MS 0619-Review and Approval Desk, For DOE/OSTI

SANDIA REPORT

SAND98–1005 Unlimited Release Printed December 1998 RECEIVED DEC 13 1999 OSTI

REC OSH

Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite: Retardation Parameter Estimation for Non-Eluted Actinide Species

W. George Perkins, Daniel A. Lucero, and Glenn O. Brown

Prepared by / Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes Printed copy: A08 Microfiche copy: A01

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

SAND 98-1005 Unlimited Release Printed December 1998

Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite: Retardation Parameter Estimation for Non-Eluted Actinide Species

W. George Perkins
WIPP Regulatory Compliance Department

Daniel A. Lucero
WIPP Chemical and Disposal Room Processes Department

Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-1395

Glenn O. Brown
Biosystems and Agricultural Engineering Department
Oklahoma State University
Stillwater, OK 74078

ABSTRACT

The U.S. Department of Energy (DOE) has been developing a nuclear waste disposal facility, the Waste Isolation Pilot Plant (WIPP), located approximately 42 km east of Carlsbad, New Mexico. The WIPP is designed to demonstrate the safe disposal of transuranic wastes produced by the defense nuclear-weapons program. Performance assessment analyses (U.S. DOE, 1996) indicate that human intrusion by inadvertent and intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides from the disposal system. These releases may occur by five mechanisms: (1) cuttings, (2) cavings, (3) spallings, (4) direct brine releases, and (5) long-term brine releases. The first four mechanisms could result in immediate release of contaminant to the accessible environment. For the last mechanism, migration pathways through the permeable layers of rock above the Salado are important, and major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer in the disposal system. For reasons of initial quantity, half-life, and specific radioactivity, certain isotopes of Th, U, Am, and Pu would dominate calculated releases from the WIPP. In order to help quantify parameters for the calculated releases, radionuclide

transport experiments have been carried out using five intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. This report deals primarily with results of mathematical analyses related to the retardation of ²²⁸Th, ²⁴¹Pu, and ²⁴¹Am in two of these cores (B-Core - VPX26-11A and C-Core - VPX28-6C). All B-Core transport experiments were done using Culebra-simulant brine relevant to the core recovery location (the WIPP air-intake shaft -AIS). Most experiments with C-Core were done with AIS brine with some admixture of a brine composition (ERDA-6) that simulated deeper formation brines. No significant changes in transport behavior were observed for changes in brine. Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for the cores were obtained via experiments using conservative tracer ²²Na. Elution experiments carried out over periods of a few days with tracers ²³²U and ²³⁹Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers ²²⁸Th, ²⁴¹Pu, and ²⁴¹Am were performed, but no elution of any of these species was observed in any flow experiment to date, including experiments of up to two years duration. However, B-Core was subjected to tomographic analysis from which a retardation factor can be inferred for ²²⁸Th. Moreover, the fact of nonelution for ²⁴¹Pu and ²⁴¹Am after more than two years brine flow through C-Core can be coupled with the minimum detectable activity for each of these species to compute minimum retardation factors in C-Core. The retardation factors for all three species can then be coupled with the apparent hydraulic characteristics to estimate an apparent minimum solution/rock distribution coefficient, K_d, for each actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and their chemical and transport properties are therefore identical to those of isotopes in the WIPP inventory. The retardation factors and K_d values deduced from experimental results strongly support the contention that sorption in the Culebra provides an effective barrier to release of Th, Pu, and Am during the regulatory period.

Table of Contents

INTRODUCTION	V
	ÆNTS3
	4
	ow Conditions4
	Tomography Experiments4
Elution Experin	nents with ²⁴¹ Pu and ²⁴¹ Am
ESTIMATION O	F RETARDATION PARAMETERS8
	⁸ Th Retardation Parameter from γ-Ray Emission Tomography8
Estimation of ²⁴	Pu and ²⁴¹ Am Retardation Parameters
APPENDIX A.	DIMENSIONLESS FORM OF LINEAR-EQUILIBRIUM
	TRANSPORT EQUATION FOR ANALYSIS OF B-CORE AND
	C-CORE NON-ELUTION RESULTSA-1
APPENDIX B	DERIVATION OF RELATION BETWEEN DISSOLVED
	ACTINIDE CONCENTRATION AND TOTAL ACTINIDE
	CONCENTRATION IN THE ROCKB-1
APPENDIX C.	LISTING OF POSITION-TIME INPUT FILE (*.INP) FOR ²²⁸ Th
	COLUMN 1.4 CALCULATION
APPENDIX D.	LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR
	THREE ²²⁸ Th COLUMN 1.4 CALCULATIONS AT
	RETARDATION VALUES 5,000, 10,000, & 50,000D-1
APPENDIX E.	LISTINGS OF OUTPUT FILES (*.LOG) FOR THREE ²²⁸ Th
	COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES
	5,000, 10,000, & 50,000 E-1
APPENDIX F.	LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS
	SHOWING RELATIVE CALCULATED VS. OBSERVED 228Th
	CONCENTRATION AS FUNCTION OF DEPTHF-1
APPENDIX G.	MEMORANDUM FROM LOS ALAMOS NATIONAL
	LABORATORY CHEMICAL SCIENCE AND TECHNOLOGY
	DIVISIONG-1
APPENDIX H.	LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR
	THREE ²⁴¹ Pu COLUMN 1.4 CALCULATIONS AT
	RETARDATION VALUES 20,000, 20,500, & 21,000H-1
APPENDIX I.	LISTINGS OF OUTPUT FILES (*.LOG) FOR THREE ²⁴¹ Pu
	COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES
	20,000, 20,500, & 21,000
APPENDIX J.	LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS
	SHOWING RELATIVE CALCULATED 241Pu
	CONCENTRATION AS FUNCTION OF EFFLUENT BRINE
	VOLUME AT RETARDATION VALUES 20,000, 20,500, &
	21.000

APPENDIX K.	LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR
	THREE ²⁴¹ Am COLUMN 1.4 CALCULATIONS AT
	RETARDATION VALUES 25,500, 26,000, & 26,500 (For Full
	Injection Concentration, 20-mL Spike)
APPENDIX L.	LISTINGS OF OUTPUT FILES (*.LOG) FOR THREE ²⁴¹ Am
	COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES
	25,500, 26,000, & 26,500 (For Full Injection Concentration, 20-mL
	Spike) L-1
APPENDIX M.	Spike)L-1 LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS
	SHOWING RELATIVE CALCULATED 241 Am
	CONCENTRATION AS FUNCTION OF EFFLUENT BRINE
	VOLUME AT RETARDATION VALUES 25,500, 26,000, &
	26,500 (For Full Injection Concentration, 20-mL Spike)
APPENDIX N.	LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR
	THREE ²⁴¹ Am COLUMN 1.4 CALCULATIONS AT
	RETARDATION VALUES 25,000, 25,500, & 26,000 (FOR
	EQUILIBRIUM SATURATION CONCENTRATION, WITH
	RE-DISSOLUTION OF PRECIPITATED ²⁴¹ Am)N-1
APPENDIX O.	LISTINGS OF OUTPUT FILES (*.LOG) FOR RETARDATION
	VALUES 25,000, 25,500, & 26,000 (FOR EQUILIBRIUM
	SATURATION CONCENTRATION, WITH RE-DISSOLUTION
	OF PRECIPITATED ²⁴¹ Am)O-1
APPENDIX P.	LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS
	SHOWING RELATIVE CALCULATED 241 Am
	CONCENTRATION AS FUNCTION OF EFFLUENT BRINE
	VOLUME AT RETARDATION VALUES 25,000, 25,500, &
	26,000 (FOR EQUILIBRIUM SATURATION
	CONCENTRATION, WITH RE-DISSOLUTION OF
	PRECIPITATED ²⁴¹ Am)P-1
APPENDIX Q.	LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR
	THREE ²⁴¹ Am COLUMN 1.4 CALCULATIONS AT
	RETARDATION VALUES 11,000, 11,500, & 12,000 (FOR
	EQUILIBRIUM SATURATION CONCENTRATION,
	WITHOUT RE-DISSOLUTION OF PRECIPITATED ²⁴¹ Am)Q-1
APPENDIX R.	LISTINGS OF OUTPUT FILES (*.LOG) FOR THREE ²⁴¹ Am
	COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES
	11,000, 11,500, & 12,000 (FOR EQUILIBRIUM SATURATION
	CONCENTRATION, WITHOUT RE-DISSOLUTION OF
	PRECIPITATED ²⁴¹ Am)R-1
APPENDIX S.	LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS
	SHOWING RELATIVE CALCULATED 241 Am
	CONCENTRATION AS FUNCTION OF EFFLUENT BRINE
	VOLUME AT RETARDATION VALUES 11,000, 11,500, &
	12,000 (FOR EQUILIBRIUM SATURATION
	12,000 (1 OK EQUILIDIKIUM DATUKATIUM

CONCENTRATION, WITHOUT RE-DISSOLUTION OF	
PRECIPITATED ²⁴¹ Am)	-1

•

•

List of Tables

Table 1.	Borehole properties	4
	Test sample core properties.	
	Summary of B- and C-Core flow experiments	
	Estimated R and K _d Values for Actinides	

List of Figures

Schematic diagram of the apparatus used for intact-core column flow and
transport experiments3
Total cross section activity for ²²⁸ Th daughters ²²⁴ Ra and ²¹² Pb (at 240 keV)
as a function of time at various depths below the brine inlet in B-Core
Total cross section activity for ²²⁸ Th daughters ²²⁴ Ra and ²¹² Pb (at 240 keV)
as a function of depth below the brine inlet in B-Core at various times
Comparison of relative observed total cross section activity for ²²⁸ Th
daughters ²²⁴ Ra and ²¹² Pb with relative total concentration of ²²⁸ Th in B-
Core, calculated for three different retardation values, $R = 5,000, 10,000$,
and 50,000
Effluent volume vs. time for C-Core experiments with ²⁴¹ Pu and ²⁴¹ Am8
Calculated relative eluted concentration vs. effluent volume for ²⁴¹ Pu
elution through C-Core
Calculated relative eluted concentration vs. effluent volume for ²⁴¹ Am
elution through C-Core. This calculation assumes that all injected ²⁴¹ Am
remains in solution until it can interact by sorption on surfaces in the core 13
Calculated relative eluted concentration vs. effluent volume for ²⁴¹ Am
elution through C-Core. This calculation assumes that only the saturated
concentration of ²⁴¹ Am remains in solution initially but that the precipitated
²⁴¹ Am subsequently dissolved due to solvent flow
Calculated relative eluted concentration vs. effluent volume for ²⁴¹ Am
elution through C-Core. This calculation assumes that only the saturated
concentration of ²⁴¹ Am remains in solution and that the precipitated ²⁴¹ Am
remains insoluble

This page has been intentionally left blank.

INTRODUCTION

Under the authorization of Public Law 96-164 (1979), the U.S. Department of Energy (DOE) has been developing a nuclear waste disposal facility, the Waste Isolation Pilot Plant (WIPP), located approximately 42 km east of Carlsbad, New Mexico. The WIPP is designed to demonstrate the safe disposal of transuranic wastes produced by the defense nuclear-weapons program. Transuranic waste is defined as waste contaminated with radionuclides having an atomic number greater than 92, a half-life greater than 20 years and a concentration greater than 100 nCi/g (U.S. EPA, 1993). This radioactive waste is regulated by U.S. Environmental Protection Agency regulations 40 CFR Part 191 (U.S. EPA, 1993). The regulation sets limits on cumulative radioactive release to the accessible environment over 10,000 years and requires that Performance Assessment (PA) analyses be performed to demonstrate WIPP facility compliance with the regulations.

Performance assessment analyses (U.S. DOE, 1996) indicate that human intrusion by inadvertent and intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides from the disposal system. These releases may occur by five mechanisms: (1) cuttings, (2) cavings, (3) spallings, (4) direct brine releases, and (5) long-term brine releases. The first four mechanisms could result in immediate release of contaminant to the accessible environment. For the last mechanism, migration pathways through the permeable layers of rock above the Salado are important, and major emphasis is placed on the Culebra Member of the Rustler Formation because this is by far the most transmissive geologic layer in the disposal system. Considerable empirical and conceptual modeling work has been done on the hydrology (Meigs *et al.*, 1997) and contaminant-transport (Brush, 1998; Holt, 1997) characteristics of the Culebra dolomite.

The rationale for selection of certain isotopes of Th, U, Am, and Pu for Culebra transport calculations in performance assessment is given in the WIPP Compliance Certification Application (CCA, U.S. DOE, 1996, Appendix WCA). For reasons of initial quantity, half-life, and specific radioactivity, the isotopes listed in the CCA would dominate calculated releases from the WIPP. The rationale for the specific isotopes used in the intact-core column experiments has to do with radiolytic analysis of the species and is discussed in detail by Lucero *et al.* (1998).

Empirical batch sorption experiments have provided most of the actinide-dolomite sorption values submitted for performance assessment calculations (Brush, 1998). However, flow experiments with intact rock columns of Culebra dolomite have also been used to demonstrate actinide retardation. The intact-core column flow experiments provide information on the effects of advective fluid flow on sorption behavior in the Culebra dolomite at small scale. The technical scope and requirements for these experiments are described in a test plan (Lucero et al., 1995) and in a report on the work (Lucero et al., 1998). In the experiments, steady state flows of Culebra-relevant brine were first established in several intact-core columns that had been recovered from the Culebra at the location of the WIPP Air-Intake Shaft. At various times after steady-state flow was established in a given core, relatively small pulses of brine containing one or more dissolved radioactive species were injected into the general flow at the upstream

end of the column. The effluent brine was then analyzed as a function of time by either γ ray spectroscopy or liquid scintillation counting for each of the injected species.

Selection criteria for isotopes used in the intact-core column experiments included halflife, nature of decay emission, and possible interference from radioactive daughter
products. Lucero *et al.* (1998) discusses experimental isotope selection in detail.

Experimental results indicate that the species ³H (as tritiated water) and ²²Na⁺ are "conservative tracers" that are not significantly retarded by surface-chemical interactions with the rock. As described by Lucero *et al.* (1998), elution times for ³H and ²²Na⁺ were used to estimate core hydraulic characteristics such as apparent porosity and apparent dispersion coefficient. In addition, ²²Na is a positron emitter, and the resulting 0.51 MeV γ-ray emission can be used in γ-ray emission tomography to estimate the degree of brine access to the core porosity (Behl and Lucero, 1996). The actinide species ²³²UO₂⁺⁺ and ²³⁹NpO₂⁺ have been observed to elute with some degree of retardation from all columns into which they were introduced. On the other hand, none of the species ²⁴¹Am, ²⁴¹Pu, and ²²⁸Th has been observed to elute from any of the columns into which they were introduced.

Transport retardation characteristics of each eluted radioactive species were inferred from species elution time dependence using computer code COLUMN, a one-dimensional transport code, with single-porosity and dual-porosity capabilities, that was first developed in the C++ programming language by Budge (1996) for use on UNIX workstations. The UNIX version (COLUMN 1.3) was relatively difficult to use because of the somewhat awkward input files required. Brown *et al.* (1997) developed a Windows version (COLUMN 1.4) that uses a Microsoft Visual Basic interface to simplify input. COLUMN 1.4 is designed to run under any of the Microsoft Windows 95, Windows NT 3.51, and Windows NT 4.0 operating systems. Both versions of COLUMN have been approved for use under quality assurance procedures relevant to the WIPP Project (Sandia National Laboratories, 1996, 1997). COLUMN 1.4 has been used to infer retardation parameters from radionuclide elution data for a large number of experiments (Lucero *et al.*, 1998).

Holt (1997) used a multi-rate dual-porosity model to interpret results of field conservative tracer tests at the WIPP site (Meigs *et al.*, 1997). Holt (1997) argues that, for the small geometry of the intact-core column experiments with the conservative tracer Na⁺ and the weakly retarded tracers U(VI) and Np(V), only the advective porosity is accessed by the tracer during the short transit times characteristic of these experiments. Since only a fraction of the total porosity is involved in the experiments, the single-porosity treatment of the small-scale intact rock-column elution experiments will tend to provide low values for retardation factors calculated for the weakly-retarded species.

The objective of the present report is to provide estimates of retardation parameters for ²²⁸Th, ²⁴¹Pu, and ²⁴¹Am as determined from the results of brine-flow experiments with intact-core columns obtained from the Culebra dolomite member of the Rustler formation near the WIPP site in southeastern New Mexico. These estimates can then be compared to values obtained in other ways. One can also describe the impact of actinide retardation on possible actinide transport from the repository to the general environment.

Computerized γ -ray emission tomography of some of the ²²⁸Th decay daughter products permits determination, with approximately 1-centimeter resolution, of ²²⁸Th location in a core after a period of brine flow. For ²⁴¹Pu and ²⁴¹Am, estimates of minimum retardation parameters can be obtained from core hydraulic characteristics, total flow duration (volume), and non-elution of the actinides above the minimum detectable activity for each actinide.

FLOW EXPERIMENTS

Figure 1 shows a schematic diagram of the apparatus used for intact-core column flow and transport experiments. Detailed information on test materials, equipment and procedures for the intact-core column flow experiments are presented in Behl and Lucero (1996), Lucero *et al.* (1998), and WIPP Laboratory Notebooks (Lucero, 1995-1996). The pumping system shown in Figure 1 can be used to provide a constant flow rate of a given brine composition through an intact-core column. In addition, there is provision to inject a relatively small volume of radioisotope-doped brine at the injection end of the column. Finally, the experimenters can collect fractions of the effluent brine at the outlet end of the column. The detection equipment used to perform γ -ray emission tomography is not shown in Figure 1. This equipment is described briefly in the test plan (Behl and Lucero, 1996) and more fully in laboratory notebooks (Lucero, 1995-1996).

Elution Experiment Setup

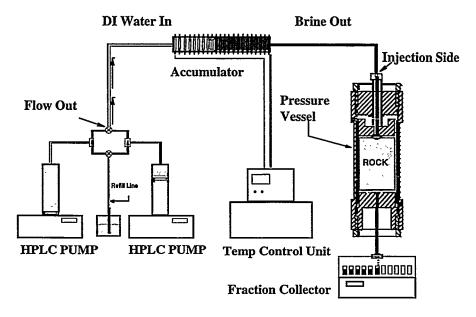


Figure 1. Schematic diagram of the apparatus used for intact-core column flow and transport experiments.

The sections below summarize procedures and parameters specific to intact-core columns discussed in this report.

Core Properties

Table 1 gives a description of the VPX26 and VPX28 bore holes from which B-Core and C-Core were recovered, and Table 2 summarizes the physical dimensions and estimated hydraulic properties of the cores. The porosity estimates given in Table 2 were calculated by Lucero *et al.* (1998) and represent the estimated total porosity available in each core.

Table 1. Borehole properties.

Borehole	VPX'26	VPX 28
Depth below surface (m)	218.2	219.9
Side of AIS	North	South
Borehole flow (L/min)	0.16	0.16
pH	7.69	8.09
Temperature (°C)	20.9	20.1

Table 2. Test sample core properties.

Series	В	С
Core: VPX	26-11A	28-6C
Cut core measures		
Length (cm)	50.9	10.2
Diameter (cm)	14.5	14.5
Volume (cm ³)	8404	1666
Wet weight (gm)	20,900	4146
Estimated Properties		
Dry bulk density (gm/cm ³)	2.40	2.40
Porosity	0.14	0.14

Injection and Flow Conditions

Table 3 summarizes the test information for the flow experiments performed on B- and C-Cores. All experiments except C-5 and C-7 were carried out using air-intake shaft (AIS) brine. Experiments C-5 and C-7 were performed using ERDA-6 brine (which is typical of the Salado formation). Lucero *et al.* (1998) observed no significant impact of brine composition on actinide retardation. One notes from Table 3 that ²²⁸Th was injected only once into B-Core (Experiment B-3), and that a solution spike containing ²⁴¹Pu and ²⁴¹Am was injected only once into C-Core (Experiment C-3).

γ-Ray Emission Tomography Experiments

The purpose of the γ -ray tomography experiments was to attempt formation of a three-dimensional image of radioisotopes within a core. As defined in Behl and Lucero (1996), the spatial resolution for location of γ emitter was about 1 cm. Thus, although one could obtain a qualitative image, quantification of the image was limited in resolution. The main use of tomography was with the 0.51-MeV signature of ²²Na. However, it was possible to study the location of ²²⁸Th in the core as well.

Table 3. Summary of B- and C-Core flow experiments

Test Number	Tracer	Spike Volume (mL)	Pump Speed (mL/min)	Test Objective
(Start Date)	0.0460: 377			Donosity
B-1	0.246 μCi ³ H	13	0.1	Porosity
(9/6/95)	0.60 6: 2237	10	101	measurement
B-2 (9/22/95)	8.69 μCi ²² Na 375 μCi ²³⁹ Np	18	0.1	γ-Tomography; Np Retardation
B-3	8.23 μCi ²² Na	13.7	0.1	γ-Tomography,
(10/4/95)	70.7 μCi ²³² U	1		U and Th
(70.7 μCi ²²⁸ Th			Retardation
B-4	300 μCi ²² Na	2000	0.1	γ-Tomography
(11/6/95)	:			
B-5	274 μCi ²² Na	2000	0.05	γ-Tomography
(12/7/95)				' '
B-6	4.22 μCi ²² Na	17	0.05	U Retardation
(1/30/96)	5.94μCi ²³² U			
B-7	9.0 μCi ²² Na	18	0.5	U Retardation
(4/16/96)	4.28 μCi ²³² U			
B-8	220 μCi ²² Na	2000	0.5	γ-Tomography
(4/23/96)				
C-1	1μCi ²² Na	20	0.1	Porosity
(5/1/95)	10μCi ³ H			
C-2	3.7μCi ²² Na	20	0.1	U and Th
(6/19/95)	10μCi ²³² U	-		Retardation
	10µCi ²²⁸ Th			
C-3	3.3µCi ²² Na	20	0.1	Pu and Am
(7/10/95)	20μCi ²⁴¹ Pu	l		Retardation
	5.6µCi ²⁴¹ Am			
C-4	11.5μCi ²² Na	10	0.1	Np Retardation
(7/26/95)	78.3μCi ²³⁹ Np			
C-5 *	3.4µCi ²² Na	10	0.1	Evaluate
(9/13/95)	26.8μCi ²³⁹ Np			Brine Effects on
	4.8μCi ²³² U	1		Np, U and Th Retardation
	4.8µCi ²²⁸ Th	0.5	0.1	
C-6	5.3μCi ²² Na	8.5	0.1	Duplicate Np Retardation
(10/18/95)	175μCi ²³⁹ Np		 	
C-7 *	6.83μCi ²² Na	10	0.1	Duplicate
(11/17/95)	327μCi ²³⁹ Np 50μCi ²³² U			Brine Effects
Pause (4/9/96)		,		- 4
Restart			0.05	
(6/4/96)	1			
End				
(9/2/97)				

^{*} All experiments except C-5 and C-7 were carried out using air-intake shaft (AIS) brine. Experiments C-5 and C-7 were performed using ERDA-6 brine (typical of the Salado formation). Lucero *et al.* (1998) observed no significant impact of brine composition on retardation of eluted actinides ²³²U and ²³⁹Np.

After injection of ²²⁸Th into B-Core, brine flow was maintained at 0.1 mL/min for the following 64 days. The flow rate was then reduced to 0.05 mL/min, the rate that was maintained for the following 131 days.

Although 228 Th is itself primarily an α -particle emitter, its decay chain includes the isotopes 224 Ra ($t_{1/2}=3.7$ d, 241 keV γ) and 212 Pb ($t_{1/2}=10.6$ h, 239 keV γ). The half-lives of both these daughter products are significantly less than that of 228 Th (1.9 a), so the daughters grow rapidly into equilibrium with the decaying 228 Th.

Figure 2 shows results of 240-keV γ -ray emission tomography of the B-Core taken at various depths below the brine inlet as functions of time for about one month after initial ²²⁸Th injection. Within 200 hours, the daughters appear to have reached steady state, which is consistent with their short half-life values. More interesting, however, is the fact that the signal drops off rapidly with distance from the inlet. Figure 3 shows γ -ray emission tomography data for the same experiment as a function of distance from the inlet at various times after injection. The 192-day tomography was performed 128 days after the flow rate was reduced to 0.05 mL/min.

Test B3: Th-228 Daughters

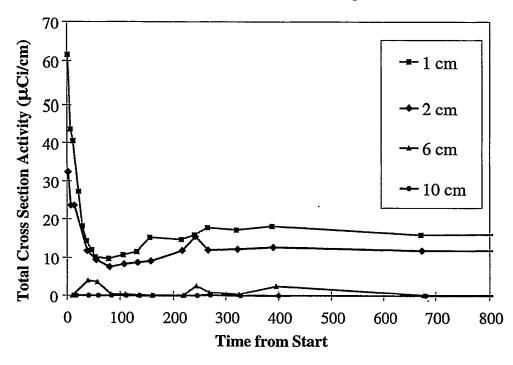


Figure 2. Total cross section activity for ²²⁸Th daughters ²²⁴Ra and ²¹²Pb (at 240 keV) as a function of time at various depths below the brine inlet in B-Core.

Test B3: Th-228 Daughters

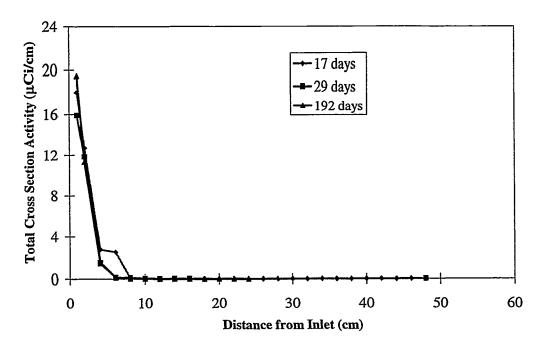


Figure 3. Total cross section activity for ²²⁸Th daughters ²²⁴Ra and ²¹²Pb (at 240 keV) as a function of depth below the brine inlet in B-Core at various times.

Elution Experiments with ²⁴¹Pu and ²⁴¹Am

The purpose of the ²⁴¹Pu and ²⁴¹Am elution experiment with C-Core (Test Number C-3) was to determine retardation parameters for these isotopes by measuring breakthrough of the isotopes at the outlet end of C-Core. In fact, breakthrough was never observed for either isotope. Based on this fact and on the known minimum detectable activity for each isotope, it is possible to estimate minimum values for the retardation parameters.

After injection of ²⁴¹Am and ²⁴¹Pu on 7/10/95, brine flow was maintained at 0.1 mL/min until 4/9/96, for 274 calendar days. However, Lucero (1995-1996) reports only 269 flow days due to a five-day flow interruption during December 1995. Flow was interrupted from 4/9/96 until 6/4/96, when flow was re-initiated at the reduced rate of 0.05 mL/min. The 0.05 mL/min flow rate was maintained from 6/4/96 until 9/2/97, on which date the C-Core experiments were suspended. Total flow time at the reduced rate was 455 days. A plot of cumulative flow vs. time is given in Figure 5. The total brine flow volume from the injection of ²⁴¹Am and ²⁴¹Pu to final experiment suspension was 71.5 L.

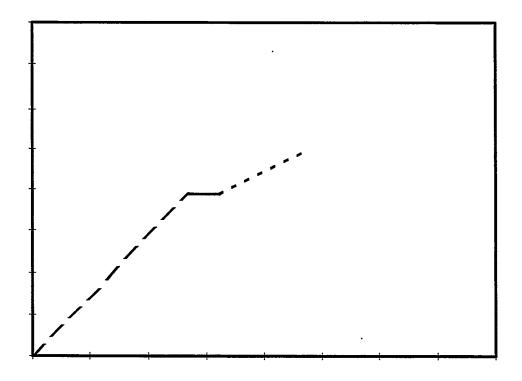


Figure 5. Effluent volume vs. time for C-Core experiments with ²⁴¹Pu and ²⁴¹Am.

ESTIMATION OF RETARDATION PARAMETERS

Estimation of ²²⁸Th Retardation Parameter from γ-Ray Emission Tomography

Any attempt to estimate a ²²⁸Th retardation parameter with the computational tool available (the COLUMN code) from the experimental data of Figures 2 and 3 is complicated by the change in flow rate 64 days after initial ²²⁸Th injection. However, because the single-porosity transport model is linear and because the experimental observations indicate very little migration of the ²²⁸Th, it seems reasonable to use brine volume, rather than time, as the independent variable for comparing experimental results to model predictions. Parker and van Genuchten (1984) defined a transformation of variables that permits one to use pore volumes rather than time as the independent variable for the linear equilibrium single-porosity transport equation. This transformation of variables for both B-Core and C-Core experiments is discussed in Appendix A. We can use the transformed variables and parameters in COLUMN 1.4 to account for the change in flow rate and to calculate ²²⁸Th depth profiles as functions of retardation coefficient R. Using transformed variables, the COLUMN 1.4 output provides dissolved actinide concentration as a function of fractional distance through the intact-core column. The experimental activity data of Figure 3 are proportional to ²²⁸Th concentration per unit volume of rock plotted as a function of depth in centimeters. Thus, comparison of the calculation results with the data of Figure 3 requires transformations of the calculated

depth and concentration variables. By Equation A-3, the depth variable used for calculation was Z, units of core lengths. Thus, the depth in centimeters is z = L Z, where L = 50.9 cm. Dissolved concentration, C_{sol} , can be converted to concentration in the rock, C_T , via the formula in Equation 1, which is derived in Appendix B.

$$C_{T} = \theta C_{sol} R \tag{1}$$

In Equation 1, θ is the porosity used for the calculations, C_{sol} is the calculated dissolved concentration, and R is the apparent retardation factor.

COLUMN 1.4 uses or creates two input files and generates one or two output files. The first input file is a "*.inp" file that contains two columns. The first column gives z values at which dissolved actinide concentration is to be calculated, and the second column gives a time value for the calculation. Variable z implies fixed time, and variable time implies fixed z. Appendix C contains a listing of the file "Th_vs_Z_Vol.inp." The first column of the listing gives depths Z at which dissolved ²²⁸Th concentration was to be calculated (in units of core length). The second column gives the time at which the calculations were to be performed (in units of pore volume).

The second COLUMN 1.4 input file is a "*.col" file that contains control information for the calculations to be performed. This information includes a run title, input and output file names, model identification, curve type, parameter values, and information on input spikes. For this report, three calculations were performed for thorium, at retardation values of 5,000, 10,000, and 50,000. The three corresponding "*.col" files are listed in Appendix D.

The two COLUMN 1.4 output files are "*.log" and "*.out" files. The "*.log" file contains run identification information from the input "*.col" file as well as computational results. Thus, only the "*.log" files for the three ²²⁸Th calculations are listed in Appendix E.

Finally, Microsoft Excel 97 spreadsheet software was used to transform several of the COLUMN 1.4 output variables for comparison with experimentally observed data. First, depth Z was converted from dimensionless units of core length to depth z in centimeters. Second, calculated solution concentration for each of the three retardation values was converted to concentration in the rock via Equation (1). Third, each calculated total concentration value for a given retardation value was divided by the maximum calculated concentration value for that retardation value to obtain a relative calculated concentration profile. Finally, each observed value of total ²²⁸Th daughter activity was divided by the maximum observed total ²²⁸Th daughter activity to obtain a relative observed activity profile. The Microsoft Excel 97 chart capability was then used to co-plot the relative calculated ²²⁸Th concentration profiles with the observed relative total ²²⁸Th daughter activity profile. Appendix F contains: a) the Microsoft Excel 97 spreadsheet with the computational results; b) a spreadsheet that reports formulas that were used to generate the computational results; and c) an Excel 97 chart that depicts the relation of calculated to observed concentration profiles. Row and column indices are included in the two spreadsheets, which allows for connection between the computational results and the formulas used to compute them. The graphical data are also included as Figure 4. It is obvious from Figure 4 that there is rather good agreement between the observed relative

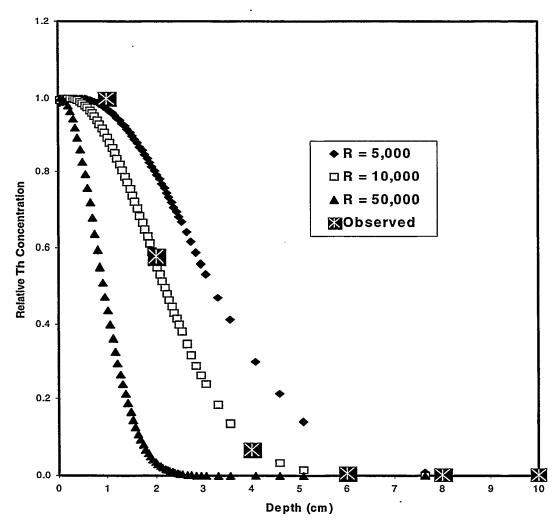


Figure 4. Comparison of relative observed total cross section activity for 228 Th daughters 224 Ra and 212 Pb with relative total concentration of 228 Th in B-Core, calculated for three different retardation values, R = 5,000, 10,000, and 50,000.

concentration profile and the relative concentration profile calculated for retardation parameter $R(^{228}Th) = 10,000$.

Estimation of ²⁴¹Pu and ²⁴¹Am Retardation Parameters

For the C-Core experiments, there are no data regarding a concentration profile of either ²⁴¹Pu or ²⁴¹Am. However, one can use the fact that no elution of either isotope has been observed above its minimum detectable activity (MDA) to estimate minimum retardation parameters for the isotopes.

As was true for ²²⁸Th, attempts to model transport of ²⁴¹Pu and ²⁴¹Am using the code COLUMN 1.4 are complicated by the pause in flow and the change in flow rate for the C-Core experiments. However, it again seems reasonable to use effluent brine volume as the independent variable for modeling calculations. The Parker and van Genuchten

(1984) variable transformations for ²⁴¹Pu and ²⁴¹Am are discussed in Appendix A. Unlike the case with ²²⁸Th, we do not seek to match a measured concentration depth profile. Rather, we seek to estimate the minimum retardation parameter R that can be used to explain the fact that actinide elution has not been observed even for very large brine-flow volume.

We use the transformed variables and parameters in COLUMN 1.4 to account for changes in the flow rate and to calculate effluent ²⁴¹Pu and ²⁴¹Am concentrations as functions of time (eluted volume) and retardation coefficient R. The eluted volume for experiment C-3 is calculated in Appendix A. The most common use of COLUMN 1.4 is to calculate actinide concentration in effluent brine at the outlet of an intact-core column. Our strategy for estimating the retardation parameter is to carry out a series of calculations at different values of R, seeking the minimum R value for which we would predict observable actinide breakthrough at the known total effluent volume.

It is convenient to scale actinide concentrations as multiples of the minimum detectable activity for each actinide. COLUMN 1.4 can then be used for a given R-value to calculate scaled eluted concentration as a function of effluent volume. At the critical R-value for a given actinide, a plot of calculated scaled eluted concentration should achieve the value 1.0 for effluent volume equal to the total observed effluent volume.

Before the calculations can be carried out, however, it is necessary to examine critically the ²⁴¹Pu and ²⁴¹Am input concentrations listed in Table 3. Appendix A contains detailed discussion of the saturated concentrations used in the calculations and the rationale used for developing input parameters for the COLUMN 1.4 calculations. Briefly, using minimum saturated concentrations reported by Craft and Siegel (1998), we deduce that the initial ²⁴¹Am spike was probably supersaturated by a factor of 52.4. The ²⁴¹Pu spike was probably not supersaturated, whether the ²⁴¹Pu was present as ²⁴¹Pu⁴⁺ or ²⁴¹Pu⁵⁺. Thus, for ²⁴¹Pu, calculations were carried out using input parameters derived from the data in Table 3. For ²⁴¹Am, which almost certainly was present as ²⁴¹Am³⁺, calculations were carried out using parameters derived directly from the data in Table 3 and also for a saturated solution of ²⁴¹Am³⁺.

For the calculations carried out for ²⁴¹Pu and ²⁴¹Am, COLUMN 1.4 uses only the "*.col" file, which contains control information for the calculations to be performed. This information includes a run title, input and output file names, model identification, curve type, parameter values, information on input spikes, and distance-time specifications for the calculations. For both ²⁴¹Pu and ²⁴¹Am, the distance was fixed at 1.0 (units of column length), and the maximum "time" was set at 1,290 (units of pore volume). Calculations were done for pore-volume increments of 12.9 to generate 100-point plots.

Three calculations were performed for ²⁴¹Pu, at retardation values of 20,000, 20,500, and 21,000. The three corresponding "*.col" files are listed in Appendix H, and the three corresponding "*.log" files (output) are listed in Appendix I.

Microsoft Excel 97 spreadsheet software was used to transform several of the COLUMN 1.4 output variables for ²⁴¹Pu to a format that could be plotted conveniently. Effluent volume was converted from dimensionless units of pore volume to volume in liters. The calculated solution concentration for each of the three retardation values was left in terms

of multiples of the minimum detectable activity per unit volume to facilitate visual inspection of the plotted values. The Microsoft Excel 97 chart capability was used to coplot the calculated 241 Pu eluted relative concentrations as functions of effluent volume for each of the three retardation values. Appendix J contains: a) the Microsoft Excel 97 spreadsheet with the computational results; b) a spreadsheet that reports formulas that were used to generate the computational results; and c) an Excel 97 chart that depicts the calculated eluted 241 Pu concentration as a function of effluent volume. Row and column indices are included in the two spreadsheets, which allows for connection between the computational results and the formulas used to compute them. The graphical data are also included as Figure 6. If detectable 241 Pu breakthrough had been observed just before flow was stopped at 71.7 L, we would conclude that 20,000 < R < 21,000. Since detectable 241 Pu breakthrough was not observed, we conclude $R \ge 2 \times 10^4$ for 241 Pu in these experiments.

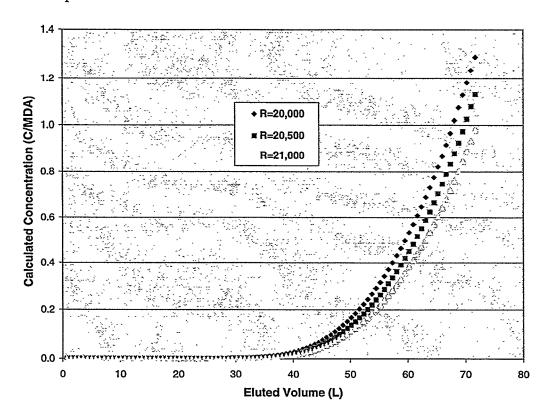


Figure 6. Calculated relative eluted concentration vs. effluent volume for ²⁴¹Pu elution through C-Core.

Nine calculations were performed for ²⁴¹Am. The first three calculations were performed assuming a 20-mL input spike at the full concentration reported in Table 3 for Test C-3 (0.28 μCi/mL). Calculations were done at retardation values of 25,500, 26,000, and 26,500. The three corresponding "*.col" files are listed in Appendix K, and the three corresponding "*.log" files (output) are listed in Appendix L. Appendix M contains: a) a Microsoft Excel 97 spreadsheet with the computational results for the three R values; b) a

spreadsheet that reports formulas used to generate the computational results; and c) an Excel 97 chart that depicts the calculated eluted 241 Am relative concentration as a function of effluent volume. The graphical data are also included as Figure 7. If all injected 241 Am remained in solution, and detectable 241 Am breakthrough had been observed just before flow was stopped at 71.7 L, we might conclude that 25,500 < R < 26,500 (or that the retardation is $R \ge 2.6 \times 10^4$). However, it is unlikely that all injected 241 Am remained in solution.

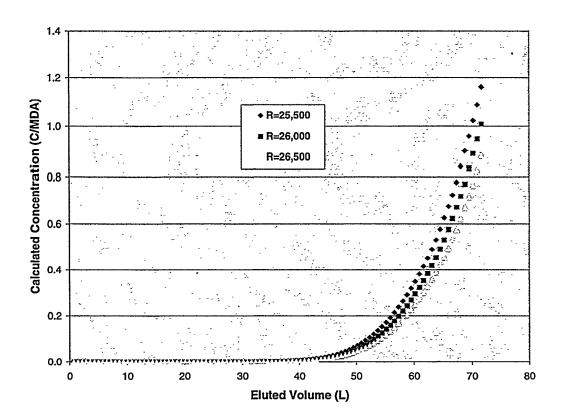


Figure 7. Calculated relative eluted concentration vs. effluent volume for ²⁴¹Am elution through C-Core. This calculation assumes that all injected ²⁴¹Am remains in solution until it can interact by sorption on surfaces in the core.

