SANDIA REPORT

SAND98-2770
Unlimited Release
- Printed December 1998

I N RECEIVED

o/ 50 N\
v Lap'd»Scé‘RCCommand Set pEC 13 998
N 08Tl

Local AreaLNetw\ork Dlstrlbuted

] Superwsory Control and Programmmg
/ Enwronment f,/ /

\.‘ /

//
~

Ross L. Burchard and Daniel E..Small

Prepared by
Sandia National Laboratornes
Albuquerque, Ney Mexico 87185 and Livermore, California 94550

Sandia is a mu/ltlprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

/ @ Sandia National Laboratories

JAN 7 998

et = i+ s a g a




Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-

uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed

herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 87831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A0l




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

. document.



SAND98-2770
Unlimited Release

Printed December 1998

LandScape Command Set

Local Area Network
Distributed Supervisory Control
And Programming Environment

Ross L. Burchard
Daniel E. Small
Intelligent Systems and Robotics Center

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

Abstract

This paper presents the Local Area Network Distributed Supervisory Control and
Programming Environment (LandScape) commands set that provides a Generic Device
Subsystem Application Programmers Interface (API). These commands are implemented
using the Common Object Request Broker Architecture (CORBA) specification with Orbix
from Iona Technologies.




TABLE OF CONTENTS

1.0 INTRODUCTION..... sesscsccccccccoen cesescecree cessene ceveness ceeeescans cescseee 1
20CLIENTIDL.....coevivevnnnnnnns .4
2.1 NON-BLOCKING AND STATE-NEUTRAL .....uuvuintntneneeneeeeeeeeeseseeeneeeeneeenenanns 3
2.2 BLOCKING AND STATE-NEUTRAL ...ueutnttintinieete e e e e e e e e anaenens 3
3.0SSERVERIDL ....cccccvvn.... cesncccssessas ceeesss cecssescsscssas R ]
3.1 CONNECT/POWER AND SINGLE POC COMMANDS .....uucnntneeeeneeneaeaneamaneesnneensnnns 3
3.1.1 Blocking and UnIOCKEd StALe......oceereruirrrrrreeeieiierereieeeeeereitcoeeeeeeseeeeesesesassasssassnsssnnssssees 4

3.1.2 Blocking and LOCKEA StALe...ccueu.uuerrrerrerarrereeeeeeeeeeeeeeeuerasseeesnemmesasessssssammnnsssesmnnnnnnessnnnssnns 4

3.1.3 Blocking and ACHVE SIALE..........uuumrreereeeirerereeereeeeeeeeeereeeieeeeseeeeesanssessennssnsesssmmmnnnssssnsssnns 4

3.2 SET COMMANDS. .. ctintiatntntttntteneneneataeeateeeaeasenenenenanenseresansnsasnrnenenes 4
3.2.1 Blocking and LocKed StAte........ooooiiiiiiirreruenereerereeeeieieeeeeieeeeeeesereresssssnssnnnsnnsssssssssssessssennens 4

3.3 GET COMMANDS ....uitiititiintiiititite e eteeueettnestereertesnene s sanennseneensensens 6
3.3.1 Blocking and State NEULTaL.........cc.couvuecrrrerrerenienrerrenesrerneeessessesseeseessessssssessesssesssssessssossons 6

3.4 SINGLE MOTION COMMANDS .....ueunitininiien et eeee e eeee e e e 7
3.4.1 Non-Blocking and ACHVE StAte.....cc.ueerrvereerueererrenieeeernrrreeerrrereerssseseeseseeasoessssssssssssessssessnns 7

3.5 PATH MOTION COMMANDS......tututueuenenenneereneneneeneaeenensesesseneeseesenenenseenenes 9
3.5.1 Blocking and ACHVE StAe.......eeeiiiiririeireernrierireeererenreeeeesssnssssstmeeseeeeeseaseaesssssssssssssssessssesnes 9

3.5.2 Non-Blocking and ACHVE StAL.....c.cceirrerreereairerrerreereeeiereereeeeeereeecanesessmnsnasssesmmnnssssessnnnses 11

3.6 ASYNCHRONOUS INTERRUPTION COMMANDS......uuueeneneneneeeeneneneerenenenenennnns 11
3.6.1 Blocking and MOVING SLAe .....c.ovvverreeeerrrrrurerreemmrereiereeteesserseessssassssessssssssssnnnsssssssssssssessnes 11

