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Abstract

An earthquake warning system has been developed to provide a time
series profile from which vital parameters such as the time until strong shaking
begins, the intensity of the shaking, and the duration of the shaking, can be
derived. Interaction of different types of ground motion and changes in the
elastic properties of geological media throughout the propagation path result
in a highly nonlinear function. We use neural networks to model these
nonlinearities and develop learning techniques for the analysis of temporal
precursors occurring in the emerging earthquake seismic signal. The warning
system is designed to analyze the first-arrival from the three components of an
earthquake signal and instantaneously provide a profile of impending ground
motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For
each new data sample, at a rate of 25 samples per second, the complete profile
of the earthquake is updated. The profile consists of a magnitude-related
estimate as well as an estimate of the envelope of the complete earthquake
signal. The envelope provides estimates of damage parameters, such as time
until peak ground acceleration (PGA) and duration. The neural network based
system is trained using seismogram data from more than 400 earthquakes
recorded in southern California. The system has been implemented in
hardware using silicon accelerometers and a standard microprocessor. The
proposed warning units can be used for site-specific applications, distributed
networks, or to enhance existing distributed networks. By producing accurate,
and informative warnings, the system has the potential to significantly
minimize the hazards of catastrophic ground motion. Detailed system design
and performance issues, including error measurement in a simple warning
scenario are discussed in detail.




Introduction

Providing a reliable and informative warning on the order of a few seconds to
a minute before hazardous ground motion arrives could significantly reduce
property damage as well as injuries and lives lost. One application of such a
warning is in the implementation of automatic shutdown systems. These systems
would benefit government and industrial facilities, hospitals, schools, police and
fire, emergency services, and private homes. They would result in safer handling of
hazardous materials, minimal interruption of power, water, or communication -
systems, safer transportation systems (including trains and military and civilian
aircraft and spacecraft), and vehicle control at bridges and overpasses. The warning
could also trigger, where appropriate, public announcements (e.g. ‘duck and cover’)
or evacuation response messages.

Most of the research and development in earthquake warning systems has
been applied to regional seismic networks. In 1989, about 50 different regional
networks with a total of over 1500 seismic sensors were located within the United
States (National Research Council, et. al., 1990). The contributions of these types of
networks have been significant, and the promise of using these networks in a true
real-time warning effort is great. They have the potential to provide the optimum
warning time for impending hazardous ground motion. However, there are several
obstacles associated with implementing a real-time earthquake warning system
using regional networks. Much of the instrumentation in place today is inadequate
because of low dynamic range, narrow bandwidth, and one component recording
(National Research Council, et. al., 1991). A host of developmental challenges must
be met to transmit such a large volume of network sensor information to a central
computer to perform real-time processing on the data. A working system will
require significant initial capital and extensive long-term maintenance

This study focused on a complimentary approach to real-time earthquake
warning using a site-specific paradigm. In other words the first arriving signal from
an impending earthquake is analyzed at a single site where sensors measure the
three components of ground motion (east-west, north-south, up-down). The ground
motion is processed at the site in real-time and a continuous estimate of hazardous
ground motion, which has not yet arrived at the site, is provided. This approach to
real-time earthquake warning presents several advantages, foremost being its
versatility. It could be implemented at one location, for example next to a nuclear
reactor, and could provide usable, reliable, warning time for incoming hazardous



ground motion. Determining the location of the earthquake focus is not of primary
importance, since it is the shaking of the ground arriving at the detection site that is
being analyzed, regardless of the direction or distance of the earthquake’s origin.
Development costs are low, since the system can be easily implemented as one
complete unit on a personal computer or integrated into an imbedded system. In
addition, the system can potentially replace each element in a regional network for
increased warning times as well as enhanced reliability.

Often, what is termed a real-time or near real-time system provides warning
after transmission delays and extensive processing of sensor data. This can shorten
warning time by many seconds up to several minutes. We define a “real-time”
system in three ways. First, the system must provide useful estimates of any
incoming hazardous earthquake, regardless of distance or direction. Second,
estimates must begin within 1 second after the first arrival of earthquake ground
motion for any particular earthquake. Third, warning updates must be provided at
least 10 times per second as the earthquake emerges. The neural network based
system described in this paper provides estimates within 0.3 sec after the first
arrival occurs and is updated every 0.04 sec.

For the purpose of this study, we identify two major areas of earthquake
signals: the primary arrival and the secondary arrival. In many earthquakes these
arrivals are felt as an initial jolt followed by another shock seconds later. Each of
these two arrivals consist of many individual elastic waves that have traveled from
the earthquake focus or source location to recombine at the recording site as a
function of their respective velocities, focal distances, and propagation paths. Body
waves propagate within a body of rock and appear in the first arrival. The fastest of
these body waves, the primary, or P-wave, is the first elastic wave to reach the
recording site. The secondary arrival contains body and surface waves such as S,
Rayleigh, and Love waves. These later arriving waves often produce both
horizontal and vertical ground motion whose peak velocities, peak accelerations,
and duration of time over which the shaking occurs often tend to cause significant
damage to structures (Bolt, 1978). One type of these later arriving waves, the
regional surface wave (L, and R,), is composed of a family of trapped waves that
travel through the earth’s low velocity crust. The crust acts as a waveguide that
provides little attenuation loss. The interaction of these waves as they propagate can
produce considerable amplification of ground motion near the surface. This is
called the free surface effect and occurs when upgoing and downgoing reflected
waves are in phase and of considerably greater wavelength than the thickness of the




crust (Reiter, 1991). Figure 1 illustrates two different elastic wave propagation
paths. A seismogram is also shown, noting primary and secondary arrivals.

Figure1 Elastic waves travel at different velocities and through different
paths. The paths may be through propagation media with nonlinear
characteristics. Primary and secondary arrivals in a recorded seismogram are
also illustrated.

Our results indicate that the first moments of the seismic activity from an
emerging earthquake can be used to estimate the size and duration of later arriving
waves. The P-wave segment is the most direct arrival and is rich in information
about the earthquake source function and the characteristics of the elastic wave’s
propagation path. For example, an estimate of the source azimuth can be obtained
from the P-wave segment of a three-component seismogram signal. In addition, the
integral of P-wave amplitudes will often correlate to the magnitude of the
earthquake. This was seen in previous work, where a neural network was used to
show that the first 6 sec of seismic signal from underground nuclear explosions
produces accurate estimates of the explosion magnitude (Leach, et. al., 1993). Also,
since anelastic attenuation will selectively damp out higher frequencies as the wave
propagates, spectral characteristics of the seismic signal can be used to produce an
estimate of the source distance. Details of these and other parameters will be
discussed in a later section.