The second set of three calculations for 241 Am was performed assuming a saturation-concentration (5.3 x $10^{-3} \,\mu\text{Ci/mL}$) input spike with spike volume of 1,048 mL. This set of assumptions is based on the idea that, even though most of the 241 Am initially precipitated, adequate solvent flow occurs to dissolve the precipitate. The extended spike volume is only 1.5% of the total effluent used in this experiment. Calculations were done at retardation values of 25,000, 25,500, and 26,000. The three corresponding "*.col" files are listed in Appendix N, and the three corresponding "*.log" files (output) are listed in Appendix O. Appendix P contains: a) a Microsoft Excel 97 spreadsheet with the computational results for the three \dot{R} values; b) a spreadsheet that reports formulas used

to generate the computational results; and c) an Excel 97 chart that depicts the calculated eluted 241 Am relative concentration as a function of effluent volume. The graphical data are also included as Figure 8. These calculations assume that most of the injected 241 Am initially precipitated but was subsequently dissolved due to introduction of additional brine. If, then, detectable 241 Am breakthrough had been observed just before flow was stopped at 71.7 L, we might conclude that 25,000 < R < 26,000 (or that the retardation is $R \ge 2.6 \times 10^4$). This scenario is more likely than the one in which the entire 241 Am spike remained in solution. Even so, the retardation values calculated for these two scenarios are nearly identical because for either scenario, the total volume of the input spike is still a small fraction of the total flow volume.

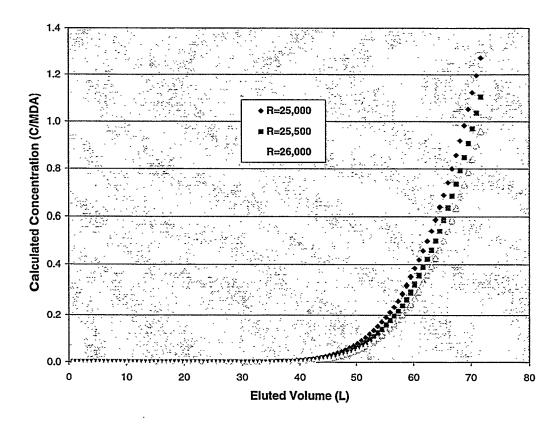


Figure 8. Calculated relative eluted concentration vs. effluent volume for ²⁴¹Am elution through C-Core. This calculation assumes that only the saturated concentration of ²⁴¹Am remains in solution initially but that the precipitated ²⁴¹Am subsequently dissolved due to solvent flow.

The final set of three calculations for 241 Am was performed using the quite conservative assumption that all the 241 Am except the saturation concentration (5.3 x 10^{-3} µCi/mL) precipitates irreversibly. Thus, the input spike volume was 20 mL, and no re-dissolution of the precipitate occurred. Calculations were performed at retardation values of 11,000, 11,500, and 12,000. The three corresponding "*.col" files are listed in Appendix Q, and the three corresponding "*.log" files (output) are listed in Appendix R. Appendix S

contains: a) a Microsoft Excel 97 spreadsheet with the computational results for the three R values; b) a spreadsheet that reports formulas used to generate the computational results; and c) an Excel 97 chart that depicts the calculated eluted 241 Am relative concentration as a function of effluent volume. The graphical data are also included as Figure 9. These calculations assume that most of the injected 241 Am initially precipitated irreversibly and was not subsequently dissolved. If, then, detectable 241 Am breakthrough had been observed just before flow was stopped at 71.7 L, we might conclude that 11,000 < R < 12,000 (or that the retardation is R \geq 1.1 x 104). This scenario is considerably more pessimistic than the one in which the precipitated 241 Am was dissolved. The retardation value calculated for this scenario is considerably lower than for the other two scenarios. The true situation is probably intermediate between the second and third scenarios.

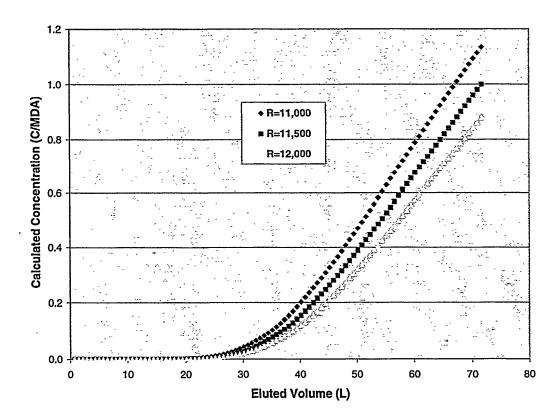


Figure 9. Calculated relative eluted concentration vs. effluent volume for ²⁴¹Am elution through C-Core. This calculation assumes that only the saturated concentration of ²⁴¹Am remains in solution and that the precipitated ²⁴¹Am remains insoluble.

DISCUSSION

The comparison of calculated and experimental concentration profiles for 228 Th in B-Core for an extended flow indicates that the retardation $R \approx 10^4$. For the linear adsorption isotherm approximation, R is defined (e.g., by Fetter, 1993) by the formula

$$R = 1 + (\rho_b K_d/\theta), \qquad (2)$$

where ρ_b is the rock bulk density (about 2.4 g cm⁻³ for Culebra dolomite), K_d is the distribution coefficient between dissolved and sorbed actinide (cm³ g⁻¹), and θ is the dimensionless advective porosity. For a given R-value, the solution-surface distribution coefficient can be calculated via

$$K_d = (R - 1) \theta / \rho_b \tag{3}$$

For B-Core, Lucero *et al.* (1998) report $\theta \approx 0.09$ (the mean result of fitting data from six elution experiments using conservative tracer ²²Na). This value is less than the estimated bulk porosity (≈ 0.14) probably because the ²²Na elution experiments sample only the advective porosity, rather than the total porosity, of the column. For all cores used in these experiments, $\rho_b \approx 2.4$ g cm⁻³. Thus, for $R \approx 10^4$ for ²²⁸Th translates into $K_d(^{228}Th) \approx 375$, which is of the same order of magnitude as the lower end of the Th(IV) K_d range determined by batch sorption (Lucero, *et al.*, 1998 – Appendix D, Table 1).

Lucero *et al.* (1998) use $\theta \approx 0.033$ for their C-Core fitting calculations. If we use this value of θ and $\rho_b \approx 2.4$ g cm⁻³, calculation of K_d for ²⁴¹Pu and ²⁴¹Am is straightforward. Results of the calculations are summarized in Table 4. The ²²⁸Th results are included in Table 4 for completeness.

Isotope	Concentration Assumption	Estimated R Value	Estimated K _d (cm ³ /g)
²²⁸ Th	As dissolved	10,000	375
²⁴¹ Pu	As dissolved	20,000	275
²⁴¹ Am	As dissolved	26,000	357
²⁴¹ Am	Equilibrium Saturation with Redissolution	25,000	344
²⁴¹ Am	Equilibrium Saturation NO Re-dissolution	11,000	151

Table 4. Estimated R and K_d Values for Actinides

It is worth emphasizing that the estimated R and K_d values for Pu and Am are based on assuming breakthrough on the day that the experiment was retired. Since breakthrough was **NOT** observed, we conclude that the values estimated are smaller than the actual values would be.

Blaine (1997) performed sensitivity analyses for actinide retardation in the Culebra formation and found that, even for worst-case scenarios, K_d values greater than 3 are adequate to prevent violation of the EPA standards for release of radionuclides to the accessible environment during the regulatory 10,000-year life of the repository. Every K_d value reported in Table 4 is at least a factor of 50 greater than 3, from which we conclude that the results reported here strongly support the effectiveness of sorption in the Culebra as a barrier to release of Th, Pu, and Am during the WIPP regulatory life.

REFERENCES

- Behl, Y.K., and D.A. Lucero. 1996. "Test Plan for Laboratory Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite Member of the Rustler Formation at the WIPP Site: Test Plan Addendum. Post-Test Core Evaluation." SNL Test Plan Addendum to TP 95-03A, Rev. 0. Effective 12/10/96. Albuquerque, NM: Sandia National Laboratories. Sandia WIPP Central Files WPO#43117, Segment 5.
- Blaine, R.L. 1997. "Expedited CCA Activity. WPO# 41944. Tracking #23. Rev. 1. Evaluation of Minimum Kd Parameter Values for Culebra Transport." Albuquerque, NM: Sandia National Laboratories. Sandia WIPP Central Files WPO#41944.
- Brown, G.O., H.-T. Hsieh, and Y.-W. Lin. 1997. "COLUMN: A Computer Program for Fitting Model Parameters to Column Flow Breakthrough Curves. Version 1.4 for Windows 95/NT3.51/NT4.0." June 13, 1997. Albuquerque, NM: Sandia National Laboratories. Sandia WIPP Central Files WPO#46281.
- Brush, L.H. 1998. "Ranges and Probability Distributions of Kd's for Dissolved Pu, Am, U, Th, and Np in the Culebra for the PA Calculations to Support the WIPP CCA," Laboratory Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite Member of the Rustler Formation. D.A. Lucero, G.O. Brown, and C.E. Heath. SAND97-1763. Albuquerque, NM: Sandia National Laboratories. D-11 through D-108.
- Budge, K.G. 1996. "COLUMN: A Computer Program for Fitting Model Parameters to Column Flow Breakthrough Curves, Version 1.3." Albuquerque, NM: Sandia National Laboratories. Sandia WIPP Central Files WPO#37867.
- Craft, C.C., and M.D. Siegel. 1998. "Additional Calculations of Solubility-Limited Concentrations of Actinides for Injection Spikes Used in the WIPP Core Column Experiments at Sandia National Laboratories," *Laboratory Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite Member of the Rustler Formation*. D.A. Lucero, G.O. Brown, and C.E. Heath. SAND97-1763. Albuquerque, NM: Sandia National Laboratories. D-109 through D-115.
- Fetter, C.W. 1993. Contaminant Hydrogeology. Upper Saddle River, NJ: Prentice-Hall. 117-119.
- Holt, R.M. 1997. Conceptual Model for Transport Processes in the Culebra Dolomite Member, Rustler Formation. SAND97-0194. Albuquerque, NM: Sandia National Laboratories
- Lucero, D.A. 1995-1996. "WIPP Lab Notebooks." Multiple volumes. Albuquerque, NM: Sandia National Laboratories. Sandia WIPP Central Files WPO#40975.
- Lucero, D.A., F. Gelbard, Y.K. Behl, and J.A. Romero. 1995. "Test Plan for Laboratory Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite Member of the Rustler Formation at the WIPP Site." SNL Test Plan TP 95-03. Albuquerque, NM: Sandia National Laboratories. Sandia WIPP Central Files WPO#22640.

Lucero, D.A., G.O. Brown, and C.E. Heath. 1998. Laboratory Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite Member of the Rustler Formation. SAND97-1763. Albuquerque, NM: Sandia National Laboratories.

Meigs, L.C., R.L. Beauheim, J.T. McCord, Y.W. Tsang, and R. Haggerty. 1997. "Design, Modelling, and Current Interpretations of the H-19 and H-11 Tracer Tests at the WIPP Site," Field Tracer Experiments: Role in the Prediction of Radionuclide Migration: Synthesis and Proceeding of an NEA/EC GEOTRAP Workshop, Cologne, Germany, August 28-30, 1996. SAND96-2796C. Paris: Nuclear Energy Agency, Organisation for Economic Co-Operation and Development. 157-169.

Parker, J.C., and M.Th. Van Genuchten. 1984. "Determining Transport Parameters from Laboratory and Field Tracer Experiments." Virginia Agricultural Experimental Station Bulletin 84-3. Blacksburg, VA: Virginia Agricultural Experimental Station, Virginia Polytechnic Institute and State University. Sandia WIPP Central Files WPO#44584.

Public Law 96-164. 1979. Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980. (93 Statute 1259).

Sandia National Laboratories. 1996-1997. "Waste Isolation Pilot Plant Quality Assurance Procedure (QAP) 19-1: Computer Software Requirements." Revision 03 Effective 9/13/96 and Interim Change Notices 01 (Dated 11/14/96), 02 (Dated 2/6/97), and 03 (Dated 6/19/97). QAP 19-1, Rev. 3. Albuquerque, NM: Sandia National Laboratories. Sandia National Laboratories WPO#42849.

U.S. DOE (Department of Energy). 1996. Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant. DOE/CAO-1996-2184. Carlsbad, NM: United States Department of Energy, Waste Isolation Pilot Plant, Carlsbad Area Office.

U.S. EPA (Environmental Protection Agency). 1993. "40 CFR Part 191 Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes; Final Rule," *Federal Register*. Vol. 58, no. 242, 66,398-66,416.

APPENDIX A.

DIMENSIONLESS FORM OF LINEAR-EQUILIBRIUM TRANSPORT EQUATION FOR ANALYSIS OF B-CORE AND C-CORE NON-ELUTION RESULTS

Development of Dimensionless Equations

The basic linear-equilibrium transport equation is

$$R \partial C/\partial t = D \partial^2 C/\partial z^2 - v \partial C/\partial z, \tag{A-1}$$

where C is the concentration of solute in brine solution, R is the solute retardation coefficient as defined, for example, by Fetter (1993), D is the dispersion coefficient for transport in the medium, t is time, z is distance, $v = q/\theta$ is the average pore water velocity, q is the specific discharge (volumetric flow rate divided by cross-sectional area), and θ is the porosity. For the experiments described here, the initial condition is C(z,0) = 0, the boundary condition for t = 0, z = 0 is a spike of concentration C_0 for duration t_0 , and brine flow is maintained for a time t_{end} . For a column of length L, following Parker and van Genuchten (1984), we define dimensionless variables

$$T = v t/L \text{ (units of pore volumes)}$$
 (A-2)

$$Z = z/L$$
 (units of core lengths). (A-3)

Now,

$$\frac{\partial C}{\partial t} = (\frac{\partial T}{\partial t}) (\frac{\partial C}{\partial T}) = (v/L) (\frac{\partial C}{\partial T}),$$
$$\frac{\partial C}{\partial z} = (\frac{1}{L}) (\frac{\partial C}{\partial Z}),$$

and

$$\partial^2 C/\partial z^2 = (1/L^2) (\partial^2 C/\partial Z^2).$$

Thus, the transport equation (A-1) becomes

$$R(v/L)(\partial C/\partial T) = (D/L^2)(\partial^2 C/\partial Z^2) - (v/L)(\partial C/\partial Z), \tag{A-4}$$

or

$$R (\partial C/\partial T) = (1/L) (D/v) (\partial^2 C/\partial Z^2) - (\partial C/\partial Z), \tag{A-5}$$

which is in the same form as Eq. (A-1) if the initial parameters are replaced as follows.

$$R^* = R \tag{A-6}$$

$$D^* = (1/L) (D/v) = (D \theta)/(q L)$$
 (A-7)

$$v^* = 1 \tag{A-8}$$

$$q^* = \theta^* \tag{A-9}$$

$$\theta^* = \theta \tag{A-10}$$

$$C_0^* = C_0$$
 (A-11)

$$T_0 = (g/\theta L) t_0 \tag{A-12}$$

$$T_{\text{end}} = (q/\theta L) t_{\text{end}}$$
 (A-13)

Dimensionless Parameter Values for ²²⁸Th in B-Core

For B-Core (see Table 3), ²²⁸Th was first introduced in a 13.7 mL spike at 0.1 mL/min flow rate. The measured and fitted core parameters reported by Lucero *et al.* (1998) were:

R = retardation coefficient (parameter to be fitted)

 $q = 1.009 \times 10^{-5}$ cm/s (0.1 mL/min flow rate divided by cross-sectional area)

L = 50.9 cm

D = 0.0013 cm²/s (average of fitting parameters for two experiments with ²²Na)

 $\theta = 0.09$ (average of fitting parameters for two experiments with ²²Na)

 $t_0 = 8,820$ s (corresponding to volume: 13.7 mL)

 $C_0 = 5.16 \,\mu\text{Ci/mL}$

Elapsed-Time Calculation

The parameter t_{end} is estimated based on the flow history of the core. The time from first injection of 228 Th to the change in flow rate was 64 days, and the time from change in flow rate to the last 228 Th tomography was 128 days. For conversion to pore volumes as the independent variable, the total flow time is taken as:

$$t_{end} = [(64 + 128/2) \text{ day}] [86,400 \text{ s/day}] = 1.11 \text{ x } 10^7 \text{ s.}$$

This set of parameters transforms to

$$R^* = R$$

$$D^* = [(0.0013) (0.09)] / [(1.009 \times 10^{-5}) (50.9)] = 0.23$$

$$\theta^* = \theta = 0.09$$

$$q* = \theta = 0.09$$

$$L^* = 50.9/50.9 = 1.0$$

$$T_0 = \{(1.009 \text{ x } 10^{-5})/[(0.09) (50.9)]\}\ t_0 = 2.20 \text{ x } 10^{-6} t_0 = 0.019$$

$$T_{end} = 2.20 \times 10^{-6} t_{end} = 24.4$$
 (pore volumes).

Conversion from pore volumes to total volume requires multiplication by core volume and porosity to yield

$$V_{tot} = \pi (7.25)^2 (50.9) (0.09) T_{end} = 18.5 L.$$

This result is in good agreement with the total volume computed from flow rate and time (18.4 L).

Saturated Activity Calculation

Craft and Siegel (1998) calculate saturation solubilities of Th^{4+} in VPX-28 brine at atmospheric CO₂ pressure. The saturated solubility ranges from 1.9 x 10^{-7} M (pmH =

7.73, without dolomite equilibrium) to $1.57 \times 10^{-7} \, \text{M}$ (pmH = 7.64, with dolomite equilibrium). Lucero *et al.* (1998) reported the conversion factor: $5.35 \times 10^{-6} \, \text{mole/Ci}$ for ²²⁸Th. The lower value for the ²²⁸Th⁴⁺ saturated concentration (1.57 x $10^{-7} \, \text{mole/L}$) thus corresponds to saturated activity 29.3 $\mu \text{Ci/mL}$. The input ²²⁸Th spike activity for test B3 (see Table 3) was $5.16 \, \mu \text{Ci/mL}$, roughly a factor of six less that the saturated activity. It is thus unlikely that the injected ²²⁸Th precipitated.

Dimensionless Parameter Values for ²⁴¹Pu and ²⁴¹Am in C-Core

For C-Core (see Table 3), ²⁴¹Am and ²⁴¹Pu were first introduced in a 20.0 mL spike at 0.1 mL/min flow rate. The measured and fitted core parameters reported by Lucero *et al*. (1998) were:

R = retardation coefficient (parameter to be estimated)

 $q = 1.009 \times 10^{-5}$ cm/s (0.1 mL/min flow rate divided by cross-sectional area)

L = 10.2 cm

 $D = 0.0020 \text{ cm}^2/\text{s}$ (fitting parameter for experiment C-3 with ^{22}Na)

 $\theta = 0.033$ (fitting parameter for experiment C-3 with ²²Na)

 $t_0 = 12,000 \text{ s}$ (for 20.0 mL spike volume at 0.1 mL/min flow rate)

 $C_0 = 0.28 \mu \text{Ci/mL}$ (or variable – see below) for ²⁴¹Am spike

= 1.0 μ Ci/mL for ²⁴¹Pu spike

Elapsed-Time Calculations

The parameter t_{end} can be estimated based on the flow history of the core. For C-Core, ²⁴¹Pu and ²⁴¹Am were first injected in a 20-mL spike on 7/10/95, and brine flow continued at 0.1 mL/min through 4/9/96. Actual calendar days from 7/10/95 to 4/9/96 inclusive are 274 days, but Lucero (1995-1996) reports 269 days of flow (due to a five-day interruption in December 1995). As of 4/9/96, neither ²⁴¹Am nor ²⁴¹Pu had been observed above minimum detectable activity (MDA) in the effluent. Flow was interrupted from 4/9/96 until 6/4/96, when flow was resumed at the reduced rate of 0.05 mL/min. The 0.05 mL/min flow rate was maintained from 6/4/96 until 9/2/97, on which date the C-Core experiments were suspended. Total flow time at the reduced rate was 455 days. Again, as of 9/2/97, neither ²⁴¹Am nor ²⁴¹Pu had been observed above minimum detectable activity (MDA) in the effluent.

The total time at an equivalent flow rate of 0.1 mL/min was

$$t_{end} = \{[269 + 0.5 (455)]day\} \{86,400 s/day\} = 4.29 x 10^7 s,$$

which corresponds to a total flow volume of

$$V_{tot} = (496.5 \text{ day}) (1,440 \text{ min/day}) (0.1 \text{ mL/min}) = 71.5 \text{ x } 10^3 \text{ mL} = 71.5 \text{ L}.$$

For analysis of the experiments, it is convenient to express time in terms of pore volumes using Eq. (A-13). Given $t_{end} = 4.29 \times 10^7$ s, and $T_{end} = (q/\theta L) t_{end}$, then

$$T_{end} = \{1.009 \times 10^{-5}/[(0.033)(10.2)]\} 4.29 \times 10^7 = 1.29 \times 10^3 \text{ pore volumes.}$$

As a check on arithmetic, conversion of pore volumes to total eluted volume requires multiplication by the core volume and porosity to yield

$$V_{\text{tot}} = \pi (7.25)^2 (10.2) (0.033) T_{\text{end}} = 71.7 \times 10^3 \text{ mL} = 71.7 \text{ L},$$

which is in good agreement with effluent volume calculated above using elapsed time and flow rate.

Saturated Activity Calculations for ²⁴¹Am and ²⁴¹Pu

Craft and Siegel (1998) calculated the saturated solubility of Am³⁺ in VPX-28 brine at atmospheric CO₂ pressure. The saturated solubility ranges from 6.46 x 10^{-9} M (pmH = 7.73, without dolomite equilibrium) to 9.63 x 10^{-9} M (pmH = 7.64, with dolomite equilibrium). Lucero *et al.* (1998) reported the conversion factor: 1.21×10^{-3} mole/Ci for ²⁴¹Am. The lower value for the ²⁴¹Am³⁺ saturated concentration (6.46 x 10^{-9} mole/L) thus corresponds to saturated ²⁴¹Am activity

$$(6.46 \times 10^{-9} \text{ mole/L}) / (1.21 \times 10^{-3} \text{ mole/Ci}) = 5.34 \,\mu\text{Ci/L} = 5.34 \times 10^{-3} \,\mu\text{Ci/mL}.$$

The input ²⁴¹Am spike activity for test C3 was 0.28 μ Ci/mL. The ²⁴¹Am³⁺ input spike for experiment C3 was supersaturated by a factor of (0.28)/(5.34 x 10⁻³) = 52.4. It is thus likely that the ²⁴¹Am precipitated at or near the inlet surface of C-Core.

Although the ²⁴¹Am almost certainly dissolved as ²⁴¹Am³⁺, the valence of the dissolved ²⁴¹Pu is not so well known. A ²⁴¹Pu solution was submitted to the Los Alamos National Laboratory Chemical Science and Technology Division for oxidation-state determination in December 1994. The response from Los Alamos is included as Appendix G. From the discussion in the Los Alamos report, it could be argued that ²⁴¹Pu might have been present as either Pu⁴⁺ or Pu⁵⁺ or as a mixture of these oxidation states. One would expect the solubility of Pu⁵⁺ to be similar to that for Np⁵⁺, reported by Craft and Siegel (1998) as 7.84 x 10⁻⁶ M (pmH = 7.72, without dolomite equilibrium) and 1.1 x 10⁻⁵ M (pmH = 7.64, with dolomite equilibrium). Similarly, one would expect the solubility of Pu⁴⁺ to be similar to that for Th⁴⁺, reported by Craft and Siegel (1998) as 1.9 x 10⁻⁷ M (pmH = 7.73, without dolomite equilibrium) and 1.57 x 10⁻⁷ M (pmH = 7.64, with dolomite equilibrium). Thus, the minimum estimated ²⁴¹Pu saturated solubility is 1.57 x 10⁻⁷ M. Lucero *et al.* (1998) reported the conversion factor: 4.03 x 10⁻⁵ mole/Ci for ²⁴¹Pu. The minimum estimated ²⁴¹Pu saturated solubility thus corresponds to saturated activity

$$(1.57 \times 10^{-7} \text{ mole/L}) / (4.03 \times 10^{-5} \text{ mole/Ci}) = 3.9 \times 10^{-3} \text{ Ci/L} = 3.9 \,\mu\text{Ci/mL}.$$

The input spike 241 Pu activity for test C3 was 1.0 μ Ci/mL. Thus, it is likely that the injected 241 Pu remained in solution, whether it was dissolved as Pu⁴⁺, Pu⁵⁺, or as a mixture.

For the simplest case (no precipitation), the parameters for equation A-5 are then

R* = R (to be estimated)
D* = [(0.0020) (0.033)] / [(1.009 x
$$10^{-5}$$
) (10.2)] = 0.64
 θ * = θ = 0.033
 q * = θ = 0.033

$$L^* = 10.2/10.2 = 1.0$$

$$T_0 = \{(1.009 \text{ x } 10^{-5})/[(0.033) (10.2)]\} \ t_0 = 3.00 \text{ x } 10^{-5} \ t_0 = 0.36 \text{ (pore volumes)}$$

$$T_{end} = 3.00 \text{ x } 10^{-5} \ t_{end} = 1.29 \text{ x } 10^3 \text{ (pore volumes)}.$$

We can attempt to represent the effects of ²⁴¹Am precipitation by reducing the input spike concentration and increasing the input spike duration accordingly. Calculations indicate that the initial ²⁴¹Am concentration was supersaturated by a factor of 52.4. Assuming the solution equilibrated rapidly with the dolomite, the actual injected solution concentration could then be lower by roughly this factor. If the precipitated ²⁴¹Am then dissolved as more brine flowed, the apparent input-spike duration would be increased by the same factor as the decrease in concentration. Thus, the ²⁴¹Am transport parameters for saturation concentration can be estimated as

$$C_{\text{sat}} = C_0/52.4$$
,

and

$$T_{0sat} = 52.4 T_0 = (52.4) (0.36) = 18.9 \text{ pore volumes}.$$

Note that T_{0sat} is only a small fraction (~ 1.5%) of the total brine flow for C-Core.

A more conservative analysis could be based on assuming that any precipitated 241 Am is never again dissolved, so $T_{0sat} = 0.36$ even for $C_{sat} = C_0/52.4$. The main text contains discussion of retardation values estimated for the three different 241 Am-input scenarios described here.

Concentration Scaling using Minimum Detectable Activities for ²⁴¹Pu and ²⁴¹Am

The effluent brine from C-Core experiments was analyzed for both 241 Pu and 241 Am using liquid scintillation counting (LSC). Using this technique, the minimum detectable activity (MDA) for 241 Am is 1 x 10^{-7} µCi/mL, and the MDA for 241 Pu is 1.5 x 10^{-6} µCi/mL (Lucero *et al.*, 1998). In order to compare effluent concentrations with actinide MDA values, the input-spike actinide concentrations can be scaled by the appropriate MDA values. Thus,

$$C_0*(^{241}Pu) = C_0(^{241}Pu)/(1.5 \times 10^{-6}) = 1.0/(1.5 \times 10^{-6}) = 6.7 \times 10^{5};$$

$$C_0*(^{241}Am) = C_0(^{241}Am)/(1 \times 10^{-7}) = 0.28/(1 \times 10^{-7}) = 2.8 \times 10^{6};$$

$$C_{0sat}*(^{241}Am) = C_{0sat}(^{241}Am)/(1 \times 10^{-7}) = 0.28/(52.4 \times 10^{-7}) = 5.3 \times 10^{4}.$$

Clearly, the inlet actinide concentrations are significantly greater than the MDA values.

APPENDIX B.

DERIVATION OF RELATION BETWEEN DISSOLVED ACTINIDE CONCENTRATION AND TOTAL ACTINIDE CONCENTRATION IN THE ROCK

As was stated in the main text, COLUMN 1.4 calculates actinide concentrations in solution, not on the solid. However, for comparison of calculation with the results of destructive analysis, it is necessary to calculate the total concentration of actinide both in solution and sorbed on the rock surfaces. For the approximations is used in this report (i.e., single-porosity and linear sorption isotherm), the sorbed concentration (per unit rock mass) is related to dissolved concentration by the equation

$$S = K_d C_{sol}. (B-1)$$

where K_d is given in mL/g, and C_{sol} is the dissolved concentration (e.g., μ Ci/mL). The total volume concentration of actinide (per unit volume of rock) is then

$$C_{T} = \rho_{b} S + \theta C_{sol}, \tag{B-2}$$

where θ is the porosity. Inserting Equation (B-1) into Equation B-2 yields

$$C_T = \rho_b K_d C_{sol} + \theta C_{sol} = \theta C_{sol} [1 + (\rho_b K_d/\theta)].$$
 (B-3)

Note that the factor $[1 + (\rho_b K_d/\theta)]$ is just the definition of the retardation factor R. Thus,

$$C_{T} = \theta C_{sol} R, \qquad (B-4)$$

which, given θ and R, provides a straightforward conversion from dissolved concentration to total concentration in the solid.

B-2

APPENDIX C.

LISTING OF POSITION-TIME INPUT FILE (*.INP) FOR ²²⁸Th COLUMN 1.4 CALCULATION

Th_vs_Z_Vol.inp

Th_vs_Z_Vol.inp

0.058 24.4 0.060 24.4 0.065 24.4 0.070 24.4 0.080 24.4 0.090 24.4 0.100 24.4 0.150 24.4 0.200 24.4 0.300 24.4 0.400 24.4 0.500 24.4 0.600 24.4 0.700 24.4 0.800 24.4 0.900 24.4 1.000 24.4

APPENDIX D.

LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR THREE ²²⁸Th COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES 5,000, 10,000, & 50,000

Th5000_vs_Z_Vol.col

[Wcolumn]
Date=4/29/98 2:53:30 PM
Title=Th vs. Depth at R=5,000
LogFile=Th5000_vs_Z_Vol.log
OutputFile=Th5000_vs_Z_Vol.out
Model=Linear equilibrium
TracerSpikeType=Single
CurveType=Theoretical Curve
Normalization=RESIDENT
Bootstrap=

[DistanceAndTimeSpec.]
Set=File
FileName=Th_vs_Z_Vol.inp

[ParameterValues]
R=5000
theta=0.09
D=0.23
mu=0
gamma=0
q=0.09
t0=0.019
c0=5.16

Th10000_vs_Z_Vol.col

[Wcolumn]
Date=4/29/98 2:53:18 PM
Title=Th vs. Depth at R=10,000
LogFile=Th10000_vs_Z_Vol.log
OutputFile=Th10000_vs_Z_Vol.out
Model=Linear equilibrium
TracerSpikeType=Single
CurveType=Theoretical Curve
Normalization=RESIDENT
Bootstrap=

[DistanceAndTimeSpec.]
Set=File
FileName=Th_vs_Z_Vol.inp

[ParameterValues]
R=10000
theta=0.09
D=0.23
mu=0
gamma=0
q=0.09
t0=0.019
c0=5.16

Th50000_vs_Z_Vol.col

[Wcolumn]
Date=4/29/98 2:54:30 PM
Title=Th vs. Depth at R=50,000
LogFile=Th50000_vs_Z_Vol.log
OutputFile=Th50000_vs_Z_Vol.out
Model=Linear equilibrium
TracerSpikeType=Single
CurveType=Theoretical Curve
Normalization=RESIDENT
Bootstrap=

[DistanceAndTimeSpec.]
Set=File
FileName=Th_vs_Z_Vol.inp

[ParameterValues]
R=50000
theta=0.09
D=0.23
mu=0
gamma=0
q=0.09
t0=0.019
c0=5.16

APPENDIX E.

LISTINGS OF OUTPUT FILES (*.LOG) FOR THREE ²²⁸Th COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES 5,000, 10,000, & 50,000

Th5000_vs_Z_vol.log

```
Deterministic linear equilibrium absorption for pulse injection with
     first-order decay
     Th vs. Depth at R=5,000
Model Name = Linear equilibrium
Calculation began 4/29/98 2:53:51 PM
Model parameters:
        R = 5000
    theta = 0.09
       D = 0.23
       mu = 0
    gamma = 0
        q = 0.09
       t0 = 0.019
       c0 = 5.16
No fit performed; model calculation only
Calculated model curves:
Distance
              Time
                            Model
1.000000E-03
              2.440000E+01
                            2.905809E-04
2.000000E-03
              2.440000E+01
                            2.916264E-04
3.00000E-03
              2.440000E+01 2.925291E-04
4.000000E-03
              2.440000E+01
                            2.932882E-04
5.000000E-03
              2.440000E+01
                            2.939029E-04
6.00000E-03
              2.440000E+01
                            2.943720E-04
7.000000E-03
              2.440000E+01
                            2.946961E-04
8.000000E-03
              2.440000E+01
                            2.948755E-04
9.00000E-03
              2.440000E+01
                            2.949101E-04
1.000000E-02
              2.440000E+01
                            2.948005E-04
1.100000E-02
              2.440000E+01
                            2.945472E-04
1.200000E-02
              2.440000E+01
                            2.941509E-04
1.300000E-02
              2.440000E+01
                            2.936126E-04
1.40000E-02
                            2.929336E-04
              2.440000E+01
1.500000E-02
              2.440000E+01
                            2.921150E-04
1.600000E-02
              2.440000E+01
                            2.911584E-04
1.700000E-02
              2.440000E+01
                            2.900656E-04
1.800000E-02
              2.440000E+01
                            2.888384E-04
1.900000E-02
              2.440000E+01
                            2.874789E-04
              2.440000E+01
2.000000E-02
                            2.859892E-04
2.100000E-02
              2.440000E+01
                            2.843717E-04
2.200000E-02
              2.440000E+01
                            2.826290E-04
2.300000E-02
              2.440000E+01
                           2.807637E-04
              2.440000E+01
2.440000E+01
2.400000E-02
                            2.787787E-04
2.500000E-02
                            2.766769E-04
              2.440000E+01 2.744614E-04
2.600000E-02
2.700000E-02
              2.440000E+01 2.721353E-04
              2.440000E+01 2.697021E-04
2.800000E-02
2.900000E-02
              2.440000E+01 2.671652E-04
3.000000E-02
              2.440000E+01
                            2.645280E-04
3.100000E-02
              2.440000E+01
                            2.617942E-04
3.200000E-02
              2.440000E+01
                            2.589675E-04
3.300000E-02
              2.440000E+01
                            2.560518E-04
3.400000E-02
              2.440000E+01
                            2.530508E-04
3.500000E-02
              2.440000E+01
                            2.499685E-04
3.600000E-02
              2.440000E+01
                            2.468089E-04
              2.440000E+01
3.700000E-02
                            2.435760E-04
3.800000E-02
              2.440000E+01
                            2.402739E-04
3.900000E-02
              2.440000E+01
                            2.369067E-04
4.000000E-02
```

2.334785E-04

2.264556E-04

2.228693E-04

2.440000E+01

2.440000E+01

4.100000E-02 4.200000E-02

4.300000E-02

4.400000E-02

2.440000E+01 2.299934E-04 2.440000E+01 2.264556E-04

2.440000E+01 2.192386E-04

Th5000_vs_Z_vol.log

```
2.440000E+01
4.500000E-02
                            2.155677E-04
              2.440000E+01
                            2.118606E-04
4.600000E-02
4.700000E-02
              2.440000E+01
                            2.081214E-04
              2.440000E+01
                            2.043542E-04
4.800000E-02
4.900000E-02
              2.440000E+01
                            2.005631E-04
              2.440000E+01
                            1.967519E-04
5.00000E-02
5.200000E-02
              2.440000E+01
                            1.890850E-04
5.400000E-02
              2.440000E+01
                            1.813842E-04
5.600000E-02
              2.440000E+01
                            1.736788E-04
              2.440000E+01
                            1.659971E-04
5.800000E-02
              2.440000E+01
6.000000E-02
                            1.583657E-04
              2.440000E+01
                            1.396690E-04
6.500000E-02
7.000000E-02
              2.440000E+01
                            1.217873E-04
8.000000E-02
              2.440000E+01
                            8.950334E-05
              2.440000E+01
9.00000E-02
                            6.287055E-05
1.000000E-01
              2.440000E+01
                            4.221640E-05
              2:440000E+01
                            2.936390E-06
1.500000E-01
              2.440000E+01
2.000000E-01
                            6.680018E-08
              2.440000E+01
                            1.212198E-12
3.000000E-01
              2.440000E+01
                            2.544797E-19
4.000000E-01
              2.440000E+01
                            6.190085E-28
5.000000E-01
6.00000E-01
              2.440000E+01
                            1.745844E-38
7.00000E-01
              2.440000E+01
                            8.384744E-49
8.00000E-01
              2.440000E+01
                             4.019795E-63
              2.440000E+01
                            2.181311E-79
9.00000E-01
1.000000E+00
              2.440000E+01
                            1.346290E-97
```

Th10000_vs_Z_vol.log

```
Deterministic linear equilibrium absorption for pulse injection with
      first-order decay
      Th vs. Depth at R=10,000
Model Name = Linear equilibrium
Calculation began 4/28/98 3:41:30 PM
Model parameters:
          R = 10000
     theta = 0.09
         D = 0.23
         mu = 0
     gamma = 0
         q = 0.09
         t0 = 0.019
         c0 = 5.16
No fit performed; model calculation only
Calculated model curves:
Distance
                 Time
1.000000E-03 2.440000E+01 2.136653E-04
2.000000E-03 2.440000E+01 2.142840E-04
3.000000E-03 2.440000E+01 2.146964E-04
4.000000E-03 2.440000E+01 2.149019E-04 5.000000E-03 2.440000E+01 2.149013E-04 6.000000E-03 2.440000E+01 2.146952E-04 7.000000E-03 2.440000E+01 2.142849E-04
8.000000E-03 2.440000E+01 2.136720E-04

9.000000E-03 2.440000E+01 2.128589E-04

1.000000E-02 2.440000E+01 2.118485E-04

1.100000E-02 2.440000E+01 2.106440E-04
1.200000E-02 2.440000E+01 2.092494E-04
                2.440000E+01
2.440000E+01
1.300000E-02
                                   2.076689E-04
1.400000E-02
                                   2.059074E-04
1.500000E-02 2.440000E+01 2.039701E-04
1.600000E-02 2.440000E+01 2.018625E-04
1.700000E-02 2.440000E+01 1.995908E-04
1.800000E-02 2.440000E+01 1.971613E-04
1.900000E-02 2.440000E+01 1.945807E-04
2.000000E-02
                 2.440000E+01
                                   1.918561E-04
2.100000E-02 2.440000E+01
                                   1.889947E-04
2.200000E-02 2.440000E+01 1.860042E-04
2.300000E-02 2.440000E+01 1.828922E-04
2.400000E-02 2.440000E+01 1.796667E-04
                                   1.796667E-04
                 2.440000E+01 1.763357E-04
2.500000E-02
2.600000E-02 2.440000E+01 1.729076E-04
2.700000E-02
                  2.440000E+01
                                   1.693906E-04
2.800000E-02
                  2.440000E+01
                                   1.657931E-04
2.900000E-02
                  2.440000E+01 1.621234E-04
3.000000E-02 2.440000E+01 1.583899E-04
3.100000E-02 2.440000E+01 1.546011E-04
3.200000E-02
                 2.440000E+01 1.507651E-04
3.300000E-02
                  2.440000E+01
                                   1.468901E-04
                  2.440000E+01 1.429844E-04
3.400000E-02
3.500000E-02 2.440000E+01 1.390557E-04
3.600000E-02
                  2.440000E+01 1.351120E-04
3.700000E-02
                  2.440000E+01
                                   1.311607E-04
3.800000E-02
                  2.440000E+01 1.272093E-04
3.900000E-02
                  2.440000E+01 1.232648E-04
                 2.440000E+01 1.193344E-04
2.440000E+01 1.154244E-04
4.000000E-02
```

