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Abstract

Wind turbines subjected to highly irregular loadings due to wind, gravity, and
gyroscopic effects are especially vulnerable to fatigue damage. The objective of this
study is to develop and illustrate methods for the probabilistic a.nalysis and design
of fatigue-sensitive wind turbine components. A computer program (CYCLES) that
estimates fatigue reliability of structural and mechanical components has been devel-
oped. A FORM/SORM analysis is used to compute failure probabilities and impor-
tance factors of the random variables. The limit state equation includes uncertainty
in environmental loading, gross structural response, and local fatigue properties. Sev-
eral techniques are shown to better study fatigue loads data. Common one-parameter
models, such as the Rayleigh and exponential models are shown to produce dramat-
ically different estimates of load distributions and fatigue damage. Improved fits
may be achieved with the two-parameter Weibull model. High b values require bet-
ter modeling of relatively large stress ranges; this is effectively done by matching at
least two moments (Weibull) and better by matching still higher moments. For this
purpose, a new, four-moment “generalized Weibull” model is introduced. Load and
resistance factor design (LRFD) methodology for design against fatigue is proposed
and demonstrated using data from two horizontal-axis wind turbines. To estimate
fatigue damage, wind turbine blade loads have been represented by their first three
statistical moments across a range of wind conditions. Based on the moments y;...us,
new “quadratic Weibull” load distribution models are introduced. The fatigue relia-

bility is found to be notably affected by the choice of load distribution model.
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Chapter 2 describes a computer program, CYCLES, useful for estimating the fatigue
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Chapter 1
Introduction

The deterioration of engineering structures due to fatigue has been a difficult problem
facing engineers for many decades. This is due in part to the complex nature of the
fatigue process, which makes a deterministic engineering description of the problem
difficult. Traditional deterministic fatigue analyses have often employed rather large
safety factors, in order to compensate for the large degree of uncertainty involved.

Recently, within the last few decades, probabilistic design techniques which ac-
count for statistical distributions of stress, strength, geometry, etc., have promised
to provide a more rational and consistent design approach for fatigue (Committee on
Fatigue and Fracture Reliability, 1982). The use of stationary random (or stochastic)
processes to define statistical loads models for earthquakes, wind, ocean wave forces,
and vehicle environments have played an important role in probabilistic analyses. The
advantage of a probabilistic approach to fatigue design lies in the logical framework
for analyzing design uncertainties and the quantitative basis for assessing structural
integrity in the form of the risk or probability of unfavorable performance.

Wind turbines used to produce electrical energy from the wind are especially vul-
nerable to fatigue damage. Highly irregular loadings due to wind, gravity, and gyro-
scopic effects combined with extremely variable material properties make an efficient
design against fatigue a challenging task. Virtually all turbines built in California in
the early 1980’s and operating in energetic sites (average wind speeds > 7 m/s) have

experienced fatigue problems (Sutherland et al, 1994). Although significant progress
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2 CHAPTER 1. INTRODUCTION

has been achieved through inspection, maintenance programs, operating experience,
and research activities, deterministic design approaches currently employed by the
industry have serious shortcomings as evidenced by continued turbine failures.

The objective of this study is to develop and illustrate methods for the proba-
bilistic analysis and design of fatigue-sensitive wind turbine components. (Note that
while the specific focus lies with wind turbines, the methods shown here may be of
use across a range of problems of damage accumulation, crack growth, etc.) We seek
to capitalize on a rapidly evolving set of computational methods, grouped broadly
under the topic of “structural reliability” (e.g., Madsen et al, 1986, Thoft-Christensen
and Baker, 1982, Melchers, 1987). In particular, powerful asymptotic numerical tech-
niques known as “FORM/SORM” (First- and Second-Order Reliability Methods)
have been found quite efficient in estimating probabilities of rare failure events, asso-
ciated with well-designed engineering systems. Simulation techniques—both ordinary
Monte-Carlo and more sophisticated importance sampling schemes (e.g., Rubinstein,
1981, Melchers, 1987)—give a useful alternative for systems with higher failure rates,
for which FORM/SORM may become inaccurate.

The net result is that computational analysis methods are available to estimate

the reliability of complex engineering systems, which may involve
e A large number of random variables (e.g., tens to hundreds)

e Arbitrary probability distributions, given analytically or through numerical al-

gorithms

o Arbitrary probabilistic dependence among variables (defined through a sequence

of conditional distributions; e.g. Madsen et al, 1986)

Since we have gained this generality of analysis capabilities, the burden has been
shifted back to the task of appropriate probabilistic modeling. We are free to use
whatever probability distribution is most “éorrect” given the available data. With
this freedom comes the associated need for more flexible distribution models, more
robust distribution fitting techniques, methods to include uncertainty due to limited

data, and finally a vehicle to propagate all of these to estimate the net consequence on
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fatigue reliability. These topics are addressed in the following chapters of this work.

An overview of each chapter follows below.

1.1 Organization

Each of the following three thesis chapters is devoted to a particular topic of interest
for wind turbine fatigue reliability. These are described in turn below. A brief

concluding chapter is also offered to suggest topics of future work.

CYCLES Fatigue Reliability Formulation (Chapter 2). A FORM/SORM based
computer code capable of computing failure probabilities of wind turbine com-
ponents has been developed. Based on Miners law to predict fatigue failure,
it utilizes a closed-form expression for the limit state equation made possible
by simplifying assumptions for distributions of wind speed and structural re-
sponse. The resulting analytical form of the limit-state equation facilitates
study of important parametric variations, e.g., of distribution parameters, S-N
curve properties, etc. An example that demonstrates the impact of distribution

type (for the S—N parameter C) on predicted reliability is given.

Load Models for Fatigue Reliability (Chapter 3). The availability of load mod-
els (e.g., probability distributions) that adequately reflect wind turbine response
to environmental loading is required for a probabilistic fatigue analysis. There-
fore, empirically based load models that are useful for describing structural
response for a wide range of wind turbine components are established. Expo-
nential, Rayleigh, and Weibull distributions are investigated from the stand-
point of goodness of fit, damage density, and implications on predicted fatigue
damage. A new “generalized” Weibull distribution is proposed and shown to

offer improved modeling characteristics in some cases.

Load and Resistance Factor Design for Fatigue (Chapter 4). LRFD method-
ology for design against fatigue damage is proposed. The methodology is imple-

mented using data from two different wind turbine rotor blades. The effects of
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turbine design and limited data are discussed and shown to be important on the
resulting partial safety factors. Results are presented for different load models
(Chapter 3) and appropriate load models are shown to be highly important to
the reliability calculations. The usefulness of LRFD in moving probabilistic

fatigue methodology from a research topic to design practice is emphasized.




Chapter 2

CYCLES Fatigue Reliability

Formulation

CYCLES is an algorithm and computer program that estimates the fatigue reliability
of structural and mechanical components. It includes a rather flexible model of un-
certainty, both in distribution parameters of randomly varying quantities (e.g., load
environment parameters such as wind speed) and in uncertain material properties
(e.g., S—N fatigue properties). The formulation is intended to be of general applica-

bility across a range of fatigue problems.

2.1 CYCLES Overview

The CYCLES algorithm is based on a deterministic fatigue life formulation specifically
for structural components operating in a continuously varying load environment. The
fatigue formulation is intended to be of rather general applicability. Originally devel-
oped by Veers, (1990), and since extended at Stanford with wind turbine applications
in mind, it is equally useful for offshore applications (Winterstein and Lange, 1994).

The fatigue formulation employed by CYCLES is intended to reflect uncertainty in
environmental loading, gross structural response, and local fatigue properties. Fa-
tigue damage is modeled probabilistically using Miner’s Rule, including the effects

of variable loads, mean stress effects, and stress concentration factors. A critical

)




6 CHAPTER 2. CYCLES FATIGUE RELIABILITY FORMULATION

distinction here is between continuously varying quantities such as an environmental
parameter (e.g., significant wave height Hg, mean wind speed V, applied stress level
S versus time, etc.) and fixed parameters which may be uncertain (e.g. fatigue law
coefficients, distribution parameters of Hg, V, S given either Hg or V, etc.). Con-
tinuously varying quantities are reflected here implicitly, through their average effect
on fatigue damage. In contrast, parameter uncertainty doesn’t “average out” over

fatigue life, and is modeled here explicitly.

The CYCLES analysis assumes specific functional forms for the controlling quan-
tities of fatigue life. The assumed functional forms enable the derivation of a closed
form expression for fatigue damage in terms of the various parameters in the func-
tions such as S—NV coefficient and exponent, RMS stress level at a characteristic wind
speed, average wind speed, etc.. These parameters can then be treated as constants
or random variables in the probabilistic analysis. The trade-off is in the level of gen-
erality, the restrictive assumptions catalogued in section 2.4 that permit definition of
the entire problem with a condensed data set. The emphasis has been on keeping the

input simple and easy to use.

The assumed functional forms “built in” to the CYCLES formulation do restrict its
generality. An obvious constraint is the use of only one environmental variable with
predetermined distribution type (e.g. Weibull). Other assumptions regarding the
load distribution and its dependence on the environment limit the program’s ability
to model measured load distributions across a range of environmental states. This
is demonstrated in Chapter 4 where it is also shown that for some wind turbines
the CYCLES formulation may work quite well. Therefore, the CYCLES limit state for-
mulation, while not the most complex or detailed model that could be established,
represents a useful compromise between its level of detail in mechanical and prob-
abilistic modeling, and the state of knowledge of many structures and mechanical

components to which it may be applied.

In contrast to the deterministic fatigue analysis code LIFE2 (Sutherland, 1989)
used by the wind industry, CYCLES computes a probability of failure for wind turbine
components. LIFE2 on the other hand gives only a projected time to failure as

it treats all analysis parameters as constants. Furthermore the input to LIFE2 is
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achieved numerically with various “look-up” tables used to define various aspects
of the input. While adding generality to the code the input procedure can become
tedious. CYCLES however with its closed form limit state formulation requires only
the distribution types and associated parameters for each of the 14 random variables
used

The probability of failure is calculated using the general purpose FORM/SORM
(first and second order reliability methods) package developed by Golweitzer et al,
(1988). Enhancements to the way the basic algorithm treats correlation between
random variables have been added (Winterstein et al, 1989). Section 2.5 describes
the technique used to include the correlation. Importance factors and sensitivities

are calculated as well.
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2.2 General Fatigue Formulation: Assumptions

Whether fatigue or an alternate failure condition is considered, a complete reliability

formulation generally includes uncertainty in three distinct-aspects:

1. The loading environment;
2. The gross level of structural response given the load environment; and

3. The local failure criterion given both load environment and gross stress response.

The following treatment is intended to provide a general approach to fatigue mod-
eling and at the same time produce a limit state equation that can be implemented
in a FORM analysis. For the fatigue limit state of interest, each of these aspects is

examined in turn below.

| 2.2.1 Load Environment

Characterizing Variable: X=dominant environmental parameter.

For the subsequent analysis, the load environment is assumed to be well char-
acterized by a single controlling random variable, herein denoted X for generality.
Therefore its probability density function, fx(x), is required as input to the fatigue
reliability analysis. This will commonly be estimated from site-specific environmental
data.

The environmental parameter X usually represents an “average” value over a
relatively short time period. Problems involving fixed offshore platforms typically take
X=Hg, the “signiﬁcaht wave height” during a period when the wave elevation process
n(t) can be assumed to be stationary (i.e., in a statistical steady-state condition).
This period of assumed stationarity can be anywhere between one and six hours.
Following common convention, the significant wave height is defined to be 4 times
the standard deviation (RMS) of the wave elevation process, e.g. Hg=40,. It is
also roughly equal to the mean of the highest one-third of all wave heights (peak—
trough distances), provided the common Gaussian model of 7(¢) is assumed to hold.

For wind, a common scalar definition of X is to choose V, some measure of average
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wind speed over a reference period of approximately ten minutes, and at a reference
elevation.

Note that other environmental variables may be significant in various applications.
Offshore problems may include significant effects due to wave period T, current U,
wave direction 6, etc. Additional wind parameters of interest include the turbulence
intensity (ratio of RMS to mean wind speed), direction, and other spectral parameters
in one or more directions. In the basic CYCLES formulation documented here, these
variables are fixed, either at representative or worst-case values given knowledge of
the dominant variable X. (More general models involving several variables, e.g., mean
wind speed, V, and turbulence intensity, I;, have also been implemented. These are

discussed further in Chapter 4.)

2.2.2 Gross Response

Characterizing Variable: S—amplitude of local stress process.
The stress response at the location of interest will typically not be regular (i.e.,
_sinusoidal). Nonetheless, it is assumed that some method, such as rainflow count-
ing, is available to identify amplitudes of stress “cycles.” Statistics of an arbitrarily
chosen amplitude S will generally depend on the underlying environmental variable
X. Thus the conditional probability density fs;x(s|z), over all possible values of the
environmental variable z, is required.

This conditional distribution of S may be fit directly from observed stress histories.
One might first sort the histories into bins according to the value of the environmental
variable z (wave height, wind speed, etc.). The resulting histories may be rainflow
counted and a density fsx(s|z) fit for each bin. An example of this approach will
be considered in Chapter 4. An alternative analytical model, tied to the RMS stress
o(z) as a function of z, is used here in the following analytical formulation (section
2.4).