3.6.2 Blocking and Paused 0r LOCKEd SAte.......eeouverrreeieirereeeeeeeeeeeresereeeseesesesssesesessesssssneneeooeooes 11

3.7 SENSOR DEPENDENT COMMANDS . ......uuenutntnentineneneneeameeaneeeaneananresensanans 12
3.7.1 Blocking and MOVINE StaLE ......ccceeeerrrrrereerrrererrsirrsieeteseeeasnnsnnnesessessssssssssssnssnnsnssssssmmmmons 12

3.7.2 Non-Blocking and ACHVE State......ccccveerrvrermrmmmrerrermeieieieeeeeeeeeeseonsesssessansnnssssssssssesessss smmons 12

3.7.3 Blocking and LOCKEd StALE..........ccveveererrrrerrrerreerireeeessreeesieeeeeeeesenesessessssssssessssssssssssesssss 14

3.8 ENDEFFECTOR COMMANDS......tuutuntnitneniteneteneeeeeeaeeeresasaseseeen e eeeneennanes 14
3.8.1 Blocking and State INdEPENdEnt .........ceerermreeiiieeeeeieeeeieieeeeeeeeeeeveeeeeeeeessessssssesssmmesssmmenes 14

4.0 DIGITAL_IOIDL........... cesenn tecececesstsncscssrstasenane cececescenaes ceese. 15
4.1 Blocking and State INAePEndent.......c..cceceevreeruieeieeeeieceeeeeeteeeeeeeeeeeaeeeeeseaeessssesesnes sessone 15

S.0 RETURN CODES.......... ceeees ceevecscsacsssssscsceses ceseescsenes cesens cecees 16
6.0 PARAMETER CONSTANTS ...... tretceecrcccttcessesensesconsenannan cesecceess 17




LandScape Command Set

1.0 Introduction

LandScape commands are divided into “blocking and “non-blocking™ commands. In
addition, the following states as shown in Figure 1.1 are defined for the command set:

Idle, Unlocked, Locked, and Active. Each LandScape command is valid and may be called
while the machine or device is in the appropriate state. The commands are also divided into
the following categories: client, server, digital I/O, return codes and parameter constants to
better identify the capabilities and proper usage.

Legend
external OMMAN0  see—————
intermal event smsassaamesm

Intermpt event

B NNENSIESINIANSRE ENNSEG
-
LY
*
”

[
»
*
Py

deactivate § Active State

stopMotion O

resumeMoation ()

abortMotion ()

move and path
functions O

move and path
complete events

Figure 1.1 Command Transition Diagram




LandScape Command Set

2.0 ClientIDL

These are the event handlers for non-blocking commands on the server.

2.1 Non-blocking and State-independent

oneway clientAlarm (in string eventlID, in sequence string data)

This is used for error or alarm conditions on the server. The server may at any time
execute an Alarm. This alarm is Non-Blocking and requires no response or
acknowledgment from the client.

oneway clientEvent (in string eventID, in sequence string data)

This is used for event conditions on the server. The server may execute an event after it
has entered a busy/working state of a Non-Blocking command. This event is Non-
Blocking and requires no response or acknowledgment from the client.

2.2 Blocking and State-independent

A disconnect handler routine will allow certain shutdown actions to be performed

automatically any time a client disconnects with the subsystem (either intentionally or due to
error conditions) The default behavior will be to issue a deactivate command and a release
command.

retVal clientAlarmRSVP (in string eventID, inout sequence string data)

This is used for alarm conditions on the server. The server may execute an alarm at any
time. This alarm is Blocking and requires a response (RSVP) from the client.

retVal clientEventRSVP (in string eventID, inout sequence string data)

This is used for event conditions on the server. The server may execute an event after it
has entered a busy/working state of a Non-Blocking command. This event is Blocking
and requires a response (RSVP) from the client.

3.0 ServerIDL

This section describes the LandScape commands supported on the server.




LandScape Command Set

31 Connect/Power and Single POC Commands

This section presents device connect and power on/off commands as well as single point of
control (POC) commands.