4.100000E-02

4.200000E-02 2.440000E+01 1.115414E-04 4.300000E-02 2.440000E+01 1.076914E-04 4.400000E-02 2.440000E+01 1.038802E-04

Th10000_vs_Z_vol.log

```
2.440000E+01 1.001132E-04
4.500000E-02
4.60000E-02
              2.440000E+01
                            9.639555E-05
4.700000E-02
              2.440000E+01
                            9.273207E-05
                            8.912723E-05
4.800000E-02
              2.440000E+01
4.90000E-02
              2.440000E+01
                            8.558519E-05
                            8.210975E-05
5.00000E-02
              2.440000E+01
5.20000E-02
              2.440000E+01
                            7.537222E-05
                            6.893845E-05
5.400000E-02
              2.440000E+01
5.600000E-02
              2.440000E+01
                            6.282705E-05
                            5.705160E-05
5.800000E-02
              2.440000E+01
                            5.162097E-05
              2.440000E+01
6.00000E-02
6.500000E-02
              2.440000E+01
                            3.957223E-05
                            2.966233E-05
              2.440000E+01
7.00000E-02
8.00000E-02
              2.440000E+01
                            1.558181E-05
                            7.483238E-06
              2.440000E+01
9.00000E-02
1.000000E-01
              2.440000E+01
                            3.285368E-06
                            1.404748E-08
              2.440000E+01
1.500000E-01
                            6.445210E-12
2.000000E-01
              2.440000E+01
                            1.691134E-21
              2.440000E+01
3.00000E-01
4.000000E-01
              2.440000E+01
                            5.963787E-35
                            4.646280E-50
              2.440000E+01
5.00000E-01
                            4.040352E-71
6.000000E-01
              2.440000E+01
              2.440000E+01
                            4.535086E-96
7.000000E-01
                            6.639537E-125
8.00000E-01
              2.440000E+01
9.00000E-01
              2.440000E+01
                            1.276811E-157
              2.440000E+01 3.241275E-194
1.000000E+00
```

$Th50000_vs_Z_vol.log$

```
Deterministic linear equilibrium absorption for pulse injection with
     first-order decay
     Th vs. Depth at R=50,000
   ***************
Model Name = Linear equilibrium
Calculation began 4/29/98 2:54:17 PM
Model parameters:
       R = 50000
    theta = 0.09
       D = 0.23
       mu = 0
    gamma = 0
       q = 0.09
       t0 = 0.019
       c0 = 5.16
No fit performed; model calculation only
Calculated model curves:
Distance
              Time
                            Model
              2.440000E+01 1.004372E-04
1.000000E-03
2.000000E-03
              2.440000E+01 1.001771E-04
3.000000E-03
              2.440000E+01 9.945869E-05
4.00000E-03
              2.440000E+01
                            9.829312E-05
5.000000E-03
              2.440000E+01
                            9.669744E-05
6.00000E-03
              2.440000E+01
                            9.469418E-05
7.000000E-03
              2.440000E+01
                            9.231088E~05
8.000000E-03
              2.440000E+01 8.957938E-05
9.00000E-03
              2.440000E+01 8.653514E-05
              2.440000E+01
1.000000E-02
                           8.321649E-05
1.100000E-02
              2.440000E+01
                            7.966388E-05
1.200000E-02
              2.440000E+01
                            7.591908E-05
              2.440000E+01 7.202445E-05
1.300000E-02
1.400000E-02
              2.440000E+01 6.802212E-05
1.500000E-02
              2.440000E+01 6.395334E-05
1.600000E-02
              2.440000E+01
                            5.985777E-05
              2.440000E+01 5.577296E-05
1.700000E-02
1.800000E-02
              2.440000E+01 5.173374E-05
1.900000E-02
              2.440000E+01 4.777191E-05
              2.440000E+01 4.391584E-05
2.440000E+01 4.019026E-05
2.000000E-02
2.100000E-02
2.200000E-02
              2.440000E+01 3.661616E-05
2.300000E-02
              2.440000E+01
                            3.321073E-05
2.400000E-02
              2.440000E+01
                            2.998741E-05
2.500000E-02
              2.440000E+01 2.695599E-05
2.600000E-02
              2.440000E+01
                            2.412284E-05
2.700000E-02
              2.440000E+01
                            2.149115E-05
2.800000E-02
              2.440000E+01
                            1.906116E-05
2.900000E-02
              2.440000E+01 1.683055E-05
3.00000E-02
              2.440000E+01 1.479473E-05
3.100000E-02
              2.440000E+01
                            1.294720E-05
3.200000E-02
              2.440000E+01
                            1.127990E-05
3.300000E-02
              2.440000E+01
                            9.783515E-06
3.400000E-02
              2.440000E+01
                            8.447820E-06
3.500000E-02
              2.440000E+01
                            7.261965E-06
3.600000E-02
              2.440000E+01 6.214738E-06
              2.440000E+01 5.294803E-06
3.700000E-02
3.800000E-02
              2.440000E+01
                            4.490907E-06
3.900000E-02
              2.440000E+01
                            3.792053E-06
4.00000E-02
              2.440000E+01
                            3.187641E-06
              2.440000E+01
4.100000E-02
                            2.667580E-06
              2.440000E+01
                           2.222370E-06
4.200000E-02
             2.440000E+01 1.843166E-06
2.440000E+01 1.521805E-06
4.300000E-02
```

4.400000E-02

Th50000_vs_Z_vol.log

```
2.440000E+01
4.500000E-02
                            1.250829E-06
              2.440000E+01
                            1.023477E-06 ·
4.600000E-02
              2.440000E+01
4.700000E-02
                            8.336752E-07
              2.440000E+01
                            6.760067E-07
4.800000E-02
4.900000E-02
              2.440000E+01
                            5.456790E-07
                            4.384822E-07
              2.440000E+01
5.00000E-02
5.200000E-02
              2.440000E+01
                            2.792879E-07
              2.440000E+01
5.400000E-02
                            1.746705E-07
              2.440000E+01
5.600000E-02
                            1.072556E-07
              2.440000E+01
                            6.465702E-08
5.800000E-02
6.00000E-02
              2.440000E+01
                            3.826188E-08
6.500000E-02
              2.440000E+01
                            9.744173E-09
                            2.189303E-09
              2.440000E+01
7.00000E-02
8.000000E-02
              2.440000E+01
                            7.913468E-11
              2.440000E+01
                            1.831932E-12
9.00000E-02
                            2.715776E-14
              2.440000E+01
1.000000E-01
1.500000E-01
              2.440000E+01
                            2.428756E-26
              2.440000E+01
                            3.148090E-43
2.000000E-01
3.00000E-01
              2.440000E+01
                            5.735480E-89
                            2.059703E-156
              2.440000E+01
4.000000E-01
                            2.998571E-243
5.000000E-01
              2.440000E+01
              2.440000E+01
                            0.000000E+00
6.000000E-01
                            0.000000E+00
              2.440000E+01
7.00000E-01
                            0.00000E+00
8.00000E-01
              2.440000E+01
9.00000E-01
              2.440000E+01
                            0.00000E+00
                            0.000000E+00
              2.440000E+01
1.000000E+00
```

APPENDIX F.

LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS SHOWING RELATIVE CALCULATED VS. OBSERVED ²²⁸Th CONCENTRATION AS FUNCTION OF DEPTH

	e Th	ter	ly:	Ved																				1.00								
	RAIBING/TH	Daughter	* Activity	Observed																												
	Total This	Activity.	ind :	* Observed																				19.510								
		A SA		90 0	1.00	1.00	0.99	0.98	96.0	0.94	0.92	0.89	0.86	0.83	0.79	0.76	0.72	99.0	0.64	09.0	0.56	0.52	0.48		44	0.40	0.36	33	30	75	54	
	Relative	€TOMITH	Conc.	H = 50,000	Ψ.	1.	0.	0	0.	0.	0.	o.	0.	0.	0.	0.	Ö	Ö	Ö	0.	0.	0.	0.		0.44	0.	0,	0.33	0.30	0.27	0.24	0.21
	Total.Th	Coho	TICIME	H. Sp.0000	0.45	0.45	0.45	0.44	0.44	0.43	0.42	0.40	0.39	0.37	96.0	0.34	0.32	0.31	0.29	0.27	0.25	0.23	0.21		0.20	0.18	0.16	0.15	0.13	0.12	0.11	0.10
		High State			0.99	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.99	0.99	0.98	0.97	0.97	96.0	0.95	0.94	0.93	0.92	0.91		0.89	0.88	0.87	0.85	0.84	0.82	0.80	0.79
	Relative	TOMITHE	Conc	IR = 10,000;	0	-	_	-	-	1	-	0	0	0	0	0	0	0	O	0	0	0	0		0.	o.	0	O.	0.	0.	0	Ö
	Calci Total Th	Conc.	li alwinori	(File 10,000)	0.192	0.193	0.193	0.193	0.193	0.193	0.193	0.192	0.192	0.191	0.190	0.188	0.187	0.185	0.184	0.182	0.180	0.177	0.175		0.173	0.170	0.167	0.165	0.162	0.159	0.156	0.152
	Relative	Total Th	Conc.	(Ria 5)000 (0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.99	0.99	0.98	0.98	0.97		0.97	0.96	96.0	0.95	0.95	0.94	0.93	0.92
	Total TH	Contact	į	H. 6,000,1	0.131	0.131	0.132	0.132	0.132	0.132	0.133	0.133	0.133	0.133	0.133	0.132	0.132	0.132	0.131	0.131	0.131	0.130	0.129		0.129	0.128	0.127	0.126	0.125	0.125	0.124	0.122
			Dapth	() ((u)) ()	0.0509	0.1018	0,1527	0.2036	0.2545	0.3054	0.3563	0.4072	0.4581	0.5090	0.5599	0.6108	0.6617	0.7126	0.7635	0.8144	0.8653	0.9162	0.9671	1.0000	1,0180	1.0689	1.1198	1.1707	1.2216	1.2725	1.3234	1.3743
	Solinith	Cone.	2	1000'09# H	1.00E-03	1.00E-03	9.95E-04	9.83E-04	9.67E-04	9.47E-04	9.23E-04	8.96E-04	8.65E-04	8.32E-04	7.97E-04	7.59E-04	7.20E-04	6.80E-04	6.40E-04	5.99E-04	5.58E-04	5.17E-04	4.78E-04		4.39E-04	4.02E-04	3.66E-04	3.32E-04	3.00E-04	2.70E-04	2.41E-04	2.15E-04
o'dpo	Soin Th	Coffer	nonwr	R = 10,000	2.14E-03	2.14E-03	2.15E-03	2.15E-03	2.15E-03	2.15E-03	2.14E-03	2.14E-03	2.13E-03	2.12E-03	2.11E-03	2.09E-03	2.08E-03	2.06E-03	2.04E-03	2.02E-03	2.00E-03	1.97E-03	1.95E-03		1.92E-03	1.89E-03	1.86E-03	1.83E-03	1.80E-03	1.76E-03	1.73E-03	1.69E-03
27.15.47. 61.000,0.7.2.1.10.000,0.3.1.1.10.000.2.2.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Solih Th			H 2000/SHIH	2.91E-03	2.92E-03	2.93E-03	2.93E-03	2.94E-03	2.94E-03	2.95E-03	2.95E-03	2.95E-03	2.95E-03	2.95E-03	2.94E-03	2.94E-03	2.93E-03	2.92E-03	2.91E-03	2.90E-03	2.89E-03	2.87E-03		2.86E-03	2.84E-03	2.83E-03	2.81E-03	2.79E-03	2.77E-03	2.74E-03	2.72E-03
0000/1/1/2/2/2/		THE SHOPE OF COHOUSE	Pare Incum	Volumes	24.4	24.4	24.4	24.4	24.4	24.4	24.4	24.4	24.4	24.4	24.4	24.4	24.4	<u> </u>	24.4	24.4	24.4		24.4		24.4	24.4	24.4	24.4	24.4	24.4		_
There 5000			Depth	ZHZI	0.001	0.002	0.003	0.004	0.005	0.006	200'0	0.008	600.0	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.019		0.020	0.021	0.022	0.023	0.024	0.025	0.026	0.027

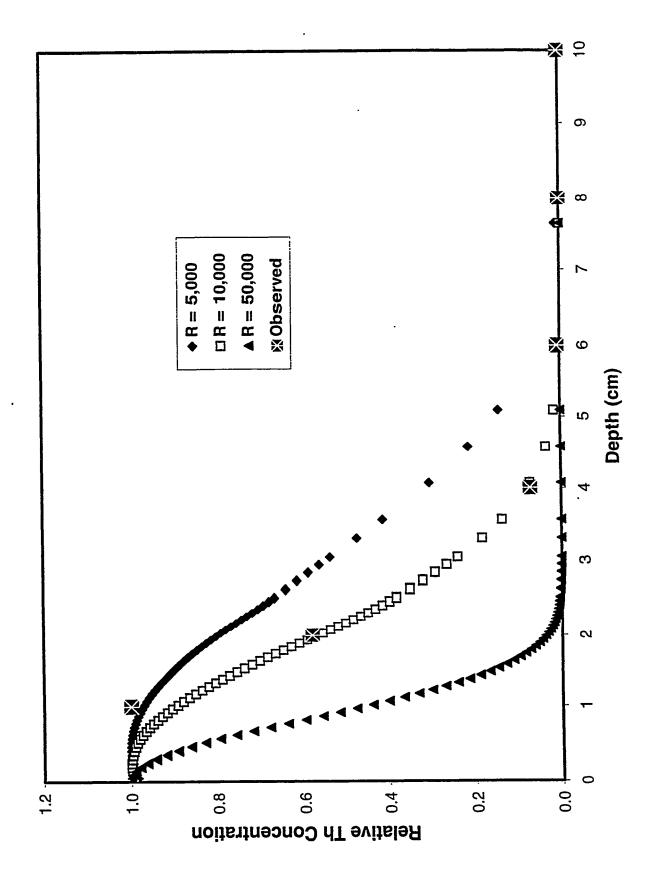
		苏州和安徽	KRelative The	Daughter	* Activity	Observed													0.58																
				* Activity	WATION A	Sperved												}	11.310																
		经数据数据	Total THE PRINTING DAUGNIOUS	ATOMISTING WASHING	Conc	H = 50,000;		0.17			0.11	0.10	0.08	0.07				0.04		0.03	0.03	0.02													0.00
		Calc	Total Th	Cohe	Wildlim!	F # 50,000	0.09	0.08	0.07	0.06	0.05	0.04	0.04	0.03	0.03	0.05	0.02	0.02		0.01	10.0	10.01	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	00.0	0.00	0.00
		表的	Relative	Total TH	Concil			0.75	0.74	0.72	0.70	0.68	29'0	0.65	0.63	0.61	0.59	0.57		0.56	0.54	0.52	0:50	0.48	0.47	0.45	0.43	0.41	0.40	0.38	0.35	0.32	0.29	0.27	0.24
		Calci	Total Th		_	日本5:000 日本5:000 日本10:000 日本10:000	0.149	0.146	0.143	0.139	0.136	0.132	0.129	0.125	0.122	0.118	0.114	0.111		0.107	0.104	0.100	760.0	0.093	0:030	0.087	0.083	080'0	0.077	0.074	890'0	0.062	0.057		0.046
		(A. C. 103)	Relative	Total Th		B # 6,000	0.91	0.91	06.0	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.81	0.80		0.79	0.78	0.77	0.76					69'0		0.67	9.04	0.62	0.59	95:0	0.54
		Calc	Total Th	Gone		5.				0.118	3 0.117	0.115	3 0.114	5 0.112	0.111	3 0.110	0.108	0.107	0	0.105	9 0.103	3 0.102	0.100	90.00	5 0.097		3 0.094	2 0.092	1 0.090	0.089	9 0.085	6 0.082	4 0.078	2 0.075	0.071
			100 TO 10		Debth	2. Cetta	1.4252	1.4761	1.5270		1.6288	1.6797	1,7306	1.7815	1.8324	1,8833	1,9342	1,9851	2,0000	2.0360	2.0869	2.1378	2.1887	2,2396	2.2905	2.3414	2.3923	2.4432	2.4941	2.5450	2.6468	2.7486	2.8504	2.9522	3.0540
		Calcio	Sal'n TH	Calle	I CIMP		1.91E-04	1.68E-04	1.48E-04	1.29E-04	1.13E-04	L		7.26E-05	6.21E-05	5.29E-05	4.49E-05	3.79E-05		3.19E-05	2.67E-05	2.22E-05	1.84E-05	1.52E-05	1.25E-05	1.02E-05	8.34E-06	6.76E-06	5.46E-06	4.38E-06	2.79E-06	1.75E-06	1.07E-06	6.47E-07	
20,000 11 11		Cale	Shinth	STATE OF THE COLUMN	E		1 66F-03	1 62F-03	1.58E-03	1.55E-03	1.51E-03	1.47E-03	1.43E-03	1.39E-03	1.35E-03	1,31E-03	1.27E-03	1.23E-03		1.19E-03	1.15E-03	1.12E-03	1.08E-03	1.04E-03	1.00E-03	9.64E-04	9.27E-04	8.91E-04	8.56E-04	8.21E-04	7.54E-04	6.89E-04	6.28E-04	5.71E-04	5.16E-04
10,000 10,000		S. Cale.	Rollin Th	_			2 70E-03		┸	ㅗ		1			┸	┸			┸	2.33E-03	1	1_	┸	┺	┸	L	┺	<u> </u>	1	丄	┸	↓.	1	丄	\perp
5,000	50.9	Strange House Ma			a Para		* Aginion "													244															
Thousand	10000000000000000000000000000000000000	7 (3 (2 kg) (5 (2 kg)	20 P. 10 P.	\$1.50 miles	HITT		2 T T T T T	0,020	0.029	0000	0.00	0 033	0.00	100.0	9000	7600	2000	0.000	2000	0,000	0.010	0,0	0.043	0.044	0.045	0.046	0.047	0 0 0	0.049	0.050	0.00	0.054	0.034	0.05	0900

				TREATMENT OF	Relative Th:	Daughter	Activity	Observed			0.07				00.00		00.00	0.00		00.00	00.00		00.0	00.00			0.00	0.00								
				79%	29.5	Activity.	25.5	Observed			1.410				0.130	_	0.030	0.040		0.020	0.007		0.007	0.004	0.008		0.004	0.002								
					Relative:	Total Th	. 4	R.A. 50,000	00.0	00.0		00'0	00'0	00.0		00.0			0.00			00.0				00'0			0.00	0.00	00.00	0.00	0.00	0.00	1.00	1.00
				Calc.	Total Th	Conc.		R = 50,000	00.0	0.00		00.0	0.00	00.0		00.00			0.00	,		00.0				00.0			00.0	00.0	00.00	00.0	00.0	00.0	0.45	0.45
					Relative	Total Th	Conte	H=10,000	0.18	0.14		0.02	0.03	0.02		00.00			00:00			00.0				00.00			00:0	00.0	00:00	0.00	0.00	00.0	0.99	1.00
				Calci	Total TH	Conce	TICNUIC.	.R = 10,000	0.036	0.027		0.014	0.007	0.003		0000			0.000			000'0				000'0			0000	000'0	0.000	0:000	0.000	0:000	0.192	0.193
				清神 新种外域(1	Helative	Total Th	Conc	"H = 5,000		0.41		0.30		0.14		0.00			00.00			00:00				00.00			00.00	00'0	00.00	00.00	00.0		0.99	66'0
				Calc	Total Th	Conc.	I ICIMIT	H. E. 5,000				0.040	0.028	0.019		0.001			000'0			0000				0000			0.000	0000	0.000	0000		0:000		0.131
							Hidea	(cm) 🦄			4.0000		4.5810	5.0900	9,0000	7,6350	8.0000	10.0000	10.1800	12.0000	14.0000	15.2700	16.0000	18.0000	20.0000	L		24.0000	25.4500	30.5400	35.6300					0.1018
					Sol'n Th	COHC	2 4 400			2.19E-0		7.91E-10	1.83E-1	2.72E-13		2.43E-25			3.15E-42			5.74E-88				2.06E-155			3.00E-242	0.00E+01	0.00E+01	0.00E+01	0.00E+01			1.00E-03
110,000 50,000			,	Calc	Soln Th		IOI/MIL.		3.96E-04	2.97E-04		1.56E-04	7.48E-05	3,29E-05		1.40E-07			6.45E-11			1.69E-20				5.96E-34			4,65E-49	4.04E-70	4.54E-95	6.64E-124	1.28E-156	3.24E-193	2.14E-03	2.14E-03
10,000				Calci	Solin Th		CUMIL	% H = 5,000	l	1,22E-03		8.95E-04		4.22E-04		2.94E-05			6.68E-07			1.21E-11				2.54E-18			6.19E-27	1.75E-37	8.38E-48	4.02E-62	2.18E-78	1.35E-96	2.91E-03	2.92E-03
5,000	0.09	609		TANK THE PARTY			Pore	Volumes	24.4	24.4		24.4	24.4	24.4		24.4			24.4			24.4				24.4			24.4	24.4	24.4	24.4	24.4	24.4	24.4	24.4
	THOTA	把多数数		2000年			Depth		-	0.070		0.080	0.090	0.100		0.150			0.200			0.300				0.400			0.500	0.600	0.700	0.800	0.900	1.000	0.001	0.005

		TO THE PROPERTY OF THE PARTY OF	Relative Total THE STATE OF	Tolal The Cont.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.21	R = 5,000	=G11/\$G\$19	=G12/\$G\$19	=G13/\$G\$19	=G14/\$G\$19	=G15/\$G\$19	=G16/\$G\$19	=G17/\$G\$19	=G18/\$G\$19	=G19/\$G\$19	=G20/\$G\$19	=G21/\$G\$19	=G22/\$G\$19	=G23/\$G\$19	=G24/\$G\$19	=G25/\$G\$19	=G26/\$G\$19	=G27/\$G\$19	=G28/\$G\$19	29 =G29/\$G\$19 =\$C\$2*\$B\$3*D29		=G31/\$G\$19	=G32/\$G\$19	=G33/\$G\$19	=G34/\$G\$19	=G35/\$G\$19	000000000000000000000000000000000000000
		Calcing and a contract of the c	-	SANK SANKS		3	R= 5,000	=\$B\$2*\$B\$3*C11	=\$B\$2*\$B\$3*C12	=\$B\$2*\$B\$3*C13	=\$B\$2*\$B\$3*C14	=\$B\$2*\$B\$3*C15	=\$B\$2*\$B\$3*C16	=\$B\$2*\$B\$3*C17	=\$B\$2*\$B\$3*C18	=\$B\$2*\$B\$3*C19	=\$B\$2*\$B\$3*C20	=\$B\$2*\$B\$3*C21	=\$B\$2*\$B\$3*C22	=\$B\$2*\$B\$3*C23	=\$B\$2*\$B\$3*C24	=\$B\$2*\$B\$3*C25	=\$B\$2.\$B\$3.C26	=\$B\$2*\$B\$3*C27	=\$B\$2*\$B\$3*C28	=\$B\$2*\$B\$3*C29		=\$B\$2*\$B\$3*C31	=\$B\$2*\$B\$3*C32	=\$B\$2*\$B\$3*C33	=\$B\$2*\$B\$3*C34	=\$B\$2,\$B\$3,C32	
		\$500 Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	1	2000年代		Depth		=A11*\$B\$4	=A12*\$B\$4	=A13*\$B\$4	=A14*\$B\$4	=A15*\$B\$4	=A16*\$B\$4	=A17*\$B\$4	=A18*\$B\$4	=A19*\$B\$4	=A20*\$B\$4	=A21*\$B\$4	=A22*\$B\$4	=A23*\$B\$4	=A24*\$B\$4	=A25*\$B\$4	=A26*\$B\$4	=A27*\$B\$4	=A28*\$B\$4	=A29*\$B\$4	1	=A31*\$B\$4	=A32*\$B\$4	=A33*\$B\$4	=A34*\$B\$4	=A35*\$B\$4	
		にはないない 一部であることがは 1000	ΘĿ.			icovince in the popular in the popul	Ogologa H	0.0001004372	0.0001001771	0.00009945869	0.00009829312	0.00009669744	0.00009469418	0.00009231088	0.00008957938	0.00008653514	0.00008321649	0.00007966388	0.00007591908	0.00007202445	0.00006802212	0.00006395334	0.00005985777	0.00005577296	0.00005173374	0.00004777191		0.00004391584	0.00004019026	0.00003661616	0.00003321073	0.00002998741	
[2] (1) (1) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3		The state of the s			Concl. Mar. & Chile	III COMPANIE STATE OF THE STATE	3		Г	Г	Г	Г		Г	Г	1	Т	Г	П	0.0002076689	Г	Г	0.0002018625	0.0001995908	0.0001971613	0.0001945807		0.0001918561	0.0001889947	0.0001860042	0.0001828922	0.0001796667	
100001		Bank de general de la constante				ווס/יייה	TO SECURITY OF	60						1									4					0.0002859892					
0000	50.9 ILT	1 March 2010			一般を対なない	Pore	Volume	24.4																				7 70					
R. H. S. S. Trieta			**************************************		の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の	Dabth'	Z L-M		200	0000	0000	200	2000	2000	5000	0000	200	50.0	2 2	20.0	20.0	1000	20.0	2000	200	0.00	0.0	8	20.05	2000	0.022	20.00	2/2

野然の発生	2000	10000	50000					
Theta w	Theta = 0.09							
	1000年							
阿克斯斯斯	Sele:	Calcillation	Calpt: Ca	Calculation of the state of the	理技术作品	WASHINGTON COLONY TO THE PARTY	 中央の数字が配接	CAILS TO THE THE REAL PROPERTY.
360000000000000000000000000000000000000		STATE OF THE PARTY OF THE STATE	经验的	0.000	学生 食	A LOID TOIR THE PRINTING TO SERVICE	Helative:	TOWNTH
		Taraban da a de la colonia	Colic:	Condition of the condit	的推翻的编码的	addwingshig Cond. application	Total Th	Colici
Depth	Depth 7. Pore 1987 ILCUME 1995	LICIMITAL STATES OF THE STATES		38/48C	Depth	and pepth was lictimal and seemed to be a seemed to	13	ICIMIL
17.5.2		Volumbs, 3 Ri=5,000 % (1) (1)	N H H 10,000 N N N N N N N N N N N N N N N N N	TOO DOOR H	(cm) * (ms)	H = 5,000	R = 5,000	Rid 5,000 / File 10,000
0.026	24.4	0.0002744614	0.0001729076	0.00002412284	=A37*\$B\$4	=\$B\$2*\$B\$3*C37	=G37/\$G\$19	=\$C\$2*\$B\$3*D37
0.027	24.4	0.0002721353	0.0001693906	0.00002149115	=A38*\$B\$4	=\$B\$2*\$B\$3*C38	=G38/\$G\$19	=\$C\$2*\$B\$3*D38
0.028	24.4	0.0002697021	0.0001657931	0.00001906116	=A39*\$B\$4	=\$B\$2*\$B\$3*C39	=G39/\$G\$19	=\$C\$2*\$B\$3*D39
0.029	24.4	0.0002671652	0.0001621234	0.00001683055	=A40*\$B\$4	=\$B\$2*\$B\$3*C40	=G40/\$G\$19	=\$C\$2*\$B\$3*D40
0.03	24.4	0.000264528	0.0001583899	0.00001479473	=A41*\$B\$4	=\$B\$2*\$B\$3*C41	=G41/\$G\$19	=\$C\$2*\$B\$3*D41
0.031	24.4	0.0002617942	0.0001546011	0.0000129472	=A42*\$B\$4	=\$B\$2*\$B\$3*C42	=G42/\$G\$19	=\$C\$2*\$B\$3*D42
0.032	24.4	0.0002589675	0.0001507651	0.0000112799	=A43*\$B\$4	=\$B\$2*\$B\$3*C43	=G43/\$G\$19	=\$C\$2*\$B\$3*D43
0.033	24.4	0.0002560518	0.0001468901	0.000009783515	=A44*\$B\$4	=\$B\$2*\$B\$3*C44	=G44/\$G\$19	=\$C\$2*\$B\$3*D44
0.034	24.4	0.0002530508		0.00000844782	=A45*\$B\$4	=\$B\$2*\$B\$3*C45	=G45/\$G\$19	=\$C\$2*\$B\$3*D45
0.035	24.4	0.0002499685	2	0.000007261965	=A46*\$B\$4	=\$B\$2*\$B\$3*C46	=G46/\$G\$19	=\$C\$2*\$B\$3*D46
0.036	24.4	0.0002468089			=A47*\$B\$4	=\$B\$2*\$B\$3*C47	=G47/\$G\$19	=\$C\$2*\$B\$3*D47
0.037	24.4	0.000243576			=A48*\$B\$4	=\$B\$2*\$B\$3*C48	=G48/\$G\$19	=\$C\$2*\$B\$3*D48
0.038	24.4	0.0002402739	0.0001272093		=A49*\$B\$4	=\$B\$2*\$B\$3*C49	=G49/\$G\$19	=\$C\$2*\$B\$3*D49
0.039	24.4	0.0002369067	0.0001232648	0.000003792053	=A50*\$B\$4	=\$B\$2*\$B\$3*C50	=G50/\$G\$19	=\$C\$2*\$B\$3*D50
					2			
0.04	24.4	0.0002334785		-	=A52*\$B\$4	=\$B\$2,\$B\$3,C25	=G52/\$G\$19	=\$C\$2*\$B\$3*D52
0.041	24.4	0.0002299934			=A53*\$B\$4	=\$B\$2*\$B\$3*C53	=G53/\$G\$19	=\$C\$2*\$B\$3*D53
0.042	24.4	0.0002264556			=A54*\$B\$4	=\$B\$2*\$B\$3*C54	=G54/\$G\$19	=\$C\$2*\$B\$3*D54
0.043	24.4	0.0002228693	0.0001076914		=A55*\$B\$4	=\$B\$2,\$B\$3,C22	=G55/\$G\$19	=\$C\$2,\$B\$3,D22
0.044	24.4	0.0002192386	0.0001038802	0.000001521805	=A56*\$B\$4	=\$B\$2,\$B\$3,C2e	=G56/\$G\$19	=\$C\$2*\$B\$3*D56
0.045	24.4	0.0002155677	0.0001001132		=A57*\$B\$4	=\$B\$2*\$B\$3*C57	=G57/\$G\$19	=\$C\$2*\$B\$3*D57
0.046	24.4	0.0002118606			=A58*\$B\$4	=\$B\$2*\$B\$3*C58	=G58/\$G\$19	=\$C\$2*\$B\$3*D58
0.047	24.4	0.0002081214			=A59*\$B\$4	=\$B\$2*\$B\$3*C59	=G59/\$G\$19	=\$C\$2*\$B\$3*D59
0.048	24.4	0.0002043542		_	=A60*\$B\$4	=\$B\$2*\$B\$3*C60	=G60/\$G\$19	=\$C\$2,\$B\$3,D60
6	24.4	0.0002005631			=A61*\$B\$4	=\$B\$2*\$B\$3*C61	=G61/\$G\$19	=\$C\$2*\$B\$3*D61
0.05	24.4	0.0001967519	0.00008210975	0.0000004384822	=A62*\$B\$4	=\$B\$2*\$B\$3*C62	=G62/\$G\$19	=\$C\$2*\$B\$3*D62

	Total Th	Cohe	ILCVML	R = 10,000 (30)	=\$C\$2*\$B\$3*D63	=\$C\$2`\$B\$3`D64	=\$C\$2*\$B\$3*D65	=\$C\$Z*\$B\$3*D66	=\$C\$2`\$B\$3'D6/	=\$C\$2.\$B\$3.D68	=\$C\$2*\$B\$3*D69		=\$C\$2*\$B\$3*D71	=\$C\$2*\$B\$3*D72	=\$C\$2.\$B\$3.D73		=\$C\$2*\$B\$3*D75		ì	=\$C\$2.\$B\$3.D78			=\$C\$2*\$B\$3*D81				=\$C\$2,\$B\$3,D85			=\$C\$2.\$B\$3.D88
340 St. 13 CO. 24 A.	Belbilva		Conc. 1	ಮಾ		┪	7	ヿ゙	_	7	=G69/\$G\$19		=G71/\$G\$19	=G72/\$G\$19	=G73/\$G\$19		=G75/\$G\$19			=G78/\$G\$19			=G81/\$G\$19				=G85/\$G\$19			=G88/\$G\$19
	Calci. Calci.	Concilia	HOUME		=\$B\$2,\$B\$3,C63	=\$B\$2*\$B\$3*C64	=\$B\$2*\$B\$3*C65	=\$B\$2*\$B\$3*C66	=\$B\$2*\$B\$3*C67	=\$B\$2*\$B\$3*C68	=\$B\$2,\$B\$3,C69	=\$B\$2*\$B\$3*C70	=\$B\$2*\$B\$3*C71	=\$B\$2*\$B\$3*C72	=\$B\$2*\$B\$3*C73		=\$B\$2*\$B\$3*C75			=\$B\$2*\$B\$3*C78			=\$B\$2*\$B\$3*C81				=\$B\$2*\$B\$3*C85			=\$B\$2*\$B\$3*C88
			Depth	(ma)	=A63*\$B\$4	=A64*\$B\$4	=A65*\$B\$4	=A66*\$B\$4	=A67*\$B\$4	=A68*\$B\$4	=A69*\$B\$4	4	=A71*\$B\$4	=A72*\$B\$4	=A73*\$B\$4	9	=A75*\$B\$4	8	10	=A78*\$B\$4	12	14	=A81*\$B\$4	16	18	20	=A85*\$B\$4	22	24	=A88*\$B\$4
				-3-10,000	0.0000002792879	0.0000001746705	0.0000001072556	0.00000006465702	0.00000003826188	0.0000000009744173	0.000000002189303		0,0000000000007913468	0.0000000000001831932	2.715776E-14		2,428756E-26			3.14809E-43			5,73548E-89				2.059703E-156			2.998571E-243
	Calon	Solfa Th		R. = 10,000	0.00007537222	0.00006893845								0.000007483238			0.00000001404748			0.000000000000644521			1.691134E-21				5.963787E-35			4.64628E-50
10000()	CALCAL STATE OF THE STATE OF TH				5	2		0.0001659971			3		0.00008950334				0.00000293639			0,00000006680018			0,0000000000001212198				2.544797E-19			6.190085E-28
0.09	HAMMAN SAN		S. C. C.	Volimba	24.4		24.4	24.4	24.4	24.4	24.4		24.4	24.4	24.4		24.4			24.4			24.4				24 4			24.4
H 35% SA		高級語	15.00 C	Under L	0.052	0.054	0.056	0.058	0.08	0.00	0.003	0.0	g	9 00	21.00	5	0.45			000	1		6				8	5		0.5


日源公司	2000	110000 11 (11 11 11 11 11 11 11 11 11 11 11 11	50000 X X X X X X X X X X X X X X X X X					
Theta =	0.09							
	20.9							
Table 1987 And	等	Calculation of the state of the	Calcinition	Calc. M. Call. Call.	65 (SA) (SA)	Calc	11/3/10 左右法据	Calc.
機能が設	**************************************	SOUNTH	Soilh Thi	solution	游戏的护切诸镇	Total The	Relative	Total TH
	新教教授	Cont.	Collection	Coperation Coperation	#38 CW	Carloahen Town Town The Constant	TOURTHE	Conc.
Depth	Pore	Inol/multiple			Depth	i e e lucume.	Colic.	ICIMIL: 1. S.
Z = 21	Volumes	H.#5,000	Li Holooo is a serie		(em)(%\\\\\\)	B = 5 000	R = 5,000	R #10,000
9.0	24.4	1.745844E-38	4.040352E-71	0	=A89*\$B\$4	=\$B\$2*\$B\$3*C89	=G89/\$G\$19	=\$C\$2*\$B\$3*D89
0.7	24.4	8.384744E-49	4.535086E-96	0	=A90*\$B\$4	=\$B\$2*\$B\$3*C90 =G90/\$G\$19	=G90/\$G\$19	=\$C\$5,\$B\$3,D30
9.0	24.4	4.019795E-63	6.639537E-125	0	=A91*\$B\$4	=\$B\$2*\$B\$3*C91	=G91/\$G\$19	=\$C\$2*\$B\$3*D91
0.9	24.4	2.181311E-79	1.276811E-157	0	=A92*\$B\$4	=\$B\$2*\$B\$3*C92 =G92/\$G\$19	=G92/\$G\$19	=\$C\$5,\$B\$3,D35
_	24.4	1.34629E-97	3.241275E-194	0	=A93*\$B\$4	=\$B\$2*\$B\$3*C93 =G93/\$G\$19	_	=\$C\$2*\$B\$3*D93

NO SECTION			Total(Th	经光达公共 加390条
Relative		Totalitti Karasa Relative William Daughter Karasa		Relative Th
Total TH	Total Th Concession			Daughter
Corte,	IICI/MILIA:		iol ()	Activity
R #:10,000	R ¥ 50,000 € 1	R. E. 60,000	Observed	Observed
=111/\$1\$14	=\$D\$2*\$B\$3*E11	=K11/\$K\$11		
=112/\$1\$14	=\$D\$2*\$B\$3*E12	=K12/\$K\$11		
=113/\$1\$14	=\$D\$2*\$B\$3*E13	=K13/\$K\$11	•	
=114/\$1\$14	=\$D\$2*\$B\$3*E14	=K14/\$K\$11		
=115/\$1\$14	=\$D\$2*\$B\$3*E15	=K15/\$K\$11		
=116/\$1\$14	=\$D\$2*\$B\$3*E16	=K16/\$K\$11		
=117/\$1\$14	=\$D\$2*\$B\$3*E17	=K17/\$K\$11		
=118/\$1\$14	=\$D\$2*\$B\$3*E18	=K18/\$K\$11		
=119/\$1\$14	=\$D\$2*\$B\$3*E19	=K19/\$K\$11		
=120/\$1\$14	=\$D\$2*\$B\$3*E20	=K20/\$K\$11		
=121/\$1\$14	=\$D\$2*\$B\$3*E21	=K21/\$K\$11		
=122/\$1\$14	=\$D\$2*\$B\$3*E22	=K22/\$K\$11		
=123/\$1\$14	=\$D\$2*\$B\$3*E23	=K23/\$K\$11		
=124/\$1\$14	=\$D\$2*\$B\$3*E24	=K24/\$K\$11		
=125/\$1\$14	=\$D\$2*\$B\$3*E25	=K25/\$K\$11		
=126/\$1\$14	=\$D\$2*\$B\$3*E26	=K26/\$K\$11		
=127/\$1\$14	=\$D\$2*\$B\$3*E27	=K27/\$K\$11		
=128/\$1\$14	=\$D\$2*\$B\$3*E28	=K28/\$K\$11		
=129/\$1\$14	=\$D\$2*\$B\$3*E29	=K29/\$K\$11		
			19.51	=M30/\$M\$30
=131/\$1\$14	=\$D\$2*\$B\$3*E31	=K31/\$K\$11		
=132/\$1\$14	=\$D\$2*\$B\$3*E32	=K32/\$K\$11		
=133/\$1\$14	=\$D\$2*\$B\$3*E33	=K33/\$K\$11		
=134/\$1\$14	=\$D\$2*\$B\$3*E34	=K34/\$K\$11		
=135/\$1\$14	=\$D\$2*\$B\$3*E35	=K35/\$K\$11		
=136/\$1\$14	=\$D\$2*\$B\$3*E36	=K36/\$K\$11		

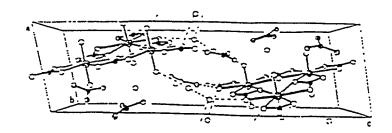
11.30年8月11日			TABLITH	
Dalativa		Boletice	Dalinhiar	Relative Th
TATELY	Cain	TATAL THE COOL	AFHORE	
Conc	TW/CIVIL	IICI/AL TENNI CONSTRUCTION IICI		
H 4 10 000		R = 50,000	Observed	
=137/\$1\$14	=\$D\$2*\$B\$3*E37	=K37/\$K\$11		**************************************
=138/\$1\$14	=\$D\$2*\$B\$3*E38	=K38/\$K\$11		
=139/\$1\$14	=\$D\$2*\$B\$3*E39	=K39/\$K\$11		
=140/\$1\$14	=\$D\$2*\$B\$3*E40	=K40/\$K\$11		
=141/\$1\$14	=\$D\$2*\$B\$3*E41	=K41/\$K\$11		
=142/\$1\$14	=\$D\$2*\$B\$3*E42	=K42/\$K\$11		
=143/\$1\$14	=\$D\$2*\$B\$3*E43	=K43/\$K\$11		
=144/\$1\$14	=\$D\$2*\$B\$3*E44	=K44/\$K\$11		
=145/\$1\$14	=\$D\$2*\$B\$3*E45	=K45/\$K\$11		
=146/\$1\$14	=\$D\$2*\$B\$3*E46	=K46/\$K\$11		
=147/\$1\$14	=\$D\$2*\$B\$3*E47	=K47/\$K\$11		
=148/\$1\$14	=\$D\$2*\$B\$3*E48	=K48/\$K\$11		
=149/\$1\$14	=\$D\$2*\$B\$3*E49	=K49/\$K\$11		
=150/\$1\$14	=\$D\$5,\$B\$3,E20	=K50/\$K\$11		
			11.31	=M51/\$M\$30
=152/\$1\$14	=\$D\$5,\$B\$3,E25	=K52/\$K\$11		
=153/\$1\$14	=\$D\$5,\$B\$3,E23	=K53/\$K\$11		
=154/\$1\$14	=\$D\$2*\$B\$3*E54	=K54/\$K\$11		
=155/\$1\$14	=\$D\$2*\$B\$3*E55	=K55/\$K\$11		
=156/\$1\$14	=\$D\$5,\$B\$3,E26	=K56/\$K\$11		
=157/\$1\$14	-\$D\$5,\$B\$3,E21	=K57/\$K\$11		
=158/\$1\$14	=\$D\$5,\$B\$3,E28	=K58/\$K\$11		
=159/\$1\$14	=\$D\$2,\$B\$3,E29	=K59/\$K\$11		
=160/\$1\$14	=\$D\$5,\$B\$3,E60	=K60/\$K\$11		
=161/\$1\$14	=\$D\$2*\$B\$3*E61	=K61/\$K\$11		
=162/\$1\$14	=\$D\$2*\$B\$3*E62	=K62/\$K\$11		

Total Thosain Balaive That Abandhar						-	=M70/\$M\$30			0000	=M/4/\$IM\$30	=M76/\$M\$30	=M77/\$M\$30		=M79/\$M\$30	=M80/\$M\$30		=M82/\$M\$30	=M83/\$M\$30			=M86/\$M\$30	=M87/\$M\$30	
Total Tr Daught	ICI:						1.41				0.13	0.03	0.04		0.02	200'0		200'0	0.004	0.008		0.004	0.002	
Relative Contract			=K65/\$K\$11	=K66/\$K\$11 =K67/\$K\$11	=K68/\$K\$11	=K69/\$K\$11		=K71/\$K\$11	=K72/\$K\$11	=K73/\$K\$11		=K75/\$K\$11		=K78/\$K\$11			=K81/\$K\$11				=K85/\$K\$11			
Celei Callan	Conc. A Page Line Line Line Line Line Line Line Lin	=\$D\$2*\$B\$3*E63 =\$D\$2*\$B\$3*E64	=\$D\$2*\$B\$3*E65	=\$D\$2*\$B\$3*E66 =\$D\$2*\$B\$3*E67	=\$D\$2*\$B\$3*E68	=\$D\$2,\$B\$3,E69		=\$D\$2*\$B\$3*E71	=\$D\$2*\$B\$3*E72	=\$D\$2*\$B\$3*E73		=\$D\$2*\$B\$3*E75		=\$D\$2*\$B\$3*E78			=\$D\$2*\$B\$3*E81				=\$D\$2*\$B\$3*E85			
	Conc.			=166/\$1\$14	1-	Т		=171/\$1\$14	=172/\$1\$14	=173/\$1\$14		=175/\$1\$14		=178/\$1\$14			=181/\$1\$14				=185/\$1\$14			

			Religitive (This	Saughter, #	Vetivity?	Deserved					
		TOTAL THE STATE OF	Saughter, (1916)	Activity: 1. The		Observed					
			Relative Total:Th: 410 Pelative.pur: 110 Daughter Relative.Th?	otal Thin Conc. Market Total THANK Activity Market Daughter	Cone :) = 20,000 = 1	=K89/\$K\$11	=K90/\$K\$11	=K91/\$K\$11	=K92/\$K\$11	=K93/\$K\$11
		Calciant Calciant	rotal The State of	Conc. Mar. 18.	CIME SEED IN		=\$D\$2,\$B\$3,E88 :	=\$D\$2*\$B\$3*E90 =	=\$D\$2*\$B\$3*E91 =K91/\$K\$11	=\$D\$2,\$B\$3,E95	=\$D\$2*\$B\$3*E93 =K93/\$K\$11
		1877年1976年1876年1876年1876年1876年1876年1876年1876年18	Relative	Total Th	Conc.	R = 10,000	=189/\$1\$14 =	=190/\$1\$14 =	=191/\$1\$14 =	=192/\$1\$14 =	=193/\$1\$14 =

APPENDIX G.

