status='old")
3 read (12, '(a80)',end=4) dec80
write (15, '(a80)') dec80
goto 3
4 libnam=locale(l:end)//'/'//xslib
open (18, file=libnam, status='o0ld"')
5 read (18, '(a80)',end=6) dec80
write (15,'(a80)') dec80

goto 5
6 close(12)

close(15)

close(16)
c
c...Create data file from scratch ; First read feed rate data file
c

if{days.eq.0.0) then

nfd =1

open (11,file='feed’,status='0ld")
c
c...First read the two lines of headings
c

read (11,%*)
read (11,%*)
do 8 i=1,nouter
do 7 j=1,nmat
if (j.eq.l) then
read (11,*) tmst(i),day(i),
& pfra(i),nmt(1l),nfeed(i,1),gfd (i,1),gf2(i,1),nfl(i,1),rf(i,1)
elgeif (j.ge.2) then
read (11,*) nmt(3j),
& nfeed(i,j),gfl(i,j).gf2(i,3),nfl(i,j),rf(1,3)
endif
ndisc = 0
if (gfi(i,j).eq.-2.) ndisc =1
if (j.1t.10) then
if (i.1t.10) then

flname = './tmpfile/param_'//char{(j+48)//'.'//char(i+48)
elseif (i.ge.1l0) then
il = i/10

i2 = i - il1*10
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flname = './tmpfile/param_'//char(j+48)//'."

& //char{il1+48)//char{i2+48)
endif

elseif (j.ge.l0) then
31 = j/10

j2 = j - j1*10
if (i.1t.10) then

flname = './tmpfile/param_'//char(j1+48)//char{j2+48)//"'."
& //char (i+48)
elseif {(i.ge.10) then
il = 1i/10
i2 = 1 - i1*10
flname = './tmpfile/param_'//char(j1+48)//char(j2+48)//'."
& //char{i1+48)//char(i2+48)
endif
endif

open (16, file=flname, status='unknown')
write (16,910) ndisc
910 format (i4,' ndisc')
close (16)
if (i.gt.l.and.gfl(i,j).eq.-1.) gfl(i,j)=gf2(i-1,7)
8 days=days+day (i)
read (11, '(i4)') nfs
do 9 n=1,nfs
read (11, '(i4)') mfeed(n)
do 9 m=1,mfeed(n)
9 read (11, '(i5,£9.7)') ifeed(n,m), ffeed(n,m)
read (11, '(id)') nrs
do 10 n=1,nrs
read (11, '(id)') kfeed(n)
do 10 k=1, kfeed(n)
10 read (11, '(i4,i4)') kfeedl (n,k),kfeed2 (n, k)

~

0

...Rewrite mb.inp with new days (later add feed data to output)
c

call wmbinp

else

do 42 i=1,nouter

42 day(i) = days/float (nouter)

endif
45 continue

close (11)

...Write flag to file that indicates whether a feed file
...exists or not

0onaoaon

open (17,file='./tmpfile/params2', status="'unknown')
write (17,950) nfd

950 format (i4,'*' nfd')
close (17)
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c...Write origen input file for each step and write feed data to mb9.out

c
do 100 j=1,nmat
if (j.1t.10) then
file9t = 'mb9t_'//char(j+48)//'.out"’
elseif (j.ge.l1l0) then
jl = j/10
j2 = j - jl1*10
file9t = 'mb9t_'//char(jl+48)//char(j2+48)//'.out"
endif
open (14, file="mb8', status='unknown')
write (14,°'(/,a2l1)') 'Monteburns Inventory
close (14)
open (14,file=file9t,status="'unknown"')
write (14,'(/,a33,al3,1i3)")
& 'Monteburns Grams of Feed per Step',
& ' for material',j
write (14, '(ab,2x,a4,5%x,a9,30(1x,a9%))")
& ‘mat #', 'days', (niso(i,j),i=1,nauto(j)), 'actinide’
do 48 i=1,nouter
zero= 0.0
c -
c...If restart read flux from old mbori and put in new mbori
c

if (i.eg.nrst+l.and.nrst.gt.0) then
if {(j.1t.10) then
if (1i.1t.10) then
fname="'./tmpfile/mbori_'//char{(j+48)//'.'//char(i+48)
elseif (i.ge.l10) then
il = i/10
i2 = i - il*10
fname='./tmpfile/mbori_'//char(j+48)//'."
& //char (11+48) //char(i2+48)
end if
elseif (j.ge.10) then
j1 = j/10
2 = § - j§1*10
if (1.1t.10) then
fname="'./tmpfile/mbori_'//char{(jl1+48)//char(j2+48)//'."

& //char (i+48)
elseif (i.ge.10) then
il = i/10

i2 = i - i1*10
fname="'./tmpfile/mbori_'//char(j1+48)//char(j2+48)//'."
& //char(i1+48) //char(i2+48)

endif

endif

open (11, file=fname, status=‘'unknown')

12 read (11, '(a3)',end=14) ju3
if (ju3.ne.'IRF'} goto 12
backspace (11)
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read (11,900) zero
14 close (11)
900 format (19x,1lpel3.5)
end if

13 n=nfeed (i, 3j)
dstep=day (i) /float (ninner)
do 15 m=1,nauto(j)+1

15 tfeed(m, j)=0.

if (j.1t.10) then
if (i.1t.10) then
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48)
elseif (i.ge.l1l0) then
il = 1/10
i2 = 1 - 11*10
fname='./tmpfile/mbori_‘//char{j+48}//'."
& //char(i1+48)//char(i2+48)
end if
elseif (j.ge.l1l0) then
jl = j/10
j2 = 3 - jl*1o0
if (1.1t.10) then
fname="'./tmpfile/mbori_"'//char(31+48)//char(j2+48)//"'."
& //char(i+48)
elseif (i.ge.10) then
il = 1/10
i2 = i - i1*10
fname='./tmpfile/mbori_'//char(j1+48)//char(j2+48})//'."
& //char (i1+48)//char(i2+48)
endif
endif
open (13, file=fname, status='unknown')
c
c...Write group info to new file, then write initial commands.
c
data (lb(22,1i),1ii=1,3),1ib(22) /204,205,206, 'PWRU"'/
data (1b(23,ii),ii=1,3),1ib(23) /207,208,209, 'PWRPUU"'/
data (1b(24,1ii),ii=1,3),1ib(24) /210,211,212, 'PWRPUPU"'/
data (1b(25,ii),1i=1,3),1ib(25) /213,214,215, 'PWRDU3TH" /
data (1b(26,1ii),ii=1,3),1ib(26) /225,226,227, '"PWRD5D33"'/
data (1b{(27,ii),1i=1,3),1ib(27) /222,223,224, 'PWRD5D35"'/
data (1b(28,ii),1i=1,3),1ib(28) /216,217,218, 'PWRPUTH'/
data (1b(29,ii),1ii=1,3),1ib(29) /219,220,221, 'PWRUS0'/
data (1b(30,1ii),1i=1,3),1ib(30) /251,252,253, 'BWRU"'/
data (1b(31,ii),ii=1,3),1ib{(31) /254,255,256, 'BWRPUU"'/
data (1b(32,ii),ii=1,3),1ib(32) /257,258,259, 'BWRPUPU"'/
data (1b(33,ii),ii=1,3),1ib(33) /201,202,203, 'THERMAL'/
data (1b(34,ii),ii=1,3),1ib(34) /401,402,403, 'CANDUNAU"'/
data (1b{(35,ii),1ii=1,3),1ib(35) /404,405,406, 'CANDUSEU'/
data (1b(36,ii),ii=1,3),1ib(36) /311,312,313, 'AMOPUUUC'/
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data (1b(37,4ii),ii=1,3),1ib(37) /314,315,316, 'AMOPUUUA'/
data (1b(38,ii),ii=1,3),1ib(38) /317,318,319, 'AMOPUUUR'/
data (1b(39,ii),ii=1,3),1ib(39) /301,302,303, 'EMOPUUUC'/
data (1b(40,ii),ii=1,3),1ib(40) /304,305,306, 'EMOPUUUA"/
data (1b(41,ii),ii=1,3),1ib(41) /307,308,309, 'EMOPUUUR'/
data (1b(42,ii),ii=1,3),1ib(42) /321,322,323, 'AMORUUUC'/
data (1b{43,ii),ii=1,3),1ib(43) /324,325,326, 'AMORUUUA"/
data (1b(44,ii),ii=1,3),1ib(44) /327,328,329, 'AMORUUUR'/
data {1b(45,1ii),ii=1,3),1ib(45) /331,332,333, 'AMOPUUTC'/
data (1b(46,1ii),ii=1,3),1ib(46) /334,335,336, 'AMOPUUTA"/
data (1b(47,ii),1ii=1,3),1ib(47) /337,338,339, 'AMOPUUTR"/
data (1b(48,ii),ii=1,3),1ib(48) /341,342,343, 'AMOPTTTC"'/
data (1b(49,ii),1i=1,3),1ib(49) /344,345,346, 'AMOPTTTA"'/
data (1b(50,ii),ii=1,3),1ib(50) /347,348,349, 'AMOPTTTR'/
data (1b(51,1ii),ii=1,3),1ib(51) /361,362,363, 'AMOITTTIC'/
data (1b(52,ii),ii=1,3),1ib(52) /364,365,366, 'AMOITTTA"'/
data (1b(53,ii}),1i=1,3),1ib(53) /367,368,369, 'AMOITTTR'/
data (1b(54,1ii),ii=1,3),1ib(54) /371,372,373, 'AMO2TTTC"'/
data (1b(55,ii),ii=1,3),1ib(55) /374,375,376, 'AMO2TTTA'/
data (1b(56,1i),ii=1,3),1ib(56) /377,378,379, 'AMO2TTTR'/
data (1b(57,ii),ii=1,3),1ib(57) /351,352,353, 'BAMOXTTTC'/
data (1b(58,ii),ii=1,3),1ib(58) /354,355,356, 'AMOXTTTA"/
data (1b(59,ii),ii=1,3),1ib(59) /357,358,359, 'AMOXTTTR' /
data (1b(60,ii),ii=1,3),1ib(60) /381,382,383, 'FFTFC'/

data (1b(65,ii),ii=1,3),1lib(65) /381,382,383, 'ADV3'/

data (1b(66,1i),1ii=1,3),1lib(66) /204,205,206, 'PWRSPEC"'/

write (13,921)
nn = abs(nfl(i,j))
if(nfl(i,j).1le.0) then
write (13,921)
goto 19
endif
do 16 m=1,9
16 write (13,918) m
do 17 m=10,14
17 write (13,922) m
write (13,920) (1.0 - rf(i,j))
write (13,921)
if(nn.gt.nrs) then
write (6,919) i
919 format ('***** MB: Invalid removal group ',
& '‘entered for outer step number®,id)
stop
endif
do 18 k=1, kfeed(nn)
do 18 m=abs{kfeedl (nn,k)),abs(kfeed2(nn,k)})
18 write (13,923) m
19 write (13,921)
write (13,924)
write (13,925)
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write (13,926) 1lb(olibn,1l),1lb(olibn,2),1b(olibn,3),1lib(olibn)
write (13,927) 1b{(olibn,1),1b(olibn,2),1b(olibn, 3)
write (13,928)

write (13,929)

write (13,930)

write (13,931)

write (13,932)

write (13,933)

write (13,934)

write (13,935)

write (13,905)

kk=2

icont=0

if (n.gt.0.and.gfl(i,j) .ne.-2) icont=1

if (icont.eq.l) kk=10

c
C... Write various loops into origen input file
c
do 22 k=1,kk
write (13,901)
if (icont.eqg.l) then
write (13,911)
write (13,902) ninner/10
dburn=dstep*float (ninner/10)
else
write (13,902) ninner/2
dburn=dstep*float (ninner/2)
end if
write (13,903) dstep,zero
write (13,904)
write (13,905)
c

if (n.gt.0) then
do 21 m=1,mfeed(n)
nm=2
if (ifeed(n,m).1t.89000) nm=1
ifdé=ifeed(n,m)*10
if (ifd6.eq.952420) ifd6=ifd6+1
if (gfl(i,3j).ne.-2) then
gfs=(float(k)-.5) /float (kk)*(gf2(i,3)-gfl(i,j))+gfl(i,3)
gfeed=ffeed(n,m) *gfs*dburn
else i
if (k.eg.l) then
gfeed=ffeed(n,m)*gf2(i,j)*day (i)
else
gfeed = 0.0
endif
endif
if (ifeed(n,m).ge.89000) then
tfeed(nauto(j)+1,j)=tfeed(nauto(j)+1,J)+gfeed
endif
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do 29 mm=1,nauto(j)
if (ifdé.eqg.nisnr(mm,j))} then
tfeed{mm, j)=tfeed(mm, j) +gfeed
endif
29 continue

if {(icont.eqg.l) write (13,913) nm,ifd6, ffeed(n,m)*gfs
21 continue
if (icont.eq.l) write (13,914)
end if