3.1.1 Blocking and Unlocked State

These commands are only valid only from the Unlocked State.

retVal lock ()

Give the supervisor exclusive REMOTE control over the subsystem, ro parameters.

3.1.2 Blocking and Locked State
These commands are only valid only from the Locked State.

Note: When a subsystem is booted, its default state is “Idle”.

retVal release ()
Give the subsystem exclusive LOCAL control over itself, no parameters.

retVal activate ()

Place the transport device in an active state such that it can be physically commanded to
move, 1o parameters.

3.1.3 Blocking and Active State

These commands are only valid only from the Active State.

retVal deactivate ()

Place the transport device in an inactive state such that it will NOT physically move if
commanded to do so, no parameters.

3.2 Set Commands

This section presents device set-up and configuration commands.

3.2.1 Blocking and Locked State

retVal setSpeed (in double <speed>, in SpeedType <attribute>)

L)




LandScape Command Set

Set the absolute speed for the robot, two parameters:.
<speed> converted to double and its meaning depends upon <attribute>.

<attribute> one of the following TYPEDEFF ed keywords which defines the type of
speed being set.

PERCENT_SPEED (percent of max speed applied globally to both joint and
Cartesian moves).

LINEAR_SPEED (absolute linear speed applied to Cartesian moves and interpreted
according to how the last SetUnits command specified the units, such as
inches/second or meters/second).

ANGULAR_SPEED (absolute angular speed applied to Cartesian moves and
interpreted according to how the last SetUnits command specified the units,
such as degrees/second or radians/sec).

retVal setAcceleration (in double <accel>, in long <attribute>)
Set the absolute acceleration for the robot, two parameters:.
<accel> converted to double and its meaning depends upon <attribute>

<attribute> one of the following enumerated keywords which defines the type of
accel being set.

PERCENT_ACCEL (percent of max accel applied globally to both joint and
Cartesian moves, constant rate).

LINEAR_ACCEL (absolute linear accel applied to Cartesian moves and interpreted
according to how the last SetUnits command specified the units, such as
inches/second” or meters/second? .

ANGULAR_ACCEL (absolute angular accel applied to Cartesian moves and
interpreted according to how the last SetUnits command specified the units,
such as degrees/second? ™ radians/sec?.

retVal setToolOffset (in double <offset_array[6]>)
Set the tool length offsets for the robot, six parameters:

<offset_array> defined as: <x>, <y>, <z>, <roll>, <pitch>, <yaw> converted to
double, units depend upon last SetUnits command executed (inches, degrees,
meters, radians, etc.).

retVal setWorldCartesianFrame (in double <x> <y> <z> <roll> <pitch> <yaw>)

Set the offsets from the robot’s base frame to the world frame., six parameters:

double <x>, <y>, <z>, <roll>, <pitch>, <yaw>




~

LandScape Command Set

3.3 Get Commands

This section presents information retrieval commands.

3.3.1 Blocking and State Neutral

retVal getUnits (out string linear_units, out string angular_units)
Returns the units that the machine is speaking in.
<linear_units> inches/feet/meters/centimeters/millimeters.

<angular_units> degrees/radians.

retVal getVelocities (out double percent_velocity, out double world_linear_velocity, out
double world_angular_velocity Sequence double j oint_velocities)

Returns current velocity settings for percentage of max velocity, world angular, world
joint and individual joint velocities.
retVal getAccelerations (out double percent_accel, out double world_linear_accel, out
double world_angular_accel, out Sequence double joint_accels) |

Returns current velocity settings for percentage of max accelerations, world angular,
world joint and individual joint accelerations.

retVal getMaxVelocities (out double max_world_linear_velocity, out double
max_world_angular_velocity, out double Sequence double max_joint_velocities)

Returns maximum velocity settings for world angular, world linear, and world joint
velocities.

retVal getMaxAccelerations (out double max_world_linear_accel, out double
max_world_angular_accel, out double sequence double max_joint_accels)

Returns maximum acceleration settings for world angular, world linear, and world joint
acceleration.

retVal getToolOffsets (out double offset_array[6])
Returns the 6 Cartesian offsets of the robot from it’s Cartesian base frame to the tool tip.

retVal getRobotPosition (out sequence double current _joint_position, out double
current_world_position[6])




LandScape Command Set

<current_joint_position> is the sequence of doubles which represents the values of
each joint starting with joint 1 and going to joint N.

