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Abstract

The software construction process consists of a mixture of informal and formal steps.
By their very nature, informal steps cannot be formally verified. Empirical evidence
suggests that a majority of software errors originate in the informal steps of the software
development process. For this reason, when constructing high assurance software, it is
essential that a significant effort be made to increase ones confidence (i.e., to validate)
that the informal steps have been made correctly. Visualization and animation can be
used to provide an “intuitive proof” that the informal steps in the software construction
process are correct.

In addition, the formal portion of software construction often permits/demands artis-
tic (informal) decisions to be made (e.g., design decisions). Such decisions often have
unexpected/unforseen consequences that are only discovered later in the development
process. Visualization and animation techniques can be brought to bear on this aspect
of the software construction process by providing a better intuitive understanding of the
impact of the informal decisions that are made in program development. This increases
the likelyhood that undesirable decisions can be avoided or at least detected earlier in
the development process.

1 Motivation

1.1 The Problem

As our society becomes more technologically complex, computers (and the software that
they run) are being used in a potentially alarming number of high consequence safety-critical
applications. In many safety-critical systems, the reliability of the software component is
essential. How can a component of such a system be made more reliable? In engineering,
redundancy is a standard technique that is used to increase the reliability of a physical
component. For example, if an airplane engine breaks down an average of once every 10000
flights, then one can almost be certain that the chance of both the primary engine and a
backup engine failing on the same flight will be 1 in 100 million. Such a significant increase
in the reliability of a specific component can be achieved through redundancy only if the
component possesses a property known as failure independence.
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Unfortunately, software does not possess the property of failure independence. In fact,
software components are fundamentally different from hardware components (e.g., software
does not suffer from aging). Empirical evidence indicates that when software fails it is often
due to logic errors within the code or because of inaccuracies in the problem specification.
In general, for software components, failure independence cannot be achieved even when
multiple solutions are developed by different software teams. Further evidence of this obser-
vation was demonstrated in an experiment conducted by Nancy Leveson in which she gave
the unclassified requirements of a system that uses data from radar to shoot down enemy
missiles to 27 programming teams. Most programs functioned correctly in 99 percent of
the cases, however all programs tended to fail in the same situations [6]. This experiment
demonstrates that redundancy does not guarantee a significant enhancement in software
reliability.

A promising solution to the software reliability problem is provided by formal methods.
Formal methods provide a framework where the correctness of a large portion of the software
construction process can be formally proved. The High Integrity Software Project (HIS)
at Sandia National Laboratories is developing formal methods and tools for the purpose of
enhancing the construction of correct software and systems.

1.2 Formal Methods and Graphical Representations

In the previous section we motivated the necessity for formal methods in the software
construction process. Unfortunately it is not possible for the entire software construction
process to be formal. The formal construction of software can only be undertaken once
a correct mathematical model (i.e., a formal model) of the necessary (relevant) portion of
the real world (e.g., the physical components and the requirements) has been constructed.
In contrast, determining whether a mathematical model is a faithful representation of a
real word object is an informal step in the process. The best one can do to show that a
formal model is a faithful representation of the physical system is to validate the model by
providing some sort of an incomplete proof of the models correctness. For example, one
can extensively test the behavior of the model, one can simulate the model, and one can
visualize and animate the model. The objective of each of these validation techniques is to
increase ones confidence that the formal model does indeed faithfully represent the physical
system.

Visual representations of mathematical models can be provided in a 2-D, 3-D, or VR
environment. From a validation standpoint the reason for choosing one representation over
another should be motivated solely by the human perception of the model. That is, if
the software engineer gets a better understanding of the semantics (behavior) of a model
by interacting with the model in a VR environment as opposed to interacting with a 2-D
representation, then the VR representation should be used.

A valid question at this point is whether there exists a formal connection between the
symbolic description of a problem domain, which is used in the formal reasoning process,
and its graphical counterpart. We are currently researching how one can establish such a
formal connection. Our long-term goal is to create formal connections between high-level
graphical representations and implementation programs and possibly even assembly code.
Such connections would greatly facilitate the construction of correct software as well as
future software maintenance efforts.




2 Our Work

In the HIS project, we are developing a methodology where high assurance software can
be constructed via several mutually complementary approaches: object-oriented stepwise
refinements [10], multi-agent strategic approach [5], and synthesis and refinement transfor-
mations [8] that are carried out within a domain hierarchy. Our perspective is that most
often the domain language for a particular problem is not sufficiently abstract (i.e., it is
too complex) to allow effective application of synthesis®. This realization is one of the driv-
ing forces behind the construction of a domain hierarchy. Domains at a level of abstraction
higher than the problem domain can be constructed and represent computational paradigms
in which the uninteresting details of the problem have been abstracted away. For example,
when constructing software controllers for reactive systems, synchronous computational
paradigms, such as those in [2] and [1], provide an elegant abstraction model. Another
graphical-based abstraction is provided by the Symbolic Timing Diagram paradigm [3].

In our domain hierarchy there will generally be more than one domain above the prob-
lem domain (and also several domains below the problem domain). We are developing a
theory whereby consistency between domains in a hierarchy can be formally verified. As
we mentioned in the previous paragraph, a primary reason for the construction of a domain
hierarchy is that multiple domains greatly ease the burden on synthesis, though this comes
at the expense of efficiency. In this framework, refinement transformations are used to
recoup the loss of efficiency that results from using synthesis within a domain hierarchy.