MEMORANDUM FROM LOS ALAMOS NATIONAL LABORATORY CHEMICAL SCIENCE AND TECHNOLOGY DIVISION


Discussion of analytical and oxidation state characterization on the 241 Actinide samples

By David L. Clark

David L. Clark Chemical Science and Technology Division Mail Stop G739

Los Alamos

Los Alamos National Laboratory Los Alamos, New Mexico 67545

Dan,

Here is a discussion of the analytical and oxidation state characterization on the 241Actinide samples.

(1) 241Am(III) preparation and characterization.

LANL CST-7 prepared a sample of aqueous ²⁴¹Am³⁺ for assay and shipment to Sandia National Laboratory. Preparation and assay are recorded in LANL lab notebook LA-CST-NBK-95-028, pages 35-36, and 38-39. The results of the ²⁴¹Am assay are recorded on page 41. Approximately 0.025g of high purity 241AmO2 (lot ID LRA03) was taken from Material Balance Area 528 and dissolved in 0.5mL 8M HNO3 with a trace amount of HF. This solution was heated in a salt bath until the solid had dissolved to give a yellow solution. The 241Am was precipitated from solution using 10.7M NaOH. The resulting 241Am(OH)3 was removed via centrifugation, and washed three times with distilled water. The resulting precipitate was redissolved in 0.5mL of 1M HClO4 to give a pink solution of 241 Am3+ aquo ion. An 0.025 mL aliquot of this solution was added to 3.0 mL of 1M HClO4 and added to a 2cm micro cell for assay using absorption spectroscopy. The absorption maximum at 503 nm was used to determine Am concentration, and to confirm that all Am was present in the trivalent oxidation state. Another aliquot was submitted for isotopic purity determination (Analytical Chemistry sample ID 200017115). Alpha spectroscopy showed only ²⁴¹Am, and total plutonium < 0.6% of alpha activity. The combined assays were used to prepare 5.0 mL of a solution containing 1.03 x 10-6M 241 Am³⁺ in 0.1M HCl. This solution was packaged and shipped to Dan Lucero at SNL.

(2) ²⁴¹Pu sample analysis.

LANL CST-7 received a shipment of ²⁴¹Pu from Dan Lucero at SNL. This sample contained 19.91 µCi/g of ²⁴¹Pu in 1M HCl as of December 1, 1994. A simple calculation suggested that 19.60 µCi/g of ²⁴¹Pu in 1M HCl existed as of April 1, 1995. This activity corresponded to a concentration of 7.2 x 10-7M, which is a the edge of our detection limits for oxidation state determination using PAS. Since this was the only ²⁴¹Pu available, the risk of losing sample via transfers, etc. was deemed too great, and we sent the sample back to SNL. The status of the oxidation state of the sample is unclear. Normally, in HCl solution, alpha radiolysis will keep the sample in the tetravalent oxidation state. However, ²⁴¹Pu is primarily a beta-emitting radionuclide, and the radiolysis effects from such a solution are not well understood. Plutonium samples in near-neutral solution under these concentrations are known to contain a large amount of the pentavalent oxidation state. Without further data in brine solution, one cannot say for sure what the predominant oxidation state will be.

Dr. David L. Clark Chemical Science and Technology Division Mail Stop G739

Phone: FAX:

c-mail:

(505) 665-4622 (505) 665-4624 DLCLARK@LANL.GOV

APPENDIX H.

LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR THREE ²⁴¹Pu COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES 20,000, 20,500, & 21,000

Pu_20000_Vol.col

```
[Wcolumn]
Date=5/7/98 1:41:36 PM
Title=Pu, 0.1 mL/min, 20 mL spike - Data through 9/2/97
LogFile=Pu_20000_Vol.log
OutputFile=Pu_20000_Vol.out
Model=Linear equilibrium
TracerSpikeType=Single
CurveType=Theoretical Curve
Normalization=FLUX
Bootstrap=
[DistanceAndTimeSpec.]
Set=Formula
Fixed=Distance
Distance=1
Start=12.9
End=1290
Step=100
[ParameterValues]
R=20000
theta=0.033
D=0.64
mu=0
gamma=0
q=0.033
t0=0.36
c0=670000
```

Pu_20500_Vol.col

```
[Wcolumn]
Date=5/7/98 1:43:10 PM
Title=Pu, 0.1 mL/min, 20 mL spike - Data through 9/2/97
LogFile=Pu_20500_Vol.log
OutputFile=Pu_20500_Vol.out
Model=Linear equilibrium
TracerSpikeType=Single
CurveType=Theoretical Curve
Normalization=FLUX
Bootstrap=
[DistanceAndTimeSpec.]
Set=Formula
Fixed=Distance
Distance=1
Start=12.9
End=1290
Step=100
[ParameterValues]
R=20500
theta=0.033
D=0.64
mu=0
gamma=0
q=0.033
t0=0.36
c0=670000
```

Pu_21000_Vol.col

```
[Wcolumn]
Date=5/7/98 1:42:19 PM
Title=Pu, 0.1 mL/min, 20 mL spike - Data through 9/2/97
LogFile=Pu_21000_Vol.log
OutputFile=Pu_21000_Vol.out
Model=Linear equilibrium
TracerSpikeType=Single
CurveType=Theoretical Curve
Normalization=FLUX
Bootstrap=
[DistanceAndTimeSpec.]
Set=Formula
Fixed=Distance
Distance=1
Start=12.9
End=1290
Step=100
[ParameterValues]
R=21000
theta=0.033
D=0.64
mu=0
gamma=0
q=0.033
t0 = 0.36
c0=670000
```

APPENDIX I.

LISTINGS OF OUTPUT FILES (*.LOG) FOR THREE ²⁴¹Pu COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES 20,000, 20,500, & 21,000

Pu_20000_Vol.log

```
*****************
     Deterministic linear equilibrium absorption for pulse injection with
     first-order decay
     Pu, 0.1 mL/min, 20 mL spike - Data through 9/2/97
Model Name = Linear equilibrium
Calculation began 5/7/98 1:41:40 PM
Model parameters:
        R = 20000
    theta = 0.033
       D = 0.64
       mu = 0
    qamma = 0
        q = 0.033
       t\tilde{0} = 0.36
       c0 = 670000
No fit performed; model calculation only
Calculated model curves:
Distance
             Time
                           Model
1.000000E+00
             1.290000E+01
                           1.610584E-259
1.000000E+00 2.580000E+01
                           7.245637E-128
             3.870000E+01 5.245887E-84
1.000000E+00
             5.160000E+01 3.868146E-62
1.000000E+00
1.000000E+00
             6.450000E+01
                           4.613911E-49
1.000000E+00
             7.740000E+01
                           2.255661E-40
1.000000E+00
             9.030000E+01
                           6.911341E-34
1.000000E+00
             1.032000E+02
                           2.922740E-29
1.000000E+00
             1.161000E+02
                           1.130989E-25
1.000000E+00
             1.290000E+02
                           8.229986E-23
1.000000E+00
             1.419000E+02
                           1.779975E-20
1.000000E+00
             1.548000E+02
                           1.551907E-18
1.000000E+00
             1.677000E+02
                           6.734067E-17
1.000000E+00
             1.806000E+02
                           1.690228E-15
1.000000E+00
             1.935000E+02
                           2.739676E-14
1.000000E+00
             2.064000E+02
                           3.114381E-13
1.000000E+00
             2.193000E+02
                           2.644449E-12
1.000000E+00
             2.322000E+02
                           1.761396E-11
1.000000E+00
             2.451000E+02
                           9.565554E-11
1.000000E+00
             2.580000E+02
                          4.368167E-10
1.000000E+00
             2.709000E+02
                           1.719749E-09
1.000000E+00
             2.838000E+02
                           .5.957568E-09
1.000000E+00
             2.967000E+02
                           1.846817E-08
1.000000E+00
             3.096000E+02
                           5.195387E-08
1.000000E+00
             3.225000E+02
                           1.342025E-07
1.000000E+00
             3.354000E+02
                           3.214927E-07
1.000000E+00
             3.483000E+02 7.203203E-07
1.000000E+00
             3.612000E+02 1.520449E-06
1.000000E+00
             3.741000E+02
                           3.042433E-06
1.000000E+00
             3.870000E+02
                           5.802574E-06
1.000000E+00
             3.999000E+02
                           1.059775E-05
1.000000E+00
             4.128000E+02
                           1.861169E-05
1.000000E+00 4.257000E+02
                           3.154314E-05
1.000000E+00 4.386000E+02
                           5.175514E-05
1.000000E+00 4.515000E+02
                           8.244311E-05
1.000000E+00
            4.644000E+02 1.278186E-04
1.000000E+00 4.773000E+02
```

1.933037E-04

2.857318E-04

4.135468E-04

5.869975E-04

8.183185E-04

1.514396E-03

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

4.902000E+02

5.031000E+02

1.000000E+00 5.418000E+02 1.121894E-03

5.547000E+02

1.000000E+00 5.676000E+02 2.014900E-03

5.160000E+02

1.000000E+00 5.289000E+02

Pu 20000_Vol.log

```
2.644965E-03
              5.805000E+02
1.000000E+00
              5.934000E+02
1.000000E+00
                             3.428685E-03
              6.063000E+02
                             4.392700E-03
1.000000E+00
                             5.566179E-03
              6.192000E+02
1.000000E+00
              6.321000E+02
                             6.980765E-03
1.000000E+00
                             8.670486E-03
1.000000E+00
              6.450000E+02
                             1.067164E-02
              6.579000E+02
1.000000E+00
                             1.302265E-02
              6.708000E+02
1.000000E+00
              6.837000E+02
                             1.576387E-02
1.000000E+00
                             1.893743E-02
1.00000E+00
              6.966000E+02
              7.095000E+02
                             2.258700E-02
1.00000E+00
                             2.675754E-02
              7.224000E+02
1.000000E+00
                             3.149512E-02
              7.353000E+02
1.000000E+00
              7.482000E+02
                             3.684660E-02
1.000000E+00
                             4.285945E-02
              7.611000E+02
1.000000E+00
              7.740000E+02
                             4.958144E-02
1.000000E+00
                             5.706043E-02
              7.869000E+02
1.000000E+00
               7.998000E+02
                             6.534409E-02
1.000000E+00
                             7.447971E-02
1.000000E+00
               8.127000E+02
                             8.451390E-02
               8.256000E+02
1.000000E+00
               8.385000E+02
                             9.549244E-02
1.000000E+00
                             1.074600E-01
               8.514000E+02
1.000000E+00
                             1.204601E-01
               8.643000E+02
1.000000E+00
                             1.345347E-01
               8.772000E+02
1.000000E+00
               8.901000E+02
                              1.497241E-01
1.000000E+00
               9.030000E+02
                              1.660671E-01
1.000000E+00
               9.159000E+02
                              1.836004E-01
1.000000E+00
                              2.023588E-01
               9.288000E+02
1.00000E+00
               9.417000E+02
                              2.223749E-01
1.000000E+00
                              2.437357E-01
               9.546000E+02
1.00000E+00
                              2.663594E-01
1.000000E+00
               9.675000E+02
                              2.903254E-01
1.00000E+00
               9.804000E+02
                              3.156574E-01
1.000000E+00
               9.933000E+02
                              3.423764E-01
               1.006200E+03
1.000000E+00
                              3.705014E-01
               1.019100E+03
1.000000E+00
                              4.000485E-01
1.000000E+00
               1.032000E+03
                              4.310319E-01
               1.044900E+03
 1.000000E+00
                              4.634631E-01
               1.057800E+03
 1.000000E+00
                              4.973512E-01
               1.070700E+03
 1.000000E+00
 1.000000E+00
               1.083600E+03
                              5.327033E-01
                              5.695240E-01
               1.096500E+03
 1.000000E+00
                              6.078156E-01
               1.109400E+03
 1.000000E+00
                              6.475784E-01
 1.000000E+00
               1.122300E+03
                              6.888105E-01
 1.000000E+00
               1.135200E+03
                              7.315079E-01
               1.148100E+03
 1.000000E+00
                              7.756647E-01
               1.161000E+03
 1.000000E+00
                              8.212730E-01
               1.173900E+03
 1.000000E+00
               1.186800E+03
                              8.683232E-01
 1.000000E+00
                              9.168038E-01
 1.000000E+00
               1.199700E+03
                              9.667017E-01
               1.212600E+03
 1.000000E+00
                              1.018002E+00
               1.225500E+03
 1.000000E+00
                1.238400E+03
                              1.070689E+00
 1.000000E+00
                              1.124744E+00
                1.251300E+03
 1.000000E+00
                1.264200E+03
                              1.180149E+00
 1.000000E+00
                              1.236883E+00
 1.000000E+00
                1.277100E+03
                              1.294925E+00
                1.290000E+03
 1.000000E+00
```

Pu_20500_Vol.log

```
*******
      Deterministic linear equilibrium absorption for pulse injection with
      first-order decay
      Pu, 0.1 mL/min, 20 mL spike - Data through 9/2/97
      *******************
Model Name = Linear equilibrium
Calculation began 5/7/98 1:43:15 PM
Model parameters:
        R = 20500
     theta = 0.033
        D = 0.64
       mu = 0
    \alphaamma = 0
        q = 0.033
       t0 = 0.36
       c0 = 670000
No fit performed; model calculation only
Calculated model curves:
Distance
             Time
                           Model
1.000000E+00 1.290000E+01 4.228522E-266
1.000000E+00 2.580000E+01 3.695017E-131
1.000000E+00
             3.870000E+01 3.358754E-86
             5.160000E+01 8.794973E-64
1.000000E+00
1.000000E+00 6.450000E+01 2.244162E-50
1.000000E+00 7.740000E+01 1.821160E-41
1.000000E+00
             9.030000E+01 8.013552E-35
1.000000E+00
             1.032000E+02 4.444981E-30
1.000000E+00
             1.161000E+02
                           2.123951E-26
1.000000E+00
             1.290000E+02
                           1.829576E-23
1.000000E+00
             1.419000E+02
                           4.542512E-21
1.000000E+00
             1.548000E+02
                           4.443045E-19
1.000000E+00
             1.677000E+02
                           2.124890E-17
1.000000E+00
             1.806000E+02
                           5.797068E-16
1.000000E+00
             1.935000E+02
                           1.010032E-14
1.000000E+00
             2.064000E+02
                           1.223085E-13
1.000000E+00
              2.193000E+02
                           1.098088E-12
1.000000E+00
             2.322000E+02
                           7.685708E-12
1.000000E+00
             2.451000E+02
                           4.363094E-11
1.000000E+00
             2.580000E+02
                           2.073551E-10
1.000000E+00
             2.709000E+02
                           8.463697E-10
1.000000E+00
             2.838000E+02
                           3.029825E-09
1.000000E+00
             2.967000E+02 9.678005E-09
1.000000E+00
             3.096000E+02
                           2.798392E-08
1.000000E+00
             3.225000E+02
                           7.413537E-08
1.000000E+00
             3.354000E+02
                           1.817882E-07
1.000000E+00
             3.483000E+02
                           4.161974E-07
1.000000E+00
             3.612000E+02
                           8.963027E-07
1.000000E+00
             3.741000E+02 1.827310E-06
1.000000E+00
             3.870000E+02 3.546335E-06
1.000000E+00
             3.999000E+02
                           6.583429E-06
1.000000E+00
             4.128000E+02
                           1.173982E-05
1.000000E+00
             4.257000E+02
                           2.018437E-05
1.000000E+00
             4.386000E+02
                           3.356848E-05
1.000000E+00
             4.515000E+02
                           5.415833E-05
1.000000E+00
             4.644000E+02
                           8.498265E-05
1.000000E+00 4.773000E+02 1.299929E-04
1.000000E+00
             4.902000E+02 1.942319E-04
```

5.031000E+02 2.840073E-04

4.070631E-04

5.727469E-04

7.921651E-04

5.160000E+02

5.289000E+02

5.418000E+02

1.000000E+00 5.547000E+02 1.078324E-03 1.000000E+00 5.676000E+02 1.446251E-03

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

Pu 20500_Vol.log

```
5.805000E+02
                             1.913092E-03
1.000000E+00
                             2.498186E-03
1.000000E+00
              5.934000E+02
                             3.223106E-03
              6.063000E+02
1.000000E+00
              6.192000E+02
                             4.111679E-03
1.000000E+00
              6.321000E+02
                             5.189972E-03
1.000000E+00
                             6.486247E-03
              6.450000E+02
1.000000E+00
              6.579000E+02
                             8.030895E-03
1.000000E+00
                             9.856335E-03
              6.708000E+02
1.000000E+00
                             1.199689E-02
              6.837000E+02
1.000000E+00
                             1.448867E-02
1.000000E+00
              6.966000E+02
                             1.736935E-02
              7.095000E+02
1.000000E+00
                             2.067807E-02
              7.224000E+02
1.000000E+00
                             2.445517E-02
              7.353000E+02
1.000000E+00
              7.482000E+02
                             2.874203E-02
1.000000E+00
                             3.358085E-02
               7.611000E+02
1.000000E+00
                             3.901443E-02
              7.740000E+02
1.000000E+00
                             4.508595E-02
               7.869000E+02
1.000000E+00
                             5.183877E-02
1.000000E+00
               7.998000E+02
               8.127000E+02
                             5.931618E-02
1.000000E+00
                             6.756123E-02
1.000000E+00
               8.256000E+02
               8.385000E+02
                             7.661651E-02
1.000000E+00
               8.514000E+02
                             8.652396E-02
1.000000E+00
               8.643000E+02
                             9.732467E-02
1.000000E+00
                             1.090587E-01
               8.772000E+02
1.000000E+00
               8.901000E+02
                             1.217651E-01
1.000000E+00
                             1.354812E-01
1.000000E+00
               9.030000E+02
                             1.502434E-01
1.000000E+00
               9.159000E+02
                             1.660861E-01
               9.288000E+02
1.000000E+00
               9.417000E+02
                              1.830422E-01
1.000000E+00
                              2.011427E-01
               9.546000E+02
1.000000E+00
                             2.204169E-01
1.000000E+00
               9.675000E+02
                              2.409475E-01
1.000000E+00
               9.804000E+02
                             2.626514E-01
 1.000000E+00
               9.933000E+02
                              2.856047E-01
               1.006200E+03
 1.000000E+00
                              3.098283E-01
 1.000000E+00
               1.019100E+03
               1.032000E+03
                              3.353415E-01
 1.000000E+00
                              3.621609E-01
               1.044900E+03
 1.000000E+00
               1.057800E+03
                              3.903013E-01
 1.000000E+00
                              4.197754E-01
               1.070700E+03
 1.00000E+00
                              4.505937E-01
 1.000000E+00
               1.083600E+03
                              4.827647E-01
               1.096500E+03
 1.000000E+00
                              5.162946E-01
               1.109400E+03
 1.000000E+00
 1.000000E+00
               1.122300E+03
                              5.511880E-01
                              5.874471E-01
               1.135200E+03
 1.000000E+00
                              6.250725E-01
               1.148100E+03
 1.000000E+00
               1.161000E+03
                              6.640626E-01
 1.000000E+00
                              7.044144E-01
                1.173900E+03
 1.000000E+00
                              7.461227E-01
                1.186800E+03
 1.000000E+00
                              7.891808E-01
                1.199700E+03
 1.000000E+00
                1.212600E+03
                              8.335804E-01
 1.000000E+00
                1.225500E+03
                              8.793116E-01
 1.000000E+00
                              9.263629E-01
 1.000000E+00
                1.238400E+03
                1.251300E+03
                              9.747214E-01
 1.000000E+00
                1.264200E+03
                              1.024373E+00
 1.000000E+00
                              1.075302E+00
 1.000000E+00
                1.277100E+03
                1.290000E+03
                              1.127492E+00
 1.000000E+00
```

Pu_21000_Vol.log

```
Deterministic linear equilibrium absorption for pulse injection with
        first-order decay
        Pu, 0.1 mL/min, 20 mL spike - Data through 9/2/97
 Model Name = Linear equilibrium
 Calculation began 5/7/98 1:42:25 PM
 Model parameters:
            R = 21000
       theta = 0.033
            D = 0.64
           mu = 0
       qamma = 0
            q = 0.033
           t\bar{0} = 0.36
           c0 = 670000
 No fit performed; model calculation only
 Calculated model curves:
 Distance
                     Time
                                         Model
1.000000E+00 1.290000E+01 1.110511E-272
1.000000E+00 2.580000E+01 1.884613E-134
1.000000E+00 3.870000E+01 2.150190E-88
1.000000E+00 5.160000E+01 1.999226E-65
1.000000E+00 6.450000E+01 1.091242E-51
1.000000E+00 7.740000E+01 1.469940E-42
1.000000E+00 9.030000E+01 9.288815E-36
1.000000E+00 1.032000E+02 6.758042E-31
1.000000E+00 1.161000E+02 3.987503E-27
 1.000000E+00 1.290000E+02 4.066042E-24
1.000000E+00 1.419000E+02 1.158906E-21
1.000000E+00 1.548000E+02 1.271643E-19
1.000000E+00 1.677000E+02 6.702930E-18
1.000000E+00 1.806000E+02
1.000000E+00 1.935000E+02
1.000000E+00 2.064000E+02
                                        1.987653E-16
                                        3.722550E-15
                                        4.801867E-14
1.000000E+00 2.193000E+02 4.558353E-13
1.000000E+00 2.322000E+02 3.352580E-12
1.000000E+00 2.451000E+02 1.989516E-11
1.000000E+00 2.451000E+02 1.989516E-11
1.000000E+00 2.580000E+02 9.840072E-11
1.000000E+00 2.709000E+02 4.164119E-10
1.000000E+00 2.838000E+02 1.540401E-09
1.000000E+00 2.967000E+02 5.070091E-09
1.000000E+00 3.096000E+02 1.506840E-08
1.000000E+00 3.225000E+02 4.094095E-08
1.000000E+00 3.354000E+02 1.027609E-07
1.000000E+00 3.483000E+02 2.404034E-07
                    3.483000E+02
                                        2.404034E-07
1.000000E+00 3.612000E+02
                                        5.282078E-07
1.000000E+00 3.741000E+02 1.097162E-06
1.000000E+00 3.870000E+02 2.166735E-06
1.000000E+00 3.999000E+02
                                        4.088439E-06
1.000000E+00 4.128000E+02 7.402927E-06
1.000000E+00 4.257000E+02 1.291196E-05
1.000000E+00 4.386000E+02 2.176589E-05
1.000000E+00 4.515000E+02
                                        3.556662E-05
1.000000E+00 4.644000E+02
                                         5.648495E-05
1.000000E+00 4.773000E+02
                                        8.739062E-05
1.000000E+00 4.902000E+02
1.000000E+00 5.031000E+02
1.000000E+00 5.160000E+02
                                        1.319923E-04
                                        1.949845E-04
                                        2.821973E-04
```

1.000000E+00 5.289000E+02 4.007455E-04 1.000000E+00 5.418000E+02 5.591717E-04 1.000000E+00 5.547000E+02 7.675818E-04 1.000000E+00 5.676000E+02 1.037765E-03

Pu_21000_Vol.log

```
1.383302E-03
1.000000E+00
              5.805000E+02
              5.934000E+02
                             1.819646E-03
1.000000E+00
              6.063000E+02
                             2.364190E-03
1.000000E+00
                             3.036309E-03
              6.192000E+02
1.000000E+00
              6.321000E+02
                             3.857372E-03
1.000000E+00
                             4.850740E-03
              6.450000E+02
1.000000E+00
                             6.041725E-03
              6.579000E+02
1.000000E+00
              6.708000E+02
                             7.457543E-03
1.000000E+00
                             9.127227E-03
              6.837000E+02
1.000000E+00
              6.966000E+02
                             1.108153E-02
1.000000E+00
                             1.335281E-02
              7.095000E+02
1.000000E+00
1.000000E+00
              7.224000E+02
                             1.597487E-02
              7.353000E+02
                             1.898286E-02
1.000000E+00
                             2.241304E-02
              7.482000E+02
1.000000E+00
1.000000E+00
              7.611000E+02
                             2.630269E-02
                             3.068984E-02
              7.740000E+02
1.000000E+00
              7.869000E+02
                             3.561316E-02
1.000000E+00
              7.998000E+02
                             4.111174E-02
1.000000E+00
                             4.722490E-02
              8.127000E+02
1.000000E+00
                             5.399202E-02
              8.256000E+02
1.000000E+00
              8.385000E+02
                             6.145232E-02
1.000000E+00
                             6.964472E-02
1.000000E+00
               8.514000E+02
                             7.860768E-02
               8.643000E+02
1.000000E+00
               8.772000E+02
                             8.837896E-02
1.000000E+00
                             9.899554E-02
1.000000E+00
               8.901000E+02
                             1.104935E-01
1.000000E+00
               9.030000E+02
                             1.229077E-01
1.000000E+00
               9.159000E+02
1.000000E+00
               9.288000E+02
                              1.362719E-01
                             1.506184E-01
               9.417000E+02
1.000000E+00
                             1.659784E-01
1.000000E+00
               9.546000E+02
                             1.823811E-01
1.000000E+00
               9.675000E+02
                             1.998544E-01
               9.804000E+02
1.000000E+00
               9.933000E+02
                              2.184245E-01
1.000000E+00
                              2.381704E-01
               1.006200E+03
1.000000E+00
                              2.590082E-01
1.000000E+00
               1.019100E+03
1.000000E+00
               1.032000E+03
                              2.810106E-01
                              3.041966E-01
               1.044900E+03
1.000000E+00
               1.057800E+03
                              3.285833E-01
1.000000E+00
               1.070700E+03
                              3.541859E-01
1.000000E+00
                              3.810178E-01
1.000000E+00
               1.083600E+03
               1.096500E+03
                              4.090903E-01
1.000000E+00
                              4.384130E-01
 1.000000E+00
               1.109400E+03
                              4.689937E-01
               1.122300E+03
1.000000E+00
               1.135200E+03
                              5.008384E-01
 1.000000E+00
                              5.339510E-01
 1.00000E+00
               1.148100E+03
                              5.683340E-01
               1.161000E+03
 1.000000E+00
                              6.039880E-01
 1.000000E+00
               1.173900E+03.
               1.186800E+03
                              6.409119E-01
 1.000000E+00
                              6.791032E-01
               1.199700E+03
 1.000000E+00
               1.212600E+03
                              7.185576E-01
 1.000000E+00
                              7.592693E-01
               1.225500E+03
 1.000000E+00
               1.238400E+03
                              8.012311E-01
 1.000000E+00
               1.251300E+03
 1.000000E+00
                              8.444344E-01
                              8.888692E-01
 1.000000E+00
               1.264200E+03
 1.000000E+00
               1.277100E+03
                              9.345242E-01
               1.290000E+03
                              9.813869E-01
 1.000000E+00
```

APPENDIX J.

LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS SHOWING RELATIVE CALCULATED ²⁴¹Pu CONCENTRATION AS FUNCTION OF EFFLUENT BRINE VOLUME AT RETARDATION VALUES 20,000, 20,500, & 21,000

Pu_Calculations.xls - Pu vs Eluted Volume Numbers

theta		R	R	R
0.033		20,000	20,500	21,000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
12.9	0.72	R=20,000 0.00	R=20,500 0.00	R=21,000 0.00
25.8	1.43	0.00	0.00	0.00
38.7	2.15	0.00	0.00	0.00
51.6	2.87	0.00	0.00	0.00
64.5	3.59	0.00	0.00	0.00
77.4	4.30	0.00	0.00	0.00
90.3	5.02	0.00	0.00	0.00
103.2	5.74	0.00	0.00	0.00
116.1 129.0	6.45 7.17	0.00	0.00	0.00
141.9	7.17	0.00	0.00	0.00
154.8	8.60	0.00	0.00	0.00
167.7	9.32	0.00	0.00	0.00
180.6	10.04	0.00 0.00	0.00	0.00
193.5	10.76	0.00	0.00 0.00	0.00 0.00
206.4	11.47	0.00	0.00	0.00
219.3	12.19	0.00	0.00	0.00
232.2	12.91	0.00	0.00	0.00
245.1	13.62	0.00	0.00	0.00
258.0	14.34	0.00	0.00	0.00
270.9	15.06	0.00	0.00	0.00
283.8	15.77	0.00	0.00	0.00
296.7	16.49	0.00	0.00	0.00
309.6	17.21	0.00	0.00	0.00
322.5 335.4	17.93	0.00	0.00	0.00
348.3	18.64 19.36	0.00	0.00	0.00
361.2	20.08	0.00 0.00	0.00	0.00
374.1	20.79	0.00	0.00 0.00	0.00
387.0	21.51	0.00	0.00	0.00 0.00
399.9	22.23	0.00	0.00	0.00
412.8	22.94	0.00	0.00	0.00
425.7	23.66	0.00	0.00	0.00
438.6	24.38	0.00	0.00	0.00
451.5	25.10	0.00	0.00	0.00
464.4	25.81	0.00	0.00	0.00
477.3	26.53	0.00	0.00	0.00
490.2	27.25	0.00	0.00	0.00
503.1	27.96	0.00	0.00	0.00
516.0	28.68	0.00	0.00	0.00
528.9	29.40	0.00	0.00	0.00
541.8	30.11	0.00	0.00	0.00
554.7 567.0	30.83	0.00	0.00	0.00
567.6	31.55	0.00	0.00	0.00
580.5	32.27	0.00	0.00	0.00

Pu_Calculations.xls - Pu vs Eluted Volume Numbers (continued)

theta 0.033		R 20,000	R 20,500	R 21,000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA) R=20,000	Relative Eluted Conc. (C/MDA) R=20,500	Relative Eluted Conc. (C/MDA) R=21,000
593.4	32.98	0.00	0.00	0.00
606.3	33.70	0.00	0.00	0.00
619.2	34.42	0.01	0.00	0.00
632.1	35.13	0.01	0.01	0.00
645.0	35.85	0.01	0.01	0.00
657.9	36.57	0.01	0.01	0.01
670.8	37.28	. 0.01	0.01	0.01
683.7	38.00	0.02	0.01	0.01
696.6	38.72	0.02	0.01	0.01
709.5	39.44	0.02	0.02	0.01
722.4	40.15	0.03	0.02	0.02
735.3	40.87	0.03	0.02	0.02
748.2	41.59	0.04	0.03	0.02
761.1	42.30	0.04	0.03	0.03
774.0	43.02	0.05	0.04	0.03
786.9	43.74	0.06	0.05	0.04
799.8	44.46	0.07	0.05	0.04
812.7	45.17	0.07	0.06	0.05
825.6	45.89	0.08	0.07	0.05
838.5	46.61	0.10	0.08	0.06
851.4	47.32	0.11	0.09	0.07
864.3	48.04	0.12	0.10	0.08
877.2	48.76	0.13	0.11	0.09
890.1	49.47	0.15	0.12	0.10
903.0	50.19	0.17	0.14	0.11
915.9	50.91	0.18	0.15	0.12
928.8	51.63	0.20	0.17	0.14
941.7	52.34	0.22	0.18	0.15
954.6	53.06	0.24	0.20	0.17
967.5 980.4	53.78 54.49	0.27 0.29	0.22 0.24	0.18
993.3	55.21	0.29	0.24	0.20
1006.2	55.93			0.22
1019.1	56.64	0.34 0.37	0.29 0.31	0.24 0.26
1019.1	57.36	0.37	0.31	0.28
1044.9	58.08	0.43	0.36	0.20
1057.8	58.80	0.46	0.39	0.33
1070.7	59.51	0.50	0.42	0.35
1083.6	60.23	0.53	0.45	0.38
1096.5	60.95	0.57	0.48	0.41
1109.4	61.66	0.61	0.52	0.44
1122.3	62.38	0.65	0.55	0.47
1135.2	63.10	0.69	0.59	
1148.1	63.81	0.73	0.63	
1161.0	64.53	0.78	• 0.66	0.57

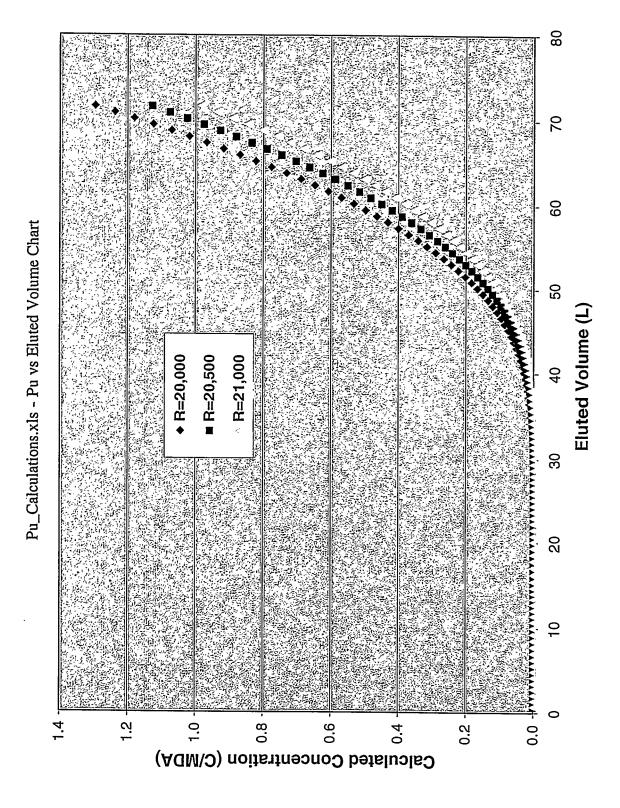
Pu_Calculations.xls - Pu vs Eluted Volume Numbers (continued)

theta		R	R	R
0.033		20,000	20,500	21,000
Eluted Pore Volumes	Eiuted Volume (L)	Relative Eluted Conc. (C/MDA) R=20,000	Relative Eluted Conc. (C/MDA) R=20,500	Relative Eluted Conc. (C/MDA) R=21,000
1173.9	65.25	0.82	0.70	0.60
1186.8	65.97	0.87	0.75	0.64
1199.7	66.68	0.92	0.79	0.68
1212.6	67.40	0.97	0.83	0.72
1225.5	68.12	1.02	0.88	0.76
1238.4	68.83	1.07	0.93	0.80
1251.3	69.55	1.12	0.97	0.84
1264.2	70.27	1.18	1.02	0.89
1277.1	70.98	1.24	1.08	0.93
1290.0	71.70	1.29	. 1.13	0.98

Pu_Calculations.xls - Pu vs Eluted Volume Formulas

R R 20500 21000 ·	Relative Eluted Conc. (C/MDA) Relative Eluted Conc. (C/MDA) Relative Eluted Conc. (C/MDA)	9 4.228522E-266 1.110511E-272 8 3.3695017E-131 1.884613E-134 3.3685047E-143 1.884613E-134 3.36854E-86 1.999226E-65 2.24446E-50 1.999226E-65 2.24446E-50 1.091242E-51 1.82116E-41 3.09326E-65 2.123951E-26 1.091242E-51 1.42957E-23 6.758042E-31 4.44981E-30 6.758042E-31 4.44981E-30 6.758042E-31 4.44981E-30 6.758042E-31 4.44981E-30 6.758042E-31 4.4506E-19 1.27463E-19 2.123951E-24 1.158906E-21 4.4306E-19 1.27463E-19 2.12489E-17 1.158906E-21 4.4306E-19 1.27463E-19 2.12489E-17 1.00000000000000000000000000000000000
R 20000		=P(()*(7.25)^2*10.2*\$4\$3*A6/1000
theta 0.033	Eluted Pore Volumes Eluted Volume (L)	12.9 = P(0'7.2g