Cc... Write end of run 1/2 way through for predictor step

ihalf = 0
if (k.eqg.5) ihalf =1
if (k.eqg.l.and.icont.eq.0) ihalf=1
if (ihalf.eqg.l) then

write (13,938)

if (nfl(i,j).gt.0) write (13,936)
write (13,937)

write (13,939)
end if

22 continue
c complete end of origen input file

if(nfl(i,j).gt.0) write (13,936)
write (13,937)

25 close (13)
write (14,'(i2,1x,£8.2,3x,1pe9.2,30el0.2)")
& i,day(i), (tfeed(m,j),m=1,nauto({j)+1)
do 46 m=1,nauto(j)+1
46 ttfeed{m,j)=ttfeed(m,j)+tfeed(m,]j)
48 continue
write (14, '(a3,f8.2,3x,1pe9%.2,30e10.2)")
& 'tot',days, (ttfeed(m,j),m=1,nauto(j)+1)
write (14,'(/,a41,al3,i3)")
& 'Monteburns Grams Produced (or Destroyed) per Step',
& ' for material’,j
write (14, ‘(3x,a9,30(1x,a9))")
& (niso(i,3j),i=1,nauto(j)), 'actinide’
close (14)

901 format ('BUP')

902 format ('DOL 1 ',i4)

903 format ('IRF ',1p2el3.5," 2 3 4 1v)
904 format ('MOV 3201.0*/'CON 1'/'BUP")
905 format ('STP 2')

911 format {('INP 1 0 1 -1 4 44




913 format (il1,i8,1pel2.4,° 0 0.0%)
914 format ('0')

918 format (il,t4,'1 1.0")

920 format ('15',t4,'1 ',£f7.3)

921 format ('-1')

922 format (i2,t4,'1 1.0")

923 format (i2,* 15")

924 format ('TIT ORIGEN2 input file for monteburns')
925 format ('LIP 010"
926 format ('RDA *** Libs ',4i3,',',1i3,',',i3,' = ',al0)
927 format ('LIB 0123 ',3(i3,1x),'9 3 0 3 0")
928 format ('RDA 1 Bundle of fuel',/,
& 'RDA Read initial comps into vector 1 from fort.4 in ‘',
& ‘gram-atoms ')
929 format ('INP 1 -20-1424")
930 format ('MOV 1201.0',/,
& ' MOV 13 0¢06.0,/,
& ' MOV 140 0.0")
931 format ('RDA ***',/,
& 'RDA *** Set output options (print in grams)')
932 format ('HED 1 INITIAL')
933 format ('CUT 5 1.0-10 -1%)
934 format ('OPTA A*8 7 19*8',/,
& 'OPTL 4*8 7 19*8*,/,
& 'OPTF 4*8 7 19*8')
935 format (*RDA ***' /,
& 'RDA Begin burn, add cards after STP 2, remove FP at’',
& ' end of burn‘)
936 format ('PRO 2 3 4 -1%)
937 format ('MOV 3 2 0 1.0',/,
& 'ouUT 4 1 1 O ',/,
& ' PCH 2 2 2 A
& 'RDA '/,
& 'END ')

938 format ('RDA First of 1/2 way predictor cards')
939 format ('RDA Last of 1/2 way predictor cards')

c
100 continue
return
end
c
c
c23456789*%123456789*123456789*123456789*123456789*123456789*123456789*12
c
Cc...WORXS calculates new xs from mcnp and modifies the cross
Cc...sections in fort.9. Also calculates flux and modifies mbori
c...for 1/2 step
c
subroutine worxs
c

character jul0*10, ju80*80,ju3*3, fort7*12, ju6*6,blanks*4, mtuf*20
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C

C.

C

[e]

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,0lib,locale,posit
character niso*10,nisor*6,title*72,0lib*2, locale*72,posit*1l
character tal*3,nm*2,file8*12,file6*12, fname*21, fname2*25
character fort9*12, f9tmp*15,£filel*12,file2*12,file3*12,filelt*12
dimension xs(999,4,49),eflx(7,49),day(99),nfeed(99,49),£f1x(49),
gfl1(99,49),g9f2(99,49) ,nf1(99,49),rf£(99,49) ,pfra(99),
nmt (49) ,nisqg(49),gad(49), fismac(49), tmst (99),
qfis(49), flux(49),flux2(49), fiscap(999),vol(49),pwr (49},
aval(4,49),absmac(49), frfast(49),£frth(49),n2nmac{49),
burnup(0:99,49), fluxy (49), fluxy2 (49)
real keff,nu,macfis,macabs,macn2n,kinfin(49),kinf, mtu(49)

R R R R

..First obtain data from feed input file

open (17,file='./tmpfile/params2', status='old')
read (17,'(id4)') nfd
if (nfd.eq.l) then
open (11,file='feed', status='o0ld")
read (11,%*)
read (11,*)
daynum = 0.0
do 10 i=1l,nouter
do 5 j=1,nmat
if (j.eqg.l) then
read (11,*) tmst(i),day(i),pfra(i),

& nmt{1l) ,nfeed(i,1),gfl(1,1),gf2(i,1),nfl(i,1),rf(i, 1)
elseif (j.ge.2) then
read (11,%*)
& nmt (j) ,nfeed(i,j),gfl(i,j),gf2(i,3),nfl(i,j),rf(i,3)
endif
5 continue
if (i.eq.nrst+l) goto 15
10 daynum = daynum + day(i)
else

do 12 i=1,nouter
day (i) = days/float (nouter)
pfra(i}) = 1.0
if (i.eg.nrst+l) goto 15
12 daynum = daynum + day(i)
endif

..Read mass fraction section to get volume of each material

do 13 j=1,nmat
13 vol(j) = 0.0
15 close (11)

open (11, file='mbmco',status="'0ld"*)
280 read (11, '(a6)') jub
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if (ju6.ne.'lcells') goto 280

read (11,'(///)}*")
290 read (11,'(i6,a6,1i5,1x,1p3el2.5)"') n,ncell,nt,aden,gden,voll
do 295 j=1,nmat
if (nt.eqg.abs(mt(j))) then
vol(j)=vol(j)+voll
end if
295 continue
if (n.ne.0) goto 290

C
c...Read keff and calculate nu
C
20 read (11, '(al0)') Fulo0
if (jul0.ne.® neutron c') goto 20
c
read (11,°'(/)")
read (11, '(31x,1pel0.4)') src
read (11, (/////7///7/7/77)")
read (11,'(31x,1pel0.4,54x,1pel0.4)') fsrc,floss
read (11,'(/////)")
read (11, '(35x,1pel0.4,0p,£f7.4)"') fmult,err
c
if (fsrc.ne.0.) then
nu=fsrc/floss
keff = (fmult-1.)/(fmult-1./nu)
relerr = (fmult*(l.+err)-1.)/(fmult*(1.+err)-1./nu)
relerr = (relerr - keff)/keff
else
30 read (11, '(all)') julo
if (julO.ne.' --=--~-—-- '} goto 30
read (11, '(/72x,£7.5,41x%x,£f7.5)"') keff,relerr
nu=keff*src/floss
endif
c
c...Read energy spectrum tallies (if tallies don't exist in mbmco,
c...then tal='ves' (used in later commands)
c

if (posit.eqg.'m') then
do 68 j=1,nmat
55 read (11, '(al0)',end=67) jull
if (jul0(1:6).ne.'1ltally') goto 55
tal = 'yes’
mat = 0
do 60 m=1,nmat
if (m.ge.10) then

ml = m/10
mZ2 =m - ml*10
ml =ml + 1

nm = char(ml+48)//char (m2+48)
elseif (m.1t.10) then

138




nm = '1l'//char (m+48)

endif

if (nm.eqg.jul0(8:9)) then
mat = m

goto 61

endif

60 continue
if (mat.eg.0) goto 55

c
61 read (11, '(alQ)') 3julol
if (jull.ne.’ ener') goto 61
c
do 65 i=1,7
65 read (11, '(17x,1pell.5)') eflx(i,mat)
frfast(mat) = 0.
frth(mat) = (eflx(l,mat)+eflx(2,mat))/eflx(7,mat)
do 66 i=3,6
66 frfast(mat) = frfast(mat) + eflx(i,mat)/eflx(7,mat)
c
if (mat.lt.10) then
fileb = 'mb6_'//char (mat+48)//'.out’
elseif (mat.ge.l0) then
j1 = mat/10
j2 = mat - j1*10
file6 = 'mbé6_'//char(jl+48)//char(j2+48)//'.out’
endif
open (14,file=file6, status="'unknown’)
write (14,'(i2,1x,6£10.2)') nrst,
& (100.*eflx(i,mat)/eflx(7,mat),i=1,6)
close (14)
goto 68
67 write (6,*) '***** MB ERROR: Not all user-specified MCNP',
& ' materials were found in MCNP output file’
stop
68 continue
c
c...Read tallies and calculate new cross sections
c

do 88 j=1,nmat
iflag = 0
70 read (11,'(al0)') 3julo
if (Juld(1l:6) .ne."ltally') goto 70
mat = 0
do 72 m=1,nmat
if (m.ge.10) then
ml = m/10
m2 = m - ml*10
mi = ml + 5
nm = char(ml+48)//char{(m2+48)
elseif (m.1t.10) then
nm = '5'//char(m+48)
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endif

if (nm.eqg.jul0(8:9)) then
mat = m
goto 74

endif

continue

if (mat.eq.0) goto 70

read (11, '(ai0})') julo
if (julO.ne.' multiplie') goto 74

read (11, '(17x,1lpell.5)'} flx(mat)
if (flx(mat).eq.0) write (6,*) '***** MB: Tally read error'
do 80 i=1,ntot(7j)
do 80 m=1,4
read (11,'{(al0)') jull
if (julO.ne.' multiplie') goto 76
read (11, '(17x,1pell.5)') xs(i,m,3J)
xs{i,m,j)=xs(i,m,3)/flx(3)
if (nisn{i,3j).ge.89000) iflag = 1
continue
if (iflag.eqg.l) then
do 85 m=1,4
read (11, '(al0)*) julo
if (julO.ne.' multiplie') goto 82
read (11, '(17x,1pell.5)') xs(ntot(j)+1,m,Jj)
xs(ntot (j)+1,m,j)=xs(ntot(j)+1,m,Jj)/£1x(J)
continue
endif
do 87 m=1,4
read (11,'(al0)') julod
if (jull.ne.' multiplie') goto 86
read (11,'(17x,1pell.5)') xs(ntot(j)+2,m,3)
xs(ntot(j)+2,m, j)=xs(ntot (j)+2,m,j)/£f1x(]j)
continue
if (xs{ntot(j)+2,1,3) + xs(ntot(j)+2,4,3).ne.0.0) then
kinfin(j) = (nu*xs(ntot(j)+2,4,3) + 2.0*xs(ntot(3j)+2,2,3))/
& (xs(ntot (j)+2,1,3) + xs(ntot(j)+2,4,3))
else
write (6,*) '***** MB ERROR: Cross Section Tallies Not Correct'
endif
88 continue
close (11)
endif
c
c...Modify library
c
totpwr = 0.0
totfis = 0.0
if (posit.eq.'m') then
do 260 j=1,nmat




mtu(j) = 0.0
write (6,%*) '...MB: Modifying Library for material ',J
if (j.1lt.10) then

fort7 = 'fort_'//char{3+48)//'.7"'

fort9 = 'fort_'//char(j+48)//'.9"’

f9tmp = 'fort_‘'//char(j+48)//'.9.tmp"’

mtuf = './tmpfile/mtu_‘'//char(j+48)//'.tmp’

elseif (j.ge.l10) then
il = j/10
j2 = 3j - j1l*io
fort7 = 'fort_'//char(j1+48)//char(j2+48)//'.7"

fort9 = 'fort_'//char(jl1+48)//char(j2+48)//'.9"

f9tmp = ‘'fort_'//char(j1+48)//char(j2+48)//'.9.tmp"

mtuf = './tmpfile/mtu_'//char(j1+48)//char{(j2+48)//"'.tmp"
endif

open (12,file=fort9,status='o0ld")
open (13,file=f9%tmp, status="'unknown')
if (nrst.eqg.0) open (17, file=mtuf, status="unknown')

c
90 ixs=0
read (12,913,err=97,end=99) nflag, blanks
if (nflag.gt.3.and.blanks.ne.' ') then
backspace(12)
92 read (12,921,err=92)
& nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag
do 95 i=1,ntot(3)
if (nisnr(i,j).eq.nnuc) then
ixs=1
write (13,921) nxs,nnuc, (xs(i,m,j),m=1,4),xs5,xs6,xflag
end if
95 continue
end if
97 if (ixs.eq.0) then
backspace (12)
read (12, ' (a80)') 3ju80
write (13,'(a80)*') 3ju80
end if
goto 90
913 format (i4d,a4d)
921 format (i4,i8,1p6el0.3,£7.1)
c
99 continue
close (12)
close (13)
c
c...Calculate energy per fission gfis and flux norm factor
c...need to determine contribution of each iso to fission
c ,