Depending on the distance between the earthquake hypocenter and the
seismograph, the first arriving energy could provide up to tens of seconds of
warning at the detection site. The length of warning time varies as a result of the
different velocities at which the elastic wave energy travels. For example, using a
L, velocity of 3 km/sec, a P, velocity of 6 km/sec, and an hypocentral distance of
20 km from the detection site, the Lg effects will be felt about 4 sec after the onset
of the earthquake. If the detection system is designed to alarm at the L, arrival
within 1 sec after the onset of the earthquake, about 3 sec of warning time is
available. At a distance of 100 km, the warning time increases to about 15 sec.
Using later arriving warning parameters such as the peak ground acceleration
(PGA) will increase warning times. Figure 2 illustrates warning times from the
primary wave arrival to the PGA for the earthquakes used in this study. Distances
varied from 15 to 275 km from the earthquake source to the seismometer.

Figure2 Warning time varies with respect to distance. 434 earthquake
recordings are plotted illustrating the warning time measured from the P-
wave arrival to the peak ground acceleration (PGA) of each earthquake. For




example, at a distance of 100 km, there is approximately 15 sec of warning
time between the earthquake onset and the arrival of the PGA.

Many site-specific warning systems that are in use today wait for ground
motion measurements to exceed a preset threshold. Simple thresholding almost
always results in serious false alarm issues. If the threshold is set too low, a large
number of false alarms rapidly destroy the credibility of the system. If the threshold
is set too high, missed or underestimated alarms offer a potentially disastrous false
sense of security. Glitches and noise occurring in the primary wave can also
produce false alarms; to avoid this, some systems set the threshold to trigger on the
later arriving S waves, but this often leaves little or no real-time warning at the
detection site. Other systems measure and report some portion of the total energy of
the emerging signal, taking advantage of the positive correlation between first- and
second-arrival energy. This approach in itself is weak due to the nature of the earth
and its non-linear propagation paths. The' relationship between first and second
arrival often exhibits large errors when modeled as linear. More sophisticated
systems such as Japan’s Urgent Earthquake Detection and Alarm System
(UrEDAS), compile several estimates from measured parameters within the P-
wave. The results of this work have produced good results (Bito and Nakamura,
1986), but linear methods of mapping particular measurements in the P-wave to
incoming hazardous ground motion may exhibit unacceptable errors.

Artificial neural networks (ANN) offer a promising new approach that avoids
many of the limitations of present systems. Neural networks are non-linear systems
that use parallel processing units and have proven to be extremely powerful in the
analysis of complex patterns and signals (Dowla, et. al. 1990; Hopfield 1988).
Instead of using heuristic algorithms, the ANN can adoptively “learn” the nonlinear
function of the paths of the primary and secondary waves from the sensor to the
earthquake source. A neural network can be “trained” with either recorded or
synthesized seismograms. Using this approach, we can quantitatively evaluate
candidate training parameters. The neural network’s use of nonlinear functions
makes these systems attractive, because nonlinearities are common in the real
world. ANN’s are stable, they are able to generalize (Hopfield 1987), and are less
sensitive to noisy and spurious input. Most importantly, once trained, neural
networks are compact and operate at speeds that make them ideal for real-time
applications. They can easily be implemented in a compact integrated circuit. The
high-speed, miniaturized capability makes ANNs attractive for a large distributed
system with many sensors as well as a low-cost single user approach, such as for a




typical homeowner.

In this study, we trained a neural network with >400 earthquake seismic
signals such that when parameters from a first arrival segment of a previously
unseen earthquake seismic signal were input, a profile and total energy estimate of
the complete seismogram was produced. The neural network “learned” the
nonlinear relationship between the source and path characteristics of early arriving
(the P wave in particular) and later arriving elastic waves of an earthquake seismic
recording. Minimally, the output of the system described here provides a time series
profile from which three vital parameters can be derived: the time until strong
shaking starts, the magnitude of the shaking, and the duration of the shaking. The
neural-network-based algorithm can easily be implemented in digital electronic
hardware for a single-station warning system or as an element in a distributed
regional warning system. The theoretical basis for our approach follows.

Theoretical Basis: Linear System Model

In this section, we describe the theoretical basis of our method by presenting
a grossly simplified linear system model. We assume large distances (“far field”)
and a homogeneous, isotropic, unbounded medium with a source acting with
general time-varying strength producing a unidirectional force originating at a
particular point. The earthquake source function is represented by f{z). Considering
the linear propagation case, we can represent the received primary arrival or P-
wave signal p(t) by the convolution,

p(t) = f(b) *h, (), (1)

where /(1) represents the propagation Green’s function (impulse response) for the
primary arrival or P-wave segment in the seismogram (Aki, et. al., 1980). Similarly,
for the segment of the seismogram following the initial P wave, or the secondary
arrival s(t), we can write,

s() = f(B)*h (1), 2

where h(z) represents the Green’s function of the secondary arrival or post-P-wave
propagation waveform. From equations (1) and (2), it can be shown that,



S = PO (D4 (5 = p(D*g(D), 3)
where
-1 *
§t) =h, (O*h (D), (4)

and

-1
hp (t) *hp(t) = 1. )

From the above, if it is possible to approximate g(z) using p(z) from a set of '
representative earthquakes, or if it is possible to associate classes of g(z)’s to p(1)’s,
then, from equation (3), we can estimate s(z), the secondary arrival or post-P-wave
signal, from p(z), the primary arrival P-wave signal. By training with temporal
precursors within the primary arrival p(z) for many different earthquakes, a neural
network learns a general rule for equation (4) and is able to solve, within some
system error for s(z) in equation (3) given a previously unseen p().

Intensity Measures from Amplitudes of the First Arrival

The selection of the temporal precursors or measures within the primary
arrival is vital to successful neural network training. Measures that relate to
earthquake intensity, magnitude, and distance have the potential of producing a
useful forecast of later arriving, damaging waves. The identification of these
parameters within the primary arrival is one the most challenging and important
aspects of this research. The questions we now ask are: what primary signal
measures might be useful, and how well do they correlate with their secondary
signal counterparts?

Numerous parameters have been used to measure earthquake damage
potential, such as PGA. PGA is given by the maximum value reached within an
acceleration record a(z), or:

PGA = max{a(t)}. (6)

Several forms of energy measurements from seismograph recordings have also




been used. In this paper, we will refer to the energy of a signal as a general
measurement E using the equation,

t

E = [x(n)dt. )
4

s

where E refers to the energy in the signal x(¢) from time ; to ,.