<current_world_position[6]> is the double array of the current Cartesian position of
the robot.

retVal getMotionControlState (out string motionControlState, out string controlMode)

<motionControlState> ASCII string which describes the current trajectory state of the
robot. The suggested states are:

running_trajectory
robot_paused
robot_stopped_on_error
robot_stopped on_command

<controlMode> string which describes the current state of the controller. The
suggested states are:

power_on
power_off
controller error, etc.

retVal getTagld (out string pathName, out string tagiD)

<pathName> string which holds the name of the current path.
<tagID> string which holds the last tag name that the robot got to.

3.4 Single Motion Commands

This section presents commands that perform a single device motion.

3.4.1 Non-Blocking and Active State

These commands are valid only in the Active State.

retVal moveRelative (in string pointName, in ReferenceFrame frame, in sequence
double values)

Performs a relative move with the device.
<pointName> a string that uniquely identifies the path.

<frame> enumerated keyword (s) describing the type of move: JOINT FRAME data
is a list of values which specify relative destination in terms of joint values)

WORLD_CARTESIAN_FRAME data is a list of values which specify
relative destination in terms of world-based Cartesian coordinates.




LandScape Command Set

BASE_CARTESIAN_FRAME dataisa list of values which specify relative
destination in terms of robot-based Cartesian coordinates TOOL_FRAME
(data is x,y,zroll,pitch,yaw which specify a location relative to the tool frame.

<sequence> desired move converted to double if the function returns the return code
CMD_STARTED_OK, then the super visor should expect an event which
tells the supervisor that it has completed or an alarm which indicates an error.
If it returns CMD_EXECUTED_OK then the function completed and no
event monitoring needs to be performed.

retVal moveAbsolute (in string pointName, in ReferenceFrame frame, in sequence
double values)

Perform an absolute move with the device.

<pointName> string which names the point the robot is going towards. This name
will be included in the event data.

<frame> enumerated keyword (s) describing the type of data: J OINT FRAME data is

a list of values which specify absolute destination in terms of joint values).

WORLD_CARTESIAN_FRAME data is a list of values which specify
absolute destination in terms of world-based Cartesian coordinates.

BASE_CARTESIAN_FRAME data is a list of values which specify absolute
destination in terms of robot-based Cartesian coordinates.

<j1>, <j2>, <j3>, <j4>, <j5>, <j6> ... joint values converted to double.

<speed> converted to double and is optional (specifies speed for this move only -
always interpreted as a percent of max speed).

Return Code: If the function returns the return code CMD_STARTED_OK, then the
supervisor should expect an event which tells the supervisor that it has
completed or an alarm which indicates an error. If it returns
CMD_EXECUTED_OK then the function completed and no event monitoring
needs to be performed.

retVal moveArc (in string pointName, in ReferenceFrame frame, in OffsetType
offset_type, in sequence double arcValue, in sequence double goalValue)

Perform a circular move with the robot to goalValue while arcing in a straight line
through arcValue.

<pointName> string which names the point the robot is going towards. This name
will be included in the event data.

<frame> enumerated keyword (s) describing the type of data: JOINT_FRAME datais

a list of values which specify absolute destination in terms of joint values).




LandScape Command Set

WORLD_CARTESIAN_FRAME data is a list of values which specify absolute
destination in terms of world-based Cartesian coordinates.

BASE_CARTESIAN_FRAME data is a list of values which specify absolute
destination in terms of robot-based Cartesian coordinates.

<offset_type> one of the following enumerated keywords to designate the type of
motion embodied in the downloaded data: ABSOLUTE_DATA (position data
is absolute destination points) RELATIVE_DATA (position data is relative
offsets).

<arcValue> sequence of data representing the arc-through point.
<goalValue> sequence of data representing the arc-through point.

Return Code: If the function returns the return code CMD_STARTED OK, then the

supervisor should expect an event which tells the supervisor that it has completed or an
alarm which indicates an error. If it returns CMD_EXECUTED_OK then the function
completed and no event monitoring needs to be performed.

3.5 Path Motion Commands

This section presents commands that perform path-defined motions.