100 grat=1.0
if (qu235.1t.0.) call calcg(grat, fort7, fort9)
gfis(j)=abs(qu235)*qrat
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..Calculate the macroscopic fission cross section of the
.isotopes from the number densities multiplied by the
..microscopic fission cross section

.Read fort.7 and fort.9 to get density and fis xs

an0aa0a0nan

open (16, file=fort7,status='o0ld")
open (13,file=f%tmp, status=ro0ld")

nact = 27
C
c...Calc relative fission per nuclide
C

fismac(j) = 0.

nZ2nmac (j) = 0.

absmac(j) = 0.

n=20

220 read (16,911,err=220,end=250) kxs, (nisg(m),gad(m),m=1,4)
do 240 m=1,4

ixs=0
230 read (13,913,err=235,end=239) nflag,blanks
if (nflag.gt.3.and.blanks.ne.’ ') then

backspace(13)

232 read (13,921,err=232)
& nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag
else
goto 230

endif

if (nnuc.eg.nisg{m)) ixs=1
235 if (ixs.eq.0) goto 230

c
if (voli(3).eq.0.0) wvoli(j) = vol(])
aval(m,j) = gad(m)*0.6022/voli(3)
absmac(j) = absmac(j) + aval(m,j)*xsl
n2nmac(j) = n2nmac(j) + aval(m,j)*xs2
if (kxs.eq.2) fismac(j) = fismac(j) + aval(m,j)*xs4
nisgl=nisg(m)/10
nz=nisqgl/1000
a=float (nisql)-£float (1000* (nisgl/1000))
if (nrst.eq.0) then
if (nz.ge.90) then
mtu(j) = mtu(j) + gad(m)*a
endif
endif
n=n+1
c

239 if (ixs.eq.0) rewind(13)
240 continue
goto 220
c
c...Two different fluxes must be calculated: ' one for the end
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...of step nrst, and one for the beginning of step (nrst+l)
...The reason these two values are different is that the
...power fraction for each outer loop step is different

0000

250 totpwr = totpwr + (gfis(j)*flx(j)*fismac(j)*voli(3j))
totfis = totfis + (flx(j)*fismac(j)*voli(j))
gave = totpwr/totfis
if (nrst.eq.0) write (17, '(lpel0.3)') mtu(j)

260 continue

if (nrst.eqg.0) then
pfracl = pfra(l)
pfrac2 = pfra(l)
elseif (nrst.eqg.nouter) then
pfracl = pfra{nrst)
pfrac2 = pfra(nrst)
else
pfracl
pfrac?
endif

pfra(nrst)
pfra(nrst+l)

. Normalize the flux obtained from MCNP by using the factors "nu"
. power, energy per fission, and k-eff

Q000

if (fsrc.eq.0.) then
fnorm = nu*l.0e+6*pow*pfracl/l1l.602e-13/gave/keff
f2norm = nu*l.0e+6*pow*pfrac2/1.602e-13/gave/keff
else
fnorm = src*l.0e+6*pow*pfracl/1.602e-13/gave/floss
f2norm = src*l.fe+6*pow*pfrac2/1.602e-13/gave/floss
endif

Cc... Write xs data to various mb files

do 160 j=1,nmat

if (tal.ne.'yes') goto 120
fsabs=xs (ntot (j)+1,1,7)
fsfis=xs(ntot(j)+1,4,7)
fsn2n=xs (ntot (j)+1,2,3)
falabs=xs(ntot(j)+2,1,3)
falfis=xs(ntot(j)+2,4,3)
faln2n=xs(ntot(j)+2,2,3)

if (3.1t.10) then

filel = *mbl_'//char(j+48)//'.out’
filelt= ‘mblt_‘'//char(j+48)//"'.out’
file2 = 'mb2_'//char(j+48)//'.out’
file3 = '‘mb3_'//char(j+48)//'.out’
file8 = 'mb8_'//char(j+48)//'.out"

mtuf = './tmpfile/mtu_'//char(j+48)//'.tmp"
elseif (j.ge.l1l0) then
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j1 j/10

j2 = 3 - 41*10

filel = 'mbl_‘'//char(jl+48)//char(j2+48)//"'.out’
filelt= 'mblt_'//char{(jl+48)//char(j2+48)//'.out"
file2 = 'mb2_'//char(jl1+48)//char(j2+48)//'.out"

I

file3 = 'mb3_'//char(jl1+48)//char(j2+48)//'.out’

file8 = 'mb8_'//char(j1+48)//char(j2+48)//'.out’

mtuf = './tmpfile/mtu_‘'//char(j1+48)//char(j2+48)//'.tmp'
endif

open (14,file=file2, status='unknown')
write (14,'(i2,1x,1pe9%9.2,30e10.2)"') nrst, (xs(i,1,3j),i=1,nauto(j))
close (14)
open (14,file=file3, status='unknown')
write (14, '(i2,1x,1pe9.2,30e10.2)') nrst, (xs(i,4,3).,.1i=1,nauto(3))
close (14)
do 119 i=1,nauto(j)
if (xs(i,1,3).ne.0.0.and.nisn(i,j).ge.89000) then
fiscap(i) = (xs(i,4,3)/xs(i,1,3))
else
fiscap(i) = 0.0
endif
119 continue
open (14,file=file8,status='unknown’)
write (14, '(i2,1x,0pf9.4,30£10.4)")
& nrst, (fiscap(i),i=1,nauto(3j))

close (14)
c
C... Write mcnp output to mblt.out
C
120 flux(j)=fnorm*flx(3j)
flux2{(j)=f2norm*£f1x(3)
pwr (j)=qgave*flux{j)*fismac(j)*voli(3j)*1.602e-13/1.0e+6
c
c.. Calculate total accumulated burnup
c

open (14, file=filelt, status='unknown')

read (14,*)

read (14,*)

read (14,*)

do 121 i=0,nrst-1

121 read (14, '(43x,0pf10.3})') burnup(i,j)

close (14)

if (nrst.ge.l) then
open (17,file=mtuf, status="'unknown')
read (17, ' (lpel0.3)') mtu(j)

endif
if (mtu(j).ne.0.0.and.nrst.ne.0) then
burnup (nrst,j) = burnup(nrst-1,3)
& + pwr(j)*1000.0*day(nrst) /mtu(j)
else

0.0

1]

burnup (nrst, j)
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endif
write (6,900) j,flux(j),fismac(j),pwr(Jj),burnup(nrst,j)

c
c
if (fsfis.ne.0.0.and.fsabs.ne.0.0) then
fisabs = fsfis/fsabs
else
fisabs = 0.0
endif
if ((nu*fsfis+2.*fsn2n).ne.0.0.and. (fsabs+fsfis).ne.0.0)then
eta = (nu*fsfis+2.*fsn2n)/(fsabs+fsfis)
else
eta = 0.0
endif
if (falfis.ne.0.0.and.falabs.ne.0.0) then
fisall = falfis/falabs
else
fisall = 0.0
endif
if ((nu*falfis+2.*faln2n).ne.0.0.and. {(falabs+falfis).ne.0.0)then
aeta = (nu*falfis+2.*faln2n)/(falabs+falfis)
else
aeta = 0.0
endif
open (1l4,file=filel, status="'unknown')
write (14,902) nrst,qgfis(3j),flux(3j), fismac(j).pwr{j),
& burnup(nrst,j),
& falabs, falfis, fisall, faln2n,aeta, fsabs, fsfis, fisabs, fsn2n, eta
close (14)
c
c...Modify flux in origen files
C

do 150 ii=1,2
if (ii.eq.l}) then
if (§.1t.10) then
fname=‘mbori_"'//char{j+48)
fname2="mbori_'//char(j+48)//'.tmp"
elseif (j.ge.l10) then
31 = 3/10
32 j - ji*10
fname='mbori_'//char(jl1+48)//char(j2+48)
fname2="'mbori_'//char(j1+48)//char(j2+48)//'.tmp"'
endif
else
i=nrst+1
if (3.1t.10) then
if (1.1t.10) then
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48)
fname2="'./tmpfile/mbori_*'//char(j+48)//'.'//char(i+48)//'.tmp’
else
il = i/10
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i2 = i - 11*%10
fname="'./tmpfile/mbori_'//char(j+48)//'."

& //char (i1+48) //char (1i2+48)
fname2="'./tmpfile/mbori_'//char(j+48)//'."
& //char {i1+48)//char(i2+48)//' .tmp"'
end if
elseif (j.ge.l0) then
jl = j/10

§2 = § - j1*10
if (i.1t.10) then
fname='./tmpfile/mbori_'//char(j1+48)//char(j2+48)//'."

& //char (i+48)
fname2="./tmpfile/mbori_'//char(jl1+48)//char(j2+48)//"'."
& //char(i+48)//'.tmp"
elseif (i.ge.10) then
il = 1/10

i2 = i - 11*10
fname='./tmpfile/mbori_'//char(j1+48)//char(j2+48)//*'."

& //char{il+48)//char (i2+48)
fname2="'./tmpfile/mbori_'//char{jl+48)//char(32+48)//"'."
& //char (i1+48)//char{(i2+48)//' .tmp"
end if
endif
end if
c
open (12, file=fname,status='014d',err=140)
open (13, file=fname2, status='unknown’)
if (mt(j).lt.0) then
flux(j) = 0.0
flux2(j) = 0.0
endif
c

130 read (12, '(a3)',end=140) ju3
if {jul.eq.'IRF') then
backspace(12)
read (12, '(a6,1pell.5)’',end=140) jub6,dstep
if (ii.eqg.l) then
write (13,992) dstep, flux(3)
else
write (13,992) dstep, flux2(3)
endif
else
backspace (12)
read (12,'(a80)',end=140) ju80
write (13,'(a80)') ju80
end if
goto 130
140 continue
close (12)
close (13)
150 continue
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160 continue
Cc... Obtain power fraction for ALL steps for flux calculations

if (npre.eq.0) then
if (nfd.eq.l) then
open (15,file='feed',status='0ld"')
read (15,%*)
read (15,%*)
do 111 i=1,nouter
do 111 j=1,nmat
if (j.eqg.l) then
read (15,*) tmst(i),day(i),pfra(i),
& nmt (1) ,nfeed(i,1),gfl(i,1),gf2(i,1),nfl1(i, 1), rf{i,1)
elseif (j.ge.2) then
read (15, *)
& nmt (j) ,nfeed(i,j),gfl(i,J),gf2(i,3),nfl(i,3),rf(i,]J)
endif
111 continue
close (15)
else
do 112 i=1,nouter
112 pfra(i) = 1.0
endif
c
C...Modify flux in origen files. For zero predictor steps, modify all
fluxes
c
do 170 j=1,nmat
do 168 i=2,nouter
if (j.1t.10) then
if (i.1t.10) then
fname="'./tmpfile/mbori_"'//char(j+48)//'.'//char (i+48)
fname2="'./tmpfile/mbori_'//char(j+48)//'.'//char(i+48)//"'.tmp"’
else
il = i/10
iz = i - 11*10
fname="'./tmpfile/mbori_'//char(j+48)//'."

& //char(i1+48)//char (12+48)
fname2="./tmpfile/mbori_'//char(j+48}//'."'
& //char(i1+48)//char (i2+48)//'.tmp"
end if
elseif (j.ge.10) then
jl = 3/10

j2 = j - ji*1o0
if (i.1t.10) then
fname='./tmpfile/mbori_'//char(j1+48)//char(j2+48)//'."

& //char (1i+48)
fname2='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//*."
& //char(i+48)//' .tmp’

elseif (i.ge.10) then

147




1

il i/10
i2 = i - 11*10
fname="'./tmpfile/mbori_'//char(j1+48)//char(j2+48)//"'."