2.2.3 Failure Measure

Characterizing Variable: D=mean value of Miner’s damage.
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Is is assumed that fatigue tests at constant stress amplitude S are available to
estimate the “S—N” curve; that is, the number of cycles N¢(s) to failure as a function
of stress amplitude s. Miner’s rule is then used, assigning damage 1/N;(S;) due
to a single stress cycle of amplitude S;. This damage is assumed to grow linearly
at its mean rate D, ignoring local variations in this rate due to variability in the
cyclic amplitudes S;. (This will tend to average out quickly for the high-cycle fatigue
applications of interest here.) As a result, fatigue behavior is characterized by only

the mean damage rate D.

2.3 General Fatigue Formulation: Results

To summarize from the previous section, the general fatigue formulation requires three
functional inputs: fx(z), fs;x(s|z), and N(s) to characterize the load, response, and
fatigue damage respectively. A convenient scalar quantity on which to focus is the
mean damage D. This is found by integrating/summing over all load and response

levels, z and s:

— /°° oo f$'|X(3Ix)fX(x)dsda: (2.1)

D= :
=0 Js=0 Ny (s)
It is informative to also study the behavior of the inner integral, the “damage
density” D(z):

D= [ D)dx; D(z) = fx(z) s:%ﬂds

=0
Physically, D(z)dz is the contribution to mean damage D due to values of the

(2.2)

environmental variable, X, between z and z + dx. Thus, D(z) shows the relative
fatigue contribution of different z levels. As might be expected, it depends both
on the long-term environmental variation, reflected by fx(z), and on the stress and
fatigue properties for various z values. ‘

Once obtained, D can be used to directly estimate the fatigue life Ty. Considering
the many cycles that contribute to high-cycle fatigue, the actual damage is assumed to

vary negligibly from its average value D per cycle, or equivalently foD per unit time
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(fo=average response cycle rate). Assuming that failure occurs when this damage
reaches a critical threshold A, and the structure is loaded some fraction of time, A,

the failure time is then

r__A
I= Af,D

Note the generalization to cases where the measured cycle rate varies with the

(2.3)

environmental variable X, i.e., fo = fo(z). In this case foD in— Eq. 2.3 is replaced by:

foD = / : :) fo(z) foix (;lfm(lj)’x (z) dsdzx (2.4)

If Miner’s rule is correct one would assign A=1. More generally, variability in A would

reflect uncertainty in Miner’s rule; i.e., the effect of predicting variable-amplitude
fatigue behavior from constant-amplitude tests.

In general, Eqs. 2.1-2.3 can be evaluated numerically, permitting arbitrary func-
tional choices of fx(z), fsx(s|z), and N(s). In the CYCLES formulation specific
functional forms of each of these three quantities are chosen. These permit analyti-
cal expressions to be derived for Egs. 2.1-2.3. As discussed earlier in Section 2 the
assumed functional forms restrict the generality of the formulation however the re-
sulting analytical form facilitates study of important parametric variations, e.g., of
distribution parameters, S—N curve constants, etc. The following section describes

the specific simplifying assumptions that permit this analytical formulation.

2.4 Analytical Fatigue Formulation

Described here are the basic assumptions which permit a closed-form, analytical ex-
pression for fatigue life. As noted earlier, these are based on a model suggested
originally for fatigue of wind turbines {Veers, 1990). Some minor generalizations are
included here as well. The resulting formulation is intended to be useful for a variety
of applications beyond wind turbines, such as offshore structures, bridges, etc.

The assumptions are as follows:

e The long-term load variable, X, is assumed to have Weibull distribution. This
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distribution involves two free parameters, which may be expressed in various
ways. For example, in terms of its mean value X and shape parameter o, the

probability distribution of X satisfies

azma,-—l

PIX >a =exp{-[g]"}; fxle) =~gm—ewl-(z)™]  (25)

The parameter 3, in this result is related to the mean X as follows:

X

Pe = Wan

(2.6)

Resulting parameters: X, a, = mean, Weibull shape parameter of environ-

mental parameter X (wave height, wind speed, etc.).

The RMS of the (global) stress process is assumed to be of the form

74(x) = ores 5, (2.7)

i.e., increasing in power-law fashion with the load variable . The local stress
at the fatigue-sensitive detail is further scaled by a stress concentration factor
K. The resulting RMS o(z) is then finally

o(z) = K - 04(x). (2.8)

Resulting parameters: z,.5,0,.5,p, K = reference level of load variable, ref-

erence level of RMS stress, power-law exponent, and stress concentration factor.

Given load environment X, the stress amplitude S is also assumed to have

Weibull distribution. From random vibration theory, the mean-square value

E[S?] = 20(z)?, (2.9)
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" is assumed with o(z) from Eq. 2.8. The resulting density fgx(s|z) is of the

form given in Eq. 2.5, with shape parameter «;, and scale parameter

B, = o(2)[2/(2/e ). (2.10)

Resulting parameter: «, = Weibull shape parameter of stress S given X.
Typical range: between a,=1 (exponential stress distribution) and o, =2 (Rayleigh

stress distribution).

e The S—N curve is taken here as a straight line on log-log scale, with an effective

intercept Cy that includes the Goodman correction for mean stress effects:

S

-5 _ b, B _ ,
1- KlSml/Su) = GoS ! Co = C(l K"Sml/su) (2.11)

Ny(s) = C(

in which S,, and S, are the mean and ultimate stress levels.
Resulting parameters: C,b = S—-N curve parameters; S,,, S, = mean, ulti-

mate stress levels.

Substituting Eqs. 2.5-2.11 into Egs. 2.1 and 2.3, the following expression for fa-
tigue life T is found:

__oa VB0 K X\ (2):(2Z)
I AR Y\ V@)1 - K[Snl/Ss) ] \Zres(/en)] \os) \oz)
(2.12)

Note that parameters directly scaling stress, such as o,.; and the stress concen-
tration factor K, are raised to the power b arising from the S—N curve. In contrast,
parameters scaling the environmental variable X, such as its mean X, are raised to
the composite power bp, reflecting the combined nonlinear effect of Eqgs. 2.7 and 2.11.
If p > 1, this suggests that the uncertainty in these environmental parameters may

have significant effect on fatigue life.




14 CHAPTER 2. CYCLES FATIGUE RELIABILITY FORMULATION

T
Finally, under the foregoing assumptions the damage density D(z) from Eq. 2.2

may also be found:

D(z) o g?Pre=-1 exp[—(ﬂix)a’] (2.13)

By finding the maximum of this function, the environmental level z,,,, that produces

the largest damage is found to be

X bp+o,—1

bp + g — 1 1/a 1/a
_ YOz~ Lyifa, _ = 2.14
For example, if X has exponential distribution «;=1, so that
Tmaz = bpX (2.15)

Thus, the most damaging X level depends not only its average value, X, but also
on the exponents b and p of the S—N curve and RMS stress relation. Note that z,,,,
may far exceed the mean X; e.g., Tz =20X if b=10 and p=2. This may be a rather
extreme case, however. For example in a wind turbine application, common values of
o, =2 (Rayleigh distribution) and p=1 (linear increase in stress with X) would result

in T, between 2 and 3 times X for b values within a realistic range (4 < b < 13).
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;; .

2.5 Solution Algorithm for Failure Probability

For the reliability analysis the failure criterion is taken to be the difference between

the computed fatigue life (eqn. 2.12) and a specified target lifetime, T;.

GX)=T;-T, (2.16)

The vector X contains the resulting parameters from the analytical fatigue formu-
lation of Section 2.4; X=[X, Oz, Trefy Oreps Dy K, 05, C, b, Sy, Sy A, fo, A]. Equation
2.16, known as the failure state function, G(X), is positive when the component is
safe and negative when it has failed.

The solution for the failure probability is a four step procedure that has been
described in Veers, (1990) and is reviewed here briefly for completeness. A more
thorough description of reliability methods can be found in several references (Madsen
et al, 1986, Ang and Tang, 1990, Thoft-Christensen and Baker, 1982, and, Melchers,
1987).

The first step of the solution procedure is the “formulation” of the limit state
equation given above as Eq. 2.16. In the second step, the “transformation” requires
that each random variable be associated with a uncorrelated, unit variance, normally
distributed random variable. For independent variables this is achieved by equating
the cumulative distribution functions of the input variable and its associated standard
normal variate. Correlation can be included by working with conditional distributions
(Madsen et al, 1986). Alternatively if only the marginal distributions and correlation

coefficients among the z; are known, transformation may proceed in two steps:

e With conventional methods, each z; can be transformed marginally to a stan-
dard normal variable V,. The resulting V; variables will also be correlated, to
a typically somewhat greater extent than the original physical (non-normal)
variables z;. Analytical methods have been developed to efficiently predict this
correlation “distortion” due to non-normal physical variables (Winterstein et
al, 1989).

o Correlation among the V;’s may be removed by standard methods (e.g., Cholesky
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\ SORM

g(u)<0

B g(U)>0

Figure 2.1: FORM and SORM approximations to g(U) < 0

decomposition of the covariance matrix) to obtain standard nomal variables U;.

This is the approach used in CYCLES. All random variables are transformed in this
fashion and the calculations proceed in standard normal space, also called “normal”
or U—space.

The failure state function (eqn. 2.16) is evaluated in normal U-space and gradient
search methods are employed to find the point where it is closest to the origin, also
known as the design point, U. (The design point in the original coordinates, X
is determined through the inverse of the transformation step.) In the third step of
the reliability calculation an “approximation” of the failure probability is obtained
by fitting a tangent line (first order reliability method, FORM) or a parabola (second
order reliability method, SORM) to the failure state function at the design point (see
* Figure 2.1). The direction cosines, o, of the vector 3, that defines the design point

are measures of the relative importance of each of the random variables.
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The symmetry of standard normal space simplifies the “computation” of the failure
probabilities and the importance factors as the final step of the solution algorithm.
FORM probabilities are computed directly from the length of the vector identifying
the design point. SORM estimates of failure probability are based upon the vector
length and the curvatures of the surface at the design point.

2.6 Program CYCLES Capabilities

The current features of the CYCLES program are:

e Calculation of mean excess life
e First order (FORM) and second order (SORM) failure probabilities

e Importance factors for each random variable

e Sensitivity analysis for each parameter used to define the probability distribu-

tions of the random variables
e Option to run simulation
e Calculation of failure probabilities as a function of time

e Library of random variable distribution functions

The primary result of the CYCLES program is an estimate of the ”failure” proba-
bility, py, i.e. the reliability is the probability that the fatigue life will be less than the
target lifetime of the component. It is .determined as described in section 2.5. The
importance factors, which reflect the relative contribution of each variable to fatigue
life uncertainty, are also reported.

The program estimates p; over a range of target lifetimes (provided by the user)
and sensitivities of the parameters for each random variable. The sensitivities are
evaluated by varying each input parameter and dividing the change in reliability
by the change in the respective parameter; dB/dp where dB and dp are change in

reliability and change in parameter respectively. Note that this is effectively a partial
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derivative; i.e., CYCLES reports sensitivities to each parameter individually while fixing
the others at their input values.
Flowcharts depicting program execution and initial processing of random variables

are shown in Figures 2.2 and 2.3 respectively.
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Figure 2.2: Flow chart, general CYCLES code execution.
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Figure 2.3: Flow chart, initial processing of CYCLES random variables.
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2.7 Example Application: The Sandia 34-m Test
Bed VAWT

The capabilities of the CYCLES reliability program is demonstrated by way of exam-
ple. This example is intended to demonstrate a typical analysis one might encounter
in the final design of a machine where there has already been extensive testing and
data analysis, so that the uncertainty in many of the inputs is small. In particular,
a research oriented 34-meter diameter Darrieus, vertical axis wind turbine (VAWT)
erected by Sandia National Laboratories near Bushland Texas, has provided an abun-
dance of test data useful to this reliability analysis. -

This turbine has operated since 1988 with extensive instrumentation to collect
wind-speed and operational-stress data. The aluminum material of which the blades
are extruded has also been well characterized by constant amplitude fatigue tests.
A reliability analysis for fatigue of blade joints on this turbine therefore has many
inputs that are relatively well known. However, there has been no component testing
to establish fatigue properties of the joints or stress concentration factors so that
some inputs do have high uncertainty.

Much of the data used here has been taken from a deterministic fatigue analysis
performed by Ashwill et al, (1990) on the same VAWT blade joint. This example
reproduces the original probabilistic fatigue analysis performed by Veers, (1990), for

the same turbine.

2.7.1 Definition of Input

The underlying assumptions and numerical values used to model:
1. the load environment,
2. the stress response, and
3. the resulting fatigue damage accumulation,

are described for this example to further illustrate the three aspects of the fatigue

formulation described in section 2.2.
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e Load Environment.

Following the approach used by Ashwill et al, (1990), V, the “10 minute mean
wind speed” is used as the dominant environmental variable; X. Extensive
measurements of V' have been made at the Bushland site, as well as the Amarillo
Airport about 30 miles away across flat terrain. The distributions measured at
these two sites are plotted in Figure 2.4 along with a Rayleigh distribution. The
mean of the “10 minute mean wind speeds,” V, for Bushland and Amarillo are
6.2 and 6.6 m/s respectively. Note that the high wind tails of the distributions
are different. Since the data sets are of different lengths, the following statistics

are employed to model the local wind speed distribution;

E[V]=X =6.3 m/s (2.17)

with
Qy = O0x = 2.0. (218)

The values in Egs. 2.17 and 2.18 are based on limited data, and hence may
differ from the true values we would find from infinite data. Therefore, these
values are used as the mean values of X and a;, while assigning COV values of
.05 and .10 to X and ay respectively. The result is a wind speed distribution
with uncertain parameters that is a perturbation about a Rayleigh distribution
(implied by the mean ax of 2.0) with mean 6.3 m/s. Both parameters are

assumed to be normally distributed.

o Gross Stress Response.

