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INTRODUCTION

It is recognized that some dynamic and noise environments are characterized by time histories
which are not Gaussian. An example is high intensity acoustic noise. Another example is some
transportation vibration. A better simulation of these environments can be generated if a zero
mean non-Gaussian time history can be reproduced with a specified auto (or power) spectral
density (ASD or PSD) and a specified probability density function (pdf). After the required time
history is synthesized, the waveform can be used for simulation purposes. For example, modem
waveform reproduction techniques can be used to reproduce the waveform on electrodynamic or
electrohydraulic shakers. Or the waveforms can be used in digital simulations. A method is
presented for the generation of realizations of zero mean non-Gaussian random time histories
with a specified ASD, and pdf.

First a Gaussian time history with the specified auto (or power) spectral density (ASD) is
generated. A monotonic nonlinear function relating the Gaussian waveform to the desired
realization is then established based on the Cumulative Distribution Function (CDF) of the
desired waveform and the known CDF of a Gaussian waveform. The established function is used
to transform the Gaussian waveform to a realization of the desired waveform. Since the
transformation preserves the zero-crossings and peaks of the original Gaussian waveform, and
does not introduce any substantial discontinuities, the ASD is not substantially changed.

Several methods are available to generate a realization of a Gaussian distributed waveform with a
known ASD. The method of Smallwood and Paez (1993) is an example. However, the generation
of random noise with a specified ASD but with a non-Gaussian distribution is less well known.
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THEORY

If the pdf of the desired waveform is known or can be estimated, the resulting CDF can be used
with the known distribution of a Gaussian waveform to establish a transformation function. This
function relates a variable with a Gaussian distribution to a waveform with the desired
distribution. To arrive at the required function, the formula for the change in variables using the
cumulative distribution function will be used (Wirsching, Paez, and Ortiz, 1995).

FE»=FE ) (1)
where
y=g(x) (2)

is a monotonically increasing function. The inverse is denoted as

x=g"(» ()

The procedure for finding g(x) from the known functions F,(y)and F,(x)is best illustrated
graphically in Fig. 1. F,(y)and F,(x) will be restricted to functions which result in a
monotonically increasing function g(x). It is seen from Fig. 1 that a point in the x-y plane (x,,y,)
for which F,(x,)=F,(y,) is a point on the function y=g(x). If bothF,(y)and C are
known, y = g(x) can be constructed. Usually for experimental data the pdf is first estimated and
the CDF is estimated by integrating the pdf. In this development F,(y) is the target non-
Gaussian distribution, and F,(y) is a Gaussian distribution.

A sampled realization of a waveform

with a Gaussian distribution and with the 4 .

specified spectral density will then be , / .
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previously derived function, y = g(x). If 2 2

the function is "smooth" and . )

monotonically increasing, the 0 o 1 L A
transformation will preserve all the zero P s
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the transformation. The spectrum of the Fioure I Generation of the transformation function,
distorted waveform can be estimated and y = g(x)
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an error spectrum generated. The error spectrum can be subtracted from the original spectrum
and a new realization of the Gaussian waveform can be generated from the corrected spectrum in
an iterative fashion. Often this iteration is not required as the distorted waveform spectrum is
near enough to the target spectrum to be useful without correction.

If experimental data are used to generate the probability density of the target spectrum, a
procedure which results in a smooth continuous estimate of the probability density is needed. A
simple histogram will not usually be sufficient. The method used in this paper is discussed by
Silverman (1986). The actual probability density estimation routine was supplied by Norm
Hunter of Los Alamos National Laboratories. The resulting probability density was integrated
using a simple trapezoidal rule to estimate the cumulative distribution function. If the target
distribution is known as one of the classical distributions the probability density and cumulative
distribution can often be evaluated analytically. The probability density function and the
cumulative distribution function of the Gaussian distribution were generated using standard

functions in MATLAB®.

PROCEDURE FOR GENERATING A NON-GAUSSIAN
WAVEFORM WITH A SPECIFIED SPECTRAL DENSITY

The procedure for generating a realization of a non Gaussian waveform with specified spectral
density can now be outlined.

1) Determine the CDF of the desired waveform, Fy.
2) Determine the ASD of the desired waveform, G4g.