One such damage parameter is named the ARIAS intensity (Arias, 1970) and
is an earthquake energy measurement of the form (7), where x(z) is replaced by the
acceleration record a(t), and the equation is multiplied by a constant. For the
earthquakes used in this study, the origin time #, of the earthquake is used as the
reference time and is set at zero. £, denotes the first arrival of an earthquake signal
and is the time between f#; and the first arrival of earthquake shaking at the
seismometer site. ¢, denotes the final arrival of an earthquake signal and is the time
between f, and the end of the earthquake shaking at the seismometer site.
Cumulative absolute velocity (CAV) is a similar parameter that uses the
earthquake’s acceleration recording a(z), and is defined as:

CAV = [la(t)ldt. (8)

Another damage potential measurement is the peak spectral amplitude
(PSA), which is defined as the maximum value of the Fourier transform of the
acceleration recording a(®w) or max{a(®w)}. The Fourier transform of a general
signal a(t) is given by,

a(w) = [ra(e™at . )

The Electrical Power and Research Institute (EPRI) reviewed these and other
parameters that have been used to assess the damage potential of ground motion
(Reed, et. al., 1988). Using regional strong motion recordings, eleven damage
measures such as the PGA and peak PSA were ranked as per their ability to measure
earthquake damage potential. EPRI found that the ARIAS intensity and the CAV
proved to be leading measures for earthquake strong motion hazard and intensity
measurements

To explore the usefulness of some of the damage measures, we would like to




define global and local measures within an earthquake signal. Figure 3 illustrates
several representations of one component of an earthquake signal, including the
velocity recording, the velocity recording differentiated to acceleration with the
primary and secondary arrival noted, and the fast Fourier transform of the primary
and secondary arrival portions of the acceleration signal. Primary and secondary
wave signals are denoted as group velocity windows a (1) and a(t). The primary
signal is defined a time window whose duration spans from the first arrival of the

earthquake signal (z,) to A/3.6, where A is the distance from the hypocenter to the
recording station. The constant 3.6 was chosen to force a ( t) to end shortly before
the L, phase arrival. The remaining portion of the 31gnal is the secondary signal

at).

Figure 3 Several plots from an earthquake signal, including its velocity
recording (top), the same signal differentiated to acceleration with the
primary ap(t) and secondary a((t) signals noted (middle), and the fast Fourier
transform of the primary and secondary signals of the acceleration signal
(bottom). Some potential ANN training measures are denoted with arrows.
Local peak ground acceleration is shown by PGA, for primary and PGA, for
secondary PGA. Local peak spectral amplitude is shown by PSA for primary
and PSA, for secondary PSA.

Note that the damage measures previously discussed are global measures:
that is, the entire record is used in their derivation. The duration of the regional
seismograph records used in this work generally do not exceed 2 to 3 minutes in
length. We now introduce similar measures to the ones described above, which are
local in scope. They are derived from a windowed portion of the earthquake record,
specifically during primary or secondary arrival. As shown in Figure 3, we denote
local measures such as PGA and PSA, within the duration of the primary and
secondary wave. For each earthquake used in this study, a local PGA,, PSA,, and
CAV,, were calculated for the primary wave as described earlier. Slmllar local
calculatlons for PGAg, PSA,, and CAV| were taken for the secondary wave. Scatter
plots of primary vs. secondary measures are illustrated in Figure 4.

Figure 4. Scatter plots of local measures in the primary wave against similar
local measures in the secondary wave are shown for PGA, PSA, and CAV.
Correlation coefficients are also indicated. The parameter that had the
strongest correlation is the cumulative absolute velocity measure.

These plots show a positive correlation between primary and secondary
arrivals; the CAV having the strongest correlation. This correlation occurs because




primary and secondary arrival share similar source, site, and path effects. These
results indicate that the linear system model described earlier is somewhat viable in
that there is a positive correlation between the primary and secondary measures.
Though each measure in itself produces errors that make it impractical as a warning
system, a nonlinear, multi-dimensional system might be designed using these data
collectively to form a nonlinear mapping between primary and secondary signals.
We take advantage of this result by using some of these measures as training input
to the neural network.

Distance Measures from the Spectrum of First Arrival

Spectral amplitude from the first arrival alone provides a poor indicator of
distance. For any given frequency, it is difficult to assess whether the amplitude is
due to a small earthquake nearby or a large earthquake at a farther distance. The
increasing area of the wavefront or geometric spreading contributes to wave
attenuation, yet is a frequency invariant process (Kulhanek, 1990). Losses at
interfaces (diffraction, scatter, mode conversion, reflection, and refraction) also
contribute to the attenuation of the waves.

One solution lies in the fact that the media is not perfectly elastic; therefore,
spectral wave amplitudes diminish from internal friction resulting from the inelastic
property of various types of rocks and material grains. This anelastic attenuation
contributes to losses in a frequency-dependent manner where the highest
frequencies exhibit the greatest attenuation. Thus, anelastic attenuation can provide
information by which the neural network can form a magnitude-independent
distance estimate. To illustrate how this might occur, consider wave amplitude A as
a function of distance travelled x and frequency in radians  or:

A(x,®) = Ayexp [—2(2-—5] . (10)

where c is the phase velocity, O is a dimensionless measure of internal friction, and
A is the value of A(0) (Aki, et. al., 1980). It is clear from equation (10) that higher
frequencies will be attenuated to a greater degree than lower frequencies. By using
a sampling of spectral values for each earthquake as training input, the neural
network can be forced to learn this relation. For instance, the network can learn a
relationship between spectral amplitude values and distance measures such as
duration or location of the PGA in an emerging seismic signal.
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To illustrate this concept, we conducted the following experiment. A group
velocity window was defined from the arrival time of the earthquake signal ¢, to I+
I for >400 earthquake seismograms. A Bartlett spectral estimate b(®) was
calculated from this signal to determine if a spectral representation of as little as one
second of emerging earthquake signal can contain evidence of anelastic attenuation.
High and low-frequency measurements of spectral energy bands were calculated
using equation (7) by replacing x(¢) with b(w). For the low band B, limits of
integration of 0 to 1.5 Hz were used. For the high band By, limits of integration
from 6.5 to 8.0 Hz were used. Figure 5 depicts the boundaries of B), and B, as well
as the Bartlett spectral estimate for two example earthquakes. One earthquake is at
distance 213 km and magnitude M, of 4.2. The other is at distance 50 km and M, of
3.0. In this example the discriminant between the two earthquake distances for the
higher frequency energy relative to the lower frequency energy is due to the slight
difference in magnitude as well as the effects of anelastic attenuation.

Figure 5 Bartlett spectral estimates for two earthquakes illustrating two
frequency bands used to form a ratio of low to high frequency energy. Spectral
falloff results somewhat from the differences in the magnitudes as well as from
anelastic attenuation where the ratio of the integral of energy in the two
frequency bands is relatively larger for the more distant earthquake.

Using Bj, and By, aratio R was formed by:

B,
R = log,, B, | (11)

In equation (11), R will be low for earthquakes at closer distances and high for
earthquakes at farther distances due to amplitude attenuation as per equation (10).
Also, R is a dimensionless measure in which amplitude information cancels,
emphasizing that frequency characteristics alone contain distance related
information.

Using equation (11), R was calculated for >400 earthquakes. The results are
illustrated in Figure 6. A scatter plot of R values is plotted against the hypocentral
distances of the same earthquakes. The results show a correlation between the R
values and their respective distances. Although the correlation is weak, this is an
important result because it offers evidence that a simple spectral ratio can provide
distance information while constrained to a signal taken moments after the onset an
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earthquake. Knowing the earthquake distance is a vital feature in a reliable warning
system. The wide scatter figure 6 appears daunting, but consider that the input to the
neural network includes more than a simple ratio. The complete sampled spectrum
is used as one feature of the neural network input. In this manner, the neural
network is free to use R or any function of one or more frequency bands to map
distance dependent parameters, such as duration, from the inputs to the output
waveform estimate. Furthermore, though anelastic attenuation’s frequency-
damping properties are fairly well known, the neural network is free to learn any
frequency variant relation that might exist in the training inputs, such as the velocity
dispersion of Love and Rayleigh waves.