Pu_Calculations.xls - Pu vs Eluted Volume Formulas (continued)


theta 0.033		R 20000	R 20500	R 21000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
6,666	=PI()*(7.25)^2*10.2*\$A\$3*A36/1000	0.00001059775	0.000006583429	0.000004088439
412 B	=PI()*(7.25)^2*10,2*\$A\$3*A37/1000	0.00001861169	0.00001173982 .	0.000007402927
4-E:0	=PI()*(7.25)^2*10.2*\$A\$3*A38/1000	0,00003154314	0.00002018437	0.00001291196
453.7 438 6	=PI(1*(7.25)^2*10.2*\$A\$3*A39/1000	0.00005175514	0.00003356848	0.00002176589
451 5	=PI()*(7.25)^2*10,2*\$A\$3*A40/1000	0.00008244311	0.00005415833	0.00003556662
464.4	=PI()*(7.25)^2*10.2*\$A\$3*A41/1000	0.0001278186	0.00008498265	0.00005648495
477.3	=PI()*(7.25)^2*10.2*\$A\$3*A42/1000	0.0001933037	0.0001299929	0.00008739062
490.2	=PI()*(7.25)^2*10.2*\$A\$3*A43/1000	0.0002857318	0.0001942319	0.0001319923
503 1	=PI()*(7.25)^2*10.2*\$A\$3*A44/1000	0.0004135468	0.0002840073	0.0001949845
7.000	=PI()*(7.25)^2*10.2*\$A\$3*A45/1000	0.0005869975	0.0004070631	0.0002821973
528 9	=PI()*(7.25)^2*10.2*\$A\$3*A46/1000	0.0008183185	0.0005727469	0.0004007455
5418	=PI()*(7.25)^2*10.2*\$A\$3*A47/1000	0.001121894	0.0007921651	0.0005591717
554.7	=PI()*(7.25)^2*10.2*\$A\$3*A48/1000	0.001514396	0.001078324	0.0007675818
567.6	=PI()*(7.25)^2*10.2*\$A\$3*A49/1000	0.0020149	0.001446251	0.001037765
580.5	=PI()*(7.25)^2*10.2*\$A\$3*A50/1000	0.002644965	0.001913092	0.001383302
593.4	=PI()*(7.25)^2*10.2*\$A\$3*A51/1000	0.003428685	0.002498186	0.001819646
606.3	=PI()*(7.25)^2*10.2*\$A\$3*A52/1000	0.0043927	0.003223106	0.00236419
0.000	=PI()*(7.25)^2*10.2*\$A\$3*A53/1000	0.005566179	0.004111679	0.003036309
632.1	=PI()*(7.25)^2*10.2*\$A\$3*A54/1000	0.006980765	0.005189972	0.003857372
645	=PI()*(7.25)^2*10.2*\$A\$3*A55/1000	0.008670486	0.006486247	0.00485074
657.9	=PI()*(7.25)^2*10.2*\$A\$3*A56/1000	0.01067164	0.008030895	0.006041725
670.8	=PI()*(7.25)^2*10.2*\$A\$3*A57/1000	0.01302265	0,009856335	0.007457543
683.7	=PI()*(7.25)^2*10.2*\$A\$3*A58/1000	0.01576387	0,01199689	0.009127227
606. 606.6	=PI()*(7,25)^2*10.2*\$A\$3*A59/1000	0.01893743	0.01448867	0.01108153
7000	=PI()*(7.25)^2*10,2*\$A\$3*A60/1000	0.022587	0.01736935	0.01335281
722.4	=PI()*(7,25)^2*10,2*\$A\$3*A61/1000	0.02675754	0.02067807	0.01597487
735.3	=PI()*(7,25)^2*10,2*\$A\$3*A62/1000	0.03149512	0.02445517	0.01898286
748 2	=PI()*(7,25)^2*10,2*\$A\$3*A63/1000	0.0368466	0.02874203	0.02241304
761 4	=PI()*(7.25)^2*10.2*\$A\$3*A64/1000	0.04285945	0.03358085	0.02630269
774	=PI()*(7.25)^2*10.2*\$A\$3*A65/1000	0.04958144	0.03901443	0.03068984
r				

Pu_Calculations.xls - Pu vs Eluted Volume Formulas (continued)

R 21000	Relative Eluted Conc. (C/MDA)	0.03561316 0.04111174 0.0472249 0.05399202 0.06145232 0.06964472 0.07860768 0.08837896 0.09899554 0.1104935 0.104935 0.1362719 0.136719
R 20500	Relative Eluted Conc. (C/MDA)	0.04508595 0.05183877 0.05931618 0.06756123 0.07661651 0.08652396 0.09732467 0.1090587 0.1217651 0.1354812 0.1354812 0.1354812 0.1354812 0.1354812 0.1354812 0.1354812 0.262614 0.2856047 0.2098283 0.20409475 0.2098283 0.2055144 0.2856047 0.2055148 0.4505937 0.4505937 0.4505937 0.4505937 0.4505937 0.6540626
R 20000	Relative Eluted Conc. (C/MDA)	0.05706043 0.06534409 0.07447971 0.0845139 0.09549244 0.10746 0.10746 0.1345347 0.1497241 0.1836004 0.2023588 0.2223749 0.2437357 0.2663594 0.2903254 0.3156574 0.3423764 0.3423764 0.3423764 0.3423764 0.3725014 0.4973512 0.569524 0.6078156 0.6078156 0.6078156 0.7756647
	Eluted Volume (L)	=P()(*(7.25)^2*10.2*\$A\$3*A66/1000 =P()(*(7.25)^2*10.2*\$A\$3*A67/1000 =P()(*(7.25)^2*10.2*\$A\$3*A68/1000 =P()(*(7.25)^2*10.2*\$A\$3*A70/1000 =P()(*(7.25)^2*10.2*\$A\$3*A70/1000 =P()(*(7.25)^2*10.2*\$A\$3*A71/1000 =P()(*(7.25)^2*10.2*\$A\$3*A77/1000 =P()(*(7.25)^2*10.2*\$A\$3*A77/1000 =P()(*(7.25)^2*10.2*\$A\$3*A77/1000 =P()(*(7.25)^2*10.2*\$A\$3*A77/1000 =P()(*(7.25)^2*10.2*\$A\$3*A78/1000 =P()(*(7.25)^2*10.2*\$A\$3*A81/1000 =P()(*(7.25)^2*10.2*\$A\$3*A91/1000 =P()(*(7.25)^2*10.2*\$A\$3*A91/1000 =P()(*(7.25)^2*10.2*\$A\$3*A91/1000 =P()(*(7.25)^2*10.2*\$A\$3*A93/1000 =P()(*(7.25)^2*10.2*\$A\$3*A93/1000
theta 0.033	Eluted Pore Volumes	786.9 799.8 812.7 825.6 838.5 851.4 864.3 877.2 890.1 903 915.9 928.8 941.7 954.6 967.5 960.4 993.3 1006.2 1019.1 1032 1019.1 1032 104.9 1057.8 1105.8 1122.3 1135.2

Pu_Calculations.xls - Pu vs Eluted Volume Formulas (continued)

R 21000	Relative Eluted Conc. (C/MDA)	0.603988 0.6409119 0.6791032 0.7185576 0.7592693 0.8012311 0.844344 0.8888692 0.9345242 0.9813869
R 20500	Relative Eluted Conc. (C/MDA)	0.7044144 0.7461227 0.7891808 0.8335804 0.8793116 0.9263629 0.9747214 1.024373 1.075302
R 20000	Relative Eluted Conc. (C/MDA)	0.821273 0.8683232 0.9168038 0.9667017 1.018002 1.124744 1.180149 1.236883
	Eluted Volume (L)	=PI()*(7.25)*2*10.2*\$A\$3*A96/1000 =PI()*(7.25)*2*10.2*\$A\$3*A96/1000 =PI()*(7.25)*2*10.2*\$A\$3*A99/1000 =PI()*(7.25)*2*10.2*\$A\$3*A100/1000 =PI()*(7.25)*2*10.2*\$A\$3*A101/1000 =PI()*(7.25)*2*10.2*\$A\$3*A101/1000 =PI()*(7.25)*2*10.2*\$A\$3*A104/1000 =PI()*(7.25)*2*10.2*\$A\$3*A104/1000 =PI()*(7.25)*2*10.2*\$A\$3*A104/1000
theta 0.033	Eluted Pore Volumes	1173.9 1186.8 1199.7 1212.6 1225.5 1238.4 1251.3 1264.2 1277.1

J-10

APPENDIX K.

LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR THREE ²⁴¹Am COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES 25,500, 26,000, & 26,500 (For Full Injection Concentration, 20-mL Spike)

Am_25500_Vol.col

[Wcolumn] Date=5/7/98 12:50:19 PM Title=Am, 0.1 mL/min, 20 mL spike - Data through 9/2/97 LogFile=Am_25500_Vol.log OutputFile=Am_25500_Vol.out Model=Linear equilibrium TracerSpikeType=Single CurveType=Theoretical Curve Normalization=FLUX Bootstrap= [DistanceAndTimeSpec.] Set=Formula Fixed=Distance Distance=1 Start=12.9 End=1290 Step=100 [ParameterValues] R=25500 theta=0.033 D=0.64mu=0gamma=0 q=0.033t0=0.36c0=2800000

Am_26000_Vol.col

```
[Wcolumn]
Date=5/7/98 11:56:27 AM
Title=Am, 0.1 mL/min, 20 mL spike - Data through 9/2/97
LogFile=Am_26000_Vol.log
OutputFile=Am_26000_Vol.out
Model=Linear equilibrium
TracerSpikeType=Single
CurveType=Theoretical Curve
Normalization=FLUX
Bootstrap=
[DistanceAndTimeSpec.]
Set=Formula
Fixed=Distance
Distance=1
Start=12.9
End=1290
Step=100
[ParameterValues]
R=26000
theta=0.033
D=0.64
mu=0
gamma=0
q=0.033
t0=0.36
c0=2800000
```

Am_2.6500_Vol.col

```
[Wcolumn]
Date=5/7/98 12:51:08 PM
Title=Am, 0.1 mL/min, 20 mL spike - Data through 9/2/97
LogFile=Am_26500_Vol.log
OutputFile=Am_26500_Vol.out
Model=Linear equilibrium
TracerSpikeType=Single
CurveType=Theoretical Curve
Normalization=FLUX
Bootstrap=
[DistanceAndTimeSpec.]
Set=Formula
Fixed=Distance
Distance=1
Start=12.9
End=1290
Step=100
[ParameterValues]
R = 26500
theta=0.033
D=0.64
mu=0
gamma=0
q=0.033
t0=0.36
c0=2800000
```

APPENDIX L.

LISTINGS OF OUTPUT FILES (*.LOG) FOR THREE ²⁴¹Am COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES 25,500, 26,000, & 26,500 (For Full Injection Concentration, 20-mL Spike)

Am_25500_Vol.log

```
*********
     Deterministic linear equilibrium absorption for pulse injection with
     first-order decay
    Am, 0.1 mL/min, 20 mL spike - Data through 9/2/97
    **********
Model Name = Linear equilibrium
Calculation began 5/7/98 12:50:23 PM
Model parameters:
       R = 25500
    theta = 0.033
       D = 0.64
      mu = 0
   gamma = 0
       q = 0.033
      t0 = 0.36
      c0 = 2800000
No fit performed; model calculation only
Calculated model curves:
Distance
             Time
                           Model
1.000000E+00
             1.290000E+01
                           0.000000E+00
1.000000E+00
             2.580000E+01
                           1.852375E-163
1.000000E+00
             3.870000E+01
                           1.615454E-107
1.000000E+00
             5.160000E+01
                           1.342021E-79
             6.450000E+01
1.000000E+00
                           6.860640E-63
1.000000E+00
             7.740000E+01
                           8.836412E-52
1.000000E+00
             9.030000E+01
                           7.276447E-44
1.000000E+00
             1.032000E+02
                           1.212172E-37
1.000000E+00
                           4.773791E-33
             1.161000E+02
1.000000E+00
             1.290000E+02
                           2.221768E-29
1.000000E+00
             1.419000E+02
                           2.192480E-26
1.000000E+00
             1.548000E+02
                           6.770733E-24
1.000000E+00
             1.677000E+02
                           8.564868E-22
1.000000E+00
             1.806000E+02
                           5.378047E-20
1.000000E+00
             1.935000E+02
                           1.929633E-18
1.000000E+00
             2.064000E+02
                           4.396175E-17
1.000000E+00
             2.193000E+02
                           6.893203E-16
1.000000E+00
             2.322000E+02
                           7.919698E-15
1.000000E+00
             2.451000E+02
                           7.004705E-14
1.000000E+00
             2.580000E+02
                           4.961496E-13
1.000000E+00
             2.709000E+02
                           2.905678E-12
1.000000E+00
             2.838000E+02
                           1.444222E-11
1.000000E+00
             2.967000E+02
                           6.224894E-11
1.000000E+00
             3.096000E+02
                           2.368841E-10
1.000000E+00
             3.225000E+02
                           8.079567E-10
1.000000E+00
             3.354000E+02
                           2.501611E-09
1.000000E+00
             3.483000E+02
                           7.107869E-09
1.000000E+00
             3.612000E+02
                           1.870596E-08
1.000000E+00
             3.741000E+02
                           4.596376E-08
1.000000E+00
             3.870000E+02
                           1.061830E-07
1.000000E+00
             3.999000E+02
                           2.320151E-07
1.000000E+00
             4.128000E+02
                           4.820469E-07
1.000000E+00
             4.257000E+02
                           9.567199E-07
1.000000E+00
             4.386000E+02
                           1.821275E-06
1.000000E+00
             4.515000E+02
                           3.337569E-06
1.000000E+00
             4.644000E+02
                           5.906675E-06
1.000000E+00
             4.773000E+02
                           1.012409E-05
1.000000E+00
             4.902000E+02
                           1.684922E-05
1.000000E+00
             5.031000E+02
                           2.729042E-05
1.000000E+00
             5.160000E+02
                            4.310657E-05
```

6.652534E-05

1.004781E-04

1.487506E-04

2.161476E-04

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

5.289000E+02

5.418000E+02

5.547000E+02

5.676000E+02

Am_25500_Vol.log

```
1.000000E+00
              5.805000E+02
                             3.086694E-04
1.000000E+00
              5.934000E+02
                             4.336987E-04
                             6.001929E-04
1.000000E+00
              6.063000E+02
1.000000E+00
              6.192000E+02
                             8.188795E-04
1.000000E+00
              6.321000E+02
                             1.102452E-03
1.000000E+00
              6.450000E+02
                             1.465760E-03
1.000000E+00
              6.579000E+02
                             1.925992E-03
1.000000E+00
              6.708000E+02
                             2.502849E-03
1.00000E+00
              6.837000E+02
                             3.218698E-03
1.000000E+00
                             4.098716E-03
              6.966000E+02
1.000000E+00
              7.095000E+02
                             5.171004E-03
1.000000E+00
              7.224000E+02
                             6.466685E-03
1.000000E+00
              7.353000E+02
                             8.019980E-03
1.000000E+00
              7.482000E+02
                             9.868250E-03
1.000000E+00
              7.611000E+02
                             1.205202E-02
1.000000E+00
              7.740000E+02
                             1.461496E-02
1.000000E+00
              7.869000E+02
                             1.760389E-02
1.000000E+00
              7.998000E+02
                             2.106867E-02
              8.127000E+02
1.000000E+00
                             2.506215E-02
1.000000E+00
              8.256000E+02
                             2.964006E-02
1.000000E+00
              8.385000E+02
                             3.486086E-02
1.000000E+00
              8.514000E+02
                             4.078562E-02
1.000000E+00
              8.643000E+02
                             4.747781E-02
1.000000E+00
              8.772000E+02
                             5.500316E-02
                             6.342943E-02
1.000000E+00
              8.901000E+02
1.000000E+00
              9.030000E+02
                             7.282618E-02
1.000000E+00
              9.159000E+02
                             8.326459E-02
1.000000E+00
              9.288000E+02
                             9.481717E-02
1.000000E+00
              9.417000E+02
                             1.075576E-01
1.000000E+00
              9.546000E+02
                             1.215604E-01
1.000000E+00
              9.675000E+02
                             1.369007E-01
1.000000E+00
              9.804000E+02
                             1.536542E-01
1.000000E+00
              9.933000E+02
                             1.718964E-01
1.000000E+00
              1.006200E+03
                             1.917030E-01
1.000000E+00
              1.019100E+03
                             2.131493E-01
1:00000E+00
              1.032000E+03
                             2.363100E-01
1.000000E+00
              1.044900E+03
                             2.612590E-01
1.000000E+00
              1.057800E+03
                             2.880693E-01
1.000000E+00
              1.070700E+03
                             3.168124E-01
1.000000E+00
              1.083600E+03
                             3.475589E-01
1.000000E+00
              1.096500E+03
                             3.803773E-01
1.000000E+00
              1.109400E+03
                             4.153346E-01
              1.122300E+03
1.000000E+00
                             4.524960E-01
1.000000E+00
              1.135200E+03
                             4.919243E-01
1.000000E+00
              1.148100E+03
                             5.336804E-01
1.000000E+00
              1.161000E+03
                             5.778225E-01
1.000000E+00
              1.173900E+03
                             6.244067E-01
1.000000E+00
              1.186800E+03
                             6.734864E-01
1.000000E+00
              1.199700E+03
                             7.251124E-01
1.000000E+00
                             7.793325E-01
              1.212600E+03
1.000000E+00
              1.225500E+03
                             8.363823E-01
1.000000E+00
              1.238400E+03
                             8.959313E-01
1.000000E+00
              1.251300E+03
                             9.582017E-01
1.000000E+00
              1.264200E+03
                             1.023230E+00
1.000000E+00
              1.277100E+03
                             1.091050E+00
1.000000E+00
              1.290000E+03
                             1.161692E+00
```

Am_26000_Vol.log

```
Deterministic linear equilibrium absorption for pulse injection with
     first-order decay
     Am, 0.1 mL/min, 20 mL spike - Data through 9/2/97
*************
Model Name = Linear equilibrium
Calculation began 5/7/98 11:56:35 AM
Model parameters:
        R = 26000
    theta = 0.033
        D = 0.64
       mu = 0
    qamma = 0
        q = 0.033
       t0 = 0.36
       c0 = 2800000
No fit performed; model calculation only
Calculated model curves:
               Time
                              Model
Distance
1.000000E+00
               1.290000E+01
                              0.000000E+00
1.000000E+00 2.580000E+01 9.462060E-167
1.000000E+00 3.870000E+01 1.033304E-109
1.000000E+00 5.160000E+01 3.045184E-81
1.000000E+00 6.450000E+01 3.329075E-64
1.000000E+00 7.740000E+01 7.116542E-53
              9.030000E+01 8.414529E-45
1.032000E+02 1.838688E-38
1.000000E+00
1.000000E+00
               1.032000E+02
                              1.838688E-38
              1.161000E+02 8.941403E-34
1.000000E+00
              1.290000E+02 4.926081E-30
1.419000E+02 5.580411E-27
1.000000E+00
1.000000E+00
1.000000E+00 1.548000E+02
                              1.933288E-24
1.000000E+00 1.677000E+02 2.695402E-22
              1.806000E+02
1.000000E+00
                              1.839628E-20
                              7.094989E-19
1.000000E+00
               1.935000E+02
1.000000E+00
               2.064000E+02 1.721866E-17
               2.193000E+02 2.854706E-16
2.322000E+02 3.446453E-15
1.000000E+00
1.000000E+00
1.000000E+00 2.451000E+02 3.186473E-14
1.000000E+00
              2.580000E+02 2.348891E-13
1.000000E+00
               2.709000E+02 1.426186E-12
               2.838000E+02 .7.325121E-12
2.967000E+02 3.253310E-11
3.096000E+02 1.272498E-10
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
               3.225000E+02 4.451253E-10
               3.354000E+02
1.000000E+00
                               1.410726E-09
1.000000E+00
               3.483000E+02
                               4.095816E-09
1.000000E+00
               3.612000E+02 1.099738E-08
1.000000E+00
               3.741000E+02
                               2.753164E-08
1.000000E+00
               3.870000E+02
                               6.471993E-08
1.000000E+00
               3.999000E+02
                               1.437401E-07
1.000000E+00
               4.128000E+02
                               3.032403E-07
1.000000E+00
               4.257000E+02
                               6.105428E-07
               4.386000E+02
                               1.178077E-06
1.000000E+00
1.000000E+00
               4.515000E+02
                               2.186554E-06
1.000000E+00
               4.644000E+02
                               3.916493E-06
1.000000E+00
               4.773000E+02
                               6.789726E-06
1.000000E+00
                4.902000E+02
                               1.142241E-05
1.000000E+00
               5.031000E+02
                               1.869089E-05
1.000000E+00
               5.160000E+02
```

2.981143E-05

4.643445E-05

7.075343E-05

1.056282E-04

5.289000E+02

5.418000E+02

5.547000E+02

1.000000E+00 5.676000E+02 1.547214E-04

1.000000E+00

1.000000E+00

1.000000E+00

Am_26000_Vol.log

```
1.000000E+00
              5.805000E+02
                             2.226478E-04
              5.934000E+02
1.000000E+00
                             3.151324E-04
1.000000E+00
              6.063000E+02
                             4.391780E-04
1.000000E+00
              6.192000E+02
                             6.032367E-04
1.000000E+00
              6.321000E+02
                             8.173844E-04
1.000000E+00
              6.450000E+02
                             1.093494E-03
                             1.445406E-03
1.000000E+00
              6.579000E+02
1.000000E+00
              6.708000E+02
                             1.889089E-03
1.00000E+00
              6.837000E+02
                             2.442794E-03
1.000000E+00
              6.966000E+02
                             3.127194E-03
1.000000E+00
              7.095000E+02
                             3.965505E-03
1.000000E+00
              7.224000E+02
                             4.983598E-03
1.000000E+00
              7.353000E+02
                             6.210081E-03
1.000000E+00
              7.482000E+02
                             7.676365E-03
1.000000E+00
              7.611000E+02
                             9.416713E-03
1.000000E+00
              7.740000E+02
                             1.146825E-02
1.000000E+00
              7.869000E+02
                             1.387099E-02
1.000000E+00
              7.998000E+02
                             1.666774E-02
1.000000E+00
               8.127000E+02
                             1.990416E-02
1.000000E+00
              8.256000E+02
                             2.362859E-02
1.000000E+00
              8.385000E+02
                             2.789201E-02
              8.514000E+02
1.000000E+00
                             3.274792E-02
1.000000E+00
              8.643000E+02
                             3.825222E-02
1.000000E+00
              8.772000E+02
                             4.446304E-02
1.000000E+00
              8.901000E+02
                             5.144059E-02
1.000000E+00
              9.030000E+02
                             5.924698E-02
                             6.794605E-02
1.000000E+00
              9.159000E+02
1.000000E+00
              9.288000E+02
                             7.760315E-02
              9.417000E+02
1.000000E+00
                             8.828494E-02
1.000000E+00
              9.546000E+02
                             1.000592E-01
1.000000E+00
               9.675000E+02
                             1.129946E-01
1.000000E+00
              9.804000E+02
                             1.271604E-01
1.000000E+00
               9.933000E+02
                             1.426264E-01
1.000000E+00
              1.006200E+03
                             1.594626E-01
1.000000E+00
               1.019100E+03
                             1.777391E-01
1.000000E+00
              1.032000E+03
                             1.975257E-01
1.000000E+00
              1.044900E+03
                             2.188918E-01
1.000000E+00
              1.057800E+03
                             2.419063E-01
              1.070700E+03
1.000000E+00
                             2.666371E-01
1.000000E+00
              1.083600E+03
                             2.931513E-01
1.000000E+00
               1.096500E+03
                             3.215147E-01
1.000000E+00
              1.109400E+03
                             3.517920E-01
1.000000E+00
              1.122300E+03
                             3.840461E-01
1.000000E+00
              1.135200E+03
                             4.183383E-01
1.000000E+00
              1.148100E+03
                             4.547284E-01
1.000000E+00
              1.161000E+03
                             4.932739E-01
                             5.340305E-01
1.000000E+00
               1.173900E+03
1.000000E+00
              1.186800E+03
                             5.770516E-01
1.000000E+00
              1.199700E+03
                             6.223884E-01
              1.212600E+03
1.000000E+00
                             6.700898E-01
1.000000E+00
               1.225500E+03
                             7.202024E-01
1.000000E+00
                             7.727699E-01
              1.238400E+03
1.000000E+00
              1.251300E+03
                             8.280214E-01
1.000000E+00
              1.264200E+03
                             8.856279E-01
1.000000E+00
              1.277100E+03
                             9.458060E-01
1.000000E+00
              1.290000E+03
                             1.008589E+00
```

Am_26500_Vol.log

No fit performed; model calculation only

Model

Calculated model curves: Distance Time

```
1.290000E+01 0.000000E+00
1.000000E+00
1.000000E+00 1.290000E+01 0.000000E+00 1.000000E+00 2.580000E+01 4.833967E-170 1.000000E+00 3.870000E+01 6.609116E-112 1.000000E+00 5.160000E+01 6.908933E-83 1.000000E+00 6.450000E+01 1.615150E-65 1.000000E+00 9.030000E+01 9.728889E-46 1.000000E+00 1.032000E+02 2.788510E-39 1.000000E+00 1.29000E+02 1.674434E-34 1.000000E+00 1.29000E+02 1.092004E-30
 1.000000E+00 1.290000E+02 1.092004E-30
 1.000000E+00 1.419000E+02 1.420091E-27
1.000000E+00 1.548000E+02 5.519207E-25
1.000000E+00 1.677000E+02 8.480970E-23
1.000000E+00 1.806000E+02 6.291500E-21
1.000000E+00 1.806000E+02 6.291500E-21 1.000000E+00 1.935000E+02 2.608240E-19 1.000000E+00 2.064000E+02 6.742831E-18 1.000000E+00 2.193000E+02 1.182008E-16 1.000000E+00 2.322000E+02 1.499529E-15 1.000000E+00 2.451000E+02 1.449269E-14 1.000000E+00 2.709000E+02 1.11812E-13 1.000000E+00 2.838000E+02 3.714618E-12 1.000000E+00 2.967000E+02 1.699954E-11
 1.000000E+00 2.967000E+02 1.699954E-11
1.000000E+00 3.096000E+02 6.834339E-11
                                                            6.834339E-11
 1.000000E+00 3.225000E+02 2.451855E-10
1.000000E+00 3.354000E+02 7.953964E-10
1.000000E+00 3.483000E+02 2.359715E-09
1.000000E+00 3.612000E+02 6.464222E-09
 1.000000E+00 3.741000E+02 1.648794E-08
                              3.870000E+02 3.944019E-08
3.999000E+02 8.903428E-08
 1.000000E+00
 1.000000E+00
 1.000000E+00 4.128000E+02 1.907226E-07
 1.000000E+00 4.257000E+02
1.000000E+00 4.386000E+02
1.000000E+00 4.515000E+02
                                                            3.895517E-07
                                                            7.618853E-07
                                                            1.432213E-06
 1.000000E+00
                           4.644000E+02 2.596385E-06
 1.000000E+00 4.773000E+02
                                                            4.552667E-06
 1.000000E+00
                             4.902000E+02
                                                            7.742000E-06
 1.000000E+00 5.031000E+02
                                                            1.279874E-05
 1.000000E+00 5.160000E+02
                                                            2.061292E-05
 1.000000E+00 5.289000E+02 3.240490E-05
1.000000E+00 5.418000E+02 4.981274E-05
1.000000E+00 5.547000E+02 7.499245E-05
 1.000000E+00 5.676000E+02 1.107306E-04
```

Am_26500_Vol.log

```
1.000000E+00
              5.805000E+02
                             1.605684E-04
1.000000E+00
              5.934000E+02
                             2.289364E-04
1.000000E+00
              6.063000E+02
                             3.212973E-04
              6.192000E+02
1.000000E+00
                             4.442958E-04
1.000000E+00
              6.321000E+02
                             6.059121E-04
1.000000E+00
              6.450000E+02
                             8.156179E-04
              6.579000E+02
1.000000E+00
                             1.084530E-03
1.000000E+00
              6.708000E+02
                             1.425564E-03
1.000000E+00
              6.837000E+02
                             1.853574E-03
1.000000E+00
              6.966000E+02
                             2.385492E-03
1.000000E+00
              7.095000E+02
                             3.040454E-03
1.000000E+00
              7.224000E+02
                             3.839905E-03
1.000000E+00
              7.353000E+02
                             4.807699E-03
1.000000E+00
              7.482000E+02
                             5.970177E-03
1.000000E+00
              7.611000E+02
                             7.356224E-03
1.000000E+00
              7.740000E+02
                             8.997313E-03
1.000000E+00
              7.869000E+02
                             1.092752E-02
1.000000E+00
              7.998000E+02
                             1.318355E-02
1.00000E+00
              8.127000E+02
                             1.580466E-02
1.000000E+00
              8.256000E+02
                             1.883268E-02
1.000000E+00
              8.385000E+02
                             2.231192E-02
                             2.628912E-02
1.000000E+00
              8.514000E+02
1.000000E+00
              8.643000E+02
                             3.081329E-02
1.000000E+00
              8.772000E+02
                             3.593570E-02
1.000000E+00
              8.901000E+02
                             4.170964E-02
1.000000E+00
              9.030000E+02
                             4.819037E-02
1.000000E+00
              9.159000E+02
                             5.543491E-02
1.00000E+00
              9.288000E+02
                             6.350192E-02
1.000000E+00
              9.417000E+02
                             7.245148E-02
1.000000E+00
              9.546000E+02
                             8.234493E-02
1.000000E+00
              9.675000E+02
                             9.324471E-02
1.000000E+00
              9.804000E+02
                             1.052141E-01
1.000000E+00
              9.933000E+02
                             1.183172E-01
1.000000E+00
              1.006200E+03
                             1.326184E-01
1.000000E+00
              1.019100E+03
                             1.481825E-01
1.000000E+00
              1.032000E+03
                             1.650745E-01
1.000000E+00
              1.044900E+03
                             1.833591E-01
1.000000E+00
              1.057800E+03
                             2.031009E-01
1.000000E+00
              1.070700E+03
                             2.243641E-01
1.000000E+00
              1.083600E+03
                             2.472121E-01
1.000000E+00
              1.096500E+03
                             2.717075E-01
1.000000E+00
              1.109400E+03
                             2.979120E-01
1.000000E+00
              1.122300E+03
                             3.258863E-01
1.000000E+00
              1.135200E+03
                             3.556896E-01
1.000000E+00
              1.148100E+03
                             3.873799E-01
1.000000E+00
              1.161000E+03
                             4.210133E-01
1.000000E+00
                             4.566447E-01
              1.173900E+03
1.000000E+00
              1.186800E+03
                             4.943270E-01
1.000000E+00
              1.199700E+03
                             5.341110E-01
1.000000E+00
              1.212600E+03
                             5.760459E-01
1.000000E+00
              1.225500E+03
                             6.201785E-01
1.000000E+00
              1.238400E+03
                             6.665538E-01
1.000000E+00
              1.251300E+03
                             7.152142E-01
1.000000E+00
              1.264200E+03
                             7.663781E-01
1.000000E+00
              1.277100E+03
                             8.197345E-01
1.000000E+00
              1.290000E+03
                             8.754901E-01
```

APPENDIX M.

LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS SHOWING RELATIVE CALCULATED ²⁴¹Am CONCENTRATION AS FUNCTION OF EFFLUENT BRINE VOLUME AT RETARDATION VALUES 25,500, 26,000, & 26,500 (For Full Injection Concentration, 20-mL Spike)

Am_Calculations_1.xls - Am vs Eluted Volume Numbers

theta 0.033		R 25,500	R 26,000	R 26,500
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA) R=25,500	Relative Eluted Conc. (C/MDA) R=26,000	Relative Eluted Conc. (C/MDA) R=26,500
12.9	0.72	0.00	0.00	0.00
25.8	1.43	0.00	0.00	0.00
38.7	2.15	0.00	0.00	0.00
51.6	2.87	0.00	0.00	0.00
64.5	3.59	0.00	0.00	0.00
77.4	4.30	0.00	0.00	0.00
90.3	5.02	0.00	0.00	0.00
103.2	5.74	0.00	0.00	0.00
116.1	6.45	0.00	0.00	0.00
129.0	7.17	0.00	0.00	0.00
141.9	7.89	0.00	0.00	0.00
154.8	8.60	0.00 0.00	0.00 0.00	0.00 0.00
167.7 180.6	9.32 10.04	0.00	0.00	0.00
193.5	10.76	0.00	0.00	0.00
206.4	11.47	0.00	0.00	0.00
219.3	12.19	0.00	0.00	0.00
232.2	12.91	0.00	0.00	0.00
245.1	13.62	0.00	0.00	0.00
258.0	14.34	0.00	0.00	
270.9	15.06	0.00	0.00	0.00
283.8	15.77	0.00	0.00	0.00
296.7	16.49	0.00	0.00	0.00
309.6	17.21	0.00		
322.5	17.93	0.00	0.00	0.00
335.4	18.64	0.00	0.00	0.00
348.3	19.36			
361.2	20.08			
374.1	20.79			
387.0	21.51			
399.9	22.23			
412.8	22.94			
425.7	23.66			
438.6 451.5	24.38 25.10			
451.5 464.4	25.10 25.81			
4 04. 4 477.3	26.53			
490.2	27.25			
503.1	27.96			
516.0				

Am_Calculations_1.xls - Am vs Eluted Volume Numbers (continued)

theta		R	R	R
0.033		25,500	26,000	26,500
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA) R=25,500	Relative Eluted Conc. (C/MDA) R=26,000	Relative Eluted Conc. (C/MDA) R=26,500
528.9	29.40	0.00	0.00	0.00
541.8	30.11	0.00	0.00	0.00
554.7	30.83	0.00	0.00	0.00
567.6	31.55	0.00	0.00	0.00
580.5	32.27	0.00	0.00	0.00
593.4	32.98	0.00	0.00	0.00
606.3	33.70	0.00	0.00	0.00
619.2	34.42	0.00	0.00	0.00
632.1	35.13	0.00	0.00	0.00
645.0	35.85	0.00	0.00	0.00
657.9	36.57	0.00	0.00	0.00
670.8	37.28	0.00	0.00	0.00
683.7	38.00	0.00	0.00	0.00
696.6	38.72	0.00	0.00	0.00
709.5	39.44	0.01	0.00	0.00
722.4	40.15	0.01	0.00	0.00
735.3	40.87	0.01	0.01	0.00
748.2	41.59	0.01	0.01	0.01
761.1	42.30	0.01	0.01	0.01
774.0	43.02	0.01	0.01	0.01
786.9	43.74	0.02	0.01	0.01
799.8	44.46	0.02	0.02	0.01
812.7	45.17	0.03	0.02	0.02
825.6	45.89	0.03	0.02	0.02
838.5	46.61	0.03	0.03	0.02
851.4	47.32	0.04	0.03	0.03
864.3	48.04	0.05	0.04	0.03
877.2	48.76	0.06	0.04	
890.1	49.47	0.06	0.05	
903.0	50.19	0.07	0.06	
915.9	. 50.91	80.0	0.07	
928.8	51.63	0.09		
941.7	52.34	0.11	0.09	
954.6 967.5	53.06 53.78			
980.4	53.76 54.49			
993.3	55.21	0.13		
1006.2	55.93			
1019.1	56.64			
1032.0	57.36			

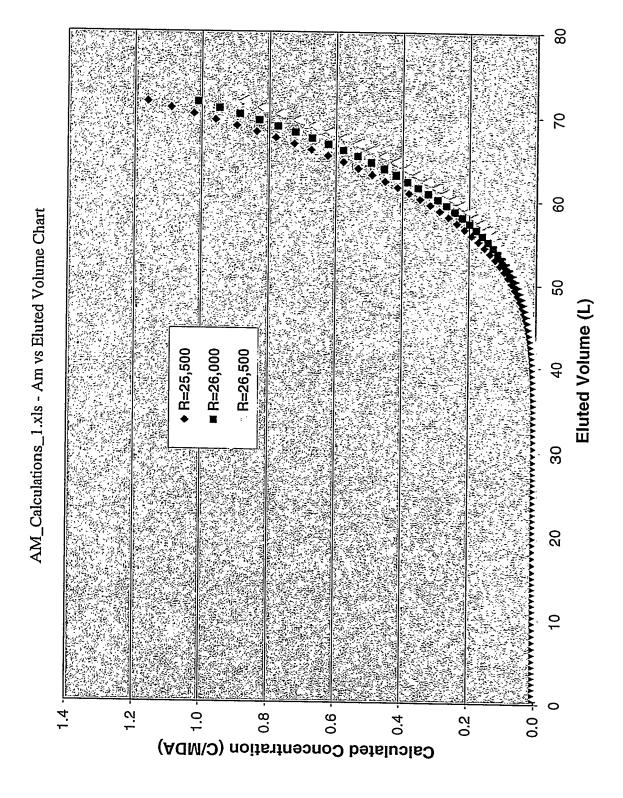
Am_Calculations_1.xls - Am vs Eluted Volume Numbers (continued)

theta		R	R	R
0.033		25,500	26,000	26,500
Eluted Pore	Eluted Volume	Relative Eluted	Relative Eluted	Relative Eluted
Volumes	(L)	Conc.	Conc.	Conc.
		(C/MDA)	(C/MDA)	(C/MDA)
		R=25,500	R=26,000	R=26,500
1044.9	58.08	0.26	0.22	0.18
1057.8	58.80	0.29	0.24	0.20
1070.7	59.51	0.32	0.27	0.22
1083.6	60.23	0.35	0.29	0.25
1096.5	60.95	0.38	0.32	0.27
1109.4	61.66	0.42	0.35	0.30
1122.3	62.38	0.45	0.38	0.33
1135.2	63.10	0.49	0.42	0.36
1148.1	63.81	0.53	0.45	0.39
1161.0	64.53	0.58	0.49	0.42
1173.9	65.25	0.62	0.53	0.46
1186.8	65.97	0.67	0.58	0.49
1199.7	66.68	0.73	0.62	0.53
1212.6	67.40	0.78	0.67	0.58
1225.5	68.12	0.84	0.72	0.62
1238.4	68.83	0.90	0.77	0.67
1251.3	69.55	0.96	0.83	0.72
1264.2	70.27	1.02	0.89	0.77
1277.1	70.98	1.09	0.95	0.82
1290.0	71.70	1.16	1.01	0.88

Am_Calculations_1.xls - Am vs Eluted Volume Formulas

theta 0.033		R 25500	R 26000	R 26500
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
12.9 25.8 38.7 51.6 64.5 77.4 90.3 103.2 141.9 154.8 167.7 180.6 193.5 206.4 219.3 232.2 245.1 283.8 296.7 309.6 335.4 348.3	=PI()*(7.25)^2*10.2*\$A\$3*A7/1000 =PI()*(7.25)^2*10.2*\$A\$3*A8/1000 =PI()*(7.25)^2*10.2*\$A\$3*A10/1000 =PI()*(7.25)^2*10.2*\$A\$3*A12/1000 =PI()*(7.25)^2*10.2*\$A\$3*A12/1000 =PI()*(7.25)^2*10.2*\$A\$3*A16/1000 =PI()*(7.25)^2*10.2*\$A\$3*A16/1000 =PI()*(7.25)^2*10.2*\$A\$3*A16/1000 =PI()*(7.25)^2*10.2*\$A\$3*A16/1000 =PI()*(7.25)^2*10.2*\$A\$3*A21/1000 =PI()*(7.25)^2*10.2*\$A\$3*A21/1000 =PI()*(7.25)^2*10.2*\$A\$3*A21/1000 =PI()*(7.25)^2*10.2*\$A\$3*A21/1000 =PI()*(7.25)^2*10.2*\$A\$3*A21/1000 =PI()*(7.25)^2*10.2*\$A\$3*A21/1000 =PI()*(7.25)^2*10.2*\$A\$3*A21/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000 =PI()*(7.25)^2*10.2*\$A\$3*A31/1000	R=25,500 0 1.852375E-163 1.615454E-107 1.342021E-79 6.86064E-63 8.836412E-52 7.276447E-44 1.212172E-37 4.773791E-33 2.221768E-29 2.19248E-26 6.770733E-24 8.564868E-22 5.378047E-20 1.929633E-18 4.396175E-17 6.893203E-16 7.004705E-14 0.0000000002905678 0.00000000000444222 0.00000000000368841 0.00000000002501611 0.0000000001870596 0.0000000001870596	R=26,000 0 9.46206E-167 1.033304E-109 3.045184E-81 3.329075E-64 7.116542E-53 8.414529E-45 1.838688E-38 8.941403E-34 4.926081E-30 5.580411E-27 1.933288E-24 2.695402E-22 1.839628E-20 7.094989E-19 1.721866E-17 2.854706E-16 3.446453E-15 0.00000000002348891 0.00000000001426186 0.00000000001426186 0.00000000001426186 0.00000000001410726 0.000000001410726 0.000000001099738	R=26,500 0 4.833967E-170 6.609116E-112 6.908933E-83 1.61515E-65 5.73043E-54 9.728889E-46 2.78851E-39 1.674434E-34 1.092004E-30 1.420091E-27 5.519207E-25 8.48097E-23 6.2915E-21 2.60824E-19 6.742831E-18 1.182008E-16 1.499529E-15 1.449569E-14 0.000000000000001111812 0.00000000000000000000000000000000000
374.1		0.000000000000	0.0000000000000000000000000000000000000	