& //char (11+48)//char(i2+48)
fname2="'./tmpfile/mbori_'//char(jl1+48)//char(j2+48)//"'."
& //char(1i1+48) //char(i2+48)//' .tmp'
end if
endif
c
c
c... Normalize the flux obtained from MCNP by using the factors "nu"
c... power, energy per fission, and k-eff
c
if (fsrc.eq.0.) then
fnrm = nu*l.0e+6*pow*pfra(i)/1.602e-13/gave/keff
f2nrm = nu*l.0e+6*pow*pfra(i)/1.602e-13/qgave/keff
else
fnrm = src*l.0e+6*pow*pfra(i)/1.602e-13/gave/floss
f2nrm = src*l.0e+6*pow*pfra(i)/1.602e-13/qave/floss
endif
fluxy (3)=fnrm*£1x(7j)
fluxy2(j)=f2nrm*f1x(3)
if (mt(3).1lt.0) then
fluxy(j) = 0.0
fluxy2(j) = 0.0
endif
open (12, file=fname, status='old’',err=166)
open (13, file=fname2, status="'unknown’)
c

164 read (12,'(a3)',end=166) ju3

if (ju3.eq.'IRF') then
backspace(12)
read (12, '(a6,1lpel3.5)"',end=166) ju6,dstep
if (ii.eqg.l) then
write (13,992) dstep, fluxy(j)

else
write (13,992) dstep, fluxy2(j)
endif
else
backspace(12)

read (12, ' (a80)',end=166) ju80
write (13,'(a80)') ju80
end if
goto 164
166 continue
close (12)
close (13)
168 continue
170 continue
endif
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endif

c
open (15,file='mbll.out’,status="unknown')
if (nrst.eq.0) then
time = 0.0
else
if (posit.eq.'b') then
time = daynum - day{nrst) + 0.01
elseif (posit.eq.'m') then
time = daynum - day{nrst)/2.0
else
time = daynum
endif
endif
c
c...Calculate k infinity and output results
c
if (posit.eq.'m') then
macfis = 0.0
macabs = 0.0
macn2n = 0.0
do 167 j=1,nmat
macn2n = macn2n + n2nmac{j)
macabs = macabs + absmac(j)
167 macfis = macfis + fismac(3j)
kinf = (nu*macfis + 2.0*macn2n)/(macfis + macabs)
write (15,903) nrst,posit,time,keff,relerr,nu,gave,kinf
else
write (15,904) nrst,posit,time,keff,relerr,nu
endif
close (15)
‘'write (6,901) keff,nu
900 format (' ...MB: mcnp flux for material ',i3,' = ',lpe9.2,
& ' SigmaF = ',1pef%9.2,' power = ',0pfl0.3
& 'MW Burnup = ',0pf10.3,' GWA/MTHM')
901 format (* ...MB: mcnp keff = ',£7.5,' nu = ',£5.3)
902 format (i2,1x,0pfl10.3,1p3el10.2,0pfl10.3,1p4el0.2,0p£8.3, 2x,
& 1p4el0.2,0p£8.3)
903 format (i2,al,1x,£f8.2,1x,2f10.4,£10.3,1x,2£10.3)
904 format (i2,al,1x,£8.2,1x,2£10.4,2f10.3)
911 format (i4,4(1x,1i6,2x,1pel0.4))
992 format ('IRF ',1p2el3.5," 2 3 4 1)
return
end
c
c23456789*123456789%123456789*123456789%123456789*123456789*123456789*12
c

C...CALCQ calculates the MeV per fission based on fission distribution
c...and qu235 (recov. MeV per U235 fission)
c

subroutine calcqg(grat, fort7, fort9)
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common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto(49),ntot(49),nkeff, nisn(999,49),

& nisnr(999,49)

common /mbinp2/niso(999,49),nisor(999,49),title,0lib, locale,posit
character niso*10,nisor*6,title*72,0lib*2,locale*72,posit*1
character fort7*12, fort9+*12,blanks*4

dimension nisqg(4),gad(4)

dimension nisact(0:50),gract(0:50),£fis(0:50)

data (nisact(i),qgract(i),i=0,31) /
0,1.0,
90227,0.9043, 90229,0.9247,
90232,0.9573, 91231,0.9471,
91233,0.9850, 92232,0.9553,
92233,0.9881, 92234,0.9774,
92235,1.0000, 92236,0.9973,
92237,1.0074, 92238,1.0175,
93237,1.0073, 93238,1.0175,
94238,1.0175, 94239,1.0435,
94240,1.0379, 94241,1.0536,
94242,1.0583, 95241,1.0513,
95242,1.0609, 95243,1.0685,
96242,1.0583, 96243,1.0685,
96244,1.0787, 96245,1.0889,
96246,1.0991, 96248,1.1195,
96249,1.1296, 98251,1.1501,
99254,1.1807 /

gqrat=0.

nact=31

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

..Read fort.7 and fort.9 to get density and fis xs

open (12, file=fort7,status='old")
open (13, file=fort9,status='old")

...Calc relative fisgsion per nuclide

10

do 10 k=0,nact
fis(k)=0.
fistot=0.

20 read (12,911,err=20,end=50) kxs, (nisg{(j),gad(j),j=1,4)

30

32

if (kxs.eqg.2) then
do 40 j=1,4
ixs=0
read (13,913,err=35,end=39) nflag,blanks
if (nflag.gt.3.and.blanks.ne.' ') then
backspace(13)
read (13,921,err=32)
& nxs,nnuc,xsl,xs2,xs3,xs4d,xsb5,xs6,xflag
endif




9]

C

if (nnuc.eqg.nisqg(j)) ixs=1
35 if (ixs.eq.0) goto 30

nisgl=nisqg(3j)/10

kk=0

do 37 k=1,nact

if (nisact(k).eqg.nisql) kk=k
37 continue

fis(kk)=fis (kk)+gad{(j)*xsd

fistot=fistot+gad(j) *xs4

39 if (ixs.eq.0) rewind(13)
40 continue

end if

goto 20

50 continue
...Calculate Q based on fission percentage

if (fistot.eqg.0.) then
grat = 0.
else
do 60 k=0,nact
qrat = grat + fis(k)/fistot*gract (k)
60 continue
end if

911 format (i4,4(1x,1i6,2x,1pel0.4))
913 format (i4d,ad)
921 format (i4,i8,1p6el0.3,£7.1)

return
end

c23456789*123456789*%123456789%123456789%123456789*%123456789*123456789*12

(o]

noa0nan

Q

. .WMCINP modifies the mcnp input file with new compositions, materials
.are added if they are deemed "important players". Data is
.read from fort.7 in gram-atoms, and put into mass fractions.

subroutine wmcinp

common /mbinp/nmat,mt{49),voli(49),pow,qu235,days, nouter,ninner,
& npre,nrst, frimp,nauto(49),ntot(49) ,nkeff, nisn(999,49),
& nisnr (999, 49)

common /mbinp2/niso(999,49),nisor(999,49),title,o0lib, locale,posit
character niso*10,nisor*6,title*72,0lib*2,locale*72,posit*l
dimension nisqg(4),gad(4),nele(4) ,nisop(4),gmnat(999),gmcnp(999),
& gden(49)

integer o,b(10),e(10)
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00 a0ao0an

(o]

double precision gm(999,49)
character ninat*10, f7name*12, £f9name*12, file7*12,filed*12,

&
&
&

fnat*12, finp*12, fmcnp*12, nmcnp*10, blanks*4,
nPufp*10,nUfp*10, £9err*8, 1ine80*80, char5*5,
line*80

...Read fort.7, and fort.9. sum total gamma and fission, and
...then step back through and determine contributors, sum mass
...0f each contibutor.

do 180 j=1,nmat

gfp = 0.
iflag = 0
iflg = 0
if (3.1t.10) then
f7name = 'fort_'//char(j+48)//'.7’
f9name = 'fort_'//char(j+48)//'.9"'
f9err = 'fY9err_'//char(j+48)
filed = 'mbd_'//char(j+48)//'.out’
file7 = ‘mb7_'//char{(j+48)//'.out’
fnat = 'mnat_'//char(j+48)//'.tmp’
fmenp = ‘menp_'//char(j+48)//'.inp*
finp = 'mat_'//char(j+48)//' .inp"
elseif (j.ge.l1l0) then
jl = 3/10
j2 = 3 - 31*10
f7name = 'fort__'//char(jl+48)//char(j2+48)//'.7"'
f9name = 'fort_'//char(jl+48)//char(j2+48)//'.9"
f9err = 'f9err _'//char(jl+48)//char(j2+48)
filed = 'mb4_'//char(3jl+48)//char(j2+48)//'.out"’
file7 = 'mb7_'//char(jl1+48)//char(j2+48)//'.out’
fnat = 'mnat_'//char(jl1+48)//char(32+48)//'.tmp’
fmenp = 'menp_ ' //char(jl+48)//char{(j2+48)//'.inp’
finp = 'mat_'//char(j1+48)//char(j2+48)//'.inp"
endif

open (12, file=f7name,status='old"')
open (13, file=fY9name, status='o0ld"*)
open (15,file=fY%err, status="'unknown')

c...Sum total density, gamma and fission

(o]

15
20

tden=0.
tmas=0.
tabs=0.

tf

is=0.

do 15 n=1,999
gmenp (n)
gmnat (n)
read (12,911,err=20,end=50) kxs, (nisg(k),gad(k) ., k=1,4)
do 40 k=1,4

(nisg(k).gt.0) then

if

= 0.
= 0.
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ixs=0
30 read (13,913,err=35,end=39) nflag,blanks
if (nflag.gt.3.and.blanks.ne.’ '} then
backspace(13)
32 read (13,921,err=32)
& nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag
else
goto 30
endif
if (nnuc.eqg.nisg(k)) ixs=1
35 if (ixs.eq.0) goto 30
39 1if (ixs.eq.0) then
rewind(13)
xsl = 0.0
xs4 = 0.0
endif

nisqgl=nisq{k) /10
a=float (nisgl)-float (1000* (nisgl/1000))
tmas=tmas+gad(k) *a
tden=tden+gad (k)
tabs=tabs+gad (k) *xsl
if (kxs.eqg.2) then
iflg =1
tfis=tfis+gad(k) *xs4
endif

. Obtain composition {(in grams) of all isotopes in MCNP input file
to transfer them in case they are not found "important”

a0 00

if (kxs.eqg.l.or.kxs.eqg.2) then
open (17, file=fmcnp, status='unknown')
id = 0
m= 0
36 read (17,'(i5)',err=37,end=38) numcnp
m=m + 1
if (numcnp.eqg.nisqgl) then
id = 1
gmcnp {m)= a*gad(k)
endif
37 if (id.eqg.0) goto 36
38 close (17)
elseif (kxs.eqg.3) then
gfp = gfp + a*gad(k)
endif
end if
40 continue

c... Add up gram totals for natural isotopes

backspace (12)

153




read (12,912,end=49) kxs, (nele(k),nisop(k),gad(k),h k=1,4)
if (kxs.eqg.l.or.kxs.eq.2) then
do 47 k=1,4
n=20
open (11,file=fnat,status="unknown')
read (11, *(i2,4x,al0)"',err=46,end=48) nelem,ninat
n=n+1
if (nele(k).eqg.nelem) then
nisgl=nisqg(k) /10
a=float(nisgl)-float{(1000* (nisgl/1000))
gmnat (n)=gmnat (n) +a*gad (k)
endif
goto 46
close (11)
continue
endif
goto 20

continue

close (11)

close (17)
911 format (i4,4(1lx,1i6,2x,1pel0.4))
912 format (i4,4(1x,i2,i4,2x,1pel0.4))
913 format (i4,ad)
921 format (i4,i8,1p6el0.3,£7.1)

...Begin list of mcnp input isos with automatic tallies list

ntot (j)=nauto(3j)

...Now determine which iso's contribute based on frimp or are
..already selected (auto due to input or may occur twice in table)

rewind(12)

rewind(13)

gmtot=0.

U235£f=0.

Pu239£f=0.

open (16,file=file7,status='unknown')

write (16,%*)

read (12,911, err=60,end=90) kxs, (nisg(k),gad(k),k=1,4)
backspace (12)

read (12,912) kxs, (nele(k),nisop(k),gad(k),k=1,4)

do 80 k=1,4
if (nisg(k).gt.0) then
ixs=0
read (13,913,err=75,end=79) nflag,blanks
if (nflag.gt.3.and.blanks.ne.’ '} then
backspace(13)
read (13,921,err=72)




& nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag
else
goto 70
endif
if (nnuc.eq.nisqg(k)) ixs=1
75 if (ixs.eq.0) goto 70
79 if (ixs.eq.0) then
rewind(13)
if (kxs.ne.3) then

write (15,'(a27,16,a20)') '***** MB WARNING: Isotope ',
& nigqg(k),' not found in fort.9®
endif
xsl = 0.0
xs4 = 0.0
endif
c
c...Determine which isos qualify, or are automatic or repeat.
c
icon=0
nisgl=nisqg(k) /10
a=float(nisqgl)-float(1000* (nisgl/1000))
gmtot=gmtot+a*gad (k)
gpct=gad(k)*a/tmas
dpct=gad(k) /tden
apct=gad({k) *xsl/tabs
fpct=0.
nz = nisgi/1000
if (kxs.eqg.2.and.tfis.ne.0.) then
fpct=gad(k) *xs4/tfis
if (nz.le.92) U235f = U235f + fpct
if (nz.gt.92) Pu239f = Pu239f + fpct
endif
c
if (gpct.gt.abs(frimp)) icon=1
if (dpct.gt.abs(frimp)) icon=1
if (apct.gt.abs(frimp)) icon=1
if (fpct.gt.abs(frimp)) icon=1
kk=0
do 77 m=1,ntot(Jj)
if (nisnr{m,j).eqg.nisg(k)) then
kk=m
c
Cc... If a fission product is flagged "automatic®", then don't include it
in
c... lump sum of FPs. Otherwise, do. (kk=0 indicates it was not
"automatic")
c
if (kxs.eq.3) gfp = gfp - a*gad(k)
endif
77 continue
c
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Make sure natural isotopes are not deemed "important® since they
included later

open (11, file=fnat, status='unknown'}
read (11,'(i2,4x,al0)',err=78,end=92) nelem,ninat
if (nele(k).eg.nelem) then
icon = 0
endif
goto 78
92 close (11)