Figure 6 Scatter plot of R values versus hypocentral distances for >400

earthquakes. The overall positive correlation illustrates anelastic attenuation

as a function of distance. The superimposed line is a least squares fit of the

data. The wide variation occurs because the range of earthquake magnitudes
for the various distances were plotted simultaneously.

Choosing a Neural Network

In general, ANNs have been successfully used to develop nonlinear,
nonparametric, calibration systems, as well as signal discriminators from ground
motion signals (Dowla, et. al., 1990). They also have been used to do real-time
classification of signals from three-component seismic sensors (Bowman, et. al.,
1992) as well as class identification of seismic activity (Maurer, et. al., 1991). In
addition, the results from a neural network showed that the first few seconds of a
seismic signal from a nuclear explosion can be used to predict the magnitude of that
explosion (Leach, et. al., 1993). Since the ultimate goal of this work is to develop a
system for the detection and early warning of earthquakes, a neural-network-based
system is a good choice, not only because of its successful heritage, but also
because of its speed and simplicity of implementation.

We considered two types of ANNSs in this study: the self-organizing Kohonen
network and the backpropagation network. Because of the many different types of
ANNSs, an adequate discussion of the taxonomy and applications is beyond the
scope of this paper. For a more complete treatment of ANNs, interested readers are
referred to a journal article by Lippman (1987), and books written by Pao (1989)
and Hertz et al. (1990).

Due to the sparsity of readily available training data, the backpropagation
network was chosen in this application. The backpropagation network is a powerful
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tool for learning nonlinear mapping from the input to the output. More importantly
though, a backpropagation neural network can readily interpolate as well as
extrapolate missing information. This is vital for seismic data, because very large
magnitude earthquake recordings are naturally scarce. Also, a generalized training
set, which is well-sampled with respect to magnitudes, locations, and geophysical
parameters, is often unavailable.

The three-layer perceptron or backpropagation neural network (Lippman,
1987) was used in this study with the conjugate gradient error search method
(Johansson, et. al., 1990) for training time reduction and training stability. The
three-layer back-propagation network can form arbitrary complex decision regions
and can separate meshed classes. The complexity and apparent overlap of features
within the P-wave segments made this an attractive option.

A representation of the system is shown in Figure 7. During the training
phase, the neural network is presented with the first arrival of a seismogram. The
error is defined as the difference between the output of the network and the
complete seismogram signal. The internal weights of the network are adjusted to
reduce this error. This process is repeated until the error is lowered sufficiently, and
the network has learned to generalize the nonlinear relationship between the input
and output. During the testing phase, the neural network is presented with first
arrival data from previously a unseen seismogram. The neural network estimates
the complete seismogram by weighing the first arrival inputs with internally stored
information learned during the training phase.

Figure 7. First neural networks are trained to learn the relationship between
the first arrival and the complete seismogram of >400 different seismograms.
Then the neural network can use the first arrival of a new seismogram to
estimate the complete seismogram.

Database

The earthquakes used in this study were recorded by the Lawrence Livermore
National Laboratory (LLNL) seismic observatory station at Landers, California.
Landers is located at 34.39° latitude by —116.41° longitude. Using United States
Geological Society (USGS) records, all earthquakes were located that occurred in
the region surrounding Landers during the period from January 1, 1988 to
December 31, 1992 as shown in Figure 8. A window bounded by 32.2° to 36.5°
latitude to —118.8° to —113.8° longitude was defined. This window defines an area
approximately 300 km from Landers.
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Figure 8 Earthquakes that occurred from 1988 to 1992 surrounding Landers,
CA. This study focused on earthquakes at distances from 20 to 294 km from
Landers recording station.

The training data set for the neural network consisted of earthquake
recordings with good (>2) signal-to-noise ratio, yet did not saturate the
instrumentation. The criteria for each earthquake candidate were (1) that the radial
distance from Landers to the epicenter be greater than 20 km, and (2) that the local
magnitude divided by the log of the radial distance be greater that 1.5. This
excluded earthquakes with poor signal to noise ratio. It also excluded earthquakes
occurring at distances that were too close to provide useful warning time.
Earthquake recordings that saturated the seismograph or contained dropouts or
glitches were removed. This resulted in a final set of over 400 earthquakes.

System Output Design

We approached this problem with the idea of using only data from
seismogram records. Though it is expected that a system that augments the input
with other known earthquake parameters, such as medium or source location, would
theoretically improve performance and produce a more accurate earthquake profile,
we wanted to isolate what an artificial neural network can “learn” about earthquake
seismograms when trained with seismic recordings only. Producing acceptable
results using this data-driven approach provides a simple, reliable system that could
be easily implemented.

We represent a three-component seismogram by a signal:

c(t) = [c,(D),c,(),c, (D], (12)

where ¢ represents time, and c,(2), ¢,(1), and c¢,(t) represent east, north, and vertical
channels of velocity recordings. The discrete time signal c(n) is stored in computer
memory and represents c(z). Preprocessing the data included removing the mean,
windowing the data with a Hamming cosine taper, and filtering each component
with a seventh-order Butterworth bandpass filter with corner frequencies at 0.5 and
10 Hz. It has been shown that good yield estimation can be achieved in this
frequency range (Leach, et. al., 1993). These filtered velocity signals v, (n), v,(n),
and v,(n) were integrated to provide displacement signals d(n), d,(n), and d,(n) and

14



were differentiated to provide acceleration signals a,(n), a,(n), and a,(n). For
example, the filtered vertical signals from the three-component spatial motion
records for one of the earthquakes are illustrated in figure 9. The time of first arrival
of ground motion at Landers was marked in each record and is denoted by ¢,.

Figure 9 Data example of earthquake velocity recorded at the Landers
recording station showing east-west, north-south, and up-down motion. This
particular event had a magnitude (m;) of 3.2 and originated 122 km from
Landers.

An envelope function was formed with the three components of the
displacement signals using a Hilbert transform. In general, the envelope e(n) of a
signal x(n) is defined by,

e(n) = N2 (n) +3° (n) (13)

where y(n) is the Hilbert transform of x(r). Equation (13) was applied to d,(n),
d,(n), and d,(n) after removing the mean and taking the absolute value of each
signal. A three-component incoherent beamforming of the three resulting signals
represented the general size and shape or profile of the earthquake. The resulting
envelope signals for several example earthquakes are illustrated in Figure 10.

Figure 10 Several preprocessed earthquake displacement envelope signals.
Increasing amplitudes were chosen to illustrate the arrival of predominant
shaking as a function of distance.