The wind turbine and its components have been equipped with a large array
of sensors that permit characterization of the turbine under field conditions.
Structural response measurements such as stationary and rotating natural fre-
quencies, mean stresses, and operational stresses have been compared to an-
alytical predictions with good agreement (Ashwill et al, 1990). The highest
stressed region in the blade was found to be in the flatwise direction at the

upper blade-to-tower joint, where the 48 inch chord blade section attaches to
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Figure 2.5: Measured RMS Stresses at the Blade Upper Root
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the tower.

The stress states for the upper root were predicted using FFEVD (Lobitz and
Sullivan, 1984), a Sandia written frequency response finite element code that
assumes steady winds. Strain gages were employed to measure stress states at
the upper root location. Figure 2.5 shows the measured RMS stresses for fixed
speeds of operation at 28, 34, and 38 rpm. The trend is seen to be nearly linear

for all three modes of operation.

For the power-law relationship used by CYCLES (Eq. 2.7), the following param-
eters are used to characterize the response: z,,; = 10 m/s, o,.; = 4.5 MPa,
and p = 1. Only the reference RMS level o, is treated as a random variable
while the exponent, p, and the characteristic wind speed, z,.s, are defined as
constants. Because there is a great deal of data available a relatively small vari-
ation, COV = 0.05, was chosen for o,.¢ which is assumed normally distributed.
In Chapter 4 procedures useful for determining uncertainty measures from data
will be shown. The COV used here for ¢, is an assumed value believed to be

representative of the existing uncertainty.

The remaining variables associated with the gross stress response of the ma-
chine are the stress concentration factor, K, and the shape factor, ag, of the
Weibull stress amplitude distribution. The stress concentration factor has not
been predicted or measured with accuracy. As an approximation for the heavily
bolted joint a mean K of 3.5 with 10% COV is used. Histograms of rainflow
counted stress time histories show very good agreement with a Rayleigh distri-
bution (Veers, 1982). In Chapter 3 we will see that typical data from horizontal
axis wind turbines (HAWT) is more exponential in nature. Again, because
there is an abundance of stress data and the observed fits are very good, the
Weibull shape parameter is set to the constant value of 2.0 making the stress
distribution Rayleigh.

S—N Curve

The blades and joints are made of 6063-T6 aluminum extrusions for which ex-

tensive fatigue test data are available. The test data are shown in Figure 2.6,
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Figure 2.6: Effective stress amplitude versus cycles to failure for 6063 aluminum alloy

normalized to an effective stress amplitude as used by CYCLES (see Eq. 2.11).
This data displays a commonly observed “fatigue limit” below which the fa-
tigue lives are considerably extended. This effect is not included since cumu-
lative damage assessments with occasionally applied larger stresses (as is the
case here for wind turbines) may effectively eliminate the fatigue limit (Dowl-
ing, 1988). The higher stress peaks alter the way most materials respond and
result in greater rates of fatigue damage than would be concluded based solely
on constant amplitude results. The least squares fit to the data gives an S-
N exponent, b = 7.3, with intercept C' = 5.0E+21 (based on stress units of
MPa). The distribution of the data about the least squares line fits a Weibull
distribution with COV = 0.613.

The mean stress and ultimate strength are needed to define the effective stress
amplitudes using Goodman’s rule. The mean stress has been measured near

the joint but may vary substantially along the blade span, resulting in high
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Variable | Symbol Definition Distribution | Mean | COV
1 X Mean Wind Speed Normal 6.3m/s | 0.05
2 ax Wind Shape Factor Normal 2.0 0.1
3 Sref Ref Stress Normal 4.5 MPa | 0.05
4 p RMS exponent Normal 1.0 -
5 K Stress Conc Normal 3.5 0.1
6 ag Stress Shape Fact Normal 2.0 -
7 C S-n Coeff Weibull 5.0E+21 | 0.61
8 b S-n Exponent Normal 7.3 -
9 Sm Mean Stress Normal 7.0 MPa 0.2
10 Sy Ultimate Strs Normal 285 MPa -
11 fo Cycle Rate Normal 2.0 Hz 0.2
12 A Miners Damage Normal 1.0 -
13 A Availability Normal 1.0 -
14 T; Target Life Normal 20. -

Table 2.1: Sandia 34-m Test Bed VAWT, CYCLES Base Case Input Summary

uncertainty for the actual local mean. The mean stress is defined to be normally
distributed with mean 7.0 MPa and 20% COV. The ultimate stress for the
extruded aluminum material has been measured and is set to the constant value
285 MPa.

The three remaining parameters used to calculate the average fatigue damage rate
are the average response cycle rate, fy, the actual value of Miner’s damage at failure,
A, and fraction of time the turbine is available, A. The cycle rate frequency has been
measured and found to be relatively indepéndent of wind speed but does vary from
sample to sample. f; is assumed normally distributed with mean 2.0 (Hz) and 20%
COV. For simplicity, both A and A are set to unity with no variation. Table 2.1

summarizes all the parameters used in this wind turbine fatigue reliability example.
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2.7.2 Results: Base Case

The output from the CYCLES analysis for this example is given in Table 2.2 under the
column heading identified as “Weibull”. The results show a probability of failure of
approximately 3% for a target lifetime of 20 years with a median excess lifetime of 294
years. The reliability analysis identifies the likelihood or probability that the turbine
will achieve some desired lifetime. Of equal importance is the relative importance
of each random variable on the fatigue life of the turbine. Results show that the
leading coefficient in the S-N relationship is the most important source of variability
supplying about half of the total variability in this example. The stress concentration
factor, K, and wind speed shape factor, oy, are next, having approximately 21%
and 14% contribution respectively. The relative importance of each random variable
provides valuable insight to the designer who is attempting to reduce the effects of

fatigue damage.

2.7.3 Lognormal versus Weibull Distribution for S—N Param-
eter: C ’

Finally, in order to investigate the effect of distribution type on the results of the
reliability analysis, the example problem run here was repeated with the distribution
type for the S-N coeflicient changed to lognormal. Table 2.2 summarizes how the
results vary between the two cases.

As might be expected the failure probability decreased to 1.5%. This result is due
to the shift in probabilities of the resistance variable C towards larger values (e.g. the
lognormal distribution has both a narrower lower tail and a fatter upper tail than the
corresponding Weibull distribution). This model here predicts greater reliability, as
it is applied to a resistance variable (fatigue life at given S) for which large values are
favorable (non-failures). Note also the shifting of importance from the S—N intercept
to the stress concentration factor, K, and wind speed shape factor, ay, as the analysis
shifts from a blade with marginal resistance (e.g., a Weibull distribution for C') to one
having potentially much higher resistance (e.g., the lognormal distribution for C).

The influence of distribution type on reliability is clearly case dependent as the
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Weibull Lognormal
Excess life over 20 years: 294 yrs 277 yrs
FORM p; (in %) 2.56 1.50
SORM p; (in %) 3.01 1.55
Symbol Definition Importance Factors: (in%)
X Mean Wind Speed 4.9 7.9
ax Wind Shape Factor 14.4 27.6
Sref Ref Stress 4.9 7.9
p RMS exponent - -
K Stress Conc 21.2 32.6
g Stress Shape Fact - -
C S-n Coeff 52.2 20.3
b S-n Exponent - -
S Mean Stress 0.9 1.6
S. Ultimate Strs - -
fo Cycle Rate 14 2.2
A Miners Damage - -
A Availability - -
T, Target Life - -

Table 2.2: Sandia 34-m Test Bed VAWT, CYCLES Reliability Results

following example demonstrates. In this second exarhple, it is assumed that sufficient
testing was performed to reduce the uncertainty in the previous example for the stress
concentration factor, K, and wind speed shape factor, ayy. Both COV’s are now taken
to be 5%. A new reliability analysis shows that the S—NV intercept, C, with a Weibull
distribution, dominates the relative importance of all random variables, e.g. 79%
importance. Results for this hypothetical case and one with a lognormal distribution
for C' are shown in Table 2.3.

Note that when the overall uncertainty in the problem has been reduced, the
failure probability has also been reduced. Furthermore, with a lower p; the shifting
of importance away from the resistance variable to those constituting the load is much
more dramatic. This is expected, due to the large role played by the random variable
C in the reliability calculations.

The caution here is two-fold. First, the choice of distribution model for a critical
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Weibull Lognormal
Excess life over 20 years: 294 yrs 277 yrs
FORM p; (in %) 1.29 0.17
SORM p; (in %) 1.37 0.16
Symbol Definition Importance Factors: (in%)
X Mean Wind Speed 5.0 14.2
ax Wind Shape Factor 2.8 94
Sres Ref Stress 5.0 14.2
D RMS exponent - -
K Stress Conc 6.0 17.3
Qg Stress Shape Fact - -
C S-n Coeff 79.0 38.4
b S-n Exponent - -
Sm Mean Stress 0.8 2.6
Sy Ultimate Strs - -
fo Cycle Rate 1.4 3.8
A Miners Damage - -
A Availability - -
T: Target Life - -

29

Table 2.3: Effect of S-N Intercept Distribution Type with Reduced Uncertainty

random variable, when fit to the same mean and variance, can change failure proba-
bility estimates by one or more orders of magnitude. Second, although the lognormal
model has been widely used in these fatigue strength and S-N formulations, it may
be considerably unconservative. At the least, if one knows nothing more than second-
moment information (mean and variance), it is perhaps prudent to at least fit both
a lognormal and Weibull models, and estimate the reliability under each assumption.
Practical experience suggests that these two models provide useful bounds on the

plausible range of reliability index, in view of distribution model uncertainty.




Chapter 3

Load Models for Fatigue Reliability

The fatigue reliability of wind turbines depends on the relative frequency, or proba-
bility distribution, of various cyclic load levels to be encountered during the turbine’s
operating life. These are typically required across a range of representative wind
conditions.

For time scales of the order of minutes, these loads may be measured by relatively
short-term experimental studies, or predicted by analytical methods. Practical ques-
tions then arise as to how these limited data should best be used (e.g., Jackson, 1992;
Sutherland, 1993; Sutherland and Butterfield, 1994; Thresher et al, 1991). First, in
seeking to estimate a representative fatigue life, is it sufficient to use the observed
histogram of cyclic loads, or should a smooth theoretical probability distribution be
fit to the limited data? If a smooth distribution is to be fit, what functional form is
sufficiently flexible and how should it be fit? Finally, beyond forming a single best
estimate of fatigue life, what is the uncertainty in this estimate due to limited data?

This chapter seeks to address these concerns. Subsequent sections address the
following points in turn:

1. Fatigue Data and Damage Densities. We first show several useful ap-
proaches to study fatigue load data and modeling needs. Damage density plots are
constructed, to suggest which stress ranges are most important to model. In ad-
dition, Weibull scale plots are used to show systematic deviations from a range of

standard Weibull models. While not completely new, these approaches have yet to

30
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gain widespread use among wind turbine load modelers.

2. Model Uncertainty Effects. We fit a number of conventional load models
to a particular data set, and determine the resulting scatter in fatigue damage they
predict. Considerable scatter is found among common one-parameter load models,
such as the Rayleigh and exponential models, when they are fit to the mean stress
range or RMS level. This motivates the need for more general load models, with two
or more parameters fit to the data. v

3. New Statistical Loads Models. We introduce here a new generalized load
model, which preserves the first four statistical moments of the data. By retaining
these higher, more tail-sensitive moments, it is more faithful to the observed frequency
of relatively large load levels. At the same time, it is a rather mild perturbation of a
conventional 2-parameter load model, e.g., Weibull, Gumbel, or Gaussian. Of primary
interest here is the generalized Weibull model which has found favor in various fatigue
applications. Other applications include a generalized Gumbel model for extreme
values, and a generalized Gaussian model useful for analyzing nonlinear vibration
problems.

4. Uncertainty due to Limited Data. Finally, we discuss the implications
of limited data. Techniques are shown to estimate the associated uncertainty in
fatigue damage estimates. Acceptable levels of this uncertainty are also discussed,
together with the data needs these imply. The result is strongly dependent on material
properties; e.g., the slope of the S—N curve that governs fatigue behavior.

Our application here concerns both flapwise and edgewise loads on a horizontal
axis wind turbine (HAWT). A companion study (Sutherland and Veers, 1995) ap-
plies similar models to estimate loads on the Sandia 34-m vertical axis wind turbine

(VAWT).

3.1 Fatigue Data and Damage Densities

In 1989 an extensive data set was obtained for a 100-kW wind turbine operated at
Altamont Pass, California by Northern Power Systems. This turbine is a two-bladed,
upwind HAWT with a teetering hub design utilizing full-span hydraulic passive pitch
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control. The fiberglass rotor blades span 17.8 meters (rotor diameter). The root
bending moment in both the flapwise (out-of-plane) and edgewise (in-plane) directions
were measured in various wind conditions (Coleman and McNiff, 1989).

We consider first the flapwise moment. Figure 3.1 shows the histogram of rainflow
counted ranges, taken from a 71-minute history during an average inflow wind speed
of 10 m/s. Various studies have suggested a straight-line fit on this semi-log scale,
implying an exponential probability model. We may question, however, whether
a log-linear extrapolation adequately captures the frequency of rare, large stresses.
Note, in particular, the single extreme stress range of around 32 [kN-m]|, which pairs
the largest peak and smallest trough in the history. One may ask how much impact
such extreme, rare loads have.