...If repeat or automatic isotope

if (kk.gt.0) then
gm(kk, j)=gm(kk, j) +a*gad(k)
if (gm(kk,j).gt.a*gad(k}) then
write (6,953) nrst, kk,nisnr(kk, j),gm(kk, j),gpct,dpct, apct, fpct
write (16,953) nrst,kk,nisnr(kk,3j),gm(kk, j),gpct,dpct, apct, fpct
else
if (icon.eq.l) write(6,951) nrst,kk,nisnr(kk,j),gm(kk, j),gpct,
dpct, apct, fpct
if (icon.eqg.0) write(6,952) nrst,kk,nisnr(kk,3j),agm(kk,3j),gpct,
dpct, apct, fpct
if (icon.eq.l) write(1l6,951) nrst,kk,nisnr(kk,j),gm(kk,3j),gpct,
dpct, apct, fpct
if (icon.eqg.0) write(l1l6,952) nrst,kk,nisnr(kk,j),gm(kk,j),gpct,
dpct, apct, fpct
end if
end if

Fission products that were not previously deemed "important" will
be treated as a lump sum

if (kxs.eq.3.and.kk.eqg.0.and.frimp.1lt.0.0) then
else

If new qualifying isotope, first check if xs exists then add to

if (icon.eqg.l.and.kk.eqg.0) then

open (15,file='mbxs.inp', status="'unknown')
ifd=0

read (15,*,end=105) nixs

nixsl0 = nixs*10

if (nixs.eq.95242) nixsl0 = nixs10 + 1

if (nisqg(k).eq.nixs10) ifd=1

if (ifd.eq.0) goto 95

backspace (15)

read (15,'(alQ)') niso(ntot(j)+1,3j)
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... Print error message if no cross section exists in MCNP for isotope

000

105 if (ifd.eq.0) then

write (6,%*) '***** MB WARNING: mcnp xs not found ', nisg(k)
write (16,*) '***** MB WARNING: mcnp xs not found ', nisg(k)
end if
close (15)
c
C... Print isotope-specific information if xs does exist -
c
if (ifd.eqg.l) then
ntot (j)=ntot(j)+1
nisnr (ntot(3j),j)=nisq(k)
nisn{ntot(j),j)=nisnr (ntot(j),3j)/10
gm{ntot(j),j)=a*gad{k)
write (6,951) nrst,ntot(3),nisnr(ntot(j),j),gm(ntot(3),J),
& gpct,dpct, apct, fpct
write (16,951) nrst,ntot(j),nisnr(ntot(3j),j).gm{ntot(3),.J).
& gpct,dpct, apct, fpct
end if
end if
endif
end if
80 continue
goto 60
c

80 continue

951 format (i4,i4,il10,1p5e10.2)

952 format (i4,i4,il0,1p5el0.2, *automatic')
953 format (i4,i4,il10,1p5el0.2, ‘repeat’)

close (16)
C
c...Write grams of material
c
if (posit.eqg.'m*') then
open (14,file=filed,status='unknown')
write (14,'(i2,1x,1pe9.2,30e10.2)') nrst, (gm(i,j),i=1,nauto(j))
close (14)
endif
c
close (12)
close (13)
c
c...Rewrite mb.inp
c
call wmbinp
c
c...Check if mass of isos sent back to mcnp is same as came in.
c

gmtot2=0.
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do 140 i=1,ntot(3)
140 gmtot2=gmtot2+gm(i,j)

...Read natural iso file and add to total mass

n =20
open (11, file=fnat, status=‘'unknown')
142 read (11, '(6x,al0)',end=144) ninat
n=mn+1
gmtot2=gmtot2+gmnat (n)
goto 142
144 continue

. Add isotopes in original MCNP input file

m =0
open (17, file=fmcnp, status='unknown')
145 read (17, '(1i5,2x%x,al1l0)',end=148) nmc,nmcnp
m=m + 1
ifg =0
do 147 i=1,ntot(3j)
if (nisn(i,j).eg.nmc) ifg =
continue
if (ifg.ne.l) then
gmtot2=gmtot2+gmcnp (m)
endif
goto 145
148 continue
c
c... Add fission products to gram total, then separate into U-235 & Pu-
239 ones
c
if (gfp.gt.0.0.and.frimp.1lt.0.0) then
gmtot2=gmtot2 + gfp
gUff = U235f*gfp
gbPuff = Pu239f*gfp
endif

Compare total of isotopes to total included in MCNP input file
Calculate gram density of material

[o)

write (6,*) 'mass not accounted for and % ',gmtot-gmtot2,

& (gmtot-gmtot2)/gmtot

gden(j) = -gmtot2/voli(j)
c
c...Modify mt card with input file mat.inp
c

160 open {12,file=finp, status='unknown')
if (abs(mt(j)).1t.10) write (12,931) abs{mt(j))
if (abs(mt(j)).ge.10.and.abs{mt(j)).1t.100)
& write (12,932) abs(mt(3))
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if (abs(mt(j)).ge.1l00.and.abs(mt(3j)).1t.1000)

& write (12,933) abs{mt(j))
if (abs(mt(j)).ge.1000.and.abs{mt(j)).1t.10000)
& write (12,934) abs{mt(3j))
931 format ('c'/‘'m',il)
932 format ('c'/'m’,i2)
933 format {('c'/‘'m',i3)
934 format ('c‘'/'m',id)
c
C... Add isotopes in original MCNP input file
c
m = 0
rewind (17)
155 read (17, '(i5,2x,al0)',end=168) nmc,nmcnp
m=m+ 1
ifg = 0
do 157 i=1,ntot(3)
if (nisn(i,j).eq.nmc) ifg =1
157 continue
if (ifg.ne.l) then
if (gmenp(m).eg.0.) gmenp(m)=1.0e-20*gmtot2
write (12, '(6x,al0,1lpel3.4)') nmcnp, -gmcnp (m) /gmtot2
endif
goto 155
c
¢...Add natural isos
c
168 n = 1
rewind (11)
152 read (11, '(i2,4x%,al10)',end=154) nelem,ninat
do 153 i=1,ntot(j)
aa=(nisn(i,j)-1000* (nisn{i,j)/1000))
if (aa.eg.0) then
nz=nisn(i,j) /1000
if (nz.eqg.nelem) then
ifg =1
gm(llj) = gm(irj) + gml'lat(n)
endif
endif
153 continue
if {(ifg.ne.l) then
if (gmnat{(n).eq.0.) gmnat{n)=1.0e-20*gmtot2
write (12, '(6x,al0,1pel3.4)') ninat, -gmnat(n)/gmtot2
n=n+1
endif
goto 152
154 n =n - 1
c
Cc... Add "important" isotopes
c

do 150 i=1,ntot(j)

159




if (gm(i,3).eq.0.) gm(i,j)=1.0e-20*gmtot2
if (nisn(i,j).ne.45117.and.nisn(i,j).ne.46119) then
write (12, '(6x,al0,1lpel3.4)') niso(i,j),-gm(i,Jj)/gmtot2
endif
150 continue

c... Add fission products to mat.inp files

if (gfp.gt.0.0.and.frimp.1t.0.0) then
open (18,file='mbxs.inp',status='unknown’)
if (gUff.ne.0) then
ifd=0
158 read (18,*,end=159) nixs
if (nixs.eq.45117) ifd =1
if (ifd.eq.0) goto 158
backspace (18)
read (18,°'(al0)') nUfp
159 if (ifd.eq.0) then
write (6,*) '****x* MB WARNING: No Uranium Fission Product ',
& '‘library was provided in mbxs.inp®
else
write (12,'(6x,al0,1pel3.4)') nUfp, -gUff/gmtot2
endif
rewind (18)
endif

if (gPuff.ne.0) then
ifd=0
161 read (18,*,end=162) nixs
if (nixs.eq.46119) ifd =1
if (ifd.eq.0) goto 161
backspace (18)
read (18,'(al0)') nPufp
162 if (ifd.eq.0) then
write (6,*) '****x* MB WARNING: No Plutonium Fission Product ',
& *library was provided in mbxs.inp'
else
write (12,'(6x,al0,1pel3.4)') nPufp,-gPuff/gmtot2
endif
close (18)
endif
endif

End main material input section

Q

write (12,*(al)*') ‘'c

...Write actinide tally material

0

ii = 900 + 3
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do 165 i=1,ntot(j)
165 if (nisn(i,j).ge.89000) iflag =1
if (iflag.eqg.l) then
write (12,'(al,i3)') 'm',ii
do 170 i=1,ntot(j)
if (nisn(i,j).ge.89000) then
if (gm(i,j).eq.0.) gm(i,i)=1.0e-10*gmtot2
write (12,'(6x,al0,1lpel3.4)"') niso(i,Jj),-gm(i,]j)/gmtot2
end if
170 continue
write (12,'(al)') ‘c*
endif

close (11)
close (12)
close (15)
close (17)
180 continue

Rewrite density(s) in MCNP input file

00 0a0

nflag = 0

open (15,file="mbmc.skl’, status="'unknown’)

open (17,file="mbmc.tmp', status='unknown')

181 read (15,'{(a5)',end=190) char5

if (char5(1:1).eq.'C'.or.char5(1:1).eqg.'c’'.or.

& char5.eq."' '.or.nflag.eq.1) then
backspace (15)
read (15,'(a80)') 1line80
if {(1line80(1:42) .eq." '

& .and.l1ine80(43:76).eq.’ '} then
nflag = 1
write (17,'(a80)') 1ine80
else
write (17,'(a80)') line80
endif
else

backspace (15)
read (15,*,err=185,end=190) ncell,nmater
ident = 0
do 187 j=1,nmat
if (nmater.eqg.abs(mt(j))) then"
ident = 1
backspace (15)
read (15, '(a80)') 1lineB0

o =1
n =1
ncount = 1
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c...
same position)

C

C

183

c...
blanks

(o]

C

182

184

187
185

c...
density

o]

188

191

192

First find the first number

if (line80(n:n).ne."' ')
n=n+1
ncount =

goto 183

ncount + 1

Then identify the location

if (line80(n:n).eqg."' ')
b(o) =n
if (o.eq.3) goto 185
m=n
if
m=m+ 1
goto 184
else
e(o) =
endif
o=o0 + 1
n=m+ 1
goto 182
else
n=mn+1
goto 182
endif
else
goto 187
endif
continue
if (ident.eq.l)

m

then

Replace wvalues before

nident = 0

do 188 i=b(3),80

line(i:i) = 1line80(i:1i)

if (line80(i:i) .ne.’

if (ncount.ge.2) then
do 191 i=1,ncount-1
line80(i:i) = *

endif

if (e(2).le.24) then
do 192 i=e(2)+1,25
line80(i:1) = '

endif

if (nident.eqg.l) then

(l1ine80 (m+1:m+1) .eq. "'

density,

(ncount allows it to always start in

goto 182

of the next two numbers relative to

then

') then

density, and then those after

') nident = 1

write (17,'(a25,f10.5)') 1line80(1:25),gden(]j)
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do 189 i=1, (b(3)-1)

189 line(i:i) = ' °'
write (17, '(a80)') line
else
write (17,'(a25,f10.5)') 1line80(1:25),gden(3j)
endif
else

backspace (15)
read (15,'(a80)') line80
write (17,'{(a80)') line80

endif
endif
goto 181
190 return
end
c
Cc23456789*%123456789%123456789%123456789%123456789*%123456789*%123456789*12
c
c...GRAMS reads fort.7 and prints out grams of tracked material to mbb
c
subroutine grams
c
common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto(49),ntot(49),nkeff, nisn(999,49),
& nisnr (999, 49)
common /mbinp2/niso(999,49),nisor(999,49),title,o0lib, locale,posit
character niso*10,nisor*6,title*72,0lib*2,locale*72,posit*1l
character f7name*12,fileb5*12,fileSx*12,filel2*12,£fil12x*12
dimension nisqg(4),gad(4),gm(999,49)
c
do 40 j=1,nmat
if (j.1t.10) then
f7name = 'fort_'//char(j+48)//'.7’
file5 = 'mb5_'//char(j+48)//'.out’
filel2 = 'mbl2_'//char(j+48)//'.out’
£ill2x = 'mbl2x_‘'//char(j+48)//'.out"
filebx = 'mb5x_'//char(j+48)//'.out’
elseif (j.ge.l10) then
j1 = j/10
j2 = § - j1*10
f7name = 'fort_'//char(3jl1+48)//char(j2+48)//'.7"
fileS5 = 'mbS5_'//char(jl+48)//char(j2+48)//'.out’
filel2 = 'mbl2_'//char(j1+48)//char(j2+48)//" .out"
£il12x = 'mbl2x_'//char(jl1+48)//char(j2+48)//'.out’
fileS5x = 'mb5x_'//char(j1+48)//char(j2+48)//'.out’
endif
open (12, file=f7name, status='o0ld’')
c
10 read (12,911,err=10,end=30) kxs, (nisqg(m),gad(m),m=1,4)
c

do 20 m=1,4
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kk=0

do 15 k=1,nauto(j)

if (nisnr(k,j).eqg.nisqg(m)) kk=k
continue

if (kk.gt.0.or.nisqg(m).ge.890000) then
nisgl=nisqg(m) /10
a=float(nisqgl)-float (1000* (nisgl/1000))
if (kk.gt.0) gm(kk,j)=gm(kk,j)+a*gad{m)
if (nisqg(m).ge.890000) gm{nauto(j)+1l,3j)=
& gm(nauto(j)+1,j)+a*gad(m)
end if