Envelope or profile signals as system output offer a useful, viable warning for
imminent ground motion. A continuous broadband signal would be the ideal output,
but a neural network would require a computationally prohibitive number of
example earthquakes to train these types of signals successfully. We recognize that
training the neural network with profile signals does remove the higher frequency
characteristics of the earthquake signal but regardless, they are still a good choice
since they will provide a viable warning and contain several important measures.
First, the signals would provide a measure of energy that could be scaled to a
magnitude or intensity value. sec, they would measure the time available before the
onset of maximum ground shaking, for example the L, phase arrival. Third, they
would provide a measure of the duration of the large amplitude shaking. Many
other designs for system outputs were considered, such as ground motion
harmonics, distance, coda, and the complete point by point earthquake record.
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Some of these ideas were eliminated because of limited data availability or limited
neural network capabilities. Others will be used in future work.

Neural-network-training output signals were taken from envelopes of d,(n),
d,(n), and d,(n) for each earthquake used in this study. The duration or window of
the output signal was set at 60 sec. and sampled every 0.25 sec. This resulted in 240
training outputs, each representing a sample point in the 60-sec earthquake profile
from arrival time ¢, to £+ 60. Two distinct output categories were derived from the
output envelope: the earthquake scale and the earthquake profile or shape.

The first output category consisted of the earthquake scale which we now
define. For each earthquake, a vector O was formed whose elements contained the
240 output envelope values. In general, the length or norm of any vector X
containing N elements is given as,

N
x| = /2 () (14)
n=1

With i representing the earthquake index, the length or norm IOl was calculated for
all earthquakes using equation (14). The resulting norm was defined as the
earthquake scale. The earthquake scales have a strong correlation to the energy and
intensity of the earthquake signal.

The dynamic range of these scale values spanned many orders of magnitude.
To provide a better scale distribution for neural network training, we normalize the
set of scales as follows. In general, any vector X with r elements has both a global
maximum (x,,,,) and minimum (x,,;,). A normalized set of data is formed when
each element x in X is replaced by a normalized value x, and is defined as,

¥ = x—xmin , (15)

n _
Xmax ~ Xmin

Equation (15) was applied to the logl0 of each earthquake’s norm to provide a
normalized scale output or lIOll,. The set of normalized scale values of HlOIl,
comprised the first category of system output.

The second category of system output is the shape or profile. Each output
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vector O was normalized to length 1 using equation (16) to normalize the total
energy of the earthquake and emphasize the shape of the envelope. A normalized
earthquakes profile vector O,; is formed by,

0, = o

"o lod (16)

where 110,11 = 1.

Selection of Input Window Sizes

Neural network input parameters are derived from a primary window or
segment using the three-component seismic signals v,(n), v,(n), and v,(n). Windows
always begin at the earthquake arrival time #,. Each earthquake can provide multiple
training examples by defining any number of durations or window sizes At. For
example, if a window duration is defined from #; to ¢, + 1 for the earthquake
seismogram, then At equals 1 sec. The input parameters are then derived from this
1-sec segment of the seismogram. Using the same earthquake, but a different
window size At of 3-sec, the input parameters are derived from this 3-sec segment
of the seismograph. Many examples of each earthquake can be created for neural
network training by choosing multiple windows in this manner. Note that for any
given earthquake, although the input window durations vary, the training output is
the same, again the 60-sec profile of the earthquake from z; to 7, + 60.

In this study, six windows were defined, resulting in the generation of six
training examples for each earthquake. The motivation of using multiple input
windows was to provide a robust representation of the primary wave for each
earthquake in the training set. The duration or At of each of the six windows was
determined as follows. For any given earthquake record, the focal distance was
divided by a group velocity of 3.5 km/sec. The result is an approximation of the
secondary arrival time for that earthquake. The arrival time ¢, is subtracted from this
secondary arrival time and defines the duration between the start of the earthquake
shaking and secondary arrival. This duration is used as the window length for the
first window. The second window was one-half the duration of the first, the third
window’s duration was one-half the second, and so on for all six windows. If the
window duration calculated in this manner was less than 0.3 sec, the window
duration was set to 0.3 sec. The purpose of this approach is to train the neural
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network with 6 windows or perspectives of the primary wave from each earthquake.
All 6 windows began at ¢; and ended before the arrival of the secondary waves. The
0.3 sec constraint was used because, for very near earthquakes, the At reduces to a
few data points and is not useful for neural network training.

Preparing a typical training input started with cutting out a segment of the
seismogram for a specific Az. The cut segment was used to calculate the local
measures that were input to the neural network. Details of how the local measures
are derived will be discussed in the following section. We note here that the value of
At 1s also used as an input to the neural network. This provides the network with the
window duration as well as the parameters derived from that window. By using
multiple windows for each earthquake, the network trains with six perspectives of
each earthquake. It is generally known that neural networks have good interpolative
capabilities; therefore, window durations that can be presented to the trained
network are unrestricted, since any window duration will fall between the training
example’s window durations. This design also allows the network to learn emergent
properties or patterns of an earthquake signal as a function of a growing window. It
also offers a system that can produce an updated output after every data point of an
arriving earthquake since each new data point simply represents a new window
‘duration. This property is vital to the implementation of a real-time system. Table 1
shows the window durations used for several of the earthquake examples used in
this study.

Table 1: Window durations for each of six windows used for training input to the neural
network. Five earthquake examples are listed.

Training window duration
Magnitude|Distance o
(my) (km) 1 2 3 4 5 6
(sec) (sec) (sec) (sec) (sec) (sec)
Earthquake 46 2.8 41.0 4.5 2.3 1.1 0.6 0.3 0.3
Earthquake 144 32 50.8 5.7 2.8 14 v 0.4 0.3
Earthquake 260 4.6 121.1 14.0 7.0 35 1.8 .9 44
Earthquake 393 2.7 226.1 274 13.7 6.9 34 1.7 0.9
Earthquake 431 3.5 269.5 37.9 18.9 9.5 4.7 23 1.1

System Input Design

Although each input or set of inputs in itself may offer a marginal estimate of
impending ground motion, collectively the neural network will form a mapping of
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input to output using a nonlinear combination of all the input. The network is
constrained to learn or weigh the value of each input based on the example training
set. Inputs can contribute as much or as little as needed to train the system to an
successful performance level.

We used a total of 30 neural network input values. These inputs consisted of a
time series profile, its local CAV and PGA values, the duration or window size of
the input, a measurement of its backazimuth and angle of incidence, and a spectral
representation. A schematic of the input to the neural network is shown in figure 11.

Figure 11 Schematic of neural network training input. Inputs consist of the
duration in sec after £, or Af, a profile of the earthquake, local CAV and PGA
values, a measure of backazimuth and angle of incidence, and a spectral
representation. All inputs are local measures taken during £, to £; + Af in the
seismogram.

The first ten input are formed as described earlier for the output profile, but in
this case the input seismogram time series signal is used to form an input envelope.
Again an envelope is formed using equation (13) from the displacement signals
d,(n), dy(n), and d,(n), but the window duration used is from Iy to £, + At. The first
ten inputs to the neural network are the linearly sampled normalized input envelope.
These input provide the general shape of the emerging ground motion signal. These
shapes or particular patterns within them can be compared to the shape of the output
time series envelope.