Am_Calculations_1.xls - Am vs Eluted Volume Formulas (continued)


theta 0.033 9.033 Eluted Pore Volumes 399.9 412.8 425.7 438.6 451.5 464.4 477.3 490.2 503.1 516 528.9 541.8 554.7 567.6 580.5 593.4 606.3 619.2 632.1 645	Eluted Volume (L) =PI()*(7.25)*2*10.2*\$A\$3*A36/1000 =PI()*(7.25)*2*10.2*\$A\$3*A37/1000 =PI()*(7.25)*2*10.2*\$A\$3*A39/1000 =PI()*(7.25)*2*10.2*\$A\$3*A44/1000 =PI()*(7.25)*2*10.2*\$A\$3*A44/1000 =PI()*(7.25)*2*10.2*\$A\$3*A44/1000 =PI()*(7.25)*2*10.2*\$A\$3*A44/1000 =PI()*(7.25)*2*10.2*\$A\$3*A44/1000 =PI()*(7.25)*2*10.2*\$A\$3*A46/1000 =PI()*(7.25)*2*10.2*\$A\$3*A46/1000 =PI()*(7.25)*2*10.2*\$A\$3*A51/1000 =PI()*(7.25)*2*10.2*\$A\$3*A51/1000 =PI()*(7.25)*2*10.2*\$A\$3*A51/1000 =PI()*(7.25)*2*10.2*\$A\$3*A53/1000 =PI()*(7.25)*2*10.2*\$A\$3*A53/1000 =PI()*(7.25)*2*10.2*\$A\$3*A55/1000 =PI()*(7.25)*2*10.2*\$A\$3*A55/1000 =PI()*(7.25)*2*10.2*\$A\$3*A55/1000 =PI()*(7.25)*2*10.2*\$A\$3*A55/1000 =PI()*(7.25)*2*10.2*\$A\$3*A55/1000	Relative Eluted Conc. (C/MDA) R=25,500 0.000000106183 0.0000002320151 0.000001821275 0.000001821275 0.000001821275 0.000001821275 0.000001821275 0.00000182042 0.00001684922 0.00001684922 0.00001684922 0.00001684922 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.0001487506 0.000148576 0.000148576	R 26000 Relative Eluted Conc. (C/MDA) Relative Eluted Conc. (C/MDA) 0.00000000471993 0.0000001437401 0.0000001437401 0.000001178077 0.0000001178077 0.000002186554 0.000001869089 0.00000142241 0.00001869089 0.00000142241 0.0000186582 0.0000186282 0.0000184244 0.000156282 0.0000156282 0.00001547214 0.0001547214 0.0000439178 0.000439178 0.0006032367 0.00043944 0.001445406 0.001485406	R 26500 Relative Eluted Conc. (C/MDA) Relative Eluted Conc. (C/MDA) 0.00000003944019 0.0000001907226 0.0000001907226 0.000001432213 0.000001432213 0.000001432213 0.0000012596385 0.000001279874 0.000001279874 0.0000149245 0.00002289364 0.00002289364 0.00002289364 0.00002289364 0.0000212973 0.0004442958 0.0004442958 0.0006059121 0.0008156179 0.001425564
683.7 696.6 709.5 722.4 735.3	=PI()*(7.25)^2*10.2*\$A\$3*A59/1000 =PI()*(7.25)^2*10.2*\$A\$3*A60/1000 =PI()*(7.25)^2*10.2*\$A\$3*A61/1000 =PI()*(7.25)^2*10.2*\$A\$3*A62/1000 =PI()*(7.25)^2*10.2*\$A\$3*A63/1000	0.003218698 0.004098716 0.005171004 0.006466685 0.00801998	0.002442794 0.003127194 0.003965505 0.004983598 0.006210081	0.002385492 0.002385492 0.003040454 0.003839905 0.004807699 0.005970177

Am_Calculations_1.xls - Am vs Eluted Volume Formulas (continued)

Phy(7.28)v2+10.2*5A\$7*A65/1000	theta 0.033	Elisted Volume (1)	R 25500 Relative Eluted Conc. (C/MDA)	R 26000 Relative Eluted Conc. (C/MDA)	R 26500 Relative Eluted Conc. (C/MDA)
Pach	Eluted Pore Volumes	Eluted volume (L)	negative Etated Colic. (Criston)	relative Flated Colles (Critica)	
= P(1/7.25)/2*10.2*45.8745/1000 0.01760392 0.01064145713			R=25,500	R=26,000	R=26,500
=PI(Y,7.28)v2*10.2*\$A\$3*A6F17000 0.01461496 0.0146825 0.01387099	761.1	=PI()*(7.25)^2*10.2*\$A\$3*A65/1000	0.01205202	0.009416713	0.007356224
=PI(Y,725)v2*10.2*\$A\$3*A67/1000 0.0206667 0.01887099 =PI(Y,725)v2*10.2*\$A\$3*A67/1000 0.0206605 0.02066774 =PI(Y,725)v2*10.2*\$A\$3*A687/1000 0.02064006 0.02064016 0.02064016 =PI(Y,725)v2*10.2*\$A\$3*A77/1000 0.02064006 0.02062829 =PI(Y,725)v2*10.2*\$A\$3*A77/1000 0.02064006 0.02062829 =PI(Y,725)v2*10.2*\$A\$3*A77/1000 0.0478662 0.0478622 0.02789201 =PI(Y,725)v2*10.2*\$A\$3*A77/1000 0.047862 0.04746304 =PI(Y,725)v2*10.2*\$A\$3*A77/1000 0.06342943 0.0564056 =PI(Y,725)v2*10.2*\$A\$3*A77/1000 0.06342943 0.05760315 =PI(Y,725)v2*10.2*\$A\$3*A77/1000 0.08326499 0.05828494 =PI(Y,725)v2*10.2*\$A\$3*A77/1000 0.175576 0.102946 =PI(Y,725)v2*10.2*\$A\$3*A77/1000 0.175576 0.176994 =PI(Y,725)v2*10.2*\$A\$3*A81/1000 0.175576 0.176994 =PI(Y,725)v2*10.2*\$A\$3*A81/1000 0.1716964 0.176994 =PI(Y,725)v2*10.2*\$A\$3*A81/1000 0.1716964 0.1776915 =PI(Y,725)v2*10.2*\$A\$3*A81/1000 0.283614 0.1776914 =PI(Y,725)v2*10.2*\$A\$3*A81/1000 0.283614 0.1776914 =PI(Y,725)v2*10.2*\$A\$3*A81/1000 0.283614 0.1776914 =PI(Y,725)v2*10.2*\$A\$3*A81/1000 0.283614 0.283615 0.283615 0.283615 0.283616 0.1776914 =PI(Y,725)v2*10.2*\$A\$3*A81/1000 0.283614 0.283615 0.283615 0.283616 0.	774	=PI()*(7.25)^2*10.2*\$A\$3*A66/1000	0,01461496 .	0.01146825	0.008997313
=PI(Y,7.25)v2*10.2*\$A\$3*A6B/1000 0.02506215 0.0196974 0.0196974	786.9	=PI()*(7.25)^2*10.2*\$A\$3*A67/1000	0.01760389	0.01387099	0.01092752
=PI()'(7.25)\(\tilde{\text{P}}\)(2.5\(\text{P}	799.8	=PI()*(7.25)^2*10.2*\$A\$3*A68/1000	0.02106867	0.01666774	0.01318355
=PI()*(7.25)*2*10.2*\$A\$3*A70/1000 0.02964006 0.02362859 =PI()*(7.25)*2*10.2*\$A\$3*A71/1000 0.03486086 0.02789201 =PI()*(7.25)*2*10.2*\$A\$3*A72/1000 0.0474862 0.03274792 =PI()*(7.25)*2*10.2*\$A\$3*A72/1000 0.04747781 0.0328222 =PI()*(7.25)*2*10.2*\$A\$3*A74/1000 0.05342943 0.05824698 =PI()*(7.25)*2*10.2*\$A\$3*A77/1000 0.0328218 0.05824698 =PI()*(7.25)*2*10.2*\$A\$3*A77/1000 0.09326499 0.05784605 =PI()*(7.25)*2*10.2*\$A\$3*A77/1000 0.09481717 0.07826498 =PI()*(7.25)*2*10.2*\$A\$3*A77/1000 0.1369007 0.105924698 =PI()*(7.25)*2*10.2*\$A\$3*A77/1000 0.1369007 0.105924698 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.159654 0.1000592 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.159654 0.1729946 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.159654 0.1777391 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1369007 0.159669 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1369693 0.1777391 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.261259 0.2419063 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.261259 0.22181818 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.261259 0.22181818 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.261259 0.22181818 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.34168124 0.2665371 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.34168124 0.2281513 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.34168124 0.3281513 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.34168124 0.3281513 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.34168124 0.3281513 =PI()*(7.25)*2*10.2*\$A\$3*A91/1000 0.34168124 0.3281513 =PI()*(7.25)*2*10.2*\$A\$3*A91/1000 0.34168124 0.3281513 =PI()*(7.25)*2*10.2*\$A\$3*A91/1000 0.34168124 0.3281513 =PI()*(7.25)*2*10.2*\$A\$3*A91/1000 0.34168124 0.3281513	812.7	=PI()*(7.25)^2*10.2*\$A\$3*A69/1000	0.02506215	0.01990416	0.01580466
=PI()*(7.25)*2*10.2*\$A\$3*A71/1000 0.03486086 0.02789201 =PI()*(7.25)*2*10.2*\$A\$3*A72/1000 0.04078652 0.03874782 =PI()*(7.25)*2*10.2*\$A\$3*A72/1000 0.056342943 0.056342943 =PI()*(7.25)*2*10.2*\$A\$3*A72/1000 0.056342943 0.057440504 =PI()*(7.25)*2*10.2*\$A\$3*A75/1000 0.056342943 0.05784605 =PI()*(7.25)*2*10.2*\$A\$3*A75/1000 0.056342943 0.05784605 =PI()*(7.25)*2*10.2*\$A\$3*A75/1000 0.1215604 0.1000592 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1215604 0.1000592 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1716964 0.122946 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1716964 0.1500592 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1716964 0.1500592 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1716964 0.1500592 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1716964 0.1500592 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.13169124 0.1377391 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.25131493 0.1377391 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.25131493 0.22931513 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.261259 0.22931513 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.34168124 0.22931513 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.34168124 0.32931513 =PI()*(7.25)*2*10.2*\$A\$3*A91/1000 0.34168124 0.32931513	825.6	=PI()*(7.25)^2*10.2*\$A\$3*A70/1000	0.02964006	0.02362859	0.01883268
=PI()'(7.25)\\(^2\)-2'\)-2'\(^2\)-2'\(^	838.5	=PI()*(7.25)^2*10.2*\$A\$3*A71/1000	0.03486086	0.02789201	0.02231192
= PI()'(7.25)\(\tilde{\text{P}}\)'(2.5)\(\tilde{\text{P}}\)'(2.25)\(851.4	=PI()*(7.25)^2*10.2*\$A\$3*A72/1000	0.04078562	0.03274792	0.02628912
=PI()*(7.25)*2*10.2*\$4\$3*A74/1000 0.05500316 0.04446304 0.051446304	864.3	=PI()*(7.25)^2*10.2*\$A\$3*A73/1000	0.04747781	0.03825222	0.03081329
=PI()*(7.25)*2*10.2*\$A\$3*A75/1000 0.06342943 0.05144059 =PI()*(7.25)*2*10.2*\$A\$3*A75/1000 0.07282618 0.05924698 =PI()*(7.25)*2*10.2*\$A\$3*A77/1000 0.08326499 0.06794605 =PI()*(7.25)*2*10.2*\$A\$3*A78/1000 0.1075576 0.09828494 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1215604 0.1000592 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1389007 0.1276049 0.1000592 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.1536542 0.127604 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.191703 0.197626 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.191703 0.197626 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.2131493 0.177391 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.213531 0.2188918 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.281539 0.2419063 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816124 0.28031513 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816373 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816373 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816373 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816373 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816373 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816373 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816373 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816373 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 0.3816373 =PI()*(7.25)*2*10.2*\$A\$3*A91/1000 0.3816373	877.2	=PI()*(7.25)^2*10.2*\$A\$3*A74/1000	0.05500316	0.04446304	0.0359357
=PI()*(7.25)*2*10.2*\$4\$3*77/1000 0.08326459 0.065924698	890.1	=PI()*(7.25)^2*10.2*\$A\$3*A75/1000	0.06342943	0.05144059	0.04170964
=PI()'(7.25)\\(^2\)29\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	903	=PI()*(7.25)^2*10.2*\$A\$3*A76/1000	0.07282618	0.05924698	0.04819037
=PI()*(7.25)*2*10.2*\$A\$3*A78/1000 0.09481717 0.07760315 =PI()*(7.25)*2*10.2*\$A\$3*A78/1000 0.1075576 0.08828494 =PI()*(7.25)*2*10.2*\$A\$3*A89/1000 0.1215604 0.100592 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 0.1536542 0.1129946 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 0.1536542 0.152946 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 0.191703 0.191703 0.191703 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 0.2131493 0.191703 0.1975257 =PI()*(7.25)*2*10.2*\$A\$3*A85/1000 0.23631 0.1975257 =PI()*(7.25)*2*10.2*\$A\$3*A85/1000 0.261259 0.28188918 =PI()*(7.25)*2*10.2*\$A\$3*A89/1000 0.28168124 0.2866371 =PI()*(7.25)*2*10.2*\$A\$3*A89/1000 0.3475589 0.2816831 =PI()*(7.25)*2*10.2*\$A\$3*A99/1000 0.3475589 0.381513 =PI()*(7.25)*2*10.2*\$A\$3*A99/1000 0.3475589 0.381513 =PI()*(7.25)*2*10.2*\$A\$3*A99/1000 0.3453346 0.3831547 =PI()*(7.25)*2*10.2*\$A\$3*A99/1000 0.3452496 0.3840461	915.9	=PI()*(7.25)^2*10.2*\$A\$3*A77/1000	0.08326459	0.06794605	0.05543491
=PI()*(7.25)*2*10.2*\$4\$3*A91000 0.1075576 0.08828494 =PI()*(7.25)*2*10.2*\$4\$3*A911000 0.1215604 0.1000592 =PI()*(7.25)*2*10.2*\$4\$3*A811000 0.1536542 0.1129946 =PI()*(7.25)*2*10.2*\$4\$3*A811000 0.1718964 0.122964 =PI()*(7.25)*2*10.2*\$4\$3*A811000 0.191703 0.191703 0.197525 =PI()*(7.25)*2*10.2*\$4\$3*A811000 0.2131493 0.1975257 =PI()*(7.25)*2*10.2*\$4\$3*A811000 0.23631 0.1975257 =PI()*(7.25)*2*10.2*\$4\$3*A811000 0.23631 0.2188918 0.2188918 =PI()*(7.25)*2*10.2*\$4\$3*A811000 0.3188124 0.291513 =PI()*(7.25)*2*10.2*\$4\$3*A911000 0.3475589 0.2419063 =PI()*(7.25)*2*10.2*\$4\$3*A911000 0.4453346 0.381792 =PI()*(7.25)*2*10.2*\$4\$3*A9211000 0.4453346 0.3840461	928.8	=PI()*(7.25)^2*10.2*\$A\$3*A78/1000	0.09481717	0.07760315	0.06350192
=PI()*(7.25)*2*10.2*\$4\$3*480/1000 0.1215604 0.1000592 =PI()*(7.25)*2*10.2*\$4\$3*481/1000 0.1369007 0.1329946 =PI()*(7.25)*2*10.2*\$4\$3*481/1000 0.1536542 0.1271604 =PI()*(7.25)*2*10.2*\$4\$3*481/1000 0.17718964 0.156264 =PI()*(7.25)*2*10.2*\$4\$3*481/1000 0.2131493 0.1777391 =PI()*(7.25)*2*10.2*\$4\$3*481/1000 0.23631 0.1975257 =PI()*(7.25)*2*10.2*\$4\$3*481/1000 0.261259 0.2419063 =PI()*(7.25)*2*10.2*\$4\$3*481/1000 0.3168124 0.266371 =PI()*(7.25)*2*10.2*\$4\$3*491/1000 0.3475589 0.2915147 =PI()*(7.25)*2*10.2*\$4\$3*491/1000 0.3475589 0.3931513 =PI()*(7.25)*2*10.2*\$4\$3*491/1000 0.3475589 0.3931513 =PI()*(7.25)*2*10.2*\$4\$3*491/1000 0.3475589 0.3931513 =PI()*(7.25)*2*10.2*\$4\$3*491/1000 0.3475589 0.3931513 =PI()*(7.25)*2*10.2*\$4\$3*491/1000 0.4153346 0.3840461	941.7	=PI()*(7.25)^2*10.2*\$A\$3*A79/1000	0.1075576	0.08828494	0.07245148
=PI()*(7.25)*2*10.2*\$4\$3*81/1000 0.1536542 0.1271604 =PI()*(7.25)*2*10.2*\$4\$3*482/1000 0.1718964 0.1426264 =PI()*(7.25)*2*10.2*\$4\$3*483/1000 0.1718964 0.1426264 =PI()*(7.25)*2*10.2*\$4\$3*484/1000 0.2131493 0.1534626 =PI()*(7.25)*2*10.2*\$4\$3*486/1000 0.23631 0.1975257 =PI()*(7.25)*2*10.2*\$4\$3*486/1000 0.23631 0.1975257 =PI()*(7.25)*2*10.2*\$4\$3*481/1000 0.28180693 0.2419063 =PI()*(7.25)*2*10.2*\$4\$3*489/1000 0.3475589 0.2931513 =PI()*(7.25)*2*10.2*\$4\$3*491/1000 0.3475589 0.3215147 =PI()*(7.25)*2*10.2*\$4\$3*491/1000 0.4153346 0.361792 =PI()*(7.25)*2*10.2*\$4\$3*493/1000 0.4153346 0.3840461	954.6	=PI()*(7.25)^2*10.2*\$A\$3*A80/1000	0.1215604	0.1000592	0.08234493
=PI()*(7.25)*2*10.2*\$4\$3*82/1000 0.1536542 0.1271604 =PI()*(7.25)*2*10.2*\$4\$3*81/1000 0.1718964 0.1426264 =PI()*(7.25)*2*10.2*\$4\$3*81/1000 0.191703 0.1594626 =PI()*(7.25)*2*10.2*\$4\$3*81/1000 0.2131493 0.177391 =PI()*(7.25)*2*10.2*\$4\$3*88/1000 0.281259 0.2188918 =PI()*(7.25)*2*10.2*\$4\$3*88/1000 0.281259 0.2419063 =PI()*(7.25)*2*10.2*\$4\$3*89/1000 0.3168124 0.2931513 =PI()*(7.25)*2*10.2*\$4\$3*89/1000 0.3475589 0.2931513 =PI()*(7.25)*2*10.2*\$4\$3*89/1000 0.3475589 0.3215147 =PI()*(7.25)*2*10.2*\$4\$3*89/1000 0.4153346 0.351792 =PI()*(7.25)*2*10.2*\$4\$3*89/1000 0.4153346 0.3840461	967.5	=PI()*(7.25)^2*10.2*\$A\$3*A81/1000	0.1369007	0.1129946	0.09324471
=PI()*(7.25)*2*10.2*\$A\$3*A83/1000 0.1718964 0.1426264 0.1594626	980.4	=PI()*(7.25)^2*10.2*\$A\$3*A82/1000	0.1536542	0.1271604	0.1052141
=PI()*(7.25)*2*10.2*\$A\$3*A85/1000 0.191703 0.1594626 0.1777391 0.1	993.3	=PI()*(7.25)^2*10.2*\$A\$3*AB3/1000	0.1718964	0.1426264	0.1183172
=PI()*(7.25)v2*10.2*\$A\$3*A85/1000 0.2131493 0.1777391 0.1777391	1006.2	=PI()*(7.25)^2*10.2*\$A\$3*A84/1000	0.191703	0.1594626	0.1326184
=PI()*(7.25)v2*10.2*\$A\$3*A86/1000 0.261259 0.2188918 =PI()*(7.25)v2*10.2*\$A\$3*A87/1000 0.261259 0.2188918 =PI()*(7.25)v2*10.2*\$A\$3*A89/1000 0.3168124 0.2666371 =PI()*(7.25)v2*10.2*\$A\$3*A99/1000 0.3475589 0.2931513 =PI()*(7.25)v2*10.2*\$A\$3*A91/1000 0.3475589 0.32931513 =PI()*(7.25)v2*10.2*\$A\$3*A92/1000 0.4153346 0.351792 =PI()*(7.25)v2*10.2*\$A\$3*A92/1000 0.452496 0.3840461	1019.1	=PI()*(7.25)^2*10.2*\$A\$3*A85/1000	0.2131493	0.1777391	0.1481825
=PI()*(7.25)v2*10.2*\$A\$3*A87/1000 0.261259 0.2188918 =PI()*(7.25)v2*10.2*\$A\$3*A88/1000 0.2880693 0.2419063 =PI()*(7.25)v2*10.2*\$A\$3*A99/1000 0.3168124 0.2666371 =PI()*(7.25)v2*10.2*\$A\$3*A90/1000 0.3475589 0.2931513 =PI()*(7.25)v2*10.2*\$A\$3*A91/1000 0.3803773 0.3215147 =PI()*(7.25)v2*10.2*\$A\$3*A92/1000 0.4153346 0.351792 =PI()*(7.25)v2*10.2*\$A\$3*A92/1000 0.452496 0.3840461	1032	=PI()*(7.25)^2*10.2*\$A\$3*A86/1000	0.23631	0.1975257	0.1650745
=PI()*(7.25)*2*10.2*\$A\$3*A88/1000 0.2880693 0.2419063 0.2419063	1044.9	=PI()*(7.25)^2*10.2*\$A\$3*A87/1000	0.261259	0.2188918	0.1833591
=PI()*(7.25)^2*10.2*\$A\$3*A89/1000 0.3168124 0.2666371 =PI()*(7.25)^2*10.2*\$A\$3*A90/1000 0.3475589 0.2931513 =PI()*(7.25)^2*10.2*\$A\$3*A91/1000 0.3803773 0.3215147 =PI()*(7.25)^2*10.2*\$A\$3*A92/1000 0.4153346 0.351792 =PI()*(7.25)^2*10.2*\$A\$3*A92/1000 0.452496 0.3840461	1057.8	=PI()*(7.25)^2*10.2*\$A\$3*A88/1000	0.2880693	0.2419063	0.2031009
=PI()*(7.25)*2*10.2*\$A\$3*A90/1000 0.3475589 0.2931513 =PI()*(7.25)*2*10.2*\$A\$3*A91/1000 0.3803773 0.3215147 =PI()*(7.25)*2*10.2*\$A\$3*A92/1000 0.4153346 0.351792 =PI()*(7.25)*2*10.2*\$A\$3*A93/1000 0.452496 0.3840461	1070.7	=PI()*(7.25)^2*10.2*\$A\$3*A89/1000	0.3168124	0.2666371	0.2243641
=Pi()*(7.25)*2*10.2*\$A\$3*A91/1000 0.3803773 0.3215147 =Pi()*(7.25)*2*10.2*\$A\$3*A92/1000 0.4153346 0.351792 =Pi()*(7.25)*2*10.2*\$A\$3*A93/1000 0.452496 0.3840461	1083.6	=PI()*(7.25)^2*10.2*\$A\$3*A90/1000	0.3475589	0.2931513	0.2472121
=PI()*(7.25)*2*10.2*\$A\$3*A92/1000 0.4153346 0.351792 =PI()*(7.25)*2*10.2*\$A\$3*A93/1000 0.452496 0.3840461	1096.5	=PI()*(7.25)^2*10.2*\$A\$3*A91/1000	0.3803773	0.3215147	0.2717075
=PI()*(7.25)^2*10.2*\$A\$3*A93/1000 0.452496 0.3840461	1109.4	=PI()*(7.25)^2*10.2*\$A\$3*A92/1000	0.4153346	0.351792	0.297912
	1122.3	=PI()*(7.25)^2*10.2*\$A\$3*A93/1000	0.452496	0.3840461	0.3258863

Am_Calculations_1.xls - Am vs Eluted Volume Formulas (continued)

theta 0.033 Eluted Pore Volumes	Eluted Volume (1.)	R 25500 Relative Fluted Conc. (C/MDA)	26000 Beletive Eluted Come (CMIDA)	26500
		netative Eluted Colle. (Chilliph)	netative Eluted Colle. (C/MDA)	Relative Eilited Conc. (C/MDA)
		R=25,500	R=26,000	R=26,500
1135.2	=PI()*(7.25)^2*10.2*\$A\$3*A94/1000	0.4919243	0.4183383	0.3556896
1148.1	=PI()*(7.25)^2*10.2*\$A\$3*A95/1000	0.5336804	0.4547284	0.3873799
1161	=PI()*(7.25)^2*10.2*\$A\$3*A96/1000	0.5778225	0.4932739	0.4210133
1173.9	=PI()*(7.25)^2*10.2*\$A\$3*A97/1000	0.6244067	0.5340305	0.4566447
1186.8	=PI()*(7.25)^2*10.2*\$A\$3*A98/1000	0.6734864	0.5770516	0.494327
1199.7	=PI()*(7.25)^2*10.2*\$A\$3*A99/1000	0.7251124	0.6223884	0.534111
1212.6	=PI()*(7.25)^2*10.2*\$A\$3*A100/1000	0.7793325	0.6700898	0.5760459
1225.5	=PI()*(7.25)^2*10.2*\$A\$3*A101/1000	0.8363823	0.7202024	0.6201785
1238.4	=PI()*(7.25)^2*10.2*\$A\$3*A102/1000	0.8959313	0.7727699	0.6665538
1251.3	=PI()*(7.25)^2*10.2*\$A\$3*A103/1000	0.9582017	0.8280214	0.7152142
1264.2	=PI()*(7.25)^2*10.2*\$A\$3*A104/1000	1.02323	0.8856279	0.7663781
1277.1	=PI()*(7.25)^2*10.2*\$A\$3*A105/1000	1.09105	0.945806	0.8197345
	=PI()*(7.25)^2*10.2*\$A\$3*A106/1000	1.161692	1.008589	0.8754901

APPENDIX N.

LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR THREE ²⁴¹Am COLUMN 1.4 CALCULATIONS AT RETARDATION VALUES 25,000, 25,500, & 26,000 (FOR EQUILIBRIUM SATURATION CONCENTRATION, WITH RE-DISSOLUTION OF PRECIPITATED ²⁴¹Am)

Am_Sat_25000_Vol.col

[Wcolumn] Date=5/7/98 11:28:04 AM
Title=Am (sat), 0.1 mL/min, 20 mL spike - Data through 9/2/97
LogFile=Am_Sat_25000_Vol.log OutputFile=Am_Sat_25000_Vol.out Model=Linear equilibrium TracerSpikeType=Single CurveType=Theoretical Curve Normalization=FLUX Bootstrap= [DistanceAndTimeSpec.] Set=Formula Fixed=Distance Distance=1 Start=12.9 End=1290 Step=100 [ParameterValues] R=25000 theta=0.033 D=0.64mu=0 gamma=0 q=0.033t0=18.9 c0=53000

Am_Sat_25500_Vol.col

[Wcolumn] Date=5/7/98 11:32:56 AM Title=Am (sat), 0.1 mL/min, 20 mL spike - Data through 9/2/97 LogFile=Am_Sat_25500_Vol.log
OutputFile=Am_Sat_25500_Vol.out
Model=Linear equilibrium TracerSpikeType=Single CurveType=Theoretical Curve Normalization=FLUX Bootstrap= [DistanceAndTimeSpec.] Set=Formula Fixed=Distance Distance=1 Start=12.9 End=1290 Step=100 [ParameterValues] R=25500 theta=0.033 D=0.64mu=0 gamma=0 q=0.033 t0=18.9 c0=53000

Am_Sat_26000_Vol.col

[Wcolumn] [wcolumn]
Date=5/7/98 11:32:00 AM
Title=Am (sat), 0.1 mL/min, 20 mL spike - Data through 9/2/97
LogFile=Am_Sat_26000_Vol.log
OutputFile=Am_Sat_26000_Vol.out
Model=Linear equilibrium TracerSpikeType=Single CurveType=Theoretical Curve Normalization=FLUX Bootstrap= [DistanceAndTimeSpec.] Set=Formula Fixed=Distance Distance=1 Start=12.9 End=1290 Step=100 [ParameterValues] R=26000 theta=0.033 D=0.64 mu=0 gamma=0 q=0.033t0=18.9 c0=53000

APPENDIX O.

LISTINGS OF OUTPUT FILES (*.LOG) FOR RETARDATION VALUES 25,000, 25,500, & 26,000 (FOR EQUILIBRIUM SATURATION CONCENTRATION, WITH RE-DISSOLUTION OF PRECIPITATED ²⁴¹Am)

Am_Sat_25000_Vol.log

```
Deterministic linear equilibrium absorption for pulse injection with
     first-order decay
     Am (sat), 0.1 mL/min, 20 mL spike - Data through 9/2/97
Model Name = Linear equilibrium
Calculation began 5/7/98 11:49:29 AM
Model parameters:
        R = 25000
    theta = 0.033
        D = 0.64
       mu = 0
    qamma = 0
        q = 0.033
        t0 = 18.9
       c0 = 53000
No fit performed; model calculation only
Calculated model curves:
Distance
              Time
                              Model
               1.290000E+01 0.000000E+00
2.580000E+01 6.897497E-162
1.000000E+00
1.000000E+00
1.000000E+00 3.870000E+01 5.271070E-107
1.000000E+00 5.160000E+01 1.520109E-79
1.000000E+00 6.450000E+01 4.664175E-63
1.000000E+00
               7.740000E+01 4.648147E-52
1.000000E+00
               9.030000E+01 3.376817E-44
1.000000E+00
               1.032000E+02
                              5.340010E-38
                              2.084632E-33
1.000000E+00
               1.161000E+02
                              9.875618E-30
1.000000E+00
               1.290000E+02
1.000000E+00
               1.419000E+02
                              1.008611E-26
1.000000E+00
               1.548000E+02
                              3.257614E-24
                              4.337545E-22
               1.677000E+02
1.000000E+00
1.000000E+00
               1.806000E+02
                              2.876908E-20
1.000000E+00 1.935000E+02 1.091731E-18
1.000000E+00 2.064000E+02 2.629534E-17
               2.193000E+02
1.000000E+00
                               4.351698E-16
                              5.263344E-15
1.000000E+00
               2.322000E+02
1.000000E+00
               2.451000E+02 4.885302E-14
1.000000E+00
              2.580000E+02 3.618776E-13
1.000000E+00
              2.709000E+02 2.208496E-12
1.000000E+00 2.838000E+02 1.139861E-11
1.000000E+00 2.967000E+02 5.084470E-11
               3.096000E+02 1.995980E-10
1.000000E+00
               3.225000E+02 7.002015E-10
1.000000E+00
 1.000000E+00
                3.354000E+02
                              2.223725E-09
               3.354000E+02 2.223725E-09
3.483000E+02 6.464607E-09
 1.000000E+00
 1.000000E+00
               3.612000E+02
                             1.736755E-08
               3.741000E+02 4.347487E-08
3.870000E+02 1.021262E-07
 1.000000E+00
 1.000000E+00
 1.000000E+00
               3.999000E+02 2.265342E-07
 1.000000E+00
                4.128000E+02 4.770788E-07
 1.000000E+00
               4.257000E+02
                               9.584793E-07
                               1.844776E-06
 1.000000E+00
               4.386000E+02
 1.000000E+00
               4.515000E+02
                               3.414246E-06
                               6.096461E-06
               4.644000E+02
 1.000000E+00
 1.000000E+00
               4.773000E+02
                               1.053361E-05
```

1.765803E-05

2.878743E-05

4.573884E-05

7.096176E-05

1.076900E-04

4.902000E+02

5.160000E+02

5.289000E+02

5.418000E+02

1.000000E+00 5.547000E+02 1.601113E-04 1.000000E+00 5.676000E+02 2.335528E-04

1.000000E+00 5.031000E+02

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

Am_Sat_25000_Vol.log

```
1.000000E+00
              5.805000E+02
                             3.346801E-04
1.000000E+00
              5.934000E+02
                             4.717066E-04
1.000000E+00
              6.063000E+02
                             6.546093E-04
              6.192000E+02
                             8.953474E-04
1.000000E+00
1.000000E+00
              6.321000E+02
                             1.208080E-03
1.000000E+00
              6.450000E+02
                             1.609379E-03
1.000000E+00
              6.579000E+02
                             2.118427E-03
1.000000E+00
              6.708000E+02
                             2.757210E-03
1.000000E+00
              6.837000E+02
                             3.550683E-03
1.000000E+00
                             4.526923E-03
              6.966000E+02
1.000000E+00
              7.095000E+02
                             5.717252E-03
1.000000E+00
              7.224000E+02
                             7.156336E-03
1.000000E+00
              7.353000E+02
                             8.882257E-03
1.00000E+00
                             1.093655E-02
              7.482000E+02
              7.611000E+02
1.000000E+00
                             1.336423E-02
1.000000E+00
              7.740000E+02
                             1.621374E-02
1.000000E+00
              7.869000E+02
                             1.953693E-02
1.000000E+00
              7.998000E+02
                             2.338899E-02
                             2.782829E-02
1.000000E+00
              8.127000E+02
1.000000E+00
              8.256000E+02
                             3.291632E-02
1.000000E+00
              8.385000E+02
                             3.871746E-02
1.000000E+00
              8.514000E+02
                             4.529885E-02
1.000000E+00
              8.643000E+02
                             5.273018E-02
1.000000E+00
              8.772000E+02
                             6.108343E-02
1.000000E+00
              8.901000E+02
                             7.043271E-02
1.000000E+00
              9.030000E+02
                             8.085395E-02
1.000000E+00
              9.159000E+02
                             9.242467E-02
1.000000E+00
              9.288000E+02
                             1.052237E-01
1.000000E+00
              9.417000E+02
                             1.193310E-01
1.000000E+00
              9.546000E+02
                             1.348271E-01
1.000000E+00
              9.675000E+02
                             1.517932E-01
1.000000E+00
              9.804000E+02
                             1.703108E-01
1.000000E+00
              9.933000E+02
                             1.904611E-01
1.000000E+00
              1.006200E+03
                             2.123253E-01
1.000000E+00
              1.019100E+03
                             2.359837E-01
1.000000E+00
              1.032000E+03
                             2.615160E-01
1.000000E+00
              1.044900E+03
                             2.890009E-01
1.000000E+00
              1.057800E+03
                             3.185155E-01
              1.070700E+03
1.000000E+00
                             3.501358E-01
1.000000E+00
              1.083600E+03
                             3.839356E-01
1.000000E+00
              1.096500E+03
                             4.199873E-01
1.000000E+00
              1.109400E+03
                             4.583607E-01
1.000000E+00
              1.122300E+03
                             4.991238E-01
1.000000E+00
              1.135200E+03
                             5.423418E-01
1.000000E+00
              1.148100E+03
                             5.880775E-01
1.000000E+00
              1.161000E+03
                             6.363910E-01
1.000000E+00
              1.173900E+03
                             6.873395E-01
1.000000E+00
              1.186800E+03
                             7.409775E-01
              1.199700E+03
1.000000E+00
                             7.993539E-01
1.000000E+00
              1.212600E+03
                             8.567179E-01
1.000000E+00
              1.225500E+03
                             9.187276E-01
1.000000E+00
              1.238400E+03
                             9.836137E-01
1.000000E+00
              1.251300E+03
                             1.051415E+00
1.000000E+00
              1.264200E+03
                             1.122166E+00
1.000000E+00
              1.277100E+03
                             1.195900E+00
1.000000E+00
              1.290000E+03
                             1.272646E+00
```

Am Sat 25500_Vol.log

```
Deterministic linear equilibrium absorption for pulse injection with
      first-order decay
      Am (sat), 0.1 mL/min, 20 mL spike - Data through 9/2/97
****************
Model Name = Linear equilibrium
Calculation began 5/7/98 11:50:00 AM
Model parameters:
         R = 25500
     theta = 0.033
        D = 0.64
        mu = 0
     gamma = 0
        q = 0.033
        t\bar{0} = 18.9
        c0 = 53000
No fit performed; model calculation only
Calculated model curves:
Distance
                Time
                                 Model
                1.290000E+01 0.000000E+00
2.580000E+01 3.521102E-165
1.000000E+00
1.000000E+00
1.000000E+00 3.870000E+01 3.355792E-109
                                 3.417646E-81
1.000000E+00 5.160000E+01
                6.450000E+01
                                 2.235640E-64
1.000000E+00
1.000000E+00
                7.740000E+01 3.690549E-53
1.000000E+00 9.030000E+01
1.000000E+00 1.032000E+02
1.000000E+00 1.161000E+02
                                3.844850E-45
7.968372E-39
                                3.838747E-34
1.000000E+00 1.290000E+02 2.151751E-30
1.000000E+00 1.419000E+02 2.521951E-27
1.000000E+00 1.548000E+02 9.135696E-25
1.000000E+00 1.677000E+02 1.340502E-22
1.000000E+00 1.806000E+02 9.663588E-21
1.000000E+00 1.935000E+02 3.942214E-19
1.000000E+00 2.064000E+02 1.011692E-17
1.000000E+00 2.193000E+02 1.770909E-16
1.000000E+00 2.322000E+02
1.000000E+00 2.451000E+02
                                 2.251760E-15
                                 2.185975E-14
1.000000E+00 2.580000E+02
                                 1.686200E-13
1.000000E+00 2.709000E+02 1.067588E-12
1.000000E+00 2.838000E+02 5.697720E-12
1.000000E+00 2.967000E+02 2.620593E-11
1.000000E+00 3.096000E+02 1.058100E-10
1.000000E+00 3.225000E+02 3.809330E-10
                                 1.239104E-09
1.000000E+00
                 3.354000E+02
                3.483000E+02 3.683055E-09
1.000000E+00
2.000000E+00 3.741000E+02
1.000000E+00 3.870000
1.000000
                                 1.010094E-08
                                2.577539E-08
                 3.870000E+02 6.164453E-08
1.000000E+00 3.999000E+02 1.390531E-07
 1.000000E+00 4.128000E+02 2.974896E-07
                4.257000E+02
                                 6.065760E-07
 1.000000E+00
 1.000000E+00 4.386000E+02 1.183829E-06
 1.000000E+00
                4.515000E+02 2.219919E-06
                4.644000E+02 4.013285E-06
4.773000E+02 7.015967E-06
1.000000E+00
```

7.541802E-05

1.000000E+00

4.773000E+02 1.000000E+00 4.902000E+02 1.189246E-05 1.000000E+00 5.031000E+02 1.959309E-05 1.000000E+00 5.160000E+02 3.144317E-05 1.000000E+00 5.289000E+02 4.924858E-05