20 continue
goto 10

continue
format (i4,4(1x,i6,2x,1pel0.4))

if (posit.eq.'e') then

open (14,file=file5, status="'unknown')

open (15,file=fileb5x,status="unknown')

write (14,'(i2,1x,1pe9.2,30el10.2)'} nrst, (gm(i,j),i=1,nauto(j)+1)
write (15, '(i2,1x,1pel3.7,30eld4.7)"') nrst, (gm(i,j),i=1,nauto(j)+1)
close (14)

close (15)

elseif (posit.eqg.'b') then

open (14,file=filel2,status='unknown')

open (15,file=fill2x, status="unknown')

write (14, '(i2,1x,1pe2.2,30e10.2)') nrst, (gm(i,j),i=1,nauto(j)+1)
write (15, '(i2,1x,1pel3.7,30el4.7)') nrst, {(gm{(i,3j),i=1,nauto(j)+1)
close (14)

close (15)

endif

close (12)
continue

return

end
c
c23456789*123456789*123456789*123456789*%123456789*%123456789*123456789*12
c
c...RMHALF removes 1/2 way predictor cards in mbori
c

subroutine rmhalf (nmat)

character ju8*8, ju80*80, fname*12, f2name*12

do 140 ij=1,nmat
if (3j.1t.10) then




fname = ‘'mbori_'//char(j+48)
f2name = 'mbori_'//char(j+48)//'.tmp"
elseif (j.ge.l1l0) then
3l = j/10
j2 = § - j1*10
fname = 'mbori_'//char(jl1+48)//char(j2+48)
f2name = ‘mbori_‘'//char(jl+48)//char(j2+48)//'.tmp"
endif
open (12, file=fname, status='o0ld')
open (13, file=f2name, status='unknown')

1]

ino = 0
120 read (12, '(a8)',end=125) ju8

if (ju8.eq.'RDA Firs') ino=1
if (ino.eqg.0) then
backspace(12)
read (12, '(a80)',end=125) ju80
write (13,'(a80)') ju80
end 1f
if (ju8.eq.'RDA Last') ino=0
goto 120
125 continue
close (12)
close (13)
140 continue

return

end
c
c23456789%123456789%123456789*%123456789*123456789%123456789*%123456789*12
o
C...BURNCALC calculates material burned/produced based on feed and inven
le:

subroutine burnca

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto(49),ntot (49) ,nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,o0lib, locale,posit
character niso*10,nisor*6,title*72,01ib*2,locale*72,posit*1l
character filel0*12,file9t*12,file5t*12, fileb5x*12,£filed*12
character file5*12,fill2a*12
dimension tfeed(999),91(999),92(999),bb(999),bb2(999),day(99)
dimension dfeed(999)
c
c...Read feed data
c

do 100 j=1,nmat
if (j.1t.10) then
fileSt='mb9t_"'//char(j+48)//'.out"
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file5 ='mb5t_'//char(j+48)//'.out’
fileS5x="mb5tx_'//char(j+48)//'.out’
fill2a='mbl2a_'//char(j+48)//'.out"
file9 ='mb9_"'//char(j+48)//"'.out"
filel0='mbl0t_'//char{(j+48)//'.out"

elseif (j.ge.l1l0) then
ji = j3/10
j2 = 3 - j1*10
file9t="mb9t_*'//char(j1+48)//char(j2+48)//'.out’
fileSt="mb5t_'//char(j1+48)//char{j2+48)//'.out’
fileSx='mb5tx_'//char(jl+48)//char(j2+48)//'.out"
fili2a='mbl2a_'//char(jl+48)//char(j2+48)//'.out"
file9 ='mb9_'//char(jl1+48)//char(3j2+48})//' .out’
filelO='mbl0t_'//char(jl+48)//char(j2+48)//'.out"

endif

open (11,file=filedt,status="'unknown')

read (11,'(//)")

do 10 i=1,nrst

10 read (11, '(3x%,£8.2,3x%,1pef.2,30e10.2)")

& day (i), (tfeed(m) ,m=1,nauto(j)+1)
close (11)
c
c...Read inventory data
le:
open (11,file=fileb5x,status='unknown’)
read (11,(//)"}
do 20 i=0,nrst
20 read (11, ' (3x,1pel3.7,30el4.7)') (g2(m),m=1,nauto(j)+1)
close (11)
open (11,file=fill2a,status='unknown’)
read (11,°*(//})}")
do 22 i=0,nrst
22 read (11, '(3x,1pel3.7,30e14.7)') (gl{(m),m=1,nauto(j)+1)
close (11)
c
c...Write burn data
c
do 30 m=1,nauto(j)+1
30 bb(m)=g2 (m)-gl(m)-tfeed(m)
open (14,file=file9, status='unknown')
write (14,'(i2,1x,1pe9.2,30e10.2)")
& nrst, (bb(m),m=1,nauto(j}+1)
c
C...Write final burn data if last step
c
if (nrst.eqg.nouter) then
c

open (11,file=file%t, status='unknown')
read (11,'(//})}*)
do 40 i=1,nrst

40 read (11, *)
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0

0

read (11, '(3x,£8.2,3x,1pe9.2,30e10.2)")
& day(nrst), (tfeed(m),m=1,nauto(j)+1)
close (11)

open (11,file=filebx,status="unknown')

read (11,'(//)")

read (11, '(3x,1pel3.7,30el4.7)') (gl(m),m=1,nauto(j)+1)
close (11)

do 50 m=1,nauto(j)+1
50 bb2(m)=g2{m)-gl(m)-tfeed(m)
write (14, '(a3,1pe9.2,30e10.2)"') 'tot', (bb2(m),m=1,nauto(3j)+1)
write (14,'(/,a36,al13,1i3,a22,i3,al)")
& 'Summary of Inventory/Feed/Production',
& ' for material',j,' (MCNP Material Number',abs{mt(j)), ')’
write (14,°'(3x,a9,30(1x,a9))') (niso(i,j).,i=1,nauto(3j)), 'actinide’

write (14,'(a3,1pe%9.2,30el10.2)') 'ini’', (gl(m),m=1,nauto(j)+1)
write (14, '(a3,1lpe9.2,30el0.2)') 'fin', (g2(m),m=1,nauto(j)+1)

write (14, '(a3,1pe9.2,30e10.2)') 'fed', (tfeed(m),m=1,nauto(j)+1)
write (14, '(a3,1pe%.2,30e10.2)') 'net', (bb2(m),m=1,nauto(j)+1)
end if

close (14)

..Write mbl0.out containing feed/burn rates

if (nrst.eg.nouter) then

open (14, file='mbl0',status="unknown')

write (14,'(/,a28)') 'Monteburns Inventory (cont.)'
close (14)

open (14,file=filel0,status='unknown')

..Read data and divide by time interval

open (11,file=filefdt,status='unknown')

read (11,'(//)"')

write (14,'(/,al7,al3,i3,a22,i3,al)') 'Feed Rate (g/day)’,
& " for material’',3j,’' (MCNP Material Number',abs(mt{(3)), '}’
write (14, '(3x,a9,30(1x,a9))') (niso(i,3j),i=1l,nauto(j)), 'actinide’
do 80 i=1,nouter

read (11, '(3x,£8.2,3x,1pe9.2,30e10.2)")
& day(i), (tfeed(m),m=1,nauto(j)+1)

open (17,file='./tmpfile/params2’',status='old')

read (17, '(i4)') nfd

close (17)

if (nfd.eqg.l) then

write (14, '(i2,1x,1pe%9.2,30e10.2)"') 1,
& (tfeed(m)/day(i),m=1,nauto(j)+1)

else

167




do 77 m=1,nauto(j}+1
77 dfeed(m) = 0.0
write (14, *(i2,1x,1pe9.2,30e10.2)"') 1,
& (dfeed(m),m=1,nauto(j)+1)
endif
80 continue
read (11,'(///)")
write (14,'(/,a35,al13,13,a22,i3,al)")

& 'Production/Destruction Rate (g/day) ‘',

& ' for material',j,' (MCNP Material Number',abs{(mt(j)),')'
write (14, '(3x,a9,30(1x,a9))") (niso(i,j),i=1,nauto({j)), 'actinide’
do 90 i=1,nouter-1
read (11,'(3x%,1pe9.2,30e10.2)') (bb2(m),m=1,nauto(j)+1)

90 write (14, '(i2,1x,1pe9.2,30el10.2)"') i,

& (bb2(m)/day(i),m=1,nauto(j)+1)
write (14,'(i2,1x,1pe9.2,30e10.2)') nouter,

& (bb(m)/day(nouter) ,m=1,nauto(j)+1)
close (11)
write (14,*)
close (14)
end if
continue

return
end

...DISCRETE makes additions in fort.7 and mat.inp for discrete feed
subroutine discr

common /mbinp/nmat,mt (49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp, nauto(49) ,ntot(49) ,nkeff,nisn(999,49),
& nisnr(999,49)

character line*80, fort7*12,f7tmp*15,met*1

dimension nisg{4),gad(4),gmafed(99,49),i£fd6(99,49),a(99)
dimension day{99) ,nfeed(99,49),9f1(99,49),9£f2(99,49) ,mfeed(99),
& kfeed(99),kfeedl(99,99),kfeed2(99,99),ifeed(99,99),ncount(99,49),
& nfl(99,49),rf(99,49) ,pfra(99),nmt (49), £feed(99,99),
& nelem(99,49), tmst (99)

dimension nisoto(99,49,99) ,nisop(99,49),atomfr(99,49,99),
& 1iflag(99,49),imfeed(99,99), fmfeed(99,99) ,mmfeed(99),gfeed (99, 49)

.. Determine if feed file exists

open (17,file='./tmpfile/params2', status="'o0ld')
read (17,'(i4)') nfd
close (17)
if (nfd.eq.l) then
open (1ll1,file='feed’',status='o0ld')
read (11,%*)
read (11, %)




do 10 i=l,nouter
do 10 j=1,nmat
if (j.eg.l) then
read (11,*) tmst(i),day(i),
& pfra(i),nmt(1l),nfeed(i,1),gfl(i,1),gf2(i,1),nfl(i,1),rf(i,1)
elseif (j.ge.2) then
read (11,*) nmt(]j),
& nfeed(i,j),gfl(i,3),gf2(i,3),nfl{i,3),rf{i,5)
endif
10 continue
read (11,'(i4)') nfs
do 12 n=1,nfs
read (11, '(id)') mfeed(n)
do 12 m=1,mfeed(n)
12 read (11, '(i5,£f9.7)') ifeed(n,m), ffeed(n,m)
read (11,'(id4)') nrs
do 15 n=1,nrs
read (11, '(i4)') kfeed(n)
do 15 k=1, kfeed(n)

i5 read (11,'(i4,1i4)') kfeedl (n,k),kfeed2(n, k)
endif
c
c...Rewrite fort.7
c
do 100 j=1,nmat
i = nrst
n = nfeed(i,J)
if (j.1t.10) then
fort7 = 'fort_'//char(j+48)//'.7"
f7tmp = 'fort_'//char(j+48)//'.7.tmp"
elseif (j.ge.10) then
jl1 = j/10
32 = 3 - ji*10
fort7 = 'fort_'//char(jl+48)//char(j2+48)//'.7"
f7tmp = 'fort_'//char(j1+48)//char(j2+48)//'.7.tmp"
endif
open (12, file=fort7,status='unknown')
if (n.eqg.0) then
goto 90
endif
open (13,file='fort.tmp', status='unknown')
c
C... Check to see if any feed materials are natural elements
o

mmfeed(n) = mfeed(n)

do 25 m=1,mfeed(n)

iflag(m,j) = 0

nai = ifeed(n,m)-1000* (ifeed(nn,m)/1000)

if (nai.eqg.0.and.ifeed(n,m).gt.0) then
open (16,file='natelem', status="'unknown')
read (16,%*) '
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read (16,%*)
18 read (16,*) nelem(m, j)
read (16,*) nisop(m,Jj)
do 20 mm=1,nisop(m,Jj)
20 read (16, '(i5,3x,£f10.5)"',err=20,end=23)