We address this issue here through the concept of the damage density. Fatigue
tests are typically used to estimate N(S), the number of cycles to failure under

constant stress amplitude S. We adopt here a common power-law form of N(S):

1
| cS®
Here ¢ and b are material properties where ¢ = 1/C, C used in the earlier definition

of the S—N Law, Eq. 2.11, from Chapter 2.

As shown in Figure 3.1, actual load histories produce a number of load cycles,

N(S) = (3.1)

n(S;), at various stress levels S;. For each stress level, Miner’s rule assigns fatigue
damage
n(S:)

D(S;) = ‘N‘@ = CS?"(Si) (3:2)

The latter form uses the S—N relation from Eq. 3.1. The total damage is then
estimated as D,,;=) _; D(S;), the sum across all stress levels ;.

In fitting loads models, it is useful to focus on the relative fraction of damage

incurred at different levels. This is the damage density, herein denoted d(S;):

D(S;) _ an(Si)
ZiD(Si) B Zi an(S,-)

d(S;) = (3.3)
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Thus, the relative damage is independent of the intercept ¢ of the S—N curve, but
depends importantly on its slope b.

Figure 3.2 shows the damage densities of the flapwise loading for fatigue exponents
b=2 and b=7. Fatigue exponents below 5 are typical of welded steel details, while
exponents of 6 or above have been found from coupon tests of aluminums used in
wind turbine blades (VanDenAvyle and Sutherland, 1987). Some fatigue studies of
typical fiberglass blade materials have suggested even higher exponents; e.g., b values
of 10 or above (Mandell et al, 1993).

Figure 3.2 shows that the most damaging stress level changes dramatically with
the fatigue exponent, b. For welded steels, loads that lie within the body of the data
(3-6 [kN-m]) are most damaging. In contrast, for aluminums with b=7, the single
largest cycle contributes over 37% of the damage. For composites this single cycle
may give still larger contribution. This leads to increasing uncertainty on fatigue
life estimates given limited data. This effect is quantified in subsequent sections. In
general, however, any loads model-—whether observed or fitted—should be used with

care if the largest observed load drives fatigue damage.

3.2 Omne and Two Parameter Load Models

As noted above, a common probability model suggested for HAWT blade loads is
the exponential probability model. This model has a single parameter, essentially
reflecting the slope of the expected histogram on semi-log scale (Figure 3.1). An
alternative one-parameter model, based on random vibration theory of linear systems,
is the Rayleigh distribution. Here we investigate the adequacy of these through the
more general, two-parameter Weibull distribution.

For a general Weibull load model with parameters & and 3, the cumulative dis-

tribution function F(s) is given by

F(s)=P[Load <s]=1—¢e ¢/?"° (3.4)

This model includes the exponential and Rayleigh as special cases, corresponding
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to a=1 and a=2 respectively. Note that F(s) is the cumulative probability of all
loads less than specified s. It is also useful to ask the inverse question: what fractile
sp has specified cumulative probability F(s)=p. Setting the left-side of Eq. 3.4 to p,

solving for s yields

5, = B[~ In(1 - p)] /= | (3.5)

To determine the adequacy of a model such as Eq. 3.4, it is convenient to display
the data on an appropriate “probability scale” plot. In general, probability scale is
constructed for any distribution by transforming one or both axes to obtain a linear
graph between cumulative probabilities and the corresponding values of the physical

variable. For the specific case of Eq. 3.5, a linear result arises from taking logarithms:

In(s,) = In(B) + -61; In[—In(1 - p)) (3.6)

Thus, the observed load values are first sorted into ascending order (s; < s, <
...8x). We then plot In(s;) versus In[—In(1 — p;)] on linear scale, with p;=:/(N + 1).
Equivalently, we may plot s; versus — In{1—p;) on log-log scale; this is the alternative
chosen here. The result is a linear plot in any Weibull case, including both the
Rayleigh and exponential as important special cases. It also includes a still wider
range of models, with the slope of the line directly showing whether the model should
be Rayleigh, exponential, or something between (or outside).

Figure 3.3 shows the flapwise data from Figure 3.1 on this “Weibull scale.” This
plot also shows corresponding exponential and Rayleigh distributions, which preserve
the mean of the data. Observe that with this graphical “goodness-of-fit” method
it is fairly easy to discriminate between the two distributions, and confirm that the
exponential model follows the data far better than the Rayleigh model.

Figure 3.4 repeats the flapwise data on Weibull scale, now plotted with the “best”
Weibull distribution. The two parameters of this Weibull model have been chosen to
match both the mean and standard deviation of the data. While providing an appar-
ently better fit, we will consider below whether the difference between exponential

model (Figure 3.3) and Weibull model (Figure 3.4) is statistically significant. In the
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next section, we will also consider still more general models. In general, these figures
show the advantage of using probability scale instead of the traditional histogram to

discriminate between different models. -
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3.3 Generalized Four—Parameter Load Models

By using data to fit two parameters—both « as well as 3 in Eq. 3.4—it is not surpris-
ing that the Weibull fit seems visually superior to the 1-parameter exponential and
Rayleigh models. In the same way, one may seek to introduce still more parameters,
ultimately leading to seemingly perfect agreement as the number of parameters ap-
proaches the number of data. The tradeoff, of course, is that as one seeks to estimate
more parameters from a fixed amount of data, our uncertainty in estimating each
parameter grows. The practical effect of this should be measured by the resulting

uncertainty (e.g., coefficient of variation or confidence interval) on our mean damage
rate estimate. In general, adding more parameters to a probabilistic model is no
longer beneficial if the resulting damage estimate does not vary significantly, in view

of its uncertainty, from that given by a simpler model.

Comparing Figures 3.3 and 3.4, we may ask whether the difference between ex-
ponential and Weibull models is statistically significant. We will show below (e.g.,
Figure 3.13) that at least for high exponents b damage differences between Weibull
and exponential models are statistically significant. This supports the effort of seek-
ing a two-parameter Weibull model. To test in turn whether the Weibull model is
sufficient, we require a still more detailed model with which to compare it. This is

provided by the four-moment, “generalized Weibull” model defined below.

These generalized 4-parameter load models are perturbations of 2-parameter “par-
ent” models that are based on fitting not only to the mean ;1 and and standard devi-
ation o, but also the skewness a3 and kurtosis o4 of the data. (For a general random
variable X, o, is defined as the average value of ((X — u)/0)™.) This section contains
applications for not only a generalized Weibull model but also a generalized Gumbel
and generalized Gaussian model as well. Each model is shown useful for a specific
application. The emphasis however is on fatigue applications using the generalized
Weibull model.
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3.3.1 Model versus Statistical Uncertainty

Generalized four-parameter distributions have been developed to modify standard,
commonly used two-parameter distributions to better match observed tail behavior.
In particular, cubic distortions of these standard “parent” distributions are sought
to match the first four moments of the data. We may then ask why precisely four
moments are used to fit the probability distribution of X—and not two, three, five,
ten, etc. Conventional models are of lower order, requiring only one or two moments.
The problem is that a number of plausible models, with very different tail behavior
and hence fatigue reliability, can be fit to the same first two moments. This scatter
in reliability estimates is said to be produced by model uncertainty. This is prevalent
in low-order, one- or two-moment models. |

To avoid this model uncertainty, which is difficult to quantify, one is led to try
to preserve higher moments as well. This will help to discriminate between various
models, and hence reduce model uncertainty. The benefit does not come without cost,
however: higher moments are more sensitive to rare extreme outcomes, and hence
are more difficult to estimate from a limited data set. This is known as statistical
uncertainty, which reflects the limitations of our data set.

Thus, our search for an “optimal” model reflects an attempt at balance between
model and statistical uncertainties. Practical experience (e.g., Winterstein, 1988)
suggests that four moments are often sufficient to define upper distribution tails over
the range of interest. This experience motivates the generalized models developed
here. It is again supported by the results of Section 3.3.4, in which extreme wave
heights are insensitive to the choice of parent distribution, once four moments have
been specified.

This issue of statistical uncertainty with moment estimates is discussed further
in Appendix A. Methodology useful for estimating the first four statistical moments
of a data set, especially when the number of data points is limited, is outlined.
Of particular interest are cases with data limitations that introduce considerable
bias into estimated values of normalized moments. The generalized Gumbel example
(Section 3.3.4) is one such case and the effects of bias as well as corrective measures

to compensate for it are presented.
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3.3.2 Underlying Methodology

Development of a four-parameter distribution model begins with a theoretical, two-
parameter “parent” distribution. Implementation has been achieved for Weibull,
Gumbel, and Gaussian parent distributions. Denoting the parent variable as U, the

physical random variable X is related to U through a cubic transformation:

X =cy+ U + U + U3 (3.7)

An automated optimization routine then adjusts the coefficients ¢, to minimize the
difference between the measured skewness and kurtosis and those of the generalized
variable X. Such a routine, FITTING (Winterstein et al, 1994) has been recently
developed at Stanford University. Note also that for Eq. 3.7 to remain monotone
we require ¢ > 0. The positive cubic term implies that X eventually has broader
tails than U. When X has narrower tails than the parent distribution, the program

automatically fits the alternate relation:

U=cy+cX +chX?+ X3 (3.8)

Here the positive cubic coefficient ¢ plays the opposite role, expanding the dis-
p g

tribution of the physical variable X to recover the parent model.

This switching between two dual models, based on the size of a4, occurs auto-
matically within the FITTING program. Adding such a dual model has been found to
greatly increase modeling flexibility for small kurtosis cases. These have been found
to arise both in extreme and fatigue loading applications.

Finally, in whichever form the model is defined, the coefficients ¢,, are chosen to

minimize the error ¢, defined as

€= \/((13 — 013)()2 + (a4 - 044)()2 . (39)

The speed of executing FITTING is governed largely by the speed of this optimiza-
tion; i.e., by the amount of effort (trial ¢, values) needed to achieve an acceptably

small tolerance, ;.
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The FITTING report (Winterstein et al, 1994) supplies additional details and sub-
routine documentation. The basic goal of these generalized load models is to reflect
probabilistic engineering judgment—through the choice of basic two-parameter model
(Weibull, Gumbel, etc.)—and then introduce a cubic distortion to better reflect rare

extreme values through their higher statistical moments.

Numerical vs Analytical Four-Moment Models.

Another distinction among four-moment models concerns whether their coeffi-
cients (e.g., ¢, in Eq. 3.7 or ¢, in Eq. 3.8) are found analytically or from some numer-
ical algorithm. Implementation of Eqs. 3.7-3.8 as described above for the FITTING
program is numerical where the coefficients ¢, or ¢}, are found by minimizing €2, the
sum of squared errors in skewness and kurtosis. This is done with constrained op-
timization, requiring Eq. 3.7 or 3.8 to remain monotone and often achieves perfect
moment fits; i.e., €2=0.

Although the numerical approach is not computationally burdensome, analytical
four-moment models have been pursued (Winterstein and Lange, 1995), particularly
in the case where U is standard Gaussian and o4x > a4y = 3. Here it is useful to

rewrite Eq. 3.7 in terms of Hermite polynomials:
X =myx + kox[U + cs(U? — 1) + co(U? - 3U)]; k= (1+2c2+6¢2)72 (3.10)

Results for c; and ¢, have been found to make €? vanish to first-order (Winterstein,
1985) and second-order (Winterstein, 1988) in ¢,. The most recent (and accurate)

expressions have been fit to “exact” results from constrained optimization:

asx 1 — .015]asx| + .302x
— 11
%= % TTro2(am =3 | (3.11)
1.4302 . 1+1.25 ~3)3 -1
o= 040[1 Q3 x ]1—-0.1a2§ © Cap = [ + (a4X )] (312)

"~ (ayx — 3) 1o 10

The above expressions were produced using FITTING to generate a matrix of exact

solutions for a range of requested skewness and kurtosis. The results were then




42 CHAPTER 3. LOAD MODELS FOR FATIGUE RELIABILITY

I | 1 | i 1 {

| Generalized Weibull -----
79999 Weibull 4—
999 Data — i

.99

.95
.90

.80
.60
40

Cumulative Probability

1 1 1 ] I i

5 1 2 5 10 20 30
Bending Moment Range, [kN-m]

Figure 3.5: Weibull and Generalized Weibull models; Flapwise data

curvefit to produée expressions for c3 and ¢4 to be used in Eq. 3.10.

3.3.3 Generalized Weibull Model for Fatigue Loads

Figure 3.5 shows a generalized Weibull model of the NPS flapwise data, fit to its
first four moments. Perhaps most notable is its similarity to the 2-parameter Weibull
model. Unlike a least-squares or visual fit of a cubic model on this scale, this 4-
moment fit does not bend to better match the cumulative probability at the highest
level. Thus this single largest stress level; while visually striking, does not have
sufficient impact to affect even a four-moment fit to the data. The net result is to

support the general adequacy of the Weibull model for this flapwise case.

Somewhat different findings arise for the edgewise bending component, however.
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Figure 3.6 shows the histogram of the edgewise bending history over the same 71-
minute duration. This bimodal histogram shows the presence of fairly regular, large-
amplitude stress cycles due to gravity, with small-amplitude oscillations superposed.
Clearly, no single-mode distribution model, Weibull or other, can describe this entire
load frequency pattern.

Fortunately, the small-amplitude load cycles need not be modeled for fatigue ap-
plications. This is seen in Figure 3.7, which shows that negligible fatigue damage is
caused by cyclic loads below about Sy,;;,=12 [kN-m]. Therefore, we consider models
of load ranges above S,,;, only. Above this value, Figure 3.8 shows that the general-
ized Weibull model gives quite a reasonable extrapolation of the observed trends in
the data. It captures the curvature seen in the body of the data and the flattening
characteristic of its upper tail. The generalized Weibull model appears to offer a

significant improvement over the ordinary Weibull result in this case.