2.1 Visualization of a Domain Hierarchy

There is a great deal of flexibility (i.e., artistic choice) available when constructing a domain
hierarchy. This flexibility corresponds roughly to the traditional design decisions that are
‘made in top down approaches.

Visualization plays a major role in the construction of a domain hierarchy. It is through
visualization and animation that the person constructing the hierarchy can better under-
stand the semantics of a particular domain as well as its relationship with other domains
in the hierarchy.

2.2 Animation

Animations provide an excellent means for representing behavioral aspects of objects. In
addition, animation can be used to enhance the spacial and relational understanding of
static objects.

2.2.1 Time

Problem domains, like reactive systems in which time is central, can require very complex
symbolic descriptions in order to define the behavioral relationships introduced through
time. In such representations, the intuition behind the formulas can easily be lost. Ani-
mation provides a very elegant and natural medium in which the semantics of time can be
understood.

1In our methodology, synthesis refers to the use of automated reasoning techniques or sophisticated state
space searches such as those found in [5], [7] to create an algorithmic specification from a nonalgorithmic
specification.




2.2.2 Complex Static Objects

A domain hierarchy is generally a complex structure. Individual domains possess a cer-
tain complexity and connections between domains introduce additional complexity. Such
structures are often more naturally represented in 3-D space than in 2-D space. However,
visually grasping such a structure by viewing it on a two dimensional screen is somewhat
problematic. Animation addresses this problem by providing the observer with the ability
to move through the hierarchy. This can greatly increase the intuitive/spacial understand-
ing of the structure. Consider the following figure. An ability to animate the observers
perspective provides a tremendous amount of intuitive and spacial understanding.

A Complex Domain Hierarchy

2.2.3 Semantics of State Spaces

The semantics of most domains can naturally be expressed in terms of states and state
transitions. For concurrent reactive systems such as the one in [4] concurrent state tran-
sitions are possible. Animation of the semantics of such a problem domain together with
an interactive interface provide an excellent environment for validating the semantics of the
model against the real world system.

In addition, an interactive domain representation provides a means for a user to syn-
thesize correct-by-construction high-level solutions. This realization leads to a synergistic
union between mechanical (automated) synthesis and organic (human) synthesis.

2.3 Summary

Imagine two hierarchies, the first contains domains from the real world as well as abstract
domains, and the second is a hierarchy of formal domains that is supposed to be a faithful
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representation of the first hierarchy. The following diagram shows various roles that can be
played by visualization and animation to validate the understanding of the hierarchy.
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The role of visualization within a domain hierarchy

In the figure above, visualization and animation is used within the software construction
process to validate and understand information arising from an informal source (e.g., English
text, design decisions, etc.). For example, graphical representations of the formal models
of the problem domain can be used to “intuitively validate” that these models are indeed
faithful representations of real world objects. Graphical representations can be used to
understand formal abstractions, as well as how one level of abstraction relates (projects)
into another.

3 Example: A partial domain hierarchy for the production
cell.

In our research, we are using the production cell [4] as a general example of a reactive
system in order to verify the practical applicability of our research. The production cell is
a robotic system consisting of (1) two conveyor belts, (2) one crane, (3) one rotating table,
(4) one robot having two arms, and (5) one press. The specification of this problem is given
in English. The domain language is at the level of controller commands that turn on/off
various motors, electromagnets, and various sensor feedback signals. At this level, motor
movements are continuous and system feedback occurs at discrete intervals in response to
controller requests. Continuous polling must be performed in order to take the appropriate
action in the various system states.

A natural abstraction of this system yields a synchronous paradigm with motor move-
ments producing (instantaneous) discrete state changes. From this domain a further ab-
straction is possible by removing independent motion from the various components (e.g.,




a rotating table no longer needs to rotate in order to provide the functionality required of
it by the system). This results in a domain where the only events that are expressed are
plate exchanges between components (it is up to a lower level abstraction domain to move
the appropriate components so that such exchanges can actually occur).

Domains in this hierarchy are essentially state transition diagrams, though the states
and the transitions are represented in a manner that conveys more problem specific infor-
mation than would be displayed in the tradition circle/arrow state transition diagrams. By
providing an interactive environment where the behavior of these domains can be explored
we have created a natural framework in which the semantics of a domain can be explored
and better understood.

We would like to mention that at each step in the construction of the domain hierarchy,
it is visualization and animation that provide the intuitive understanding and serve as the
catalysts for determining which further abstractions are possible and called for (e.g., how
to ease the burden on the synthesis component).

4 Conclusion

Visualization and animation are techniques to assist human understanding of information.
In the software construction process there are numerous places where informal informa-
tion needs to be incorporated within a formal framework. Graphical representations can
significantly impact the problems that exist between the informal/formal boundary.

Furthermore, if graphical representations can be formally linked to actual code, then
this will have a tremendous impact on software maintenance. In such an environment, a
person performing software maintenance can tremendously benifit from much of the effort
that has gone into the original development of the implementation.
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