& nisoto(m,j,mm), atomfr (m, j, mm)
if (nelem(m,j).eq.ifeed(n,m)/1000) then
iflag{m,3j) =1
imfeed(n,m) = nisoto{(m,j,1)
fmfeed(n,m) = ffeed(n,m)*atomfr{(m,j, 1)
do 22 mn=1, (nisop{m,j)-1)
imfeed(n,mmfeed(n)+mn) = nisoto(m,j, l+mn)
22 fmfeed(n,mmfeed(n)+mn) = ffeed(n,m)*atomfr(m,j, 1+mn)
mmfeed(n) = mmfeed(n) + {(nisop(m,j)-1)
goto 23
else
goto 18
endif
23 close (16)
else
imfeed(n,m) = ifeed(n,m)
fmfeed(n,m) = ffeed(n,m)
endif
25 continue
c
c...Convert grams of feed to gram-atoms of feed
c

do 28 m=1,mmfeed(n)
ifdé(n,m) = imfeed(n,m)*10
if (ifd6(n,m).eq.952420) ifdé6(n,m)=1ifd6(n,m)+1
gfeed(m, j)=fmfeed(n,m) *gf2(i, j) *day (i)
ai = float(imfeed(n,m))-float(1000* (imfeed(n,m)/1000))
gmafed(m,j) = gfeed(m,j)/ai
ncount(m,j) = 0
28 continue
30 read (12,901,err=45,end=50) kxs, (nisq(k),gad(k),k=1,4)
901 format (i4,4(1x,i6,2x,1pel0.4))
if (kxs.eq.0) goto 45
do 40 k=1,4
do 40 m=1,mfeed(n)
if (nisg(k).eq.ifdé6(n,m).and.kxs.le.2) then

if (ncount(m,j).eqg.0) gad(k) = gad(k) + gmafed(m, 3)
ncount (m,j) =1
endif

40 continue
write (13,901) kxs, (nisg(k),gad(k),k=1,4)
goto 30
45 backspace (12)
read (12, '(a80)') line
write (13,'(a80)') line
goto 30
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50 close (12)
close (13)
c
c...Write non-actinides to fort.7 that are part of discrete feed but did
not ‘
c... previously exist
c
open (13,file='fort.tmp', status="'unknown')
open (14,file=f7tmp, status="'unknown')
kxgold = 1
nadd = 0
63 read (13,‘(i4)',err=80,end=99) kxs
if (kxs.eqg.kxsold) then
backspace (13)
read (13, '(a80)') line
write (14,'(a80)') 1line
kxsold = kxs
else
kxsold = kxs
if (nadd.eq.0) then
do 65 k=1,mmfeed(n)
nmin=99999
ni=0
do 60 m=1,mmfeed(n)
a{(m)=float(imfeed(n,m))-float (1000* (imfeed{(n,m) /1000))
if (imfeed(n,m).1t.83000.and.imfeed(n,m).gt.1000) then
if (a{(m).gt.0) then
if (imfeed(n,m).lt.nmin) then
nmin=imfeed(n,m)
ni=m
end if
endif
end if
60 continue
if (ni.gt.0) then
kxs=1
met='0"
if (ncount(ni,j).eq.0) then
ncount(ni,j) = 1
write (14,912) kxs,ifd6(n,ni),gmafed(ni, j)
endif
imfeed(n,ni)=0
end if
65 continue
c
Cc...Write actinides to fort.7, sort numerically for xs file read
c
do 75 k=1,mmfeed(n)
nmin=99999
ni=0
do 70 m=1,mmfeed(n)
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a(m)=float (imfeed(n,m))-float {1000* (imfeed(n,m) /1000))

if (imfeed(n,m).ge.83000.and.a(m).gt.0.) then
if (imfeed(n,m).lt.nmin) then
mmin=imfeed(n,m)
ni=m
end if
end if
70 continue
if (ni.gt.0) then
kxs=2
met='0"
if (ncount{ni,j).eq.0) then
ncount (ni, j) = 1
write (14,912) kxs,ifdé6(n,ni),gmafed(ni, j)
endif
imfeed(n,ni)=0
end if
75 continue
nadd = 1
endif
if (kxsold.eqg.0) goto 80
backspace(13)
read (13, '(a80)') line
write (14,'(a80)') line
endif
goto 63
backspace (13)
read (13, '{(a80)') line
write (14,'(a80)') line
goto 63
open (14, file=f7tmp, status='unknown')
read (12, '(a80)',end=99) line
write (14,'(a80)') line
goto 95
99 close (13)
close (14)
100 continue
911 format (i4,i16,al,l1lpel2.4,
& ' 0 O0.0000E+00 0 0.0000E+00 0
912 format (i4,1x,i6,1lpel2.4,
& ! 0 0.0000E+00 0 0.0000E+00 0
end

subroutine dremo

0.0000E+00")

0.0000E+00")

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days, nouter,ninner,
& npre,nrst, frimp,nauto(49) ,ntot(49),nkeff,nisn(999,49),

& nisnr (999, 49)
character line*72, fort7*12, £7tmp*15,nisqg2(4) *4
dimension nisqgl(4),gad(4),nisqg3(4)

dimension day(99),nfeed(99,49),9f1(99,49),9g£2(99,49),mfeed (99},
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& kfeed(99),kfeedl (99,99),kfeed2(99,99),ifeed(99,99),tmst (99},
& nfl1(99,49),r£(99,49) ,pfra(99),nmt (49), ffeed(99,99)

c... Determine if feed file exists

open (17,file='./tmpfile/params2', status='o0ld')
read (17,'({(i4)*') nfd
close (17)
if (nfd.eqg.l) then
open (11,file='feed’', status='old")
read (11,%*)
read (11,%*)
do 10 i=1,nouter
do 10 j=1,nmat
if (j.eqg.l) then
read (11,*) tmst(i),day(i),pfra(i),
& nmt (1) ,nfeed(i,1),gfl(i,1),gf2(i,1),nfl(i,1),rf(i,1)
elseif (j.ge.2) then
read (11,%*)
& nmt {(j) ,nfeed{i,j),gfl{i,j),gf2(i,3),nfl(i,3),rf(i,3)
endif
10 continue
read (11,'(id4)') nfs
do 12 n=1,nfs
read (11,'(i4)') mfeed(n)
do 12 m=1,mfeed(n)
12 read (11,'(i5,£9.7)') ifeed(n,m),ffeed(n,m)
read (11,*'(i4)') nrs
do 15 n=1,nrs
read (11, '(i4)') kfeed(n)
do 15 k=1, kfeed(n)
15 read (11, '(i4,1i4)') kfeedl (n,k),kfeed2(n,k)
endif
c
c...Rewrite fort.7
c
do 60 j=1,nmat
if (nfl{nrst,j).ge.0) goto 60
if (3.1t.10) then
fort7 = 'fort_'//char(3+48)//'.7"
f7tmp = 'fort_r//char(j+48)//'.7.tem’
elseif (j.ge.10) then
31 = 3710
j2 = j - 41*10
fort7 = 'fort_'//char(jl+48)//char(j2+48)//*%.7"
f7tmp = 'fort_'//char(jl+48)//char(j2+48)//'.7.tem"
endif
open (12, file=fort7,status='unknown')
open (13,file=f7tmp,status='unknown’)

c... Remove elements in removal group from fort.7
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30 read (12,901, err=45,end=50) kxs, (nisql(k),nisqg2(k),gad(k),6 k=1,4)
backspace (12)
read (12,903,err=45,end=50) kxs, (nisqg3(k),nisqg2(k),gad(k}, k=1,4)
901 format (i4,4(1x,i2,a4d,2x,1lpel0.4))
903 format (i4,4(1x,a2,a4,2x,1lpel0.4}}
nrem = abs{nfl(nrst,j))
do 40 k=1,4
do 40 n=1,kfeed(nrem)
do 40 m=abs(kfeedl (nrem,n)), abs(kfeed2 (nrem,n))
if (nisgl(k).eqg.m) then
if ((kfeedl (nrem,n).lt.0.and.kxs.eq.3)
.or.kfeedl (nrem,n).ge.0) then
gad(k) = gad(k) ~ gad(k)*rf(nrst,3)
endif
endif
40 continue
if (kxs.eg.0) then
write (13,902) kxs, (nisqg2(k),gad(k),hk=1,4)
902 format (i4,4(1x,2x,ad,2x,1lpel(.4))
else
write (13,903) kxs, {nisqg3(k),nisqg2(k),gad(k),h k=1,4)
endif
goto 30
backspace (12)
read (12,'(a72)') line
write (13,'(a72)') line
goto 30
close (12)
close (13)
continue
end

...REGION makes indicates what materials are substituted in various
regions

subroutine region

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter, ninner,
& npre,nrst, frimp,nauto(49) ,ntot (49) ,nkeff, nisn(999,49),

& nisnr(999, 49)

character fname*25

dimension day(99),pfra(99),nmt(49),nfeed(99,49),g£1(99,49),

& gf2(99,49) ,nf1(99,49),rf(99,49), tmst (99)

...First discover if feed input file exists

open {17,file='./tmpfile/params2',status='0ld"')
read (17,'(id4)') nfd
if (nfd.eqg.l) then




C

Cc..

C

C

.First read the two lines of headings

open (11,file='feed', status='unknown')
read (11,%*)
read (11,%*)
do 8 i=1,nrst
do 8 j=1,nmat
if {j.eqg.1) then
read (11,*) tmst(i),day(i),
& pfra(i),nmt (1) ,nfeed(i,1),9f1(i,1),gf2(i,1),nfi(i,1),rf(i,1)
elseif (j.ge.2) then
read (11,*) nmt(j), :
& nfeed(i,j),gfl(i,3).9f2(i,3).nfl(i,3),.rf(i,3)
endif
8 continue
close (11)
else
do 10 j=1,nmat
10 nmt(3j) = 0
endif

do 20 j=1,nmat
if (j.1t.10) then
fname = './tmpfile/param3_'//char(j+48)
elseif (j.ge.l10) then
il = j/10
§2 = § - §1*10
fname = './tmpfile/param3_*//char(jl+48)//char(j2+48)
endif :
open (12, file=fname, status='unknown')
write (12,905) nmt(j)

905 format (i4,' nval')

20 continue
end

€23456789*123456789*123456789%123456789*123456789%123456789*123456789*12

o]

C...

C

WMBINP rewrites mb.inp
subroutine wmbinp

common /mbinp/nmat,mt (49),voli(49),pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto(49),ntot (49),nkeff,nisn(999,49),
& nisnr(999,49)

common /mbinp2/niso(999,49) ,nisor(999,49),title,0lib,locale,posit
character niso*10,nisor*6,title*72,0lib*2, locale*72,posit*1

..Rewrite mb.inp

open (1l1,file='mb.inp',status='unknown')
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write (11,'(a72)') title
write (11,*) nmat

do 20 j=1,nmat

write (11,*) mt(j)

do 30 j=1,nmat

write (11,*) voli(j)
write (11,*) pow

write (11,*) qu235

write (11,*) days

write (11,*) nouter
write (11,*) ninner
write (11,*) npre

write (11,*) nrst

write (11,'(a2)') olib
write (11, '(a72)') locale
write (11,*) frimp

write (11,*) nkeff

do 60 j=1,nmat

write (11,*) nauto(3)
write (11,%*) ntot(3)

do 60 i=1,ntot(j)

write (11, '(al0)') niso(i,3j)
close (11)

return
end
c23456789%123456789*123456789%123456789*%123456789*123456789*123456789*12
c
This subroutine creates a file containig isotopic breakdowns

c
¢ for natural elements
c

subroutine natele
dimension nelem(40),nisot (40,40),atomfr (40,40) ,nisop(40)

Isotopic compositions of natural elements
Ref: Nuclides and Isotopes, Fifteenth Edition

open (16,file=‘natelem', status="'unknown')
data (nelem(i),i=1,33) /
& 6, 12, 14, 16, 17, 18, 19, 20, 22,
& 23, 24, 25, 26, 28, 29, 30, 31, 40,
& 42, 47, 48, 49, 50, 51, 54, 63, 64,
& 72, 74, 77, 78, 80, 82 /
write (16, *)
write (16, *)
do 80 i=1,33
nz = nelem(i)
if (nz.eq.6) then !  Carbon
niso = 2 ' Number of isotopes in natural carbon
data (nisot(l,n),atomfr(l,n),n=1,2) /
6012, 0.98900,




& 6013, 0.01100 /

endif
if (nz.eq.12) then ! Magnesium
niso = 3 ! Number of isotopes

data (nisot(2,n),atomfr(2,n),n=1,3) /
& 12024, 0.78990,
& 12025, 0.10000,
& 12026, 0.11010 /

endif
if (nz.eq.14) then ! Silicon
niso = 3 !  Number of isotopes

data (nisot(3,n),atomfr(3,n),n=1,3) /
& 14028, 0.92230,
& 14029, 0.04670,
& 14030, 0.03100 /

endif
if (nz.eqg.16) then ! Sulfur
niso = 4 ' Number of isotopes

data (nisot(4,n),atomfr(4,n),n=1,4) /
& 16032, 0.95020,
& 16033, 0.00750,
& 16034, 0.04210,
& 16036, 0.00020 /

endif

if (nz.eq.17) then ! Chlorine
niso = 2 ! Number of isotopes
data (nisot(5,n),atomfr(5,n),n=1,2) /