3) Determine the transformation, y = g(x), from F,(y) and the known distribution of a Gaussian
waveform, F, (x). Fy(x) is scaled for the desired variance, determined by the area under the

desired spectrum, G, Check to make sure y is monotonically increasing. If the function is
not monotonically increasing a solution will not exist using this technique.

4) Set the spectrum of a trial Gaussian waveform as Gy, = G4

5) Generate a realization, {x;}, of a Gaussian waveform with the spectrum, G,,. The method of
Smallwood and Paez (1993) can be used.

6) Transform the realization, {x;} into a realization {y;} using the transformation y = g(x).

7) Estimate the spectrum of {y;}, G,.

8) Determine the error spectrum G,, = G, — G,

9) If at each frequency, error spectrum is within tolerance, or if G, is zero, the procedure is
finished.
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10) Otherwise, subtract the error spectrum from Gy, Gy = Gy - YGee. Gy cannot be less than

Zero. Y is a convergence parameter sometimes needed because only an estimate of the error
spectrum is available.

Repeat steps 5-9. Once convergence has been achieved, additional realizations can be generated
using just steps 5 and 6. If the spectrum of the Gaussian process is reduced to zero and the
spectrum of the transformed realization is still too large at some frequencies, a solution will not
exist using this technique. This implies the harmonic distortion introduced by the transformation
exceeds the desired spectrum at those frequencies.

EXAMPLE

For the example, the target probability density is given Fig. 2. This probability density was
generated by superimposing three Gaussian distributions. By superimposing three Gaussian
distributions, distributions with a large variety of skewness and kurtosis can be achieved.
Generally this method will produce distributions with kurtosis between one and three and
positive or zero values of skewness. If negative skewness is desired, a realization with a positive
skewness can be inverted. The mean of the distribution with a negative mean is -b (see Fig. 2).
b-a and b+a are the means of two distributions with positive means. The area of the distribution
with mean -b is 1/2 and the areas of the distributions with means b-a and b+a are 1/4. The root
mean square (the standard deviation) of each distribution is s. The distribution of the random
variable, y, is defined as the superposition of the three Gaussian distributions. The first four
moments of y are given by,

E[y]=25(b - a)+25(b+a)~S5b=0 (4)

Ely*l1=s>+b’+54° (5)
Ely’1=15ba* (6)

CDF and pdf of desired waveform
Ely*1=3s* +b* +3b%>+.5a" %) 1 e

0.8F 1

Equation 4 is satisfied for any
combination of a and b. For many

CDF

0.4F

specified values of moments of y, o2t
equations 5-7 can be solved for the three 95 o ” . : n = 20
unknowns a, b, and s. Knowing the y
values a, b, and s the probability density 01
function of y can be determined, and 0.08r
hence the function y=g(x) can be _oce
determined. Toosr
0.02r

For this example the desired spectrum is
defined by the dashed line in Fig. 3c. The
spectrum is defined from 40 to 1020 Hz.
The first moment of y, the mean, is zero. '

The desired spectrum defines the second Figure 2 Target probability density function
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moment. The standard deviation of y is 5.34 for the given spectrum. Let the normalized third
moment, E[x’]/ E*?[x], be 1/2, and the normalized fourth moment, E[x*]/ E*[x’], be 2.5.
This results in the values of 3.66, 3.66, and 2.90 for a, b, and s respectively. These values result
in the probability density given in Fig. 2. The resulting function y = g(x) is given in Fig. 4. The

function resembles the force deflection curve of a non-symmetrical softening spring. A
realization of the Gaussian waveform, x, and the distorted waveform, y, are shown in Figs. 3a and
3b. The estimated spectrum of y is shown as the solid line of Fig. 3c. As can be seen the
spectrum of y is very close to the desired spectrum without any iteration. Some evidence of high
frequency distortion is seen above 1 kHz.

CONCLUSIONS

The procedure provides a convenient way to generate non Gaussian waveforms with a particular
spectral density. The procedure also illustrates how a nonlinear gain applied to a Gaussian
process can lead to a non Gaussian process. The procedure also gives insight into the meaning of
a spectral density of a non Gaussian waveform. The insight confirms that most of the spectral
information is contained in the zero crossings and locations of the maximum and minimums of
the waveform. The probability distribution influences the spectral information in a minor way.
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Figure 3 Realization of random waveform, (a) undistorted waveform, (b) distorted waveform,
(c) target and estimated power spectral density of distorted waveform
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Figure 4 Transformation function, y = g(x)