3.3.4 Generalized Gumbel and Generalized Gaussian Load
Models

The primary motivation for a four-parameter load model here is the generalized
Weibull model for fatigue applications. Generalized load models with other par-
ent distributions are useful in other applications. They are presented here to both
demonstrate these alternative uses and reiterate the important issue of statistical un-
certainty in normalized moment estimates and its significance to the four-moment

models.

Extreme Values: A Generalized Gumbel Example

Based on probabilistic engineering judgement the two-parameter Gumbel distri-
bution is the natural choice for modeling extreme value problems. Although this
example considers annual maximum significant wave heights, this generalized Gum-
bel model may also prove useful for extreme wind loads.

This application concerns the significant wave height H, in a Southern North

Sea location, for which 19 years of hindcast data are available (Danish Hydraulic
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Institute, 1989). For each of these 19 years, a single storm event has been identified
with maximum significant wave height H, (i.e. the annual maximum values). This
value ranges from H; = 6.92m (1972/1973) to 9.66m (1981/1982).

The generalized Gumbel distribution, plotted in Figure 3.9 along with the observed
data values, is of the inverse cubic form given by Eq. 3.8. It appears to capture
fairly well the systematic curvature of the data on the Gumbel probability scale
used. As there are only 19 data points, the stafistical uncertainty or bias in the
estimated moments is of concern. Appendix A examines the magnitude of this bias
and quahtiﬁes its significance.

It should be noted that an analytically based generalized Gumbel model has pre-
viously been fit to this data set (Winterstein and Haver, 1991). The results shown
here are an improvement in two senses: (1) FITTING includes an inverse cubic trans-

formation, which is particularly important in reflecting the narrower-than-Gumbel
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tails; and (2) FITTING permits greater accuracy to be achieved in matching moments.

Because we deal here with annual extreme values, the Gumbel distribution is the
natural choice of parent distribution. We may ask, however, what effect is achieved
if a different choice of parent distribution is selected.

The three distributions are shown in Figure 3.10, The figure shows wave height
results up to the 1000-year fractile, i.e. for which p=.999. The pattern of variation
follows that of the underlying parent distributions: the Weibull has the narrowest
upper tail and hence predicts the lowest extreme values, while the Gumbel predicts
the largest. Most notably, however, all three parent distributions predict quite similar
wave heights over this domain of interest. .

This suggests that knowledge of four moments is sufficient to control the tail
behavior of interest. This apparent robustness of the four-moment description is en-

couraging, particularly in cases where the optimal parent distribution is not obvious.
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Of course this conclusion may be problem-dependent; the user is encouraged to vary

the choice of parent distribution for the problem at hand.

Nonlinear Vibration: A Generalized Gaussian Example

As a final example, we consider the vibration response of a linear structure under
non-Gaussian loads. Such non-Gaussian loading may arise, in wind and wave appli-

cations, due to nonlinear relations between wind/wave velocities and applied forces.

Adopting a simple 1DOF model of the response X,
X(t) + 2w, X (t) + w2 X (t) = Y (¢)° (3.13)

in terms of the zero-mean Gaussian process Y (t), and the system natural frequency
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w, and damping ratio (. We consider a case studied previously (Grigoriu and Ari-
aratnam, 1987), for which w,=1.26 [rad/sec], {=.30, and the covariance between Y (t)
and Y (t+7) is exp(—0.12|7]). As noted in that reference, this covariance ensures that
[X,X,Y] is a Markov vector process, whose moments can be found from standard
state-space moment relations. This yields azx=2.7 and ayx = 14.3, quite far from
their respective values (0 and 3) in the Gaussian case. (We also consider a more mild
non-Gaussian case below, due to lower damping ratio (=.10.)

Figure 3.11 shows the distribution of X, estimated by simulation, on normal prob-
ability scale. As expected, a two-moment Gaussian fit dramatically underestimates
response fractiles z, at levels of practical interest (e.g., p above .99). The general-
ized Gaussian model is a marked improvement, showing good agreement far into the
response tails.

A maximum entropy model is shown here as a comparative model. The maximum
entropy approach maximizes a quantity associated with the probability density fx(z)
defined as “entropy” (Jaynes, 1957). The result, assuming four moments are known,

is of the form

fx(@) = exp(~u(@); u(@) =3 Az" (3.14)

n=0
A numerical algorithm is used to find constants A;...A; that preserve (or minimize
error in) the four moments. Unit area is achieved through Ay. Note the similarity
between Eq. 3.14 and Eq. 3.8 when U is Gaussian. Both ensure a hardening effect in
the limit: A4 > 0 in Eq. 3.14 to achieve a proper pdf, and hence its distribution tails
are ultimately narrower than the normal pdf fi;(u).

The maximum entropy model underestimates response fractiles z, systematically
for p above .999; compensating errors occur at lower fractiles in its effort to preserve
moments through an inconsistent functional form. As might be expected, similar
though less dramatic effects are found when the damping is reduced to {(=.10 (Fig-

ure 3.12), as the response becomes more nearly Gaussian.
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3.4 Fatigue Damage Estimates

Ultimately, the impact and adequacy of any probabilistic model must be viewed in
the context of the application at hand. In our case, probabilistic models of stress

ranges S; are to be used to estimate the total fatigue damage:

Dtot = CZ: S:’n(S,) = CNtot—gg (3‘15)

Thus, our interest focuses on estimating the normalized damage per cycle S, the
long-run average value of S® over all stress cycles.

Figure 3.13 shows estimates of S? found from the data, and from the various fit-
ted probabilistic models. The generalized Weibull model follows the data quite well
over the entire range of b values shown. The basic Weibull model also shows good
agreement, with mild departure for exponents above around b=10. As might be ex-
pected from Figure 3.3, the Rayleigh model is extremely inaccurate. Somewhat more
surprisingly, the visually plausible exponential model (Figures 3.1 and 3.3) appears
to potentially underestimate damage, by about an order of magnitude for b > 7 and
still more for higher b values.

Note that we need not expect more damage when the observed distribution tail
is “filled in” with a continuous probability model. Indeed the observed normalized
damage, D.»s=S?, is essentially a sample moment (of order b), and as such is always
an unbiased estimate of the true long-run value, Dj,.=/ s®f(s)ds. (Here f(s) is the
long-run probability density of stress S.) A caveat is in order here: in practice D,
may vary rather asymmetrically around D,,,.. Consider, for example, an extreme
case in which damage is governed by a single stress level bin, whose mean recurrence
rate is one per 10 histories. (Multiple occurrences per history are thus negligible.)
If we collect many such histories, on average 90% will show no occurrences in this
critical bin—and hence will give mildly non-conservative damage estimates—while
the remaining 10% show one occurrence, aﬁd hence strongly overestimate damage.
Thus, while the correct average is achieved, the chance of (mild) non-conservatism is
typically higher than that of (stronger) conservatism.

By fitting a smooth, continuous probabilistic model to all stress data, we hope
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Figure 3.13: Normalized Damage per cycle; flapwise data

to avoid this extreme sensitivity of observed damage, D, to the widely (and asym-
metrically) varying tails of the observed stress distribution. In fitting this continuous
model, however, it remains critical to well-represent the most damaging stress lev-
els. High b values require better modeling of relatively large stress ranges; this is
effectively done by matching at least two moments (Weibull) and still better by four

moments (generalized Weibull).

3.5 Uncertainty Due to Limited Data

Finally, we consider the impact of uncertainty in damage due to our limited data
history of 71 minutes. To do this we divide this history into subsets—e.g., n5eq=4
segments each with N /4 data—and produce damage estimates for each. The resulting
variance among segment damages, g.,,, is then rescaled to estimate 6>=02,, /7, the

damage variance based on all n, segments. While we take nseg=4 here, the final
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Figure 3.14: Damage coefficient of variation; flapwise data

variance o2 should be relatively insensitive to the number of segments used.

As the exponent b increases, we may expect damage estimates to grow in uncer-
tainty due to their sensitivity to rare, high stresses. This is confirmed in Figure 3.14.
This figure shows V4, the coefficient of variation (ratio of o to mean damage) of
the normalized damage, Sb. V& is shown to grow systematically with exponent b,
reaching 50% for b of about 5 and nearing 100% for b values above 10. Note also that
these results do not depend significantly on whether the damage estimates use the

observed data or a Weibull model.

This worst-case value of Vz=1 can be supported by a simple heuristic argument.
Consider a stress history whose highest ranges fall into a bin at level S,,,;, in which
there are n(Syq;) data among the total of Ny, cycles. As b grows, the normalized

damage St becomes increasingly dominated by cycles at Sp,, only:
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b _ pn(Si) . ab 1(Spmaz)
S —ZS, Niot ~ Sz Niot ' (3.16-)

1

The coefficient of variation can then be estimated as

1
VE"— ~ V;,'(Sm“) ~ W
mazx

If n(Spnqaz)=1 observation in this largest bin, as in Figure 3.1, this suggests 100%

(3.17)

coefficient of variation in our damage estimate.

Finally, to determine data needs we need to consider what level of damage uncer-
tainty is acceptable. This can only be addressed by comparing it with other uncer-
tainty sources in fatigue life estimation. Here we define A as the actual damage level
at failure. Setting D,;;=A in Eq. 3.15 and solving for the fatigue life N;;=Nj;z. (in
cycles):

A
Nife = = (3.18)

The coefficient of variation of Ny, is then roughly

sz¢%+w+%. (3.19)

Here the three coefficient of variations, V,, VA, and Vg, respectively reflect (1)
scatter in the S—N curve, (2) errors in Miner’s rule, and (3) load modeling uncertainty
due to limited data (e.g., as shown in Figure 3.14 for our 71-min. history). To ensure

that load uncertainty has only moderate impact, we require

Vg < \/V2+ V2 (3.20)

For most materials, typical values of \/I_/A2—+T/c_5 are 0.5 or higher. Thus, we need
only seek a V7 value of 0.5, or perhaps a bit less. For cases in Figure 3.14 where Vo
is about 1.0, this suggests that we obtain at least ng,;=4 times our current duration
of 71 minutes. This should reduce Vg to about 1/,/fg,, or 0.5. It should also yield

multiple observations of the most damaging stress, unlike the current situation shown
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in Figures 3.1-3.2. In other words, we seek at least 1(Sy0c)=4 observations at the

most damaging stress level Sy,,;; this should give V§ of about 0.5 (Eq. 3.17).

3.6 Summary

Several techniques have been shown to better study fatigue loads data. Damage den-
sities show which stress ranges are most important to model, reflecting fundamental
differences between flapwise and edgewise data (Figures 3.2 and 3.7).

Common one-parameter models, such as the Rayleigh and exponential models,
should be used with care. They may produce dramatically different estimates of load
distributions (Figure 3.3) and damage (Figure 3.13). While the exponential model
seems visually plausible for the flapwise data, it can potentially underestimate damage
by an order of magnitude for S—N exponent b > 7 and still more for higher b values.

“Filling in” the distribution tail with a continuous model need not result in more
damage (Figure 3.13). In fitting such a model, however, it is crucial to well-represent
the most damaging stress levels. High b values require better modeling of relatively
large stress ranges; this is effectively done by matching at least two moments (Weibull)
and better by matching still higher moments. For this purpose, a new, four-moment
“generalized Weibull” model has been introduced.

For edgewise data, the lower mode of the observed histogram gives negligible
damage (Figure 3.7). Over the important range of larger stresses, the generalized
Weibull model gives quite a reasonable extrapolation of the observed trends in the
data (Figure 3.8). It appears to offer a notable improvement over the ordinary Weibull
result in this case. |

As the exponent b increases, damage estimates show growing uncertainty due to

their sensitivity to rare, high stresses (Figure 3.14). This is quantified by Figure 3.14,

and resulting data needs are discussed.




Chapter 4

LRFD for Fatigue

This chapter considers the design of wind turbine blades to resist fatigue failures. In
particular, factors are developed for load and resistance factor design (LRFD) against
fatigue. The use of separate load and resistance factors is consistent with a wide range
of current, probability-based design codes (e.g., API, 1993).

This chapter combines several novel approaches to the blade fatigue problem.

These include:

1. the use of FORM/SORM (first- and second-order reliability methods) to esti-

mate failure probabilities and dominant uncertainty sources (Chapter 2);

2. new moment-based model of wind turbine loads, designed especially to reflect

limited load data (Chapter 3); and

3. aparallel LRFD study of a specific Danish wind turbine, also based on FORM/SORM
(Ronold et al, 1994).

4.1 Scope and Organization

The dominant fatigue blade loading is assumed here to be flapwise bending. We
consider the following three different horizontal-axis wind turbines (HAWTs), for

which measured load data are available.

95
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Turbine 1:

Turbine 1 is the AWT-26 machine, a downwind, two-bladed, free-yaw, with 26-m
diameter teetered rotor, and power rating of 275kW (McCoy, 1995). This turbine
is used for our base case study, in view of the relatively large amount of load data

available (197 10-minute segments).

Turbine 2:

Turbine 2 is an upwind, two-bladed HAWT with a rotor diameter of 17.8-m and a
power rating of 100kW, operated by Northern Power Systems (Coleman and McNiff,
1989). It has a teetering hub design with full-span hydraulic passive pitch control.
It affords a contrast to Turbine 1 both in mechanical design, and in the amount of

available load data (only 20 10-minute segments).