The next three inputs are the local CAV,, and PGA,, and the value of Ar.
CAV,, and PGA,, are calculated as per equations (6) and (8), using local signals.
Local, in this case, again refers to the segment of the seismogram signal from £, 1O I
+ At. The motivation for using these parameters as inputs is that they offer a strong
correlation between primary and secondary wave energy as seen in figure 4. The
value of Az provides a reference for the window duration or portion of the primary
wave under consideration.

The next two inputs are estimates of the backazimuth and the angle of
incidence calculated from the three-component polarization of the local
displacement signals. These input were chosen to incorporate depth and angle
measurements to provide focal distance information as input.

Finally, the last fifteen inputs consist of a sampling of a spectral
transformation of the local seismic displacement signals. A Bartlett estimator was
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used to form a spectral estimate of the displacement signals. This estimate was
sampled into fifteen neural network inputs in the following manner. Previously
described filtering put the maximum frequency f,,,, at 12.5 Hz and the minimum
frequency f,,;, at 0.5 Hz For frequency input values i, where i ranges from 1 to 15
and N =15, f; is determined by:

fi =fmin|:(fmin/fmin) (i_l)/(N—])]’ (17)

The purpose of the above sampling procedure is to emphasize the lower frequencies
that provide better overall signal-to-noise ratios for the earthquake spectral inputs.

Experimental Method

The task of scale estimation was separated from the task of profile estimation
by training two different neural networks, one for each task, in two phases. The
input remained the same for both networks and consisted of the 30 parameters
described in the previous section. The output for each phase was taken from one of
two categories: the set of scale values as calculated by equation (15) for the first
phase, and the set of profiles as calculated by equation (16) for the second phase.
Figure 12 illustrates the architectures of the neural networks. A 3-layer conjugate
gradient backpropagation neural network was used in both phases with 30 input
values. Training was performed with backpropagation learning for a multilayer
feed-forward neural network, using an algorithm developed at Lawrence Livermore
National Laboratory (Johansson et al., 1992). The neural network trained to
estimate earthquake scale used 5 hidden nodes and 1 output. node. The neural
network trained to estimate earthquake profile used 7 hidden nodes and 240 output
nodes.

Figure 12 Neural network architectures used in this study: (a) neural network
used to estimate scale of the earthquake; (b) neural network used to estimate
earthquake profile. In both cases, a 3-layer conjugate gradient
backpropagation network was used.

In the first phase, a neural network is trained to estimate earthquake scale
using the architecture shown in figure 12a. Fifty randomly chosen earthquakes were
removed from the original 434 earthquakes in the data base. These 50 earthquakes
were not part of the training process and were set aside for neural network
performance measurements. The remaining 384 earthquakes were used to train the
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neural network. The training input for each training example consisted of the 30
previously described parameters. Each of the 384 earthquakes provided six training
examples by using six different window sizes as described earlier. The total number
of training examples was 2304. The training output for each earthquake was the
normalized scale input or [lOIl,,, which was calculated using equations (14) and (15).
Once trained, previously unseen examples were fed through the network, and neural
network scale estimates were produced. The results are discussed in the next
section.

For the second phase, a separate neural network was trained to estimate
earthquake profile using the architecture shown in figure 12b. This network was
- trained with the 2304 examples described in the first phase, having removed the
same 50 randomly chosen earthquakes. The training output for each earthquake in
the second phase was the normalized earthquake profile vector O,;, which was
calculated using equation (16). The training input for both phases was identical.
Again, once trained, new examples were fed through the network, but in this phase,
neural network profile estimates were produced.

Results and Discussion

The earthquakes used in this study were, in general, weak motion, regional
events with distances ranging from 20 to 294 km. Earthquake magnitudes varied
from 2.5 to 4.6 m;. We are currently increasing this range to include strong motion
earthquakes. Earthquake focal distance measures tended to dominate the scale
values due to the relatively limited range of magnitudes. We now discuss the results
of the first phase, where a neural network was trained to estimate earthquake scale.

The input derived from the earthquake onset to 1 sec after the onset (Ar = 1)
in the 50 previously unseen earthquakes were fed-forward through the trained
neural network to produce scale estimates. We emphasize that the scale neural
network can produce estimates at any time after the earthquake arrival, regardless
of earthquake distance or magnitude. However, a fixed value of 1 sec was selected
for two purposes. First, it illustrates that the network can perform well even when
forced to interpolate using window sizes different from training set window sizes.
secondly, a reasonably accurate estimate after 1 sec will offer useful warning time
in general, as seen in figure 2.

Results are illustratéd in the scatter plots in figure 13. Local PGA and CAV
were calculated using the first sec of the 384 earthquake training examples. A
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regression analysis was done using these measures as well as the true scale of each
earthquake. Figure 13a shows the true scale values for the 50 removed earthquakes
plotted against the regression-produced PGA estimates. Figure 13b shows the true
scale values again plotted against the regression-produced CAV estimates. Figure
13c shows the true scale values plotted against the neural network scale estimates
with Ar = 1. After 1 sec of shaking, there is a strong correlation between the neural
network scale estimates and the true scale values of the earthquake signals.

Figure 13 Scatter plots showing the scale of the output envelope against (a)
linear regression fit of the local PGA value (b), a linear regression fit of the
local CAV measurement, and (c) the neural network estimate of the envelope
scale. The lines were plotted to represent a perfect correlation or correlation
coefficient of 1.

It is clear from figure 13 that the network can produce good scale estimates.
The PGA and CAV generated estimates of figures 13a and 13b each in itself
produces a scale estimate with a positive correlation to true scale. However, the
neural network is able to improve the correlation. This illustrates how neural
networks use multiple input features to improve performance. The network is using
the PGA and CAV measures as input during training and, therefore, has the option
of using these parameters to form its estimate. The network results are also
consistent across the range of scale values. The regression estimates are less
accurate at lower scale values. This illustrates the tolerance of the network to noisy
input, as the lower scale values correspond to lower magnitudes, and large focal
distances correspond to poor signal to noise.