3.5.1 Blocking and Locked or Resting States

These blocking commands are valid in both the Locked and Resting States.

retVal pathLoad (in string pathName, in ReferenceFrame frame, in MotionType
motion_type, in OffsetType offset_type, in int number_of points, in sequence
tag_struct tags)

Download a path segment which is appended to the current designated motion queue,
three or four parameters.

<pathName> optional ASCII string which provides an ID for the segment being
downloaded (this will be ignored for now, but later the capability will be
provided to select and execute paths by name).

<frame> one of the following enumerated keywords to designate which reference
frame the data is in WORLD_CARTESIAN FRAME
BASE_CARTESIAN_FRAME JOINT FRAME.




LandScape Command Set

<motion_type> one of the following enumerated keywords to designate the type of
motion embodied in the downloaded data: STRAIGHT _MOTION
JOINT_MOTION.

<offset_type> one of the following enumerated keywords to designate the type of
motion embodied in the downloaded data: ABSOLUTE_DATA (position data
is absolute destination points) RELATIVE_DATA (position data is relative
offsets).

<number_of points> integer value indicating the number of points for the segment
being downloaded.

<tag_structs> tag structures containing path data. The tag structure is shown below:
typedef struct _tag_struct
{
double x,y,z,roll,pitch,yaw;
double jointvals[24];
string tagName;
short tagIndex;
double timeDelay;
double transitionSpeed;
double speed;
double accel;
sequence string auxCommands;

}

Note: Each pathName will be maintained as a separate motion queue. Queues will be
maintained simultaneously. For each path name, the first LoadPath command
executed will establish a new path when the data is downloaded. Subsequent
LoadPath commands will append data to this path until either the path name is cleared
with a ClearPath command or an error condition occurs. When LoadPath is executed,
a series of data message exchanges occurs between the supervisor and subsystem in
order to download the path data. '

Each path point will contain 3 major segments of information: the position data,
speed control parameters, and auxiliary data. The position data will consist of 6
values (X, ¥, z, roll, pitch, yaw) if a Cartesian path segment is being downloaded.
Otherwise it will contain one joint value for each degree of freedom. If ‘
ABSOLUTE_DATA is designated, each point should be an absolute destination, and
if RELATIVE _DATA is specified, each point should consist of relative offsets. The
units will be interpreted according to what was established by the last SetUnits
command executed prior to this command. There are 3 speed control parameters, a
transition speed (percent of max), relative speed (percent of max), and delay (time in
seconds). The auxiliary data will be defined later.

retVal pathClearPath (in string PathName)>




LandScape Command Set

Clear the selected motion queue, one parameter.

<PathName> Name of path to clear This function will delete the path
<PathName>from the list of maintained motion queues.

3.5.2 Non-Blocking and Active State

These non-blocking commands are valid only in the Active State.

retVal pathMove (in string pathName, in int number_of _cycles)

perform a path move in which a motion queue is built up using the LoadPath command,
and then MoveAlongPath is executed.

The system will execute any digital IO or other commands specified in the auxiliary data.
<PathName> name of path to execute.

<number_of_cycles> integer value applicable only when the actual path move is

being performed; it indicates how many times to repeat the given path move
(a 0 implies dry run without aux data activation; if omitted, 1 is assumed).

If the function returns the return code CMD_STARTED_OK, then the supervisor
should expect an event which tells the supervisor that it has completed or an alarm
which indicates an error. Ifit returns CMD_EXECUTED_OK then the function
completed and no event monitoring needs to be performed. As the function proceeds
along a path, an event will be generated when the robot arrives at each individual
tagpoint. The event will have the name of the tagpoint as part of it’s data.

3.6 Asynchronous Interruption Commands

This section presents commands that perform asynchronous interruption commands.

3.6.1 Blocking and Moving State

These blocking commands are valid only in the Moving State.

retVal stopMotion ()

Stop current motion gracefully by generating a deceleration profile which follows the
original pre-planned path, no parameters.

3.6.2 Blocking and Paused or Locked State

These blocking commands are valid only in the Paused or Locked State.

-10-



LandScape Command Set

retVal resumeMotion ()

resume current motion gracefully by generating a acceleration profile which follows the
original pre-planned path, no parameters.

retVal abortMotion ()

aborts current motion stopped by stopMotion (), and clear the motion queue, no
parameters.