Turbine 3:

Turbine 3 is a Danish machine, with hub height of 35-m and power rating of
500kW. This has been the subject of a similar LRFD study on wind turbine blade
fatigue (Ronold et al, 1994). This study has been supported as one of four sub-projects
within the 1994-1995 European Wind Turbine Standards (EWTS) project.

We seek here both to demonstrate basic methodology for fatigue reliability, and
to identify the general impact of different load models on reliability calculations. We
thus consider normalized bending loads from these various turbines, and fit different
probability distributions to each. To focus on load modeling only, we adopt the same,
hypothetical models of wind environment and blade properties in each case. Thus,
our results are not intended to apply specifically to any of the machines in question.
Rather, they should be seen as the result of applying various plausible load models
to the same (hypothetical) wind turbine blade.
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4.2 Background: Probabilistic Design

4.2.1 Probabilistic Design against Overloads.

Historically, codified probabilistic design has been most widely applied to “overload”
failures, caused when the worst load, L, in the service life of a component exceeds its
capacity R. This capacity may be associated with first yield, excessive deformation,
buckling, or a similar criterion.

If both the load L and resistance R were known perfectly at the time of design,
we would merely require that R > L. More generally, in load- and resistance-factor
design (LRFD) separate factors, 7, and ¢g, are used to scale the nominal load and

resistance, L, ., and R, n,:

¢RRnom _>_ 7LLnom (4.1)

Of course, in any single situation Eq. 4.1 can be replaced by a checking equation

involving a single design factor SFy,, on the net safety factor:

Riom

Lom

SFnom =

> SFdes; SFdes - %’ (42)
R

With the two factors vy, and ¢, however, Eq. 4.1 can more readily give uniform re-
liability across various cases—specifically, covering cases in which uncertainty in load
may dominate over that of resistance, or vice versa. Similarly, different factors may
be applied to separate load contributions which show different variability. Examples
include separate factors for dead and live loads on offshore structures (API, 1993),
or the separate factors recently suggested for static, wave-frequency, and slow-drift

loads on floating structures (Banon et al, 1994).

4.2.2 Probabilistic Design against Fatigue

Because fatigue is the cumulative result of many loads, the choice of an “equivalent”

load L and resistance R is somewhat ambiguous. Fatigue predictions are generally
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based on tests with constant stress amplitude S (and mean stress S,,=0). The result-
ing number of cycles to fail, N(S), is commonly modeled with a power-law relation:
S

_ -5 _ 2
N(S) - NrefSnormv Snorm Sref .

(4.3)
Here S,¢; is a reference stress level, and N,.; the number of cycles to fail at that
level. In Chapter 2 the S-N Law was written as N = CS~® where C = N, foe f-
Both N,.; and the power-law exponent, b, are material properties, both of which may
generally be considered uncertain.

Miner’s rule then assigns damage D=1/N(S) per cycle, and hence average damage

— 1l ——
N o
D = 5 Shorn (4.4)

over the service life of the specimen. (Overbars are used here to denote average

values.) More generally, this damage rate D can be adjusted to reflect;

1. a stress concentration factor K relating local to far-field stresses;

2. an availability factor A, the fraction of time the wind turbine component oper-

ates; and

3. the effect of a non-zero mean stress S,,, which with the Goodman rule scales
the fatigue life by (1 — K|S,,|)/S, (here S,=ultimate stress);

as was done in the CYCLES limit state formulation (Chapter 2). The result is an

effective damage rate

— Sh (1 - K|S,,|/S.)®
Deg =055 Negr = Neer 1

(4.5)

Finally, we can identify load and resistance variables, L and R, such that L > R
implies fatigue failure. If we seek the specimen to withstand N,,, cycles in its service
life, Miner’s rule predicts failure if ﬁefste, > 1. Here we generalize this failure

criterion to read
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Defster 2> A, (46)

where randomness in A reflects possible errors (both bias and uncertainty) in Miner’s
rule. This implies a failure criterion of the form L > R, in terms of the following

“fatigue” load and resistance:

Lzsrbwrm'Nser; Iﬂ"vae_f]“A (47)

Note that in this formulation, fatigue load and resistance have units of cycles.
Alternative formulations can instead assign load and resistance factors v; and 4
in terms of stresses by taking the b*® root of the above expressions (Eq. 4.7); e.g.,
Ronold et al, 1994. Numerical values of these factors may differ notably; we may
expect vy ~ 711;/ ® because damage is related here to the b** power of stress.

Our current formulation seeks to reflect common usage; e.g., a nominal value of
N,s7 that may be based on a lower-fractile S-N curve. The resulting load factor
~; then serves to inflate a number of load cycles to be withstood. For example,
critical offshore facilities are often designed against v, =10 times the service life (e.g.,
demonstration of 200-year nominal life if the actual service life is 20 years).

In the following section we seek to;
1. model load variability given limited wind and load data;
2. study sensitivity to various modeling assumptions, different machines, etc.; and

3. suggest convenient choices of nominal fatigue load and resistance, and associated
load and resistance factors v; and ¢g, to achieve desired reliability against

fatigue failure.
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4.3 Fatigue Load Modeling

Previously (Chapter 3) the use of smooth, analytical probability distributions con-
veniently fit to a limited number of statistical moments was evaluated with respect
to fatigue load modeling. When fitting such models it was shown that, for high b
values, proper modeling of relatively large stress ranges is required. This is achieved
by matching at least two moments (Weibull) and sometimes improved further with
the four-moment “generalized Weibull”.

For this reason it is desirable to utilize the four-moment model in the partial
safety factor calculations performed here. Unfortunately, the generalized Weibull as
calculated by the FITTING routine is not easily integrated into a FORM analysis. Si-
multaneous solution of nonlinear equations to preserve the third and fourth moments
becomes computationally burdensome as the iterative FORM calculations require
repeated fits of the distribution.

" However, our subsequent experience suggests that three-moment models may suf-
fice for fatigue load ranges. Such a model, herein referred to as a “quadratic Weibull”,
is presented below in the following subsection. Its implementation for various wind

conditions is also described.

4.3.1 Fatigue Loads for Given Wind Climate

We work here with the first three moments, defined as follows:

pr =22, 52 =(S-235)2 (4.9)
Hi
S—9)3
po = E=50 (4.10)
g

Note that both pj, the coefficient of variation, and p3, the skewness coefficient, are
normalized to be unitless. Successively higher moments provide increasingly detailed
information about rare large loads, at the expense of being increasingly difficult to

estimate from limited data. Alternatively, one may estimate the b-th moment (and
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Figure 4.1: Distribution of normalized loads (Turbine 1: V = 11.5 m/sec, I = .16).

hence S%,,,,) directly from data, thus avoiding the need to fit any theoretical probabil-
ity model. Our use of lower-moment models, however, seeks to reduce the variability
associated with estimating St .., particularly for the relatively high b values (e.g.,

10 or above) found for some composite materials (e.g., Mandell et al, 1993).

Following common wind turbine practice, we divide load histories into 10-minute
segments. Rainflow-counted stress ranges, S, are identified for each segment, and
the results binned by mean wind speed V and turbulence intensity I. This study
employed an eight by eight bin scheme where the minimum and maximum values of
the bins (for V and I) correspond to the minimum and maximum values of the data.
Figure 4.1 shows a resulting distribution of flapwise bending loads, found for Turbine
1 at a wind climate bin centered at V=11.5 m/s and I=.16. This is a fairly frequently
occurring bin, and Figure 4.1 reflects a total of approximately 5 hours of data. The

results are shown on “Weibull scale,” along which any Weibull model of the form
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Prob [ load > s] = exp[—(s/3)%] (4.11)

will appear as a straight line. Recall that special cases of the Weibull include the
exponential (o=1) and Rayleigh («=2) models. Both of these have been previously
applied to model HAWT and VAWT loads (Jackson, 1992; Kelley, 1995; Malcolm,
1990; Veers, 1982).

The Weibull model in Figure 4.1, fit to the first two moments y; and p,, appears
to match the data fairly well. It fails, however, to reflect the systematic curvature the
data display on this scale. An alternate two-moment model, the lognormal, shows
curvature in the other direction, suggesting it notably overestimates loads at high-
fractile levels. (A 4-moment variation on this lognormal model has been used in the
Danish wind turbine study of Ronold et al, 1994.)

We also show results from a “quadratic Weibull” model, based on the first three
moments of the data. It begins with the Weibull model S,.;; of Figure 4.1, fit to
iy and po. If the skewness pgz of the data exceeds that of Sy, a quadratic term is
added to S,.; to broaden its probability distribution:

S = Spmin + K[Sweib + €S2ei) (4.12)

When the skewness p3 of the data is less than that of S, the roles of S and S,,.;;
in Eq. 4.12 are interchanged:

Sweib = Spmin + KZ[S + 652} (413)

(This quadratic equation is readily inverted to yield an explicit result for S in terms

of Syeis-) In either case, the fitting proceeds in 3 steps:

1. € is chosen to preserve the skewness, pus3;
2. k is chosen to recover the correct variance, o%; and

3. the shift parameter s,;;, is finally introduced to recover the correct mean, y;.
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Figure 4.1 shows that the quadratic Weibull model indeed provides an improved fit to
the data. Note here that the best Weibull model, S, ., overestimates the frequency
of large loads, and hence the load skewness. Thus we select Eq. 4.13, with € > 0 to
ensure that S has narrower distribution tails than S,.;. Similar trends are found
for this turbine in other wind conditions, as shown in the next section. We focus in
Section 4.5 on how such differences, among the three load distributions shown, impact
resulting estimates of fatigue reliability. Note also that the data show uy=1.1, so that
the best Weibull model S,,.;; has broader distribution tails than the commonly used

exponential model.

4.3.2 Fatigue Loads Across Wind Climates

To implement the preceding 3-moment load model for various wind conditions, best
estimates E[u;] (“expected values”) of the three moments p; (:=1,2,3) have been

found for each V—-I bin. The following power-law relation has then been fit:

Blj] = a7 ()" (4.14)

Figures 4.2-4.4 show resulting estimates of E[y;] for the three wind turbines. (All
loads have been normalized by their respective mean values at V=V,.;=7.5m/s, so
that all results in Figure 4.2 predict unit values of the normalized mean load at
V=V,es.) This approach of modeling the load moments, p;, ascross different wind
conditions closely parallels that of the Danish fatigue reliability study (Ronold et al,
1994). This permits us to include results for that machine (Turbine 3), by substituting
appropriate expressions for E[y,]. Also, all results are shown versus mean wind speed
V at a feference turbulence intensity I=1I,,;=0.15. Because all quantities showed
relatively moderate variation with I, (e.g., .1 < ay; < .3) this dependence is not
shown in the figures (although it is kept in the subsequent analyses).

Most notable in these figures is the similarity of the various turbines: Turbines 1
and 2 show similar estimates of all 3 moments, and Turbine 3 gives consistent y; and
2 (albeit apparently lower u3 estimates). A notable distinction however between the

two studys is that Ronold et al, (1994) employed a polynomial expression of the form
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Figure 4.2: Estimated mean of normalized loads.
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Figure 4.3: Estimated load coeflicient of variation (COV).
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Figure 4.4: Estimated load skewness.

Elw] = at; + a4V + a5, V? + ay, ] + ag,I* (4.15)

which explains the nonzero mean load (at V=0) for Turbine 3 in Figure 4.2. It is
also important to note that Turbine 3 results are inferred from cited results (Ronold
et al, 1994) for the mean uj, standard deviation pj, and skewness p3 of S'=InS.
Figures 4.2-4.7 have been constructed from Taylor series approximations, which sug-
gest the mean load p; = exp(y]), while the higher unitless moments y; = p; for i=2
and 3. These approximations may add to the discrepancy, however, for example in

Figure 4.4.

In general, Figure 4.3 suggests that for all 3 turbines, the coefficient of variation
Uo generally exceeds 1.0, its value for an exponential model. Thus the “best” two-

moment Weibull model is broader in its tail, or more damaging, than the commonly
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used exponential. However, the skewness p3 is generally less than 2.0, the corre-
sponding value for an exponential variable. This implies that the basic Weibull fit,
while more damaging than a body-fit exponential, in turn overestimates damage due
to large load levels. In other words, the result shown in Figure 4.1 for Turbine 1 is
symptomatic of various turbines in diverse wind climates: the data show curvature
on Weibull scale, toward lower load levels at high fractiles than the Weibull model
predicts. This effect will grow in importance as the fatigue exponent b increases; e.g.,
as we move from common metals to composites.

Analogous to Eq. 4.14, power-law fits have also been made of the corresponding
standard deviations, D[y;], of the 3 moments y;...u3. These have been estimated for
each V-I bin by a bootstrapping technique, in which “equally likely” rainflow range
data (the same number as observed) are found by resampling from the observed ranges
(Efron and Tibshirani, 1986). These quantities D{y;] directly reflect the impact of
limited data, and approach zero as the amount of data grows. We should thus expect
cases with little data (e.g., Turbine 2) to show relatively higher uncertainty levels,
D[x;], than those with more data (Turbines 1 and 3). Again Turbines 1 and 2 are
found to yield consistent results in Figures 4.5-4.7. Turbine 3 appears relatively
more variable, especially in Figures 4.5-4.6 and at extreme wind speeds. It is not
clear whether this reflects the observed data for this turbine, our approximation of
moments of S from those reported of In S, or the extrapolation of functional forms
beyond the range of observed data.