Examination of the most serious outlier in figure 13c revealed an earthquake
with magnitude m; of 3.6 and a focal distance of 154 km. The signal revealed an
apparent foreshock, which confused the neural network, producing an
underestimation of the scale value. Note that the PGA and CAV regression
estimates had the same problem with this event. As the window size was increased,
the neural-network scale estimate improved significantly. The cause of this error
stems from the selection of earthquake arrival times by visually marking the
records. A more sophisticated algorithm, which ignores small foreshocks would
help reduce this error. We are currently developing detection algorithms to
accomplish this. Another potential solution is to form a more robust training
example set that contains many occurrences of earthquakes with and without small
foreshock activity.
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In a second experiment, neural network estimates of scale values as a
function of At were obtained to examine the emergent properties of the scale
estimator as well as the accuracy at widely different scale values. In larger
earthquakes, the faulting may continue for many seconds. The system has to be able
to continually update its estimate during the evolution of the earthquake source. For
example, there is not much difference between magnitude estimates for moderate
and large earthquakes in the initial (0.5 sec) portion of the signal (Anderson, et. al.,
1995). To examine the emergent capabilities of the system, each earthquake was fed
into the trained neural network scale estimator 15 times, using values of At ranging
from 0.2 to 10 sec. The results obtained from 4 arbitrary earthquakes are listed in
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Table 2: Neural network scale estimates using A¢ values ranging from 0.2 to 10 sec for four
previously unseen earthquakes

‘Earthquake 213 Earthquake 265 Earthquake 245 Earthquake 429
Distance Distance Distance Distance
(k) 87 (km) 122 (km) 116 (km) 258
Magnitude 42 Magnitude 35 Magnitude 26 Magnitude 3.0
(my) (my) (myp) f (mp
Scale Scale Scale Scale
(normalized) 80 (normalized) 3 (normalized) 33 (normalized) 16
At (sec) ‘Neural network scale estimates (normalized)

0.2 0.61 0.53 0.51 0.13
0.3 0.72 0.57 0.40 0.18
0.5 0.81 0.52 0.32 0.20
0.7 0.87 0.50 0.37 0.22
0.9 0.86 0.56 0.36 0.26
1.1 0.85 0.64 0.41 0.28
13 0.84 0.60 0.42 0.26
15 0.83 0.59 0.39 0.23
1.7 0.81 0.63 0.42 0.19
2.0 0.83 0.63 0.51 0.21
3.0 0.80 0.66 0.47 0.20
40 0.76 0.64 0.44 0.22
6.0 0.81 0.62 0.40 0.19
8.0 0.79 0.59 0.37 0.17
10.0 0.79 0.59 0.39 0.15

Table 2. Overall, the network scale values were excellent as the earthquake emerged
for 10 sec. A warning system that incorporated a running average of these values
would perform quite well as a scale estimator in this case. This can be seen more
readily in figure 14 which shows a plot of the four sets of earthquake estimates over
10 sec as well as the true scale for each earthquake.

Figure 14 Neural network scale estimates using A¢ values ranging from 0.2 to 10 sec for four
previously unseen earthquakes. The superimposed line plots indicate the target or true scale
value for each earthquake.

The scale estimates in figure 14 appear somewhat unstable for the first sec or
two of the emerging earthquake. This is caused partly by inadequate window sizes,
which resulted in poor earthquake signal spectral representation being input to the
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neural network. Also, especially as focal distance increases, the portion or
percentage of the input window relative to the complete primary wave is quite
small. The network is forced to make a decision on a very short ‘look’ at the
primary wave. It is clear that as the earthquake emerges, the scale estimates tend to
converge to reasonable values. Note that the network has an overall tendency to
overestimate, which is a desirable property in a warning system, given that the
overestimation is minimal.

In the second phase of the study, we trained a second neural network to
estimate earthquake profile. Again the input derived from the earthquake onset to
one sec after the onset were fed-forward through the trained neural network. Results
for the same set of 50 previously unseen earthquakes with Az equal to 1 produced 50
profile estimates. The correlation coefficient C, between the true earthquake profile
and the neural network profile estimate was calculated. To find C,, the earthquake
and neural network estimate profiles are represented by vectors e and n,
respectively. After removing the mean, the correlation coefficient is then given by,

_ een
Co = Weh am (18)

The correlation coefficient will provide an indication of how well the shape of the
two profiles match. For example, a C,, value of 1 indicates a perfect match. The C,
for all 50 pairs of earthquake and neural network signals is plotted in Figure 15a.

+

Figure 15 The correlation coefficient C, between the true earthquake profile
and the neural network profile estimate is shown in (a) for 50 previously
unseen earthquakes. Likewise, the correlation coefficient C, between the true
earthquake profile and the average earthquake signal is shown in (b) for the
same 50 earthquakes. Values were calculated using only the first sec of
earthquake signal.

One might conjecture that the neural network is doing little more than
producing the average shape of the 384earthquakes in the training set. To address
this concern, consider that for any given training set of earthquake signals, the
average signal is represented by,
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N M
oln] = 1%[2 ¥ il 19)
i=ln=1

where N is the total number of earthquakes used in the average, p; is the discretized
profile signal for earthquake i, and M represents the number of elements or profile
samples. The vector a was formed using a[n] as in equation (19) with N equal to
384, and M equal to 240. Figure 15b, we plot the C,. for each earthquake signal, but
use the vector a to replace n in equation (18). The result clearly illustrates that the
neural network has learned to predict the overall shape of the emerging earthquake
signal better than a simple average of the training set. The neural network profile
estimate provided a profile estimate that was better than using the average
earthquake profile in 88% of the 50 earthquakes tested.

To examine the emergent properties of the profile estimator, neural network
estimates of earthquake profile as a function of Ar were examined. The results of
one of the earthquakes are shown in figure 16, which contains earthquake neural
network profile estimates for Ar values of 0.2, 2.0, 4.0, 6.0, and 8.0 sec. The
earthquake shown in figure 16 has a magnitude m; of 3.2 and a focal distance of 46
km. It is clear in this example that the profile estimates can improve as Af increases.

Figure 16 Neural network profile estimates using A¢ values of 0.2, 2.0, 4.0, 6.0,
and 8.0 sec to illustrate emerging profile estimates. The target or true profile
for this earthquake is at the bottom of (a) and in black in both (a) and (b); (b)
shows the signals in (a) superimposed. This earthquake’s focal distance was 46
km and had a magnitude m; of 3.2. Note the duration of approximately 12 sec
from the onset of shaking to the arrival of the most severe ground motion. Also
note that for this example, the profile estimates are quite accurate and provide
greater than 10 sec of warning time.

Error Measurements in a Simple Warning Scenario

It is difficult to establish a general criteria for the measurement of hazard.
Safety is relative to many variables such as population density, the age of structures,
location of hazardous materials, etc. However, to demonstrate the utility of the
neural network output estimate performance, a simple warning scenario is now
presented.

We begin by accepting the accuracy of the earthquake scale estimates as
shown in figure 13c. From the normalized range of scale values 0.0 to 1.0 we define
an arbitrary warning scale level of 0.58. All feed-forward input for both scale and
envelope estimates in this scenario were prepared using the first 1.0 sec of each
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earthquake tested. Fifty previously unseen, randomly picked earthquakes were fed-
forward through the trained scale estimate neural network. Ten of the resulting fifty
neural network scale estimates exceeded 0.58 and were classified as hazardous.
Figure 17 illustrates the 50 earthquake scale values, warning level, and the
distribution of hazardous and nonhazardous events. The ten hazardous earthquakes
were passed through the profile neural network which produced an envelope
estimate. From these ten envelope estimates, the system error was measured for
three vital parameters: the time within the secondary signal at which strong shaking
begins, the time where hazardous shaking ends, and the duration of the shaking.