1.000000E+00 5.547000E+02 1.131014E-04 1.000000E+00 5.676000E+02 1.663437E-04

1.000000E+00 5.418000E+02

Am Sat_25500_Vol.log

```
1.000000E+00
              5.805000E+02
                             2.402515E-04
1.000000E+00
              5.934000E+02
                             3.411722E-04
1.000000E+00
              6.063000E+02
                             4.768802E-04
1.000000E+00
              6.192000E+02
                             6.567697E-04
1.000000E+00
              6.321000E+02
                             8.920486E-04
                             1.195932E-03
1.000000E+00
              6.450000E+02
1.000000E+00
              6.579000E+02
                             1.583828E-03
              6.708000E+02
1.000000E+00
                             2.073520E-03
1.000000E+00
              6.837000E+02
                             2.685330E-03
                             3.442268E-03
1.000000E+00
              6.966000E+02
                             4.370171E-03
1.000000E+00
              7.095000E+02
1.000000E+00
              7.224000E+02
                             5.497809E-03
1.000000E+00
              7.353000E+02
                             6.856977E-03
                             8.482558E-03
1.000000E+00
              7.482000E+02
1.000000E+00
              7.611000E+02
                             1.041257E-02
              7.740000E+02
1.000000E+00
                             1.268815E-02
                             1.535360E-02
1.000000E+00
              7.869000E+02
                             1.845628E-02
1.000000E+00
              7.998000E+02
              8.127000E+02
                             2.204658E-02
1.000000E+00
                             2.617783E-02
              8.256000E+02
1.000000E+00
1.000000E+00
              8.385000E+02
                             3.090618E-02
                             3.629045E-02
              8.514000E+02
1.000000E+00
1.000000E+00
              8.643000E+02
                             4.239200E-02
1.000000E+00
              8.772000E+02
                             4.927455E-02
1.000000E+00
              8.901000E+02
                             5.700397E-02
                             6.564812E-02
1.000000E+00
              9.030000E+02
1.000000E+00
              9.159000E+02
                             7.527657E-02
              9.288000E+02
                             8.596044E-02
1.000000E+00
1.000000E+00
              9.417000E+02
                             9.777212E-02
1.000000E+00
              9.546000E+02
                             1.107850E-01
                             1.250735E-01
1.000000E+00
              9.675000E+02
1.000000E+00
              9.804000E+02
                             1.407122E-01
1.000000E+00
              9.933000E+02
                             1.577764E-01
1.000000E+00
              1.006200E+03
                             1.763412E-01
                             1.964817E-01
1.000000E+00
              1.019100E+03
1.000000E+00
               1.032000E+03
                             2.182725E-01
              1.044900E+03
                             2.417877E-01
1.000000E+00
1.000000E+00
               1.057800E+03
                             2.671004E-01
1.000000E+00
              1.070700E+03
                             2.942827E-01
1.000000E+00
              1.083600E+03
                             3.234057E-01
1.000000E+00
               1.096500E+03
                             3.545386E-01
1.000000E+00
              1.109400E+03
                             3.877492E-01
1.000000E+00
               1.122300E+03
                             4.231037E-01
1.000000E+00
              1.135200E+03
                             4.606661E-01
1.000000E+00
                             5.004982E-01
              1.148100E+03
1.000000E+00
              1.161000E+03
                             5.426599E-01
1.000000E+00
               1.173900E+03
                             5.872084E-01
               1.186800E+03
1.000000E+00
                             6.341987E-01
1.000000E+00
               1.199700E+03
                             6.836832E-01
1.000000E+00
               1.212600E+03
                             7.357114E-01
1.000000E+00
               1.225500E+03
                             7.923460E-01
1.000000E+00
                             8.477751E-01
               1.238400E+03
1.000000E+00
               1.251300E+03
                             9.077125E-01
1.000000E+00
               1.264200E+03
                             9.703646E-01
                             1.035767E+00
1.000000E+00
               1.277100E+03
1.000000E+00
               1.290000E+03
                             1.103951E+00
```

Am_Sat_26000_Vol.log

```
Deterministic linear equilibrium absorption for pulse injection with
      first-order decay
      Am (sat), 0.1 mL/min, 20 mL spike - Data through 9/2/97
Model Name = Linear equilibrium
Calculation began 5/7/98 11:50:26 AM
Model parameters:
         R = 26000
     theta = 0.033
         D = 0.64
        mu = 0
     gamma = 0
         q = 0.033
         t0 = 18.9
        c0 = 53000
No fit performed; model calculation only
Calculated model curves:
                                  Model
Distance
                 Time
1.000000E+00 1.290000E+01 0.000000E+00
1.000000E+00 2.580000E+01 1.797832E-168
1.000000E+00 3.870000E+01 2.136852E-111
1.000000E+00 5.160000E+01
                                  7.685327E-83
1.000000E+00 6.450000E+01 1.071795E-65
1.000000E+00 7.740000E+01 2.930791E-54
1.000000E+00 9.030000E+01 4.378588E-46
1.000000E+00 1.032000E+02 1.189265E-39
1.000000E+00 1.161000E+02 7.070182E-35
1.000000E+00 1.290000E+02 4.689217E-31
1.000000E+00 1.419000E+02 6.307102E-28
1.000000E+00 1.548000E+02 2.562490E-25
1.000000E+00 1.677000E+02 4.143488E-23
1.000000E+00 1.806000E+02 3.246536E-21
1.000000E+00 1.935000E+02 1.423723E-19
1.000000E+00 2.064000E+02 3.892851E-18
                 2.193000E+02
1.000000E+00
                                  7.207280E-17
                                  9.634013E-16
1.000000E+00
                 2.322000E+02
1.000000E+00
                 2.451000E+02 9.781625E-15
1.000000E+00
                2.580000E+02 7.857000E-14
1.000000E+00 2.709000E+02 5.160598E-13
1.000000E+00 2.838000E+02 2.847938E-12
1.000000E+00 2.967000E+02 1.350595E-11
1.000000E+00 3.096000E+02 5.608687E-11
                 3.225000E+02 2.072201E-10
1.000000E+00
1.000000E+00
                 3.354000E+02
                                 6.903778E-10
1.000000E+00 3.483000E+02 2.098079E-09
1.000000E+00
                 3.612000E+02 5.873926E-09
1.000000E+00
                 3.741000E+02 1.527961E-08
1.000000E+00 3.870000E+02 3.720392E-08
1.000000E+00 3.999000E+02 8.534176E-08
1.000000E+00 4.128000E+02 1.854750E-07
1.000000E+00
                 4.257000E+02 3.838111E-07
                 4.386000E+02 7.595606E-07
4.515000E+02 1.443132E-06
1.000000E+00
1.000000E+00
                 4.644000E+02 2.641480E-06
1.000000E+00
                4.773000E+02 4.672203E-06
4.902000E+02 8.007997E-06
5.031000E+02 1.333292E-05
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00 5.160000E+02 2.161169E-05
1.000000E+00 5.289000E+02 3.417304E-05
1.000000E+00 5.418000E+02 5.280739E-05
1.000000E+00 5.547000E+02 7.987916E-05
1.000000E+00 5.676000E+02 1.184530E-04
```

Am_Sat_26000_Vol.log

```
1.000000E+00
               5.805000E+02
                             1.724331E-04
                              2.467136E-04
1.000000E+00
               5.934000E+02
1.00000E+00
               6.063000E+02
                              3.473392E-04
1.000000E+00
               6.192000E+02
                              4.816721E-04
1.000000E+00
               6.321000E+02
                              6.585635E-04
1.000000E+00
               6.450000E+02
                              8.885271E-04
1.000000E+00
                              1.183910E-03
               6.579000E+02
               6.708000E+02
1.000000E+00
                              1.559059E-03
1.000000E+00
               6.837000E+02
                              2.030480E-03
1.000000E+00
                              2.616986E-03
               6.966000E+02
1.000000E+00
               7.095000E+02
                              3.339831E-03
1.000000E+00
               7.224000E+02
                              4.222827E-03
1.000000E+00
               7.353000E+02
                              5.292447E-03
1.000000E+00
               7.482000E+02
                              6.577906E-03
               7.611000E+02
1.000000E+00
                              8.111215E-03
1.000000E+00
               7.740000E+02
                              9.927223E-03
1.000000E+00
               7.869000E+02
                              1.206363E-02
                              1.456098E-02
 1.000000E+00
               7.998000E+02
1.000000E+00
               8.127000E+02
                              1.746263E-02
1.000000E+00
               8.256000E+02
                              2.081467E-02
1.000000E+00
               8.385000E+02
                              2.466590E-02
1.000000E+00
               8.514000E+02
                              2.906769E-02
1.000000E+00
               8.643000E+02
                              3.407388E-02
1.000000E+00
               8.772000E+02
                              3.974063E-02
 1.000000E+00
               8.901000E+02
                              4.612630E-02
1.000000E+00
               9.030000E+02
                              5.329127E-02
1.000000E+00
               9.159000E+02
                              6.129772E-02
1.000000E+00
               9.288000E+02
                              7.020954E-02
 1.000000E+00
               9.417000E+02
                              8.009203E-02
 1.000000E+00
               9.546000E+02
                              9.101174E-02
                              1.030363E-01
 1.000000E+00
               9.675000E+02
 1.000000E+00
               9.804000E+02
                              1.162341E-01
 1.000000E+00
               9.933000E+02
                              1.306741E-01
 1.000000E+00
               1.006200E+03
                              1.464258E-01
 1.000000E+00
               1.019100E+03
                              1.635588E-01
.1.000000E+00
               1.032000E+03
                              1.821425E-01
 1.000000E+00
               1.044900E+03
                              2.022463E-01
 1.000000E+00
               1.057800E+03
                              2.239391E-01
 1.000000E+00
               1.070700E+03
                              2.472888E-01
 1.000000E+00
               1.083600E+03
                              2.723630E-01
 1.000000E+00
               1.096500E+03
                              2.992279E-01
 1.000000E+00
               1.109400E+03
                              3.279485E-01
 1.000000E+00
               1.122300E+03
                              3.585886E-01
 1.000000E+00
               1.135200E+03
                              3.912104E-01
 1.000000E+00
               1.148100E+03
                              4.258743E-01
 1.000000E+00
               1.161000E+03
                              4.626390E-01
 1.000000E+00
               1.173900E+03
                              5.015613E-01
 1.000000E+00
               1.186800E+03
                              5.426958E-01
 1.000000E+00
               1.199700E+03
                              5.860950E-01
 1.000000E+00
               1.212600E+03
                              6.318092E-01
 1.000000E+00
               1.225500E+03
                              6.798863E-01
 1.000000E+00
               1.238400E+03
                              7.303716E-01
 1.000000E+00
               1.251300E+03
                              7.853415E-01
 1.000000E+00
               1.264200E+03
                              8.389251E-01
 1.000000E+00
               1.277100E+03
                              8.968902E-01
 1.000000E+00
               1.290000E+03
                              9.574203E-01
```

APPENDIX P.

LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS SHOWING RELATIVE CALCULATED ²⁴¹Am CONCENTRATION AS FUNCTION OF EFFLUENT BRINE VOLUME AT RETARDATION VALUES 25,000, 25,500, & 26,000 (FOR EQUILIBRIUM SATURATION CONCENTRATION, WITH RE-DISSOLUTION OF PRECIPITATED ²⁴¹Am)

Am_Calculations_2.xls - Am vs Eluted Volume Numbers

theta 0.033		R 25,000	R 25,500	R 26,000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA) R=25,000	Relative Eluted Conc. (C/MDA) R=25,500	Relative Eluted Conc. (C/MDA) R=26,000
12.9	0.72	0.00	0.00	0.00
25.8	1.43	0.00	0.00	0.00
38.7	2.15	0.00	0.00	0.00
51.6	2.87	0.00	0.00	0.00
64.5	3.59	0.00	0.00	0.00
77.4	4.30	0.00	0.00	0.00
90.3	5.02	0.00	0.00	0.00
103.2	5.74	0.00	0.00	0.00
116.1	6.45	0.00	0.00	0.00
129.0	7.17	0.00	0.00	0.00
141.9	7.89	0.00	0.00	0.00
154.8	8.60	0.00	0.00	0.00
167.7	9.32	0.00	0.00	0.00
180.6	10.04	0.00	0.00	0.00
193.5	10.76	0.00	0.00	0.00
206.4	11.47	0.00	0.00	0.00
219.3	12.19	0.00	0.00	0.00
232.2	12.91	0.00	0.00	0.00
245.1	13.62	0.00	0.00	0.00
258.0	14.34	0.00	0.00	0.00
270.9	15.06	0.00	0.00	0.00
283.8	15.77	0.00	0.00	0.00
296.7	16.49	0.00	0.00	0.00
309.6	17.21	0.00	0.00	0.00
322.5	17.93	0.00	0.00	0.00
335.4	18.64	0.00	0.00	0.00
348.3	19.36	0.00	0.00	0.00
361.2	20.08	0.00	0.00	0.00
374.1	20.79	0.00	0.00	0.00
387.0	21.51	0.00	0.00	0.00
399.9	22.23	0.00	0.00	0.00
412.8	22.94	0.00	0.00	0.00
425.7	23.66	0.00	0.00	0.00
438.6	24.38	0.00	0.00	0.00
451.5	25.10			
464.4	25.81			
477.3	26.53			
490.2	27.25			
503.1	27.96			
516.0	28.68			

Am_Calculations_2.xls - Am vs Eluted Volume Numbers (continued)

theta		R	R	R
0.033		25,000	25,500	26,000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
		R=25,000	R=25,500	R=26,000
528.9	29.40	0.00	0.00	0.00
541.8	30.11	0.00	0.00	0.00
554 . 7	30.83	0.00	0.00	0.00
567.6	31.55	0.00	0.00	0.00
580.5	32.27	0.00	0.00	0.00
593.4	32.98	0.00	0.00	0.00
606.3	33.70	0.00	0.00	0.00
619.2	34.42	0.00	0.00	0.00
632.1	35.13	0.00	0.00	0.00
645.0	35.85	0.00	0.00	0.00
657.9	36.57	0.00	0.00	0.00
670.8	37.28	0.00	0.00	0.00
683.7	38.00	0.00	0.00	0.00
696.6	38.72	0.00	0.00	0.00
709.5	39.44	0.01	0.00	0.00
722.4	40.15	0.01	0.01	0.00
735.3	40.87	0.01	0.01	0.01
748.2	41.59	0.01	0.01	0.01
761.1	42.30	0.01	0.01	0.01
774.0	43.02	0.02	0.01	0.01
786.9	43.74	0.02	0.02	0.01
799.8	44.46	0.02	0.02	0.01
812.7	45.17	0.03	0.02	0.02
825.6	45.89	0.03	0.03	0.02
838.5	46.61	0.04	0.03	0.02
851.4	47.32	0.05	0.04	0.03
864.3 877.2	48.04	0.05	0.04	0.03
890.1	48.76 49.47	0.06	0.05	0.04
903.0	50.19	0.07 0.08	0.06 0.07	0.05 0.05
915.9	50.13	0.09	0.07	0.05
928.8	51.63	0.09	0.09	0.00
941.7	52.34	0.11	0.10	0.07
954.6	53.06	0.12	0.10	0.09
967.5	53.78	0.15	0.13	0.10
980.4	54.49	0.17	0.14	0.12
993.3	55.21	0.19	0.16	0.13
1006.2	55.93	0.21	0.18	0.15
1019.1	56.64	0.24	0.20	0.16
1032.0	57.36	0.26	0.22	0.18
	30		~	00

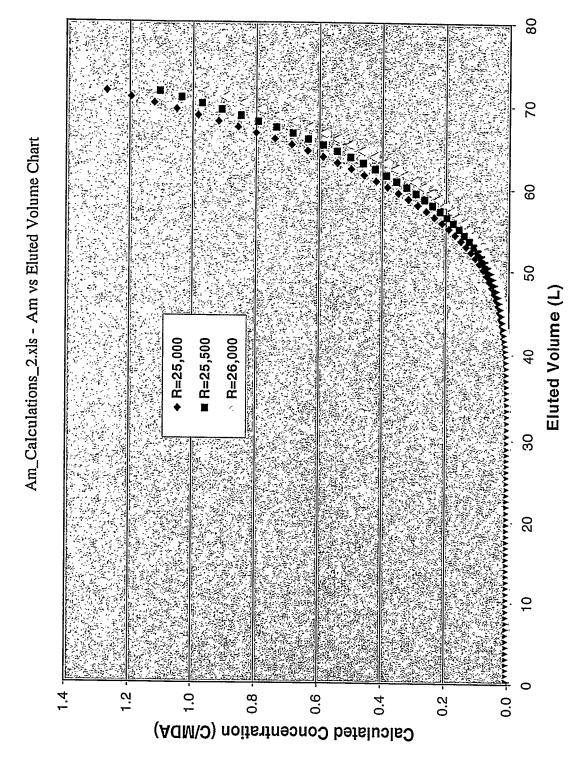
Am_Calculations_2.xls - Am vs Eluted Volume Numbers (continued)

theta 0.033		R 25,000	R 25,500	.R 26,000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
		R=25,000	R=25,500	R=26,000
1044.9	58.08	0.29	0.24	0.20
1057.8	58.80	0.32	0.27	0.22
1070.7	59.51	0.35	0.29	0.25
1083.6	60.23	0.38	0.32	0.27
1096.5	60.95	0.42	0.35	0.30
1109.4	61.66	0.46	0.39	0.33
1122.3	62.38	0.50	0.42	0.36
1135.2	63.10	0.54	0.46	0.39
1148.1	63.81	0.59	0.50	0.43
1161.0	64.53	0.64	0.54	0.46
1173.9	65.25	0.69	0.59	0.50
1186.8	65.97	0.74	0.63	0.54
1199.7	66.68	0.80	0.68	0.59
1212.6	67.40	0.86	0.74	0.63
1225.5	68.12	0.92	0.79	0.68
1238.4	68.83	0.98	0.85	0.73
1251.3	69.55	1.05	0.91	0.79
1264.2	70.27	1.12	0.97	0.84
1277.1	70.98	1.20	1.04	0.90
1290.0	71.70	1.27	1.10	0.96

Am_Calculations_2.xls - Am vs Eluted Volume Formulas

theta 0.033		R 25000	R 25500	R 26000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
12.9 25.8 38.7 51.6 64.5 77.4 90.3 103.2 116.1 129 141.9 154.8 167.7 180.6 193.5 222.2 245.1 258 270.9 283.8 296.7 309.6 335.4 348.3	=PI()*(7.25)*2*10.2*\$A\$3*A7/1000 =PI()*(7.25)*2*10.2*\$A\$3*A8/1000 =PI()*(7.25)*2*10.2*\$A\$3*A17/1000 =PI()*(7.25)*2*10.2*\$A\$3*A14/1000 =PI()*(7.25)*2*10.2*\$A\$3*A14/1000 =PI()*(7.25)*2*10.2*\$A\$3*A14/1000 =PI()*(7.25)*2*10.2*\$A\$3*A14/1000 =PI()*(7.25)*2*10.2*\$A\$3*A14/1000 =PI()*(7.25)*2*10.2*\$A\$3*A14/1000 =PI()*(7.25)*2*10.2*\$A\$3*A14/1000 =PI()*(7.25)*2*10.2*\$A\$3*A21/1000 =PI()*(7.25)*2*10.2*\$A\$3*A24/1000 =PI()*(7.25)*2*10.2*\$A\$3*A24/1000 =PI()*(7.25)*2*10.2*\$A\$3*A24/1000 =PI()*(7.25)*2*10.2*\$A\$3*A24/1000 =PI()*(7.25)*2*10.2*\$A\$3*A24/1000 =PI()*(7.25)*2*10.2*\$A\$3*A24/1000 =PI()*(7.25)*2*10.2*\$A\$3*A24/1000 =PI()*(7.25)*2*10.2*\$A\$3*A24/1000 =PI()*(7.25)*2*10.2*\$A\$3*A24/1000 =PI()*(7.25)*2*10.2*\$A\$3*A23/1000 =PI()*(7.25)*2*10.2*\$A\$3*A33/1000 =PI()*(7.25)*2*10.2*\$A\$3*A33/1000 =PI()*(7.25)*2*10.2*\$A\$3*A33/1000 =PI()*(7.25)*2*10.2*\$A\$3*A33/1000	R=25,000 6.897497E-162 5.27107E-107 1.520109E-79 4.664175E-63 4.648147E-52 3.376817E-44 5.34001E-38 2.084632E-33 9.875618E-30 1.008611E-26 3.257614E-24 4.337545E-22 2.876908E-20 1.091731E-18 2.629534E-17 4.351698E-16 5.263344E-15 4.351698E-16 0.000000000003618776 0.0000000000003618776 0.00000000000003618776 0.0000000000000003618776 0.0000000000000000000000000000000000	R=25,500 0 3.521102E-165 3.355792E-109 3.417646E-81 2.23564E-64 3.690549E-53 3.84485E-45 7.968372E-39 3.83747E-34 2.151751E-30 2.521951E-27 9.135696E-25 1.340502E-22 9.663588E-21 3.942214E-19 1.011692E-17 1.770909E-16 2.25176E-15 2.185975E-14 0.00000000000000000000000000000000000	R=26,000 0 1.797832E-168 2.136852E-111 7.685327E-83 1.071795E-65 2.930791E-54 4.37858E-46 1.189265E-39 7.070182E-35 4.689217E-31 6.307102E-28 2.56249E-25 4.143488E-23 3.246536E-21 1.423723E-19 3.892851E-18 7.20728E-17 9.634013E-16 9.781625E-15 0.0000000000001350595 0.0000000000001350595 0.00000000000001350595 0.00000000000001350595 0.00000000000001350595 0.0000000000000001350595 0.00000000000000000000000000000000
374.1	=PI()*(7.25)^2*10.2*\$A\$3*A35/1000	0.00000004347487	0.00000002577539	0.00000001527961

Am_Calculations_2.xls - Am vs Eluted Volume Formulas (continued)


theta 0.033		R 25000	R 26500	R 26000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
387 399.9 412.8 425.7 438.6 451.5 464.4 477.3 490.2 503.1 516 528.9 541.8 554.7 567.6 593.4 606.3 619.2 632.1 645 670.8 696.6 709.5	=PI()*(7.25)v2*10.2*\$A\$3*A36/1000 =PI()*(7.25)v2*10.2*\$A\$3*A37/1000 =PI()*(7.25)v2*10.2*\$A\$3*A36/1000 =PI()*(7.25)v2*10.2*\$A\$3*A41/1000 =PI()*(7.25)v2*10.2*\$A\$3*A44/1000 =PI()*(7.25)v2*10.2*\$A\$3*A44/1000 =PI()*(7.25)v2*10.2*\$A\$3*A44/1000 =PI()*(7.25)v2*10.2*\$A\$3*A44/1000 =PI()*(7.25)v2*10.2*\$A\$3*A44/1000 =PI()*(7.25)v2*10.2*\$A\$3*A46/1000 =PI()*(7.25)v2*10.2*\$A\$3*A50/1000 =PI()*(7.25)v2*10.2*\$A\$3*A50/1000 =PI()*(7.25)v2*10.2*\$A\$3*A50/1000 =PI()*(7.25)v2*10.2*\$A\$3*A53/1000 =PI()*(7.25)v2*10.2*\$A\$3*A53/1000 =PI()*(7.25)v2*10.2*\$A\$3*A53/1000 =PI()*(7.25)v2*10.2*\$A\$3*A53/1000 =PI()*(7.25)v2*10.2*\$A\$3*A53/1000 =PI()*(7.25)v2*10.2*\$A\$3*A53/1000 =PI()*(7.25)v2*10.2*\$A\$3*A53/1000 =PI()*(7.25)v2*10.2*\$A\$3*A53/1000 =PI()*(7.25)v2*10.2*\$A\$3*A53/1000 =PI()*(7.25)v2*10.2*\$A\$3*A62/1000 =PI()*(7.25)v2*10.2*\$A\$3*A62/1000 =PI()*(7.25)v2*10.2*\$A\$3*A62/1000	R=25,000 0.0000001021262 0.0000002265342 0.0000004770788 0.0000003414246 0.000003414246 0.00001053361 0.00001053361 0.00001765803 0.00002878743 0.00002878743 0.00004573884 0.00004573884 0.00002335528 0.00003346801 0.0000546093 0.000556693 0.000556693 0.000120808 0.00120808 0.00120808 0.00120808 0.00057771 0.00275721 0.003550683 0.004526923 0.005717252 0.005717252	R=25,500 0.0000001390531 0.0000001390531 0.00000002274896 0.0000001183829 0.000001183829 0.000004013285 0.000004013285 0.00004013285 0.00001189246 0.00001189246 0.00001189246 0.00001189246 0.00001189246 0.00001189246 0.00001189246 0.00001189246 0.00001189246 0.0000118924858 0.00004768802 0.0002402515 0.0002402515 0.0002402515 0.000341722 0.000341722 0.0004768802 0.0004768802 0.0004768802 0.0004768802 0.0004768802 0.0004768802 0.0004768802 0.0004768903 0.0004768909 0.000585977	R=26,000 0.00000003720392 0.0000000185475 0.0000000185475 0.0000000185475 0.00000000133292 0.000004672203 0.00001333292 0.00001333292 0.00001333292 0.00003417304 0.00002467136 0.00007987916 0.0007987916 0.0007987916 0.0007987916 0.0007987916 0.0007987916 0.0007987916 0.0007987916 0.000797906
748.2	>>> 101 (102.1) () I			

Am_Calculations_2.xls - Am vs Eluted Volume Formulas (continued)

R 26000	Relative Eluted Conc. (C/MDA)	R=26,000 0.008111215 0.009927223 0.01206363 0.01456098 0.01746263 0.02906769 0.03974063 0.035829127 0.06129772 0.06129772 0.06129772 0.06129772 0.0120954 0.08009203 0.1030363 0.1162341 0.1308741 0.1308741 0.1308741 0.1308741 0.1308741 0.1308741 0.1308741 0.1308741 0.1308741 0.1308741 0.1308741 0.135888 0.222463 0.222463 0.222363
R 25500	Relative Eluted Conc. (C/MDA)	R=25,500 0.01041257 0.01268815 0.01268815 0.01845628 0.02204658 0.02204658 0.03629045 0.042392 0.042392 0.042392 0.042392 0.042392 0.05700397 0.06564812 0.05700397 0.06564812 0.05700397 0.06564812 0.0577035 0.110785 0.110785 0.110785 0.110785 0.1250735 0.1357764 0.1250735 0.1250735 0.1250735 0.1250735 0.1250735
R 25000	Relative Eluted Conc. (C/MDA)	R=25,000 0.01336423 0.01621374 0.01953693 0.02338899 0.0238899 0.023291632 0.03291632 0.03291632 0.03291632 0.0452985 0.05273018 0.06108343 0.07043271 0.08085395 0.09242467 0.1904611 0.1348271 0.1348271 0.1904611 0.2123253 0.2123253 0.22890009 0.3185155 0.3839356 0.4199873 0.4583607
	Eluted Volume (L)	=PI()*(7.25)^2*10.2*\$A\$3*A65/1000 =PI()*(7.25)^2*10.2*\$A\$3*A65/1000 =PI()*(7.25)^2*10.2*\$A\$3*A68/1000 =PI()*(7.25)^2*10.2*\$A\$3*A68/1000 =PI()*(7.25)^2*10.2*\$A\$3*A72/1000 =PI()*(7.25)^2*10.2*\$A\$3*A72/1000 =PI()*(7.25)^2*10.2*\$A\$3*A73/1000 =PI()*(7.25)^2*10.2*\$A\$3*A73/1000 =PI()*(7.25)^2*10.2*\$A\$3*A73/1000 =PI()*(7.25)^2*10.2*\$A\$3*A73/1000 =PI()*(7.25)^2*10.2*\$A\$3*A73/1000 =PI()*(7.25)^2*10.2*\$A\$3*A81/1000 =PI()*(7.25)^2*10.2*\$A\$3*A81/1000 =PI()*(7.25)^2*10.2*\$A\$3*A81/1000 =PI()*(7.25)^2*10.2*\$A\$3*A81/1000 =PI()*(7.25)^2*10.2*\$A\$3*A83/1000 =PI()*(7.25)^2*10.2*\$A\$3*A83/1000 =PI()*(7.25)^2*10.2*\$A\$3*A83/1000 =PI()*(7.25)^2*10.2*\$A\$3*A83/1000 =PI()*(7.25)^2*10.2*\$A\$3*A83/1000 =PI()*(7.25)^2*10.2*\$A\$3*A83/1000 =PI()*(7.25)^2*10.2*\$A\$3*A83/1000 =PI()*(7.25)^2*10.2*\$A\$3*A93/1000 =PI()*(7.25)^2*10.2*\$A\$3*A93/1000
theta 0.033	Eluted Pore Volumes	761.1 774 786.9 799.8 812.7 825.6 838.5 838.5 838.5 844.3 877.2 890.1 903 915.9 928.8 941.7 954.6 967.5 993.3 1006.2 1019.1 1032 104.9 105.2 1096.5

Am_Calculations_2.xls - Am vs Eluted Volume Formulas (continued)

theta 0.033		R 25000	R 25500	R 26000
Eluted Pore Volumes	Eluted Volume (L.)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
		R=25,000	R=25,500	R=26,000
11350	=PI()*(7.25)^2*10.2*\$A\$3*A94/1000	0.5423418	0.4606661	0.3912104
1148 1	=PI()*(7.25)^2*10.2*\$A\$3*A95/1000	0.5880775	0.5004982	0.4258743
1161	=PI()*(7.25)^2*10.2*\$A\$3*A96/1000	0.636391	0.5426599	0.462639
1173.0	=PI()*(7.25)^2*10.2*\$A\$3*A97/1000	0.6873395	0.5872084	0.5015613
1186.8	=PI()*(7.25)^2*10.2*\$A\$3*A98/1000	0.7409775	0.6341987	0.5426958
1109.7	=PI()*(7.25)^2*10.2*\$A\$3*A99/1000	0.7993539	0.6836832	0.586095
1919.6	=PI()*(7.25)^2*10.2*\$A\$3*A100/1000	0.8567179	0.7357114	0.6318092
1005 5	=PI()*(7.25)^2*10.2*\$A\$3*A101/1000	0.9187276	0.792346	0.6798863
1238 4	=PI()*(7.25)^2*10.2*\$A\$3*A102/1000	0.9836137	0.8477751	0.7303716
10613	=PI()*(7.25)^2*10.2*\$A\$3*A103/1000	1.051415	0.9077125	0.7853415
1261.0	=PI()*(7.25)^2*10.2*\$A\$3*A104/1000	1,122166	0.9703646	0.8389251
1504.5	=PI()*(7.25)^2*10.2*\$A\$3*A105/1000	1.1959	1.035767	0.8968902
1290	=PI()*(7.25)^2*10.2*\$A\$3*A106/1000	1.272646	1.103951	0.9574203

P-9

P-10

APPENDIX Q.

LISTINGS OF PARAMETER INPUT FILES (*.COL) FOR
THREE ²⁴¹Am COLUMN 1.4 CALCULATIONS AT
RETARDATION VALUES 11,000, 11,500, & 12,000
(FOR EQUILIBRIUM SATURATION CONCENTRATION,
WITHOUT RE-DISSOLUTION OF PRECIPITATED ²⁴¹Am)

Am_Sat_11000_Short_Vol.col

[Wcolumn] Date=5/26/98 11:26:02 AM
Title=Am (sat), 0.1 mL/min, 20 mL spike ONLY - Data through 9/2/97
LogFile=Am_Sat_11000_Short_Vol.log
OutputFile=Am_Sat_11000_Short_Vol.out Model=Linear equilibrium TracerSpikeType=Single CurveType=Theoretical Curve Normalization=FLUX Bootstrap= [DistanceAndTimeSpec.] Set=Formula Fixed=Distance Distance=1 Start=12.9 End=1290 Step=100 [ParameterValues] R=11000 theta=0.033 D=0.64mu=0gamma=0 q=0.033t0=0.36 c0=53000

Am_Sat_11500_Short_Vol.col

[Wcolumn] Title=Am (sat), 0.1 mL/min, 20 mL spike ONLY - Data through 9/2/97 LogFile=Am_Sat_11500_Short_Vol.log
OutputFile=Am_Sat_11500_Short_Vol.out
Model=Linear equilibrium TracerSpikeType=Single CurveType=Theoretical Curve Normalization=FLUX Bootstrap= [DistanceAndTimeSpec.] Set=Formula Fixed=Distance Distance=1 Start=12.9 End=1290 Step=100 [ParameterValues] R=11500 theta=0.033 D=0.64mu=0gamma=0 q=0.033 t0=0.36 c0=53000

Am_Sat_12000_Short_Vol.col

```
[Wcolumn]
Date=5/26/98 11:26:02 AM
Title=Am (sat), 0.1 mL/min, 20 mL spike ONLY - Data through 9/2/97 LogFile=Am_Sat_12000_Short_Vol.log
OutputFile=Am_Sat_12000_Short_Vol.out
Model=Linear equilibrium
TracerSpikeType=Single
CurveType=Theoretical Curve
Normalization=FLUX
Bootstrap=
[DistanceAndTimeSpec.]
Set=Formula
Fixed=Distance
Distance=1
Start=12.9
End=1290
Step=100
[ParameterValues]
R=12000
theta=0.033
D=0.64
mu=0
gamma=0
q=0.033
t0=0.36
c0=53000
```

APPENDIX R.

LISTINGS OF OUTPUT FILES (*.LOG) FOR
THREE ²⁴¹Am COLUMN 1.4 CALCULATIONS AT
RETARDATION VALUES 11,000, 11,500, & 12,000
(FOR EQUILIBRIUM SATURATION CONCENTRATION,
WITHOUT RE-DISSOLUTION OF PRECIPITATED ²⁴¹Am)

Am_Sat_12000 Short Vol.log

```
Deterministic linear equilibrium absorption for pulse injection with
     first-order decay
     Am (sat), 0.1 mL/min, 20 mL spike ONLY - Data through 9/2/97
Model Name = Linear equilibrium
Calculation began 5/26/98 11:30:44 AM
Model parameters:
        R = 11000
    theta = 0.033
       D = 0.64
       mu = 0
    gamma = 0
        q = 0.033
       t0 = 0.36
       c0 = 53000
No fit performed; model calculation only
Calculated model curves:
Distance
              Time
                             Model
1.000000E+00 1.290000E+01 3.914634E-142
1.000000E+00 2.580000E+01 1.071041E-69
              2.580000E+01
3.870000E+01
1.000000E+00
                             1.209628E-45
1.000000E+00
             5.160000E+01
                            2.161157E-33
1.000000E+00
              6.450000E+01
                             2.909448E-26
1.000000E+00
              7.740000E+01
                             1.549026E-21
1.000000E+00 9.030000E+01
                             3.531041E-18
1.000000E+00
             1.032000E+02
                            1.130299E-15
1.000000E+00
              1.161000E+02
                             9.813081E-14
1.000000E+00
              1.290000E+02
                             3.426648E-12
1.000000E+00
              1.419000E+02
                             6.180909E-11
1.000000E+00
              1.548000E+02
                             6.802202E-10
1.000000E+00
              1.677000E+02
                             5.124052E-09
1.000000E+00 1.806000E+02
                             2.867850E-08
1.00000E+00
              1.935000E+02
                             1.266326E-07
1.000000E+00
              2.064000E+02
                             4.614196E-07
1.000000E+00
              2.193000E+02
                             1.435834E-06
1.000000E+00
              2.322000E+02
                             3.918649E-06
1.000000E+00
              2.451000E+02
                             9.578717E-06
1.000000E+00
              2.580000E+02
                             2.132539E-05
1.000000E+00
              2.709000E+02 4.383170E-05
1.000000E+00
              2.838000E+02
                            8.409817E-05
1.000000E+00
              2.967000E+02
                             1.520039E-04
1.000000E+00
              3.096000E+02
                             2.607891E-04
1.000000E+00
              3.225000E+02
                             4.274210E-04
1.000000E+00
              3.354000E+02
                             6.728054E-04
1.000000E+00
              3.483000E+02
                             1.021825E-03
1.000000E+00
              3.612000E+02
                             1.503200E-03
1.000000E+00
              3.741000E+02
                             2.149181E-03
1.000000E+00
              3.870000E+02
                             2.995100E-03
1.000000E+00
              3.999000E+02
                            4.078795E-03
1.000000E+00
              4.128000E+02
                             5.439970E-03
1.000000E+00
              4.257000E+02
                             7.119485E-03
1.000000E+00
              4.386000E+02
                            9.158647E-03
1.000000E+00
                             1.159850E-02
              4.515000E+02
1.000000E+00
              4.644000E+02
                             1.447915E-02
1.000000E+00
              4.773000E+02
                             1.783916E-02
1.000000E+00
              4.902000E+02
                             2.171499E-02
1.000000E+00
              5.031000E+02
                             2.614053E-02
1.00000E+00
              5.160000E+02
                             3.114671E-02
1.000000E+00
              5.289000E+02
                             3.676952E-02
1.000000E+00
              5.418000E+02
                             4.301716E-02
1.000000E+00
              5.547000E+02
                            4.991769E-02
```

5.676000E+02 5.748785E-02

1.000000E+00

Am_Sat_12000_Short_Vol.log

```
1.000000E+00
              5.805000E+02
                             6.574057E-02
              5.934000E+02
                             7.468507E-02
1.000000E+00
1.000000E+00
              6.063000E+02
                             8.432691E-02
1.000000E+00
              6.192000E+02
                             9.466810E-02
1.000000E+00
              6.321000E+02
                             1.057073E-01
                             1.174399E-01
1.000000E+00
              6.450000E+02
1.000000E+00
              6.579000E+02
                             1.298584E-01
              6.708000E+02
                             1.429525E-01
1.000000E+00
              6.837000E+02
                             1.567093E-01
1.000000E+00
1.000000E+00
              6.966000E+02
                             1.711136E-01
1.000000E+00
              7.095000E+02
                             1.861480E-01
1.000000E+00
              7.224000E+02
                             2.017935E-01
                             2.180293E-01
              7.353000E+02
1.000000E+00
1.000000E+00
              7.482000E+02
                             2.348331E-01
1.000000E+00
              7.611000E+02
                             2.521816E-01
              7.740000E+02
                             2.700504E-01
1.000000E+00
1.000000E+00
              7.869000E+02
                             2.884141E-01
1.000000E+00
              7.998000E+02
                             3.072471E-01
1.000000E+00
              8.127000E+02
                             3.265228E-01
              8.256000E+02
1.000000E+00
                             3.462148E-01
1.000000E+00
              8.385000E+02
                             3.662960E-01
1.000000E+00
              8.514000E+02
                             3.867396E-01
1.000000E+00
              8.643000E+02
                             4.075188E-01
1.000000E+00
              8.772000E+02
                             4.286069E-01
1.000000E+00
              8.901000E+02
                             4.499774E-01
1.000000E+00
              9.030000E+02
                             4.716044E-01
              9.159000E+02
1.000000E+00
                             4.934622E-01
1.000000E+00
              9.288000E+02
                             5.155257E-01
1.000000E+00
              9.417000E+02
                             5.377702E-01
1.000000E+00
              9.546000E+02
                             5.601718E-01
              9.675000E+02
                             5.827071E-01
1.000000E+00
1.000000E+00
              9.804000E+02
                             6.053534E-01
1.000000E+00
              9.933000E+02
                             6.280886E-01
1.000000E+00
              1.006200E+03
                             6.508916E-01
1.000000E+00
              1.019100E+03
                             6.737418E-01
1.000000E+00
              1.032000E+03
                             6.966194E-01
1.000000E+00
              1.044900E+03
                             7.195053E-01
1.000000E+00
              1.057800E+03
                             7.423814E-01
1.000000E+00
              1.070700E+03
                             7.652300E-01
1.000000E+00
              1.083600E+03
                             7.880344E-01
1.000000E+00
              1.096500E+03
                             8.107787E-01
1.000000E+00
              1.109400E+03
                             8.334476E-01
1.000000E+00
              1.122300E+03
                             8.560266E-01
1.000000E+00
              1.135200E+03
                             8.785019E-01
1.000000E+00
              1.148100E+03
                             9.008605E-01
1.000000E+00
              1.161000E+03
                             9.230899E-01
1.000000E+00
              1.173900E+03
                             9.451785E-01
1.00000E+00
              1.186800E+03
                             9.671152E-01
              1.199700E+03
1.000000E+00
                             9.888896E-01
1.000000E+00
              1.212600E+03
                             1.010492E+00
1.000000E+00
              1.225500E+03
                             1.031913E+00
1.000000E+00
              1.238400E+03
                             1.053145E+00
1.000000E+00
              1.251300E+03
                             1.074179E+00
1.000000E+00
              1.264200E+03
                             1.095008E+00
1.000000E+00
              1.277100E+03
                             1.115624E+00
1.000000E+00
              1.290000E+03
                             1.136023E+00
```