3.7 Sensor Dependent Commands

This section presents commands that perform Sensor Dependent Commands.

3.7.1 Blocking Command

This blocking command is State Independent.

retVal getSensorReading (in string sensor_type, out sequence double current_data)

<sensor_type> ASCII string which is associated with the name of a particular sensor

]

type, such as: “force_sensor”, “laser_standoff sensor”, etc.

<current_data> is the sequence of double data which is associated with the current
sensor reading.

3.7.2 Non-Blocking and Active State

retVal moveReact (in string SensorType, in double MotionOffsets[6], in double
MotionVelocity, in double ComplianceVelocity, in double Threshholds[6])

This non-blocking command is valid only in the Resting State.

It will perform a relative move until an activated sensor detects a threshold or event of
some kind, eight parameters + react parameters - thresholds, gains, sensor envelope.

<x>, <y>, <z> values converted to double specifying maximum distance and
direction to move relative to a tool or end effector frame defined at the tool tip
by a previous SetToolLength command (will move this far if a sensor
threshold is never reached).

¢ <c_x>, <c_y>, <c_z> values converted to double specifying maximum compliance
distance and direction to move which should be orthogonal to the regular
motion vector just defined (this normally will be a zero vector for MoveReact,
meaning no compliant motion, but rather just a “mov-til-touch” motion).

-11-



LandScape Command Set

<speed> converted to double (specifies speed for this move only - always interpreted
as a percent of max speed).

<c_speed> converted to double (specifies compliance speed for this move only -
should be 0 for MoveReact).

<t1>, <t2>, <t3> thresholds for the active sensor (currently only one non-zero
threshold should be specified, and if a sensor reading for this component
exceeds it, motion stops).

<gl>, <g2>, <g3> gains which influence the responsiveness of the algorithm
(currently only the first gain is utilized by the algorithm, the others are
ignored).

<minl>, <min2>, <min3> define the lower bounds for an envelope placed around the
sensor data to eliminate spikes (currently ignored).

<max1>, <max2>, <max3> define the upper bounds for an envelope placed around

the sensor data to eliminate spikes (currently only the first value is used, and
if a sensor reading exceeds this value, motion is terminated).

Note: These arguments may change or be interpreted differently in later releases
based on our experience gained from testing various types of react motion using
different sensors and different manipulators. If the function returns the return code
CMD_STARTED_OK, then the supervisor should expect an event which tells the
supervisor that it has completed or an alarm which indicates an error. If it returns
CMD_EXECUTED_OK then the function completed and no event monitoring needs
to be performed.

retVal comply (in string SensorType, in double Threshholds[6], in double MaxTimeout,
in short PanicStopCode, in double MaxTravelDistances[6]), in double
ProportionalGains[6]), in double DifferentialGains[6])

This non-blocking command is valid in both the Resting and Moving States.

It will perform a relative move while maintaining a continuous sensor reading in the
direction normal to motion; sensor readings are used to compute perturbations which are
added to the originally specified move in order to maintain compliance; eight parameters
+ compliance parameters - thresholds, gains, sensor envelope:

<x>, <y>, <z> values converted to double specifying maximum distance and
direction to move relative to a tool or end effector frame defined at the tool tip
by a previous SetToolLength command.

<c_x>, <c_y>, <c_z> values converted to double specifying maximum compliance
distance and direction to move which should be orthogonal to the regular
motion vector just defined.

-12-



LandScape Command Set

<speed> converted to double (specifies speed for this move only - always interpreted
as a percent of max speed).

<c_speed> converted to double (specifies compliance speed for this call).

<minl>, <min2>, <min3> define the lower bounds for an envelope placed around the
sensor data to eliminate spikes (currently ignored).

<max1>, <max2>, <max3> define the upper bounds for an envelope placed around
the sensor data to eliminate spikes (currently only the first value is used, and
if a sensor reading exceeds this value, motion is terminated).

Note: These arguments may change or be interpreted differently in later releases
based on our experience gained from testing various types of compliant motion using
different sensors and different manipulators. If the function returns the return code
CMD_STARTED_OK, then the supervisor should expect an event which tells the
supervisor that it has completed or an alarm which indicates an error. If it returns
CMD_EXECUTED_OK then the function completed and no event monitoring needs
to be performed.