Figure 17 Warning level set at the arbitrary level of 0.58 divides a set of 50
earthquakes into hazardous and non-hazardous groups. The ten hazardous
events had distances ranging from 32 to 122 km with magnitudes ranging
from 2.9 to 4.2 m;.

Each discreet earthquake output envelope signal O given by equation (16)
was modeled by an exponentially decaying signal O,, where each element n of the
model replaces the elements in O by,

{3)
] -e T

om [n] =0 [nmax (20)
where 7 is determined from the envelope signal by,
1 N n
" Noh, L Tog, o, @1)

=

]

max

and n,,,, represents the time of the local maximum peak value of the secondary
envelope signal or the start of the strong shaking. n,,,. denotes the time after the
start of the earthquake when the secondary arrival signal O exceeds the product of a
constant k and the maximum value of O. For the output envelope target signals, k
was 0.707. Figure 18a illustrates an earthquake envelope signal with the
exponential model O,, superimposed.

The neural network envelope estimate signalQis modeled in the same
manner, where equations (20) and (21) are used to produce 0,,. In the case of
neural network estimates, the value of 1.0 is used for the constant £ in determining
Nmay This is because the neural network output signal is less noisy than the target
earthquake output envelope signal. The neural network envelope estimate of the
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true earthquake shown in Figure 18a is plotted in Figure 18b.

Figure 18 Envelope signals with exponential models superimposed showing
the hazard begin (#;3), end (¢;,), and duration time (A#;) for (a) an earthquake
signal classed as hazardous by a neural network scale estimate and (b) the
profile neural network estimate of the earthquake signal in (a) formed 1 sec
after the start of the earthquake.

The first of the three hazard parameters measured is the time corresponding
to the location of n,,,, which we define as the hazard begin time or 7. The second
hazard parameter is defined as the time corresponding to when the exponential
model drops to below the arbitrary value of 25% of its maximum peak. This time is
defined as the hazard end time or #;,. A third hazard parameter Az, is the duration of
the hazard which is simply the time between #;; and 7;,. An example of these three
hazard parameters is shown in Figure 18a and 18b for both a true earthquake as well
as the neural network estimate profile of the same earthquake. Using these
parameters, system performance was measured for hazard start, stop, and duration
time. Table 3 lists the system performance and error for estimation of Az, #;;, and
I;,0 in both the true earthquake signals as well as the neural network estimates for the
ten earthquakes which fell above the hazard line in Figure 17.
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Table 3: Profile neural network hazard estimates and error values for beginning, end, and
duration of heavy shaking for ten earthquakes. Earthquakes were chosen using scale
neural network estimate values above an arbitrary threshold. Shaded column is plotted in
Figure 18 and shows the network’s estimate of 5.25 sec of the hazard start and 15.0 sec of
hazard end. The real earthquake corresponding to this estimate had a hazard start time of
5.25 sec and a hazard end time of 15.5 sec. All neural network estimates were made 1 sec
after the first arrival of each earthquake.

Earthquake 11 76 | 116 | 163 | 179 | 184 | 213 | 217 | 265 | 266
Distance (km) 32 45 49 53 60 61 87 88 | 122 | 122
Magnitude (mp) [ 29 | 3.1 [ 35 | 35 [ 40 [ 33 [ 42 | 38 | 35 | 3.6

Scale 0.69 | 0.50 | 0.62 | 067 | 072 | 0.64 | 0.85 | 0.72 | 0.60 | 0.62
(normalized)

t,, (sec) [3.75 | 475 | 50 | 55 | 675 | 75 | 95 |9.25 [ 163 | 165
By (sec) |[5.25 [5.25 | 5.25 | 525|575 | 55 | 525 | 525|160 | 160
g, (sec) [ -1.5 | -05 [-02510.25 { 1.0 [ 20 {425 | 40 | 025 | 05
the (sec) |[13.8 | 145 | 145 | 155 | 175 | 18.0 | 19.8 [ 193 | 253 | 253
the (sec) |1 153 | 153 | 153 | 15.0 | 165 | 16.0 | 153 | 153 | 25.5 | 253
g, (sec) || -1.5 |-0.75|-075} 05 | 1.0 | 20 | 45 | 40 |-025] 0.0
At, (sec) 11 10.0 | 9.75 | 95 | 10.0 | 10.8 [ 10.5 | 103 [ 10.0 | 9.0 | 8.75
Aty (sec) || 10.0 | 10.0 | 10.0 | 9.75 | 10.8 | 105 | 10.0 | 100 | 9.5 | 9.25
gy (sec) [ 0.0 | 025 | 05 (025100 |00 |03 |00 |05 |05

Start

Hazard measurements
Stop

Duration

The results of Table 3 show that the neural network was able to estimate the
hazard start, stop, and duration time with surprising accuracy. In most cases, the
start error was small or positive, which is desirable as large negative start time
indicates warning after the hazard has begun. The duration errors were quite low,
which may be due to the simplicity of the exponential model used as well as the
distribution of the data base with respect to distance and magnitude. In the worst
cases, the start and stop times were each about four seconds early. This apparent
shift, as well as a somewhat lack of error increase as a function of distance, indicate
that the distance related input to the neural network is weak and should be
improved. In future work, we plan to add to the training input, a distance estimate
which would presumably be available from existing regional seismic networks.
This could improve the performance in a symbiotic manner using distributed
warning networks in conjunction with a trained sensor.
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Conclusion and Proposals For Future Studies

A neural network has been successfully trained with >400 recorded
earthquakes to produce a scale and profile estimate of the earthquake signal in 0.3
sec and to continually update the estimate as the earthquake emerges. The system
has been implemented in hardware using silicon accelerometers and a standard pc.
It is clear from the results that the future of “smart sensors” holds great promise.
However, there are many research issues that need to be addressed.

One issue is measuring the portability of the system, or the system error of
the trained neural networks when moved to a new location. We plan to study
whether a trained neural network will perform equally well at a new site (though
trained at a different site). It may be possible to add a small set of representative
earthquakes from the new site, retrain, and regain system performance. It is also a
subject of future work to design the neural network to continually learn and upgrade
the internal weights as a background process, allowing it to become more site-
specific as a function of time.

Another issue is the expansion of the earthquake training set to include large
motion earthquakes. This area holds great promise, as the availability of good
quality strong motion events is increasing at a rapid rate via modern seismic stations
and data availability on the internet. We have done some preliminary work in this
area and will be expanding our data base to include strong motion earthquakes. The
improved signal to noise of strong motion recordings improves the input and the
neural network sees fewer inconstancies. For example, one of our neural networks
estimated the magnitude of the Loma Prieta earthquake to be 6.8 m; using less than
0.5 sec of the earthquake signal.

An important contribution of this work is to illustrate how a backpropagation
neural network can be used to estimate continuous, real-time parameters. This
contrasts to more common uses for neural networks such as a discrimination or
classification task, such as pattern recognition of an explosion as opposed to an
earthquake. In future work, we plan to test to see how well our system can identify
and classify of non-earthquake signals, as well as multiple events
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