This difference, however, appears to propagate to the load- and resistance-factor
calculation. In particular, the next section will show LRFD factors for both Turbine 1
(dense load data) and Turbine 2 (sparse load data). Because the uncertainty in Tur-
bine 3 appears closer in Figures 4.5-4.7 to that of Turbine 2, LRFD factors reported

in the Danish study more closely parallel our sparse-data case.
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4.4 LRFD Assumptions and Computational Proce-

dure

From Eq. 4.7, the fatigue loading involves the b** moment S};mm:@;/Sfef. This
weights the conditional moment S°|V, I, given various values of V and I, by their

joint probability density fy r(v,1):

T / / SV fuslv,i) dv di (4.16)
alV I

We assume here that the mean wind speed V' has Weibull distribution, with aver-
age V and shape parameter ay. The turbulence intensity I is assumed independent
of V, and assigned lognormal distribution with average I and coefficient of varia-
tion COV;. Finally, we estimate _Sm/-,—l from three moment-based fits: the Weibull,
lognormal, and quadratic Weibull models as in Figure 4.1.

From the previous section, the necessary moments p; are modeled as

i = B[] + D[] - Uy i=1,2,3 (4.17)

in terms of standard normal variables U;. Correlations among the U; are included, es-
timated from all the moment data irrespective of their V" and I values. This approach
directly parallels that suggested in the Danish fatigue reliability study (Ronold et al, -
1994).

Thus, the fatigue load L=3b. Nse,/S,’fef is modeled here as a function of seven

uncertain quantities:

S¥(X) - Ny,

(4.18)
S1b'ef

L=L(X)=
in which X=[ay,V,COV;,T,U;,Us,, Us]. Note that S8/S%,; is unitless, so that this
load definition has units of cycles. An alternative definition of load and resistance, in
terms of stress, will be described later (cf. Eq. 4.23). The first four of these charac-
terize the Weibull distribution of V' and the lognormal distribution of I, respectively,

which are assumed to be statistically independent. The latter three are used, with
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[ Variable | Distribution | Mean [ Stn Dev
oy Weibull 1.8 0.135
1% Normal 7.5 0.563

COV; Weibull 0.25 0.019
T Normal 0.15 0.011
U, Normal 0.0 1.0
U, Normal 0.0 1.0
Us Normal 0.0 1.0
R Weibull 2.42E+18 | 1.69E+18

Nyer Constant 4.10E+09 -
b Constant 8.0 -

Table 4.1: Random variables in reliability analyses.

Eq. 4.17, to reflect load uncertainty due to limited data.

Table 4.1 shows the distribution types and parameters for each of these variables,
as well as of the net resistance variable R = N,s¢- A in Eq. 4.7. Generally, this would
in turn require joint modeling of its various components; e.g., N,.s, K, Sy, Sy, and
A in Eq. 4.5; cf Veers et al, 1993. Here, however, for simplicity we choose the value

b=8 and the resistance variable R to have net coefficient of variation of 0.70.

Note that the computational procedure outlined will result in a limit state equa-
tion somewhat different from the CYCLES formulation described in Chapter 2. Thus an
alternative version of CYCLES has been used here where the restrictive assumptions
enforced in CYCLES (see Section 2.4) have been relaxed to permit more generality.
(Incorporating such enhancements in future CYCLES versions may be a useful topic
of future work; see the recommendations that follow in Chapter 5.) As our intent
here is to study the impact of various load models on reliability calculations it was
necessary to include those model types into the program input and modify the limit
state formulation to accommodate different distribution types. With the additional

complexity generated by the use of both wind speed, V, and turbulence intensity, 7,
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as environmental parameters, closed form expressions for fatigue life become imprac-
ticable. Therefore the ensuing FORM analyses employ a limit state equation that is

evaluated numerically using quadrature.

This implementation of numerical integration significantly enhances the flexibility
of the FORM analyses. For example not only can the distribution types of the load
be selected as an input option but also the environmental variables distribution types
can be changed as well. The distributions are selected from the internal library
of distribution types that exists within the original CYCLES program. A separate
subroutine has been added to compute the conditional moment W required to
determine the #* moment of the load in Eq. 4.16. This subroutine includes the
quadratic Weibull distribution as well as the Weibull and lognormal distributions,

the three distributions considered in this study.

Of course this added capability does not come without cost. Numerical integration
requires longer solution times; however, typical runs are on the order of minutes so
this is not a big factor. Run-time costs are tied directly to the number of quadratufe
points selected; this number was varied and several runs were made to ensure stable
results. Also, required input to the program is increased. In addition to the random
variable definitions, the ag;’s, ay;’s, and as;’s of Eq. 4.14 must also be input for the

three moments E[y;] and their standard deviations, D[p;].

This alternative FORM program with its added generality should not be con-
sidered as making the original CYCLES program obsolete. On the contrary, results
show that CYCLES would likely have produced similar results for Turbine 2 with an
assumed Weibull load distribution. This is because the turbulence intensity is rela-
tively unimportant in this case, and the loads data here show relatively constant COV
(see Figures 4.2 and 4.3) in accordance with the assumptions of CYCLES. While this
enhanced version of CYCLES was necessary for the academic study performed here,
the CYCLES program represents a useful compromise between level of detail and the

existing knowledge of many structures and mechanical components.
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Stress Distribution Type
Log Weibull
Ps- 4.4x 107! 2.5 x 10~¢
Variable | Uncertainty Percentage
ay 0.5 0.1
vV 0.0 0.0
CcoV; 19.9 0.1
T 1.1 0.0
Uy 0.9 0.0
U, 4.3 0.0
Us; - -
R 73.3 99.8

Table 4.2: Turbine 1 reliability results; effect of load distribution type

4.5 Variations with Load Distribution

We first consider results for Turbine 1, comparing the effect of switching between
the three load models as in Figure 4.1: lognormal, Weibull, and quadratic Weibull.
As in Figure 4.1, we pursue moment-based fits, matching p; and p, for the two-
parameter models, and p; through pz for the quadratic Weibull. Thus all three
models yield identical fatigue damage results for fatigue exponents b=1 and 2; the
quadratic Weibull would also agree with the observed damage when b=3.

With the exponent b=8 chosen here, however, these models yield dramatically
different estimates of fatigue damage, and hence of the probability p; of fatigue failure
within 20 years (N,.,=4.1 x 10° cycles at an average rate of 6.5 Hz). Typical py values
differ by more than 5 orders of magnitude: from less than 10~ to above 10~!. Table
4.2 shows the failure probabilities and relative importance of the different random
variables for the lognormal and Weibull load distributions. Note that the relative
importance of the load variables shifts from 27% for the lognormal distribution to
less than 1% for the Weibull distribution of loads. ’

This highlights the importance of choosing an appropriate load model. It reflects
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the well-known effect of tail-sensitivity in reliability, while the first two moments of
S have been preserved here, the higher moment St can vary greatly among various
models fit to the same data. This effect grows with b; note that we choose here 6=8,

which is a relatively high value for metals but relatively low for many composites.

4.6 LRFD Calculations

The foregoing shows that if we consider an identically designed turbine blade, the
calculated fatigue reliability is altered notably by the choice of load distribution. Con-
versely, vastly different load factors would be needed to achieve the same reliability
for different load distributions—i.e., much higher load factors if the lognormal model
were correct, much lower for the Weibull model, and so forth. This is demonstrated
later with the results for Turbine 1.

To reduce this sensitivity of load factors to distribution choice, we can seek to
reflect the load distribution type in our nominal load. Assume we consider a design
parameter W, which relates the observed bending moment M to resulting stress S;
i.e.,, S=M/W. We may then seek to adjust W to preserve the mean damage, given
our best estimates of the distributions of V', I and S|V, I—in other words, choose W

to preserve

Lnom = Srbwrm : Nser = L(X given Xi = i—:) (419)

Thus, if applied moments M truly follow a lognormal model we would require a
sturdier blade—i.e., higher W to preserve ﬁ:ﬁ/ﬁ/ W?P—than if a Weibull model of M
were correct. Moreover, these differences between blade designs would increase with
b, to reflect increasing sensitivity to distribution choice as b grows. Other design rules
are also possible; e.g., choose W to preserve a specific upper fractile of the long-run
stress distribution. An advantage of preserving L,,,, in Eq. 4.19, however, is that it
reflects not only the choice of load distribution but also the fatigue material behavior
(i.e., choice of b).

Table 4.3 shows the resulting advantage of the nominal load definition in Eq. 4.19.
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Stress Distribution Type
Log Weibull | Quad Weib
ps 4x107* ] 4x107* ] 5x10°*
Variable Uncertainty Percentage
ay 0.0 0.6 2.7
14 0.1 1.6 3.3
COV; 0.2 0.0 0.0
1 2.6 1.2 1.0
U, 0.1 0.0 0.2
U, 0.6 0.1 0.0
Us - - 0.3
R 96.4 96.6 92.5 I

Table 4.3: Turbine 1 reliability results; all results with same normalized fatigue load

Lnom .

By preserving the nominal load L, in Eq. 4.19 for each distribution type, the results
in Table 4.3 correspond to three different blade designs. Resizing the blade in each
case scales the relative stress levels so that the E[S®] for each stress distribution type
(and therefore L,,,,) is the same for each blade. The results are seen to be only
mildly sensitive to the choice of load distribution. In fact both two-moment models
(lognormal and Weibull) give py=4 x 10™*, with almost all uncertainty due to R
(96-97%). The three-moment model (quadratic Weibull) gives slightly higher p;, due
to the additional uncertainty in the higher-moment statistic z3. (The uncertainty

contribution of R is thus reduced to 92.5% in this case.)

We therefore suggest that load factors 7z should be based on the nominal load
defined in Eq. 4.19. This should promote relatively stable results across different

materials, load modeling assumptions, and blade designs.
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4.6.1 Turbine 1 Results

Finally, we consider the inverse problem of probabilistic design: what factors v, and
¢r should be used in Eq. 4.1, with nominal fatigue load L,,,,, and resistance R,,,,, to
achieve a target failure probability p; over the service life? FORM/SORM methods
are particularly useful for these purposes. In addition to providing estimates of p;
and uncertainty contributions, they provide load and resistance values, L* and R*,
most likely to cause failure at the design lifetime (see Section 2.5). By setting our
design load and resistance to these most likely values, we can estimate the necessary

factors:

YL = L*/Lnom; PR = R*/Rnom (4'20)

Regarding nominal loads and resistances, we again use Eq. 4.19 to define a “mean”
nominal load L,,,. Recall that L, has units of “cycles” so that corresponding load
factors are applied to an expected number of service lifetime cycles. In contrast,
following common practice the nominal fatigue resistance, Rpom, is set at its lower
2.3% fractile, i.e., the underlying normal variable lies two standard deviations below
the mean. An example utilizing units of “stress” is given in the next section using
results for turbine 2.

Figures 4.8-4.9 show resulting load and resistance factors, respectively, for Turbine
1. As may be expected, the resistance factor ¢p decreases steadily as the target
py is lowered. This reflects that while the nominal resistance R, was somewhat
conservatively set (2.3% fractile), still lower resistances must be designed against if
we require still rarer failure events.

In Figures 4.8-4.9 both the load and resistance factors are nearly identical for
the assumed 2 parameter stress distribution cases while those for the 3 parameter
quadratic Weibull are somewhat different. This can be explained by observing the
relative levels of uncertainty reported for these results in Table 4.3. The lognormal
and Weibull distribution cases have nearly the same levels of relative importance
distributed between the resistance (~ 96.5 %) and load (~ 3.5 %) variables result-

ing in nearly identical load and resistance factors. Also from Figure 4.8, note that
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Figure 4.8: Load factors, Turbine 1. Note that these factors apply to a load defined
in units of cycles (Egs. 4.18-4.19).
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Figure 4.9: Resistance factors, Turbine 1. Note that these factors apply to a resistance
defined in units of cycles (Eq. 4.7).




4.6. LRFD CALCULATIONS 7

the required load factors v, are effectively constant over the several decades of py
values shown. This is because load uncertainty is relatively unimportant (i.e., the
uncertainty contributions from all 7 wind and load variables remains less than 7.5%
throughout). The actual load factor -y, is not 1.0, however; somewhat larger values
(v=1.2-1.8) are needed to cover not the uncertainty in load, but rather the b&ias
between the nominal “mean” load L,,, and the actual load L* most likely to cause
failure.

In Section 4.5 the choice of load model on fatigue reliability was shown to be
critical as py estimates differed by more than 5 orders of magnitudes for identically
designed blades. Nominal load definitions that do not include load distribution type
in their definition will produce load factors that also differ by orders of magnitude.
To demonstrate, an alternative nominal load is defined where the design parameter,
W, is chosen to preserve the conditional mean stress given a mean wind speed V=50
m/sec. Using Eq. 4.14 to evaluate S =F[u;] with V = 50 m/s and T = T, we define
the nominal load by;

[S|V = 50 m/sec]’ - N,,,

Ll = 5, (4.21)

The resulting load factors in Figure 4.10 differ by orders of magnitude as our
alternative nominal load (L},,) does not reflect the distribution type. Note the
critical distinction between S here and SP in earlier nominal load definitions; Eq. 4.21
reflects only the mean stress S at V=50 m/sec, which is a podr predictor of Sb for
}iigh stress exponents b. These results clearly demonstrate the advantage of including

distribution type in nominal load definitions as Eq. 4.19 does.

4.6.2 Turbine 2 Results

Figures 4.11 and 4.12 show load and resistance factors for Turbine 2 based on
Eq. 4.19. Results vary markedly from those for Turbine 1. Due to the relatively
sparse load data in this case, FORM results show roughly equal contribution from
load and resistance uncertainty (see Table 4.4). As a result, the implied load and

resistance factors in Figures 4.11-4.12 vary similarly over the range of p; values
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Figure 4.10: Load factors needed, for Turbine 1, if nominal load is based only on the
mean stress for wind speed V=50 m/s.

reported: ;, varies by about a factor of 3, and ¢z by about a factor of 7. Note also
that for relatively high p; values, the 2.3% fractile nominal resistance R,y is too
conservative; ¢ factors above 1.0 show that we may design with a less conservative
S—N curve. However, to cover load uncertainty we may need <y, on the order of 5;

i.e., ensure that our design life is an order of magnitude greater than the service life.