Am_Sat_11500_Short_Vol.log

```
****************
         Deterministic linear equilibrium absorption for pulse injection with
         first-order decay
         Am (sat), 0.1 mL/min, 20 mL spike ONLY - Data through 9/2/97
************************
Model Name = Linear equilibrium
Calculation began 5/26/98 11:31:06 AM
Model parameters:
              R = 11500
       theta = 0.033
             D = 0.64
            mu = 0
       gamma = 0
             q = 0.033
             t0 = 0.36
            c0 = 53000
No fit performed; model calculation only
Calculated model curves:
Distance
                     Time
                                                 Model
1.000000E+00 1.290000E+01 1.017716E-148
1.000000E+00 2.580000E+01 5.457844E-73
1.000000E+00 3.870000E+01 7.797658E-48
1.000000E+00 5.160000E+01 4.958098E-35
1.000000E+00 6.450000E+01 1.428777E-27
1.000000E+00 7.740000E+01 1.263021E-22
1.000000E+00 9.030000E+01 4.134750E-19
1.000000E+00 1.032000E+02 1.736133E-16
1.000000E+00 1.161000E+02 1.861306E-14
1.000000E+00 1.290000E+02 7.694130E-13
1.000000E+00 1.419000E+02 1.593246E-11
1.000000E+00 1.548000E+02 1.967076E-10
1.000000E+00 1.677000E+02 1.633190E-09
1.000000E+00 1.806000E+02 9.935523E-09
1.000000E+00 1.935000E+02 4.715848E-08
1.000000E+00 2.064000E+02 1.830481E-07
1.000000E+00 2.193000E+02 6.022783E-07
1.000000E+00 2.322000E+02 1.727270E-06
1.000000E+00 2.32200E+02 1.7270E-00
1.000000E+00 2.451000E+02 4.413622E-06
1.000000E+00 2.580000E+02 1.022638E-05
1.000000E+00 2.709000E+02 2.179209E-05
1.000000E+00 2.838000E+02 4.320726E-05
1.000000E+00 2.838000E+02 4.320726E-05

1.000000E+00 2.967000E+02 8.047193E-05

1.000000E+00 3.096000E+02 1.419104E-04

1.000000E+00 3.225000E+02 2.385397E-04

1.000000E+00 3.354000E+02 3.843528E-04

1.000000E+00 3.483000E+02 5.964888E-04

1.000000E+00 3.612000E+02 8.952776E-04

1.000000E+00 3.741000E+02 1.304153E-03
1.000000E+00 3.870000E+02 1.849441E-03
1.000000E+00 3.999000E+02 2.560039E-03
1.000000E+00 4.128000E+02 3.467003E-03
1.000000E+00 4.257000E+02 4.603064E-03
1.000000E+00 4.386000E+02 6.002108E-03
1.000000E+00 4.515000E+02 7.698621E-03
1.000000E+00 4.644000E+02 9.727150E-03
                                                  9.727150E-03
1.000000E+00 4.773000E+02
                                                  1.212177E-02
                       4.902000E+02
                                                  1.491558E-02
1.000000E+00
1.000000E+00 5.031000E+02 1.814027E-02
1.000000E+00 5.160000E+02 2.182570E-02
1.000000E+00 5.289000E+02 2.599957E-02
1.000000E+00 5.418000E+02 3.068713E-02
1.000000E+00 5.547000E+02 3.591905E-02
1.000000E+00 5.676000E+02 4.169960E-02
```

Am_Sat_11500_Short_Vol.log

```
1.000000E+00
              5.805000E+02
                             4.805298E-02
1.000000E+00
              5.934000E+02
                             5.499296E-02
                             6.253033E-02
              6.063000E+02
1.000000E+00
1.000000E+00
              6.192000E+02
                             7.067286E-02
              6.321000E+02
1.000000E+00
                             7.942539E-02
1.000000E+00
              6.450000E+02
                             8.878992E-02
1.000000E+00
              6.579000E+02
                             9.876574E-02
1.000000E+00
              6.708000E+02
                             1.093495E-01
1.000000E+00
              6.837000E+02
                             1.205356E-01
              6.966000E+02
1.000000E+00
                             1.323158E-01
1.000000E+00
              7.095000E+02
                             1.446802E-01
1.00000E+00
              7.224000E+02
                             1.576167E-01
1.000000E+00
              7.353000E+02
                             1.711115E-01
1.000000E+00
              7.482000E+02
                             1.851492E-01
1.000000E+00
              7.611000E+02
                             1.997132E-01
1.000000E+00
              7.740000E+02
                             2.147855E-01
1.000000E+00
              7.869000E+02
                             2.303470E-01
1.00000E+00
              7.998000E+02
                             2.463778E-01
1.000000E+00
              8.127000E+02
                             2.628572E-01
                             2.797640E-01
1.000000E+00
              8.256000E+02
1.000000E+00
              8.385000E+02
                             2.970765E-01
                             3.147723E-01
1.000000E+00
              8.514000E+02
1.000000E+00
              8.643000E+02
                             3.328294E-01
1.000000E+00
              8.772000E+02
                             3.512250E-01
              8.901000E+02
1.000000E+00
                             3.699368E-01
1.000000E+00
              9.030000E+02
                             3.889422E-01
              9.159000E+02
1.000000E+00
                             4.082190E-01
1.000000E+00
              9.288000E+02
                             4.277449E-01
1.000000E+00
              9.417000E+02
                             4.474983E-01
1.000000E+00
              9.546000E+02
                             4.674574E-01
1.000000E+00
              9.675000E+02
                             4.876013E-01
              9.804000E+02
1.000000E+00
                             5.079092E-01
1.000000E+00
              9.933000E+02
                             5.283608E-01
1.000000E+00
              1.006200E+03
                             5.489365E-01
1.000000E+00
              1.019100E+03
                             5.696170E-01
1 000000E+00
              1.032000E+03
                             5.903837E-01
1.000000E+00
              1.044900E+03
                             6.112184E-01
1.000000E+00
              1.057800E+03
                             6.321038E-01
1.000000E+00
              1.070700E+03
                             6.530227E-01
1.000000E+00
              1.083600E+03
                             6.739591E-01
                             6.948971E-01
1.000000E+00
              1.096500E+03
1.000000E+00
              1.109400E+03
                             7.158217E-01
1.000000E+00
              1.122300E+03
                             7.367184E-01
1.000000E+00
              1.135200E+03
                             7.575734E-01
1.000000E+00
              1.148100E+03
                             7.783733E-01
1.000000E+00
              1.161000E+03
                             7.991055E-01
1.000000E+00
                             8.197580E-01
              1.173900E+03
1.000000E+00
              1.186800E+03
                             8.403192E-01
1.000000E+00
              1.199700E+03
                             8.607782E-01
1.000000E+00
              1.212600E+03
                             8.811247E-01
1.000000E+00
              1.225500E+03
                             9.013487E-01
1.000000E+00
              1.238400E+03
                             9.214410E-01
1.000000E+00
              1.251300E+03
                             9.413929E-01
1.000000E+00
              1.264200E+03
                             9.611961E-01
1.000000E+00
              1.277100E+03
                             9.808427E-01
1.000000E+00
              1.290000E+03
                             1.000326E+00
```

Am Sat_12000 Short_Vol.log

```
Deterministic linear equilibrium absorption for pulse injection with
     first-order decay
     Am (sat), 0.1 mL/min, 20 mL spike ONLY - Data through 9/2/97
Model Name = Linear equilibrium
Calculation began 5/26/98 11:31:24 AM
Model parameters:
       R = 12000
    theta = 0.033
       D = 0.64
       mu = 0
    gamma = 0
       q = 0.033
       t0 = 0.36
       c0 = 53000
No fit performed; model calculation only
Calculated model curves:
              Time
Distance
                            Model
              1.290000E+01
                            2.648306E-155
1.000000E+00
1.000000E+00 2.580000E+01 2.780618E-76
              3.870000E+01 5.022797E-50
5.160000E+01 1.136463E-36
1.000000E+00
1.000000E+00
1.000000E+00
             6.450000E+01 7.009943E-29
1.000000E+00 7.740000E+01 1.028850E-23
1.000000E+00
              9.030000E+01
                            4.837072E-20
1.000000E+00 1.032000E+02
                            2.664142E-17
1.000000E+00
             1.161000E+02 3.527070E-15
             1.290000E+02 1.725965E-13
1.419000E+02 4.102939E-12
1.000000E+00
1.000000E+00
1.000000E+00
             1.548000E+02 5.682949E-11
1.000000E+00 1.677000E+02 5.200437E-10
1.000000E+00
              1.806000E+02
                            3.438779E-09
1.000000E+00
              1.935000E+02
                            1.754496E-08
1.000000E+00
              2.064000E+02
                            7.254581E-08
1.000000E+00
              2.193000E+02
                            2.523870E-07
1.000000E+00 2.322000E+02
                           7.606071E-07
1.000000E+00 2.451000E+02 2.031695E-06
1.000000E+00
              2.580000E+02
                            4.899159E-06
1.000000E+00
              2.709000E+02 1.082389E-05
1.000000E+00
             2.838000E+02 2.217687E-05
1.000000E+00
                             4.256051E-05
              2.967000E+02
1.000000E+00
              3.096000E+02
                             7.714549E-05
1.000000E+00
              3.225000E+02 1.329954E-04
1.000000E+00
              3.354000E+02
                            2.193517E-04
1.000000E+00
              3.483000E+02
                            3.478546E-04
1.000000E+00
              3.612000E+02
                             5.326814E-04
1.000000E+00
              3.741000E+02
                            7.905913E-04
1.000000E+00
              3.870000E+02
                            1.140872E-03
1.000000E+00
              3.999000E+02
                             1.605196E-03
1.000000E+00
             4.128000E+02
                            2.207384E-03
1.000000E+00
             4.257000E+02
                            2.973109E-03
1.000000E+00
                            3.929532E-03
             4.386000E+02
1.000000E+00 4.515000E+02
                             5.104909E-03
1.000000E+00
             4.644000E+02
                             6.528168E-03
1.000000E+00
             4.773000E+02
                             8.228486E-03
1.000000E+00
              4.902000E+02
                             1.023487E-02
1.000000E+00 5.031000E+02
                             1.257575E-02
1.000000E+00
             5.160000E+02
                             1.527863E-02
             5.289000E+02
5.418000E+02
1.000000E+00
                             1.836972E-02
1.000000E+00
                             2.187367E-02
```

2.581331E-02

1.000000E+00

5.547000E+02

1.000000E+00 5.676000E+02 3.020944E-02

Am_Sat_12000_Short_Vol.log

```
1.000000E+00
              5.805000E+02
                             3.508849E-02
1.000000E+00
              5.934000E+02
                             4.045174E-02
1.000000E+00
              6.063000E+02
                             4.632030E-02
1.000000E+00
              6.192000E+02
                             5.270562E-02
1.000000E+00
                             5.961675E-02
              6.321000E+02
1.000000E+00
              6.450000E+02
                             6.706028E-02
1.000000E+00
                             7.504046E-02
              6.579000E+02
1.000000E+00
              6.708000E+02
                             8.355921E-02
1.000000E+00
              6.837000E+02
                             9.261627E-02
1.000000E+00
              6.966000E+02
                             1.022092E-01
1.000000E+00
              7.095000E+02
                             1.123337E-01
1.000000E+00
              7.224000E+02
                             1.229834E-01
1.000000E+00
              7.353000E+02
                             1.341505E-01
1.000000E+00
              7.482000E+02
                             1.458252E-01
1.000000E+00
              7.611000E+02
                             1.579965E-01
1.000000E+00
              7.740000E+02
                             1.706520E-01
1.000000E+00
              7.869000E+02
                             1.837782E-01
1.000000E+00
              7.998000E+02
                             1.973605E-01
              8.127000E+02
1.000000E+00
                             2.113832E-01
1.000000E+00
              8.256000E+02
                             2.258300E-01
              8.385000E+02
1.000000E+00
                             2.406839E-01
1.000000E+00
              8.514000E+02
                             2.559272E-01
1.000000E+00
              8.643000E+02
                             2.715419E-01
1.000000E+00
              8.772000E+02
                             2.875095E-01
1.000000E+00
              8.901000E+02
                             3.038114E-01
1.000000E+00
              9.030000E+02
                             3.204286E-01
1.000000E+00
              9.159000E+02
                             3.373423E-01
1.000000E+00
              9.288000E+02
                             3.545333E-01
               9.417000E+02
                             3.719827E-01
1.000000E+00
1.000000E+00
               9.546000E+02
                             3.896718E-01
                             4.075818E-01
1.000000E+00
               9.675000E+02
1.000000E+00
               9.804000E+02
                             4.256943E-01
1.000000E+00
               9.933000E+.02
                             4.439910E-01
1.000000E+00
               1.006200E+03
                             4.624542E-01
1.000000E+00
                             4.810662E-01
               1.019100E+03
1.000000E+00
               1.032000E+03
                             4.998099E-01
1.000000E+00
               1.044900E+03
                             5.186685E-01
                             5.376256E-01
1.000000E+00
               1.057800E+03
1.000000E+00
               1.070700E+03
                             5.566653E-01
1.000000E+00
                             5.757722E-01
               1.083600E+03
1.000000E+00
               1.096500E+03
                             5.949312E-01
1.000000E+00
               1.109400E+03
                             6.141278E-01
1.000000E+00
               1.122300E+03
                             6.333480E-01
1.000000E+00
               1.135200E+03
                             6.525782E-01
1.000000E+00
               1.148100E+03
                              6.718054E-01
1.000000E+00
               1.161000E+03
                              6.910170E-01
1.00000E+00
               1.173900E+03
                             7.102009E-01
1.000000E+00
               1.186800E+03
                             7.293456E-01
1.000000E+00
               1.199700E+03
                             7.484400E-01
1.000000E+00
               1.212600E+03
                             7.674734E-01
1.000000E+00
               1.225500E+03
                             7.864357E-01
1.000000E+00
               1.238400E+03
                              8.053173E-01
1.000000E+00
               1.251300E+03
                              8.241090E-01
1.000000E+00
               1.264200E+03
                              8.428019E-01
1.000000E+00
               1.277100E+03
                              8.613878E-01
1.000000E+00
               1.290000E+03
                             8.798588E-01
```

APPENDIX S.

LISTINGS OF EXCEL 97 SPREADSHEETS AND CHARTS SHOWING RELATIVE CALCULATED ²⁴¹Am CONCENTRATION AS FUNCTION OF EFFLUENT BRINE VOLUME AT RETARDATION VALUES 11,000, 11,500, & 12,000 (FOR EQUILIBRIUM SATURATION CONCENTRATION, WITHOUT RE-DISSOLUTION OF PRECIPITATED ²⁴¹Am)

Am_Calculations_3.xls - Am vs Eluted Volume Numbers

theta 0.033		R 11,000	R 11,500	R 12,000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
10.0	0.70	R=11,000	R=11,500	R=12,000
12.9	0.72	0.00	0.00	0.00
25.8	1.43	0.00	0.00	0.00
38.7 51.6	2.15 2.87	0.00 0.00	0.00 0.00	0.00 0.00
64.5	3.59	0.00	0.00	0.00
77.4	4.30	. 0.00	0.00	0.00
90.3	5.02	0.00	0.00	0.00
103.2	5.74	0.00	0.00	0.00
116.1	6.45	0.00	0.00	0.00
129.0	7.17	0.00	0.00	0.00
141.9	7.89	0.00	0.00	0.00
154.8	8.60	0.00	0.00	0.00
167.7	9.32	0.00	0.00	0.00
180.6	10.04	0.00	0.00	0.00
193.5	10.76	. 0.00	0.00	0.00
206.4	11.47	0.00	0.00	0.00
219.3	12.19	0.00	0.00	0.00
232.2	12.91	0.00	0.00	0.00
245.1	13.62	0.00	0.00	0.00
258.0	14.34	0.00	0.00	0.00
270.9	15.06	0.00	0.00	0.00
283.8	15.77	0.00	0.00	0.00
296.7	16.49	0.00	0.00	0.00
309.6 322.5	17.21 17.93	0.00	0.00	0.00
335.4	18.64	0.00 0.00	0.00 0.00	0.00 0.00
348.3	19.36	0.00	0.00	0.00
361.2	20.08	0.00	0.00	0.00
374.1	20.79	0.00	0.00	0.00
387.0	21.51	0.00	0.00	0.00
399.9	22.23	0.00	0.00	0.00
412.8	22.94	0.01	0.00	0.00
425.7	23.66	0.01	0.00	
438.6	24.38	0.01	0.01	0.00
451.5	25.10	0.01	0.01	0.01
464.4	25.81	0.01	0.01	0.01
477.3	26.53	0.02		0.01
490.2	27.25	0.02	0.01	0.01
503.1	27.96	0.03	0.02	. 0.01
516.0	28.68	0.03	0.02	0.02

Am_Calculations_3.xls - Am vs Eluted Volume Numbers (continued)

theta 0.033		R 11,000	R 11,500	. R 12,000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA) R=11,000	Relative Eluted Conc. (C/MDA) R=11,500	Relative Eluted Conc. (C/MDA) R=12,000
528.9	29.40	0.04	0.03	0.02
541.8	30.11	0.04	0.03	0.02
554.7	30.83	0.05	0.04	0.03
567.6	31.55	0.06	0.04	0.03
580.5	32.27	0.07	0.05	0.04
593.4	32.98	0.07	0.05	0.04
606.3	33.70	0.08	0.06	0.05
619.2	34.42	0.09	0.07	0.05
632.1	35.13	0.11	0.08	0.06
645.0	35.85	0.12	0.09	0.07
657.9	36.57	0.13	0.10	80.0
670.8	37.28	0.14	0.11	0.08
683.7	38.00	0.16	0.12	0.09
696.6	38.72	0.17	0.13	0.10
709.5	39.44	0.19	0.14	0.11
722.4	40.15	0.20	0.16	0.12
735.3	40.87	0.22	0.17	0.13
748.2	41.59	0.23	0.19	0.15
761.1	42.30	0.25	0.20	0.16
774.0	43.02	0.27	0.21	0.17
786.9	43.74	0.29	0.23	0.18
799.8	44.46	0.31	0.25	0.20
812.7	45.17	0.33	0.26	0.21
825.6	45.89	0.35	0.28	0.23
838.5	46.61	0.37	0.30	0.24
851.4	47.32	0.39	0.31	0.26
864.3	48.04	0.41	0.33	0.27
877.2	48.76	0.43	0.35	0.29
890.1	49.47	0.45	0.37	0.30
903.0	50.19	0.47	0.39	0.32
915.9	50.91	0.49	0.41	0.34
928.8	51.63	0.52	0.43	0.35
941.7	52.34	0.54	0.45	0.37
954.6	53.06	0.56	0.47	0.39
967.5	53.78	0.58	0.49	0.41
980.4	54.49	0.61		
993.3	55.21	0.63	0.53	
1006.2	55.93			
1019.1	56.64	0.67	0.57	
1032.0	57.36	0.70	0.59	0.50

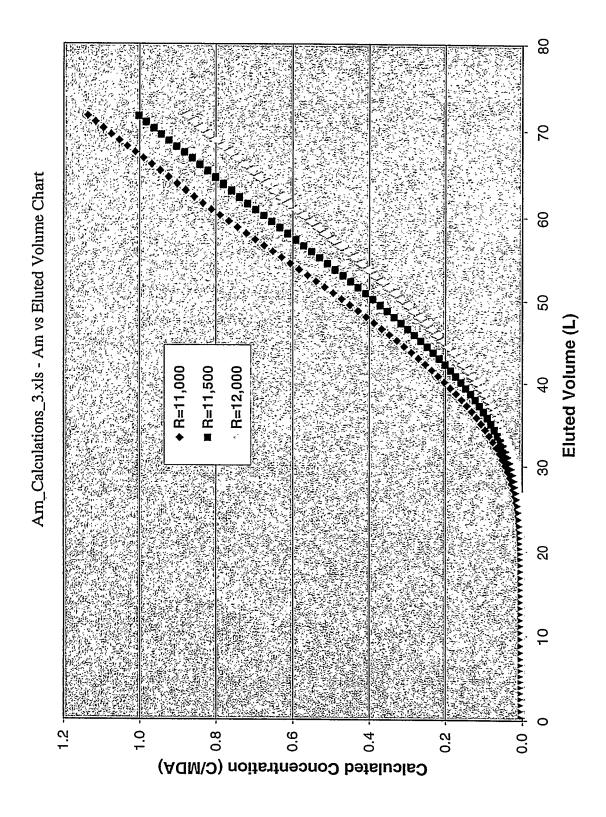
Am_Calculations_3.xls - Am vs Eluted Volume Numbers (continued)

theta 0.033		R 11,000	R 11,500	R 12,000
0.000		,	.,,	· ,
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc.	Relative Eluted Conc.	Relative Eluted Conc.
		(C/MDA)	(C/MDA)	(C/MDA)
		R=11,000	R=11,500	R=12,000
1044.9	58.08	0.72	0.61	0.52
1057.8	58.80	0.74	0.63	0.54
1070.7	59.51	0.77	0.65	0.56
1083.6	60.23	0.79	0.67	0.58
1096.5	60.95	0.81	0.69	0.59
1109.4	61.66	0.83	0.72	0.61
1122.3	62.38	0.86	0.74	0.63
1135.2	63.10	0.88	0.76	0.65
1148.1	63.81	0.90	0.78	0.67
1161.0	64.53	0.92	0.80	0.69
1173.9	65.25	0.95	0.82	0.71
1186.8	65.97	0.97	0.84	0.73
1199.7	66.68	0.99	0.86	0.75
1212.6	67.40	1.01	0.88	0.77
1225.5	68.12	1.03	0.90	0.79
1238.4	68.83	1.05	0.92	0.81
1251.3	69.55	1.07	0.94	0.82
1264.2	70.27	1.10	0.96	0.84
1277.1	70.98	1.12	0.98	0.86
1290.0	71.70	1.14	1.00	0.88

Am_Calculations_3.xls - Am vs Eluted Volume Formulas

theta 0.033 Eluted Pore Volumes 12.9 25.8	Eluted Volume (L) =PI()*(7.25)^2*10.2*\$A\$3*A7/1000 =PI()*(7.25)^2*10.2*\$A\$3*A9/1000 =PI()*(7.25)^2*10.2*\$A\$3*A9/1000	R 11000 Relative Eluted Conc. (C/MDA) R=11,000 3.914634E-142 1.071041E-69 1.209628E-45	R 11500 Relative Efuted Conc. (C/MDA) R=11,500 1.017716E-148 5.457844E-73 7.797658E-48	Relative Eluted Conc. (C/MDA) R=12,000 2.648306E-155 2.780618E-76 5.022797E-50
51.6 64.5 77.4 90.3 103.2 116.1 129 141.9 154.8 167.7 180.6 193.5 206.4 219.3 232.2 245.1	=PI()*(7.25)*2*10.2*\$4\$3*A10/1000 =PI()*(7.25)*2*10.2*\$4\$3*A11/1000 =PI()*(7.25)*2*10.2*\$4\$3*A13/1000 =PI()*(7.25)*2*10.2*\$4\$3*A14/1000 =PI()*(7.25)*2*10.2*\$4\$3*A15/1000 =PI()*(7.25)*2*10.2*\$4\$3*A15/1000 =PI()*(7.25)*2*10.2*\$4\$3*A16/1000 =PI()*(7.25)*2*10.2*\$4\$3*A16/1000 =PI()*(7.25)*2*10.2*\$4\$3*A20/1000 =PI()*(7.25)*2*10.2*\$4\$3*A22/1000 =PI()*(7.25)*2*10.2*\$4\$3*A22/1000 =PI()*(7.25)*2*10.2*\$4\$3*A22/1000 =PI()*(7.25)*2*10.2*\$4\$3*A25/1000 =PI()*(7.25)*2*10.2*\$4\$3*A25/1000	2.161157E-33 2.309448E-26 1.549026E-21 3.531041E-18 1.130299E-15 9.813081E-14 0.00000000000000000000000000000000000	4.958096E-55 1.428777E-27 1.263021E-22 4.13475E-19 1.736133E-16 1.861306E-14 0.00000000000000000000000000000000000	7.009943E-29 7.009943E-29 1.02885E-23 4.837072E-20 2.664142E-17 3.52707E-15 0.0000000000001725965 0.00000000000528049 0.000000005200437 0.00000001754496 0.00000007254581 0.000000252387 0.000000252387 0.000000262387 0.0000004899159 0.000004899159
270.9 283.8 309.6 322.5 335.4 348.3 361.2	=P()*(7.25)*2*10.2*44\$3*A24/1000 =P()*(7.25)*2*10.2*\$4\$3*A28/1000 =P()*(7.25)*2*10.2*\$4\$3*A30/1000 =P()*(7.25)*2*10.2*\$4\$3*A31/1000 =P()*(7.25)*2*10.2*\$4\$3*A33/1000 =P()*(7.25)*2*10.2*\$4\$3*A34/1000 =P()*(7.25)*2*10.2*\$4\$3*A34/1000	0.0000429817 0.0001520039 0.0002607891 0.000427421 0.000121825 0.0015032 0.002149181	0.0003952776 0.000385397 0.0005964888 0.0008952776 0.001304153	0.00002217687 0.00004256051 0.00007714549 0.0001329954 0.0002193517 0.0003478546 0.0005326814

Am_Calculations_3.xls - Am vs Eluted Volume Formulas (continued)


theta 0.033		R 11000	R 11500	R 12000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
				;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
		R=11,000	H=11,500	K=12,000
387	=PI()*(7.25)^2*10.2*\$A\$3*A36/1000	0.0029951	0.001849441	0.001140872
6,99.9	=PI()*(7.25)^2*10.2*\$A\$3*A37/1000	0.004078795	0.002560039	0.001605196
412.8	=PI()*(7.25)^2*10.2*\$A\$3*A38/1000	0.00543997	0.003467003	0.002207384
425.7	=PI()*(7.25)^2*10.2*\$A\$3*A39/1000	0.007119485	0.004603064	0.002973109
438.6	=PI()*(7.25)^2*10.2*\$A\$3*A40/1000	0.009158647	0.006002108	0.003929532
451.5	=PI()*(7.25)^2*10.2*\$A\$3*A41/1000	0.0115985	0.007698621	0.005104909
464.4	=PI()*(7.25)^2*10.2*\$A\$3*A42/1000	0.01447915	0.00972715	0.006528168
477.3	=PI()*(7.25)^2*10.2*\$A\$3*A43/1000	0.01783916	0.01212177	0.008228486
490.2	=PI()*(7.25)^2*10.2*\$A\$3*A44/1000	0.02171499	0.01491558	0.01023487
503.1	=PI()*(7.25)^2*10.2*\$A\$3*A45/1000	0.02614053	0.01814027	0.01257575
516	=PI()*(7.25)^2*10.2*\$A\$3*A46/1000	0.03114671	0.0218257	0.01527863
528.9	=PI()*(7.25)^2*10.2*\$A\$3*A47/1000	0.03676952	0.02599957	0.01836972
541.8	=PI()*(7.25)^2*10.2*\$A\$3*A48/1000	0.04301716	0.03068713	0.02187367
554.7	=PI()*(7.25)^2*10.2*\$A\$3*A49/1000	0.04991769	0.03591905	0.02581331
567.6	=PI()*(7.25)^2*10.2*\$A\$3*A50/1000	0.05748785	0.0416996	0.03020944
580.5	=PI()*(7.25)^2*10.2*\$A\$3*A51/1000	0.06574057	0.04805298	0.03508849
593.4	=PI()*(7.25)^2*10.2*\$A\$3*A52/1000	0.07468507	0.05499296	0.04045174
606.3	=PI()*(7.25)^2*10.2*\$A\$3*A53/1000	0.08432691	0.06253033	0.0463203
619.2	=PI()*(7.25)^2*10.2*\$A\$3*A54/1000	0.0946681	0.07067286	0.05270562
632.1	=PI()*(7.25)^2*10.2*\$A\$3*A55/1000	0.1057073	0.07942539	0.05961675
645	=PI()*(7.25)^2*10.2*\$A\$3*A56/1000	0.1174399	0.08878992	0.06706028
657.9	=PI()*(7.25)^2*10.2*\$A\$3*A57/1000	0.1298584	0.09876574	0.07504046
670.8	=PI()*(7.25)^2*10.2*\$A\$3*A58/1000	0.1429525	0.1093495	0.08355921
683.7	=PI()*(7.25)^2*10.2*\$A\$3*A59/1000	0.1567093	0.1205356	0.09261627
696.6	=PI()*(7.25)^2*10.2*\$A\$3*A60/1000	0.1711136	0.1323158	0.1022092
709.5	=PI()*(7.25)^2*10.2*\$A\$3*A61/1000	0.186148	0.1446802	0.1123337
722.4	=PI()*(7.25)^2*10.2*\$A\$3*A62/1000	0.2017935	0.1576167	0.1229834
735.3	=PI()*(7.25)^2*10.2*\$A\$3*A63/1000	0.2180293	0.1711115	0.1341505
748.2	=PI()*(7.25)^2*10.2*\$A\$3*A64/1000	0.2348331	0.1851492	0.1458252

Am_Calculations_3.xls - Am vs Eluted Volume Formulas (continued)

	Relative Eluted Conc. (C/MDA)	R=12,000 0.1579965 0.170652 0.170652 0.193782 0.22583 0.22583 0.22583 0.2258272 0.2258272 0.2258272 0.2258272 0.2258272 0.22583 0.225825 0.3986718 0.4624542 0.498099 0.5186685 0.5566653 0.5566653 0.65943312
R 12000	Rela	R=12,00 0.157990 0.170650 0.170650 0.197360 0.297360 0.207154 0.20759 0.30381 0.30381 0.304599 0.304599 0.304599 0.30464399 0.46245 0.49399 0.55666 0.53762 0.55762 0.55762
R 11500	Relative Eluted Conc. (C/MDA)	R=11,500 0.1997132 0.2147855 0.230347 0.2463778 0.2628572 0.279764 0.2970765 0.3147723 0.3328294 0.351225 0.369368 0.3899422 0.408219 0.4277449 0.4277449 0.4474983 0.4474983 0.6739092 0.5283608 0.54876013 0.5079092 0.5283608 0.5489365 0.5093837 0.6112184 0.6321038 0.6530227 0.6739591 0.6948971
R 11000	Relative Eluted Conc. (C/MDA)	R=11,000 0.2521816 0.2700504 0.2884141 0.3072471 0.36528 0.3462148 0.3867396 0.4286069 0.4075188 0.4286069 0.4499774 0.4716044 0.4934622 0.5155257 0.5377702 0.5601718 0.5827071 0.6053534 0.6280886 0.6508916 0.6508916 0.6508914 0.7195053 0.7423814 0.76523 0.76523 0.76523
	Eluted Volume (L)	=PI()*(7.25)*2*10.2*\$A\$3*A65/1000 =PI()*(7.25)*2*10.2*\$A\$3*A65/1000 =PI()*(7.25)*2*10.2*\$A\$3*A67/1000 =PI()*(7.25)*2*10.2*\$A\$3*A71/1000 =PI()*(7.25)*2*10.2*\$A\$3*A71/1000 =PI()*(7.25)*2*10.2*\$A\$3*A71/1000 =PI()*(7.25)*2*10.2*\$A\$3*A72/1000 =PI()*(7.25)*2*10.2*\$A\$3*A73/1000 =PI()*(7.25)*2*10.2*\$A\$3*A73/1000 =PI()*(7.25)*2*10.2*\$A\$3*A73/1000 =PI()*(7.25)*2*10.2*\$A\$3*A73/1000 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 =PI()*(7.25)*2*10.2*\$A\$3*A81/1000 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 =PI()*(7.25)*2*10.2*\$A\$3*A83/1000 =PI()*(7.25)*2*10.2*\$A\$3*A93/1000 =PI()*(7.25)*2*10.2*\$A\$3*A93/1000
theta 0.033	Eluted Pore Volumes	761.1 774 786.9 799.8 812.7 825.6 838.5 851.4 864.3 877.2 890.1 903 915.9 928.8 941.7 967.5 967.5 967.5 1019.1 1032 1019.1 1032 104.9 1057.8 1057.8 1057.8

Am_Calculations_3.xls - Am vs Eluted Volume Formulas (continued)

theta 0.033		R 11000	R 11500	R 12000
Eluted Pore Volumes	Eluted Volume (L)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)	Relative Eluted Conc. (C/MDA)
		R=11,000	R=11,500	R=12,000
1135.2	=PI()*(7.25)^2*10.2*\$A\$3*A94/1000	0.8785019	0.7575734	0.6525782
1148.1	=PI()*(7.25)^2*10.2*\$A\$3*A95/1000	0.9008605	0.7783733	0.6718054
1161	=PI()*(7.25)^2*10.2*\$A\$3*A96/1000	0.9230899	0.7991055	0.691017
1173.9	=PI()*(7.25)^2*10.2*\$A\$3*A97/1000	0.9451785	0.819758	0.7102009
1186.8	=PI()*(7.25)^2*10.2*\$A\$3*A98/1000	0.9671152	0.8403192	0.7293456
1199.7	=PI()*(7.25)^2*10.2*\$A\$3*A99/1000	0.9888896	0,8607782	0.74844
1212.6	=PI()*(7.25)^2*10.2*\$A\$3*A100/1000	1.010492	0.8811247	0.7674734
1225.5	=PI()*(7.25)^2*10.2*\$A\$3*A101/1000	1.031913	0.9013487	0.7864357
1238.4	=PI()*(7.25)^2*10.2*\$A\$3*A102/1000	1.053145	0.921441	0.8053173
1251.3	=PI()*(7.25)^2*10.2*\$A\$3*A103/1000	1.074179	0.9413929	0.824109
1264.2	=PI()*(7.25)^2*10.2*\$A\$3*A104/1000	1.095008	0.9611961	0.8428019
1277.1	=PI()*(7.25)^2*10.2*\$A\$3*A105/1000	1.115624	0.9808427	0.8613878
1290	=PI()*(7.25)^2*10.2*\$A\$3*A106/1000	1.136023	1.000326	0.8798588

S-10

WIPP UC721 - DISTRIBUTION LIST SAND98-1005

Federal Agencies

US Department of Energy (4)

Office of Civilian Radioactive Waste Mgmt.

Attn: Deputy Director, RW-2

Acting Director, RW-10

Office of Human Resources & Admin.

Director, RW-30

Office of Program Mgmt. & Integ.

Director, RW-40

Office of Waste Accept., Stor., & Tran.

Forrestal Building

Washington, DC 20585

Yucca Mountain Site Characterization Office

Director, RW-3

Office of Quality Assurance

Attn: Project Director

P. O. Box 30307

Las Vegas, NV 89036-0307

US Department of Energy

Research & Waste Management Division

Attn: Director

P.O. Box E

Oak Ridge, TN 37831

US Department of Energy (5)

Carlsbad Area Office

Attn: G. T. Basabilvazo

D. Galbraith

M. McFadden

R. Lark

J. A. Mewhinney

P.O. Box 3090

Carlsbad, NM 88221-3090

US Department of Energy

Office of Environmental Restoration and

Waste Management

Attn: M. Frei, EM-30

Forrestal Building

Washington, DC 20585-0002

US Department of Energy (3)

Office of Environmental Restoration and

Waste Management

Attn: J. Juri, EM-34, Trevion II

Washington, DC 20585-0002

US Department of Energy

Office of Environmental Restoration and

Waste Management

Attn: S. Schneider, EM-342, Trevion II

Washington, DC 20585-0002

US Department of Energy (2)

Office of Environment, Safety & Health

Attn: C. Borgstrom, EH-25

R. Pelletier, EH-231

Washington, DC 20585

US Department of Energy (2)

Idaho Operations Office

Fuel Processing & Waste Mgmt. Division

785 DOE Place

Idaho Falls, ID 83402

US Environmental Protection Agency (2)

Radiation Protection Programs

Attn: M. Oge

ANR-460

Washington, DC 20460

Boards

Defense Nuclear Facilities Safety Board

Attn: D. Winters

625 Indiana Ave. NW, Suite 700

Washington, DC 20004

Nuclear Waste Technical Review Board (2)

Attn: Chairman

J. L. Cohon

2300 Clarendon Blvd. Ste 1300

Arlington, VA 22201-3367

State Agencies

Attorney General of New Mexico

P.O. Drawer 1508

Santa Fe, NM 87504-1508

Environment Lental Evaluation Group (3)

Attn: Libio rary
7007 Wyord ming NE

Suite F-2

Albuquerquylue, NM 87109

NM Environment Department (3) Secretary of the Environment 1190 St. From M 87503-0968 Santa Fe. M

NM Bureau µ of Mines & Mineral Resources Socorro, NW 87801

Ligidal aboratories/Corporations

Battelle Paoricific Northwest Laboratories Battelle Blad VA 99352

Los Alamos National Laboratory Attn: B. En 63 P.O. Box 160 NM 87544

Tech Reps, i knc. (3)
Attn: J. Chapman (1)
Loreste, NE, Suite 222
5000 Marbibi, NM 87110 Albuquerquei/, NM 87110

Westinghouse Electric Corporation (5) Attn: Library

J. Epsylein

J. Lexe

R. Kelsarman

P.O. Box 2004/8 Carlsbad, NW/ 88221

S. Cohen & Wassociates Attn: Bill Tiwurber 1355 Beverly Road McLean, VAN 22101

Nation nal Academy of Sciences **WIPP Panel**

Tom Kiess (1) (5)
Staff Study Doffector GF456 2101 Constitution Ave. Washington, IVC 20418

Universities

University of New Mexico **Geology Department** Attn: Library 141 Northrop Hall Albuquerque, NM 87131

University of Washington College of Ocean & Fishery Sciences Attn: G. R. Heath 583 Henderson Hall, HN-15 Seattle, WA 98195

Libraries

Thomas Brannigan Library Attn: D. Dresp 106 W. Hadley St. Las Cruces, NM 88001

Government Publications Department Zimmerman Library University of New Mexico Albuquerque, NM 87131

New Mexico Junior College **Pannell Library** Attn: R. Hill Lovington Highway Hobbs, NM 88240

New Mexico State Library Attn: N. McCallan 325 Don Gaspar Santa Fe, NM 87503

New Mexico Tech Martin Speere Memorial Library Campus Street Socorro, NM 87810

WIPP Public Reading Room Carlsbad Public Library 101 S. Halagueno St. Carlsbad, NM 88220

Foreign Addresses

Atomic Energy of Canada, Ltd. Whiteshell Laboratories Attn: B. Goodwin

Pinawa, Manitoba, CANADA R0E 1L0

Francois Chenevier (2)

ANDRA

Parc de la Croix Blanche 1-7 rue Jean Monnet 92298 Chatenay-Malabry Cedex FRANCE

Claude Sombret

Centre d'Etudes Nucleaires de la Vallee Rhone

CEN/VALRHO S.D.H.A. B.P. 171 30205 Bagnols-Sur-Ceze FRANCE

Commissariat a L'Energie Atomique

Attn: D. Alexandre

Centre d'Etudes de Cadarache 13108 Saint Paul Lez Durance Cedex

FRANCE

Bundesanstalt für Geowissenschaften und

Rohstoffe

Attn: M. Langer Postfach 510 153 D-30631 Hannover GERMANY

Bundesministerium für Forschung und

Technologie Postfach 200 706 5300 Bonn 2 GERMANY

Institut für Tieflagerung

Attn: K. Kuhn

Theodor-Heuss-Strasse 4 D-3300 Braunschweig

GERMANY

Gesellschaft für Anlagen und Reaktorsicherheit

(GRS)

Attn: B. Baltes Schwertnergasse 1 D-50667 Cologne GERMANY Shingo Tashiro

Japan Atomic Energy Research Institute Tokai-Mura, Ibaraki-Ken, 319-11 JAPAN

Netherlands Energy Research Foundation ECN

Attn: J. Prij 3 Westerduinweg P.O. Box 1 1755 ZG Petten THE NETHERLANDS

Svensk Karnbranskeforsorjning AB

Attn: F. Karlsson

Project KBS (Karnipranslesakerhet)

Box 5864

S-102 48 Stockholm

SWEDEN

Nationale Genossenschaft für die Lagerung

Radioaktiver Abfalle (2)

Attn: S. Vomvoris:
P. Zuidema.
Hardstrasse 73
CH-5430 Wettingen:
SWITZERLAND

AEA Technology Attn: J. H. Rees

D5W/29 Culham Laiboratory Abington, Oxfordshire OX14 3DB UNITED KINGDOM

AEA Technology Attn: W. R. Rodwell

044/A31 Winfrith Technical Centre Dorchester, Dorset DT2 8DH

UNITED KINGDOM

AEA Technology Attn: J. E. Tinson

B4244 Harwell Labouratory
Didcot, Oxfordshire OX11 ORA

UNITED KINGDOM

linternal

 MS
 Org.

 0701
 6100
 L. Shephard

 0735
 6115
 P. №. Davies

 0737
 6831
 E. №. Nowak

 0737
 6833
 J. №. Tillerson

0779	6849	D. R. Anderson
0779	6848	H. N. Jow
0771	6800	M. Chu
0733	6832	J. T. Holmes
1395	6821	M. Marietta
1395	6811	N. Z. Elkins
1395	6860	R. D. Waters
1395	6821	W. G. Perkins
0733	6832	D. A. Lucero (10)
0731	6811	K. Hart (2)
0731	6811	NWM Library (20)
9018	8940-2	Central Technical Files
0899	4916	Technical Library (2)
0619	15102	Review and Approval Desk, For DOE/OSTI