& . 17035, 0.75770,

& 17037, 0.24230 /

endif

if (nz.eq.18) then ! Argon
niso = 3 !  Number of isotopes

data (nisot(6,n),atomfr(6,n),n=1,3) /
& 18036, 0.00337,
& 18038, 0.00063,
& 18040, 0.99600 /

endif i
if (nz.eqg.19) then { Potassium
niso = 3 ! Number of isotopes

data (nisot(7,n),atomfr(7,n),n=1,3) /
& 19039, 0.93258,
& 19040, 0.00012,
& 19041, 0.06730 /

endif
if (nz.eqg.20) then ! Calcium
niso = 6 ! Number of isotopes

data (nisot(8,n),atomfr(8,n),n=1,6) /
20040, 0.96941,
20042, 0.00647,
20043, 0.00135,
- 20044, 0.02086,

R
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& 20046, 0.00004,
& 20048, 0.00187 /

endif
if (nz.eqg.22) then ! Titanium
niso = 5 ! Number of isotopes in natural carbon

data (nisot(9,n),atomfr(9,n),n=1,5) /

& 22046, 0.08250,
& 22047, 0.07440,
& 22048, 0.73720,
& 22049, 0.05410,
& 22050, 0.05180 /
endif
if (nz.eq.23) then ! Vanadium
niso = 2 ! Number of isotopes in natural carbon

data (nisot(10,n),atomfr(10,n),n=1,2) /
& 23050, 0.00250,
& 23051, 0.99750 /

endif
if (nz.eqg.24) then ' ! Chromium
niso = 4 ! Number of isotopes in natural carbon

data (nisot(1l1l,n),atomfr(11l,n),n=1,4) /

& 24050, 0.04350,
& 24052, 0.83790,
& 24053, 0.09500,

& 24054, 0.02360 /

endif

if (nz.eq.25) then !  Manganese

niso =1 ! Number of isotopes in natural carbon
data (nisot(12,n),atomfr{(12,n),n=1,1) /
& 25055, 0.10000 /

endif
if {(nz.eg.26) then ! Iron
niso = 4 ! Number of isotopes in natural carbon

data (nisot(13,n),atomfr{(13,n),n=1,4) /

& 26054, 0.05850,
& 26056, 0.91750,
& 26057, 0.02120,
& 26058, 0.00280 /
endif
if (nz.eq.28) then ! Nickel
niso = 5 ! Number of isotopes in natural carbon
data (nisot{(14,n),atomfr(14,n),n=1,5) /
& 28058, 0.68080,
& 28060, 0.26220,
& 28061, 0.01140,
& 28062, 0.03630,
& 28064, 0.00930 /
endif
if (nz.eq.29) then ! Copper

niso = 2 ! Number of isotopes in natural carbon
data (nisot(15,n),atomfr(15,n),n=1,2) /
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& 29063, 0.69170,
& 29065, 0.30830 /
endif
if (nz.eqg.30) then ! Zinc
niso = 4 ! Number of isotopes in natural carbon
data (nisot(16,n),atomfr(16,n),n=1,4) /
& 30064, 0.48600,
& 30066, 0.27900,
& 30067, 0.04100,
& 30068, 0.18800 /
endif
if (nz.eq.31) then ! Gallium
niso = 2 ! Number of isotopes in natural carbon
data (nisot(l7,n).,atomfr(17,n),n=1,2) /
& 31069, 0.60110,
& 31071, 0.39890 /
endif
if (nz.eqg.40) then ! Zirconium
niso =5 ' Number of isotopes in natural carbon
data (nisot(18,n),atomfr(18,n),n=1,5) /
& 40090, 0.51450,
& 400091, 0.11220,
& 40092, 0.17150,
& 40094, 0.17380,
& 40096, 0.02800 /
endif
if (nz.eq.42) then ! " Molybdenum
niso = 7 ! Number of isotopes in natural carbon
data (nisot(19,n),atomfr(19,n),n=1,7) /
& 42092, 0.14840,
& 42094, 0.09250,
& 42095, 0.15920,
& 42096, 0.16680,
& 42097, 0.09550,
& 42098, 0.24130,
& 42100, 0.09630 /
endif
if (nz.eq.47) then ! Silver
niso = 2 ! Number of isotopes in natural carbon
data (nisot(20,n),atomfr(20,n),n=1,2) /
& 47107, 0.51839,
& 47109, 0.48161 /
endif
if (nz.eq.48) then !t Cadmium
niso = 8 ! Number of isotopes in natural carbon
data (nisot(21,n),atomfr(21,n),n=1,8) /
& 48106, 0.01250,
& 48108, 0.00890,
& 48110, 0.12490,
& 48111, 0.12800,
& 48112, 0.24130,
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& 48113, 0.12220,
& 48114, 0.28730,
& 48116, 0.07490
endif
if (nz.eg.49) then ! Indium
niso = 2 ! Number of isotopes in natural carbon
data (nisot(22,n),atomfr(22,n),n=1,2) /
& 49113, 0.04290,
& 49115, 0.95710 /
endif
if (nz.eqg.50) then ! Tin
niso = 10 ! Number of isotopes in natural
carbon
data (nisot(23,n),atomfr(23,n),n=1,10) /
50112, 0.00970,
50114, .00650,
50115, .00340,
50116, .14540,
50117, .07680,
50118, .24220,
50119, .08590,
50120, .32590,
50122, .04630,
50124, .05790
endif
if (nz.eqg.51) then ! Antimony
niso = 2 ! Number of isotopes in natural carbon
data (nisot(24,n).,atomfr(24,n),n=1,2) /
& 51121, 0.57300,
& 51123, 0.42700 /
endif
if (nz.eqg.54) then ! Xenon
nigo = 9 ! Number of isotopes in natural carbon
data (nisot (25,n),atomfr(25,n),n=1,9) /
54124, 0.00100,
54126, .00090,
54128, .01910,
54129, .26400,
54130, .04100,
54131, .21200,
54132, .26900,
54134, .10400,
54136, .08900
endif
if (nz.eqg.63) then !  Europium
niso = 2 ! Number of isotopes in natural carbon
data (nisot(26,n),atomfr(26,n),n=1,2) /
& 63151, 0.47800,
& 63153, 0.52200
endif
if (nz.eq.64) then ! Gadolinium
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niso = 7 ! Number of isotopes in natural carbon
data (nisot(27,n),atomfr(27,n),n=1,7) /
& 64152, 0.00200,
& 64154, 0.02180,
& 64155, 0.14800,
& 64156, 0.20470,
& 64157, 0.15650,
& 64158, 0.24840,
& 64160, 0.21860 /
endif
if (nz.eq.72) then ! Hafnium
niso = 6 ! Number of isotopes in natural carbon
data (nisot(28,n),atomfr(28,n),n=1,6) /
& 72174, 0.00162,
& 72176, 0.05206,
& 72177, 0.18606,
& 72178, 0.27297,
& 72179, 0.13629,
& 72180, 0.35100 /
endif
if (nz.eqg.74) then ! Tungsten
niso = 5 ! Number of isotopes in natural carbon
data (nisot(29,n),atomfr(29,n),n=1,5%5) /
& 74180, 0.00120,
& 74182, 0.26498,
& 74183, 0.14314,
& 74184, 0.30642,
& 74186, 0.28426 /
endif
if (nz.eqg.77) then ! Iridium
niso = 2 !  Number of isotopes in natural carbon
data (nisot(30,n),atomfr(30,n),n=1,2}) /
& 77191, 0.37300,
& 77193, 0.62700 /
endif
if (nz.eqg.78) then ! Platinum
niso = 6 ! Number of isotopes in natural carbon
data (nisot(31,n),atomfr(31,n),n=1,6) ./
& 78190, 0.00010,
& 78192, 0.00790,
& 78194, 0.32900,
& 78195, 0.33800,
& 78196, 0.25300,
& 78198, 0.07200 /
endif
if (nz.eq.80) then ! Mercury
niso = 7 ! Number of isotopes in natural
carbon
data (nisot(32,n),atomfr(32,n),n=1,7) /
& 80196, 0.00150,
& 80198, 0.09970,
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& 80199, 0.16870,

& 80200, 0.23100,

& 80201, 0.13180,

& 80202, 0.29860,

& 80204, 0.06870 /

endif

if (nz.eq.82) then ! Lead

niso = 4 ! Number of isotopes in natural carbon
data (nisot(33,n),atomfr(33,n),n=1,4) /

& 82204, 0.01400,

& 82206, 0.24100,

& 82207, 0.22100,

& 82208, 0.52400 /

endif

c

nisop(i) = niso

write (16,*) nelem(i)

write (16, *) nisop(i)

do 60 n=1,nisop(i)

60 write (16, '(15,3x,£10.5)")
& nisot (i, n),atomfr(i,n)
80 continue
close (16)
c
return
end
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APPENDIX C. SAMPLE MCNP INPUT FILE

MCNP Input File for Test Case #2

C Cell Cards

C Irradiation of a Single Pin
C Fuel Pin

1 1 -10.045 -1 -2 3
8 8 -0.781le-3 1 -4 -2 3
6 6 -6.44 4 -6 -2 3
7 7 -0.7569 6

C Pin Cell

20 0 -9 10 -11 12 -7 8 f
99 0 #20

C Fuel Rod

1 cz 0.47815

C Axial Distribution

2 pz 347.4

3 pz 0.0

C Gap

4 cz 0.493

C Fuel Cladding

6 cz 0.559

C Unit Cell (Pitch)

7 pz 347.3

8 pz 0.1

*9 px 0.7793
*10 px =0.7793
*11 py 0.7793
*12 py -0.7793

C Control Cards

kcode 1000 1.0 15 115

ksrc¢ 0 0 173.6

tmp 7.25e-8 6.5e-8 5.34e-8 4.81le-8

C Material Cards

C Fuel v

ml 92234.88¢c 6.15165e~-6 92235.88c 6.89220
92238.88c 2.17104e-2

6000.88c 9.13357e-6 7014.88c¢
4.48178e-2
C Cladding
mé 26000.85¢ -0.005 40000.65¢c -0.9791
C Coolant

m7 1001 5.06153e-2 8016.85c 2.53076e-2
5010.85c 2.75612e-6 5011.85c 1.11890e-5

mt7 lwtr.04t

C Gap

m8 2004.85c -1.0
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111=2

6.0e-8

imp:n=1
imp:n=1
imp:n=1
imp:n=1

imp:n=1
imp:n=0

6.0e-8

$fuel
Sgap
Sclad
Swat

e-4 92236.88c 3.16265e-6

1.04072e-5

50000

-0.0159

8016.88c




APPENDIX D. SAMPLE MONTEBURNS INPUT FILE

Monteburns Input File for Test Case #2
2 ! Number of MCNP materials

1 MCNP Material #1 (must be less than 100)
-7 MCNP Material #2

249.378 Material volume #1

502.44 Material volume #2

0.001 Total Power of System (in MWt)

0. Total number of days burned (used if no feed)
8 Number of outer burn steps

40 Number of internal burn steps (multiple of 10)
1 Number of predictor steps (+1 on first step)
0 Step number to restart after (0=beginning)
22 ! Number of origen2 library
/export/iol/dip/origen/libraries ! location of ORIGEN2 library
1.0 ! Importance Fraction

0 ! Intermediate keff calc. 0) No 1) Yes

28 ! Automatic Isotopes for Region 1

92234 .88c¢

92235.88c

92236.88c

92238.88c

93237.88c¢

94238 .88c¢c

94239.88¢

94240.88c

94241 .88c¢

94242 .88c¢c

95241 .88c¢

95243 .88c

42095.88c

43099.88c¢

44101.88c

45103.88c¢

47109.88c

55133.88c¢

55135.88c

60143 .88¢

60145.88c

62147 .88c¢c

62149.88c

62150.88c

62151.88c

62152 .88c

63153.88¢

64155.88¢

2 ! Automatic Isotopes for Region 2

5010.85¢

5011.85c¢c

]
!
1
1
1
-200. ! Recov. energy/fission (MeV); 0. uses default value
!
!
1
]
!
1
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APPENDIX E. SAMPLE FEED INPUT FILE

Step Time PowFr.mat# Feed Beg.Rate End Rem# Fract.Rem.
int real real int int real real int real
1 306. 38.066 1 0 0.0 0.0 0 0.000
2 0 0.0 0.0 0 0.000
2 71. 0.000 1 0 0.0 0.0 0 0.000 ¢
2 0 0.0 0.0 -1 1.000
3 381. 42.9015 1 0 0.0 0.0 0 0.000 !
2 1 -2.0 4.684e-4 0 0.000
4 83. 0.000 1 0 0.0 0.0 0 0.000 !
2 0 0.0 0.0 -1 1.000
5 466. 37.624 1 0 0.0 0.0 0 0.000 1
2 1 -2.0 4.118e-4 0 0.000
6 85. 0.000 1 0 0.0 0.0 0 0.000 !
2 0 0.0 0.0 -1 1.000
7 461. 32.171 1 0 0.0 0.0 0 0.000 ¢
2 1 -2.0 4.066e-4 0 0.000
8 1870. 0.000 1 0 0.0 0.0 0 0.000 !
2 0 0.0 0.0 0 0.000
1 ! # of feed specs
2 ! # isos in Feed #1
5010 .20 1 B-10
5011 .80 ! B-11
1 ! # of removal groups
1 ! # of ranges in removal group
5 5 ! 1st range for Feed #1 (B)
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