3.7.3 Blocking and Locked State
These blocking commands are valid only in the Locked State.
retVal manualControl (in string type)

control the robot with some manual input device, one parameter.

<type> ASCII keyword specifying the type of manual control desired: teachpendant
spaceball off.

3.8 EndEffector Commands

This section presents commands that perform EndEffector Commands.

3.8.1 Blocking and State Independent

These blocking commands are state independent.

retVal getEndEffectorState (out string currentEE, in string EEState,......... 5)
<currentEE,> the name of the tool.

<EEState> string which describes the state of the tool.

retVal getTool (in string tool_ID)

-13-



LandScape Command Set

pick up a tool with the robot, orne parameter:

<tool_ID>ASCII string identifying the desired tool

retVal putTool (in string tool_ID)
put away a tool with the robot, one parameter:

<tool ID>ASCII string identifying the desired tool

retVal activateTool (in string tool ID, in long BitField)

retVal deactivateTool (in string tool_ID, in long BitField)

4.0 DIGITAL_IOIDL

This section describes the DIGITAL_IO IDL command set. The digital I/O interface will
work as follows: The set function will allow a user to set I/Os, the get function will allow the
user to query the I/Os, and the signalDigitallO will allow the user to set up a callback on the
IO, which will get invoked when the specified bits have been set.

4.1 Blocking and State Independent

These blocking commands are state independent.

retVal setDigitallO (in string type, in short unitID, in long bitsON, in long bitsOFF, in
string description)

<type> string which describes the type of IO being performed.
<unitID> short which describes which IO to toggle.
<bitsON> long which is the BitField of I/Os to activate.
<bitsOFF> long which is the BitField of I/Os to deactivate.

<description> string which describes the operation.

retVal getDigitallO (in string type, in short unitID, out long bitsON, in string
description)

<type> string which describes the type of IO being performed.
<unitID> short which describes which IO to query.
<bitsON> long which is the BitField of I/Os which are active.

-14-



LandScape Command Set

<description> string which describes the operation.

retVal signalDigitallO (in string type, in short unitID, in long bitString, in short
pollingTimeOut, in short pollingCycleTime, short callback_type)

<type> string which describes the type of IO being performed.
<unitID> short which describes which IO unit to monitor.

<bitString™> long which is the BitField of I/Os to which are being monitored for
change to a set state.

<callbackType> flag which specifies which function calls the client.

retVal sendCommand (in string input, out string result)

Vendor hook for custom commands.

typedef struct _retval

{
short ret_code;
string ret_msg;
} retVal;

5.0 Return Codes

This section describes the Return Codes. For coding convention, return codes greater than or
equal to 0 denote success and return codes less than 0 denote errors.

0 CMD _EXEC OK

This return code means that for blocking commands the command was executed and
completed with no errors.

1 CMD_STARTED OK

For non-blocking commands this means the command was understood and started
execution successfully.

-1  CMD_ERR

Generic error return code.

2  CMD_PARAM ERR

-45-



LandScape Command Set

Error parsing one of the parameters.

3 CMD _PARAM OUT _OF RANGE_ERR

Parameter is out of range.

6.0 Parameter Constants
This section describes the LandScape Parameter Constants.

enum OffsetType { ABSOLUTE_DATA, RELATIVE_DATA};

enum ReferenceFrame { JOINT_FRAME, BASE_CARTESIAN_FRAME,
WORLD_CARTESIAN_FRAME, TOOL_FRAME};

enum MotionType { JOINT_MOTION, STRAIGHT MOTION, SLEW_MOTION,
CIRCULAR _MOTION};

enum SpeedType { PERCENT SPEED, LINEAR_SPEED, ANGULAR SPEED};

enum AccelType { PERCENT_ACCEL, LINEAR ACCEL, ANGULAR_ACCEL};

-16 -



Distribution:

=R = = =y

MS1004
MS1004
MS1006

MS1010
MS9018

MS0899
MS0619

ISRC Library, 9623
Michael McDonald, 9623

Ross Burchard, 9671

Dan Small, 9622
Central Technical Files, 8940-2

Technical Library, 4916
Review and Approval Desk, 15102
for DOE/OSTI

-17-