Finally, note again that our formulation applies all safety factors to a number of
cycles: ¢r is applied to the number of cycles N to resist failure in a nominal S—N
curve, and «; to the number of cycles to be withstood in the service life. Alterna-
tively, we may define nominal loads and resistances in terms of stresses, and find
an equivalent set of factors 7, and ¢%. In order to define nominal loads and resis-
tances in terms of stresses recall the failure criterion defined in Section 4.2.2, e.g.,
Eefme > A, given by Eq. 4.6. Substituting for D, ¢ from Eq. 4.5 and transposing

terms results in;
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Figure 4.11: Load factors, Turbine 2. Note that these factors apply to a load defined
in units of cycles (Eqgs. 4.18-4.19).
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Figure 4.12: Resistance factors, Turbine 2. Note that these factors apply to a resis-
tance defined in units of cycles (Eq. 4.7).
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Stress Distribution Type
Log Weibull | Quad Weib
ps: 4x14%[10x10*| 17x107*

Variable -Uncertainty Percentage
ay 25.9 28.3 23.6
v 7.3 7.1 7.3
COV; 0.0 0.0 0.0
1 0.4 0.4 1.4
U, 0.3 0.3 3.5
U, 8.9 2.1 5.2

Us - - 7.0
R 57.2 61.7 52.5

Table 4.4: Turbine 2 reliability results; all results with same normalized fatigue load

Lnom .

A

St > 8 N,fp -
ref>lefs Nser

(4.22)

Taking the ™ root produces expressions for load and resistance in units of stress;

__a1/b , 1 1/ e
= [Sb] . R = [s,,efNeff- } N (4.23)
NSCT
The load term is simply the b root of the expected value of S integrated over
the environmental variables V' and I. For the resistance term recall our definition of

the constant amplitude S—N relationship, Eqgs. 4.3 and 4.5;

S -b 1 l/b
N(S) :Ne_ff (S ef) or S= [SfefNeff'N] (424)

The resulting resistance term then can be interpreted as the siress level associated
with N, as given by the S—N relationship of Eq. 4.3 (and scaled by A!/%). Therefore
R’ reflects the material properties (e.g. the resistance) through the required service
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cycles N, .

Figures 4.13 and 4.14 show load and resistance factors for Turbine 2 based on
Eq. 4.23 Because damage is related to the b-th power of stresses, VL = 'y}/ > To verify
this equality consider the load definitions given by Eqs. 4.18 and 4.23 and observe
that L% = L' . [N/®/S,s]. Since the load factors, -y, are computed as the ratio of
the design load L* to the nominal load L,,n, (see Eq. 4.20) the constant N2/2/S,; |
drops out of the calculation and the equality v;, = 7},/ % holds. A similar argument
can be made for the resistance term. In Figure 4.11 typical values of 7, range from
5 to 20. For b=8, corresponding factors 7} on stresses range from 1.2 to 1.4. These

factors lie in a similar range as those of the Danish study (Ronold et al, 1994).

4.7 Effects of Limited Data

The use of Egs. 4.14 and 4.17 to model fatigue loads across wind climates is intended
to include uncertainty in the loads due to limited data through the standard deviations
(D[u;]'s) of the moments p;...u3. The difference in D[y;]’s, observed in Figures 4.5
- 4.7, is expected to propagate through the load- and resistance-factor calculations.
This approach apparently works quite well as Turbine 1, with approximately 10 times
more data than Turbine 2, has much lower load factors (Figures 4.8 and 4.11).

Closer inspection of the results shoWs that the effects of data limitations in this
case are more subtle. Table 4.4 shows reliability results and uncertainty contributions
for Turbine 2. As for Turbine 1, the nominal load L,,,, has again been preserved across
the three load distribution types, by appropriate choice of blade section modulus, W.
One would expect Turbine 2, with higher D[y;]’s and load factors to show a shift
of importance away from the resistance R to the moments U;. Results show only a
moderate shift to the U;’s and a dramatic shift to the wind speed shape factor, ay .
These results would suggest that there are sufficient blade load data for Turbine 2
and the other sources of uncertainty are dictating the reliability. Table 4.4 shows
that the dependence upon wind speeds and the uncertainty in those wind speeds is
an important factor to consider for Turbine 2.

The dependence of Turbine 2 upon wind speeds, in contrast to Turbine 1, can be
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Figure 4.13: Load factors, Turbine 2. Note that these factors apply to a load defined
in units of stress (Eq. 4.23).
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Figure 4.14: Resistance factors, Turbine 2. Note that these factors apply to a resis-
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explained by considering the trends in the mean blade loads rather than the standard
deviations. That is, it is the E[u;)’s in Figures 4.2-4.4 and not the D[y;]’s (from Fig-
ures 4.5-4.7) that are responsible for the shift in uncertainty. This has been confirmed
through an additional case study, in which the FORM analyses used to generate the
results of Table 4.4 are repeated with the D[u;]’s set to zero (to assume perfect data).
In this case the results in Table 4.4 change very little since load uncertainty (e.g., Uy,
U,, and U;) is small. Since identical distribution parameters were used for all random
variables (except the loads) in the reliability analyses, we conclude that apparent

differences in mean blade damage, 3’7, are attributed to different turbine designs.

It is also useful to examine most damaging wind speeds (Eq. 2.14) for the two
turbines and compare them against the range of available data for each machine.
Table 4.5 gives the most damaging wind speeds obtained from the associated FORM
analyses at their converged, most-likely failure points. Figure 4.15 shows mean load
(E[p1]) relationships from Figure 4.2 plotted over the range of data used to produce
the power-law fits. The most damaging wind speeds for Turbine 1 are within the range
of measured data. This is desirable as the results of the regression analysis used to
produce the curve-fits in Figure 4.15 are not valid outside the range of available data.
Turbine 2 on the other hand is predicted to receive most damage from wind speeds

that far exceed the associated data seriously compromising the results.

There are two important points to be made here. First, there are data limitations
associated with the reliability analysis of Turbine 2 but it is the lack of blade load data
at higher wind speeds rather than the paucity of the data at the more moderate wind
speeds for which measurments are available. (Recall that the wind environment model
has been chosen arbitrarily in this study, with no regard to the specific environment
in which Turbine 2 is planned to operate.) In general these results reflect the clear
need for prototype machines, on which load measurements are made, to be subjected

to wind conditions that span the range of envisioned operating conditions.

A second point to be considered is the potential danger that may be encountered
when using automated curve-fitting models to describe blade loads across a broad
range of wind conditions. When the critical (most damaging) environment is far

outside the range of observations as Turbine 2 is, results are likely to be governed
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Distribution | Turbine 1 | Turbine 2
Lognormal 9.2 24.0
‘Weibull 15.0 24.2
Quad Weib 221 36.0

Table 4.5: Most Damaging Wind Speeds (m/s) from Reliability Analyses

not by the data but by the curve-fit. In such cases it seems likely a range of answers
are possible depending upon the assumed functional form of the relationship, fitting

method, etc..
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4.8 Summary

We have directly studied the fatigue reliability of two horizontal-axis wind turbines,
one with rather dense load data (Turbine 1) and another with relatively sparse data
(Turbine 2). We have also tried to infer similar results for a Danish machine, reported
in a parallel fatigue reliability study (Ronold et al, 1994). Our findings include the
following.

To estimate fatigue damage, flapwise loads have been represented by their first
three statistical moments across a range of wind conditions. The first two moments, g,
and o, show similar trends for all 3 machines (Figures 4.2-4.3). Despite their rather
different designs, Turbines 1 and 2 also show similar third moment p3 in Figure 4.4.
This tends to support the goal of establishing a fairly general set of load distributions,
at least for specific load components, HAWT designs, etc.

Based on the moments y;...u3, we have introduced new “quadratic Weibull” load
distribution models. By preserving ps, they more faithfully reflect the upper fractile
of observed loads (e.g., Figure 41) than common two-moment models such as the
Weibull or the lognormal. At the same time, they are rather simpler to implement
than our earlier 4-moment models (e.g., Winterstein et al, 1994). This leads to
particular savings when many fits are required; e.g., to estimate damage contributions

over a range of wind speeds V and turbulence intensities I.

The fatigue reliability is found to be notably affected by the choice of load dis-
tribution model. When lognormal, Weibull, and quadratic Weibull models are fit to
the same 3 moments of loads data, typical failure probabilities for a 20-year life were
found to differ by more than 5 orders of magnitude: from less than 107% to above
10~ This effect will grow with b; note that we choose here b=8, which is a relatively
high value for metals but relatively low for many composites. Once an appropriate
load distribution has been selected, this choice can be directly reflected in the fatigue
design by seeking to preserve the nominal load L,om in Eq. 4.19. Resulting load-
and resistance factors are then only mildly sensitive to the choice of load distribution
(e.g., Figures 4.8-4.12).

Because a broad range of load data is available for Turbine 1, its fatigue reliability
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is governed by the uncertainty in fatigue resistance R (e.g., uncertainty in S—N curve,
Miner’s rule, etc.). The required resistance factor ¢g—applied to the nominal S-N
curve—is shown in Figure 4.9 to decrease steadily as the target p; is lowered. This
reflects that while the nominal resistance R,,,,, was somewhat conservatively set (2.3%
fractile), still lower resistances must be designed against if we require still rarer failure
events. In contrast, the load factor 7, in this case is relatively flat, reflecting only the
bias between the nominal “mean” load L,,,, and the actual load most likely to cause
failure.

Because relatively sparse load data is available for Turbine 2, load and resistance
uncertainties are found to be of comparable importance in this case. (This lack of
data however is associated more with the range over which the data was acquired
than with the quantity of data itself.) Thus the implied load and resistance factors
in Figures 4.11-4.12 vary similarly over the range of p; values reported: v, varies by

about a factor of 3, and ¢z by about a factor of 7.




Chapter 5

Summary and Recommendations

5.1 Overview of Important Conclusions

CYCLES Fatigue Reliability Formulation

A computer program (CYCLES) that estimates fatigue reliability of structural and
mechanical components has been developed. A FORM/SORM analysis is used to
compute failure probabilities and importance factors of the random variables. The
limit state equation includes uncertainty in environmental loading, gross structural
response, and local fatigue properties.

The CYCLES fatigue reliability formulation assumes specific functional forms for
the controlling quantities of fatigue life so that a closed form expression for fatigue
damage can be derived. While these assumptions limit the program’s generality,
the CYCLES formulation represents a useful compromise between level of detail in
probabilistic modeling and the state of knowledge of many components to which it

may be applied.

Load Models for Fatigue Reliability
Several techniques have been shown to better study fatigue loads data. Damage
densities show which stress ranges are most important to model, reflecting fundamen-

tal differences between flapwise and edgewise data.

88
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Common one-parameter models, such as the Rayleigh and exponential models,
should be used with care. They may produce dramatically different estimates of
load distributions and fatigue damage. Improved fits may be achieved with the two-
parameter Weibull model.

“Filling in” the distribution tail with a continuous model need not result in more
damage. In fitting such a model, however, it is crucial to well-represent the most
damaging stress levels. High b values require better modeling of relatively large stress
ranges; this is most effectively done by matching at least two moments (Weibull)
and better by matching still higher moments. For this purpose, a new, four-moment
“generalized Weibull” model has been introduced.

As the exponent b increases, damage estimates show growing uncertainty due to
their sensitivity to rare, high stresses. This effect has been quantified and resulting

data needs have been discussed.

LRFD for Fatigue

We have directly studied the fatigue reliability of two horizontal-axis wind turbines
(Turbines 1 and 2), and tried to infer similar results for a Danish machine, reported
in a parallel fatigue reliability study (Ronold et al, 1994).

To estimate fatigue damage, flapwise loads have been represented by their first
three statistical moments across a range of wind conditions. The first two moments,
p1 and po, show similar trends for all 3 machines. Turbines 1 and 2 also show similar
third moment u3;. This tends to support the goal of establishing a fairly general set
of load distributions, at least for specific load components, HAWT designs, etc.

Based on the moments y;...u3, we have introduced new “quadratic Weibull” load
distribution models. By preserving pg, they more faithfully reflect the upper frac-
tile of observed loads than common two-moment models such as the Weibull or the
lognormal.

The fatigue reliability is found to be notably affected by the choice of load dis-
tribution model. When lognormal, Weibull, and quadratic Weibull models are fit to
the same 3 moments of loads data, typical failure probabilities for a 20-year life were

found to differ by more than 5 orders of magnitude. This effect will grow with b; note
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that we choose here b=8.

Because a broad range of load data is available for Turbine 1, its fatigue reliability
is governed by the uncertainty in fatigue resistance R (e.g., uncertainty in S—N curve,
Miner’s rule, etc.). The required resistance factor ¢g—applied to the nominal S-N
curve—decreases steadily as the target p; is lowered. In contrast, the load factor v,
in this case is relatively flat, reflecting only the bias between the nominal “mean”
load L,,,,, and the actual load most likely to cause failure. Because relatively sparse
load data is available for Turbine 2, load and resistance uncertainties are found to be

of comparable importance in this case.

5.2 General Recommendations of Future Work

The are a few recommendations of a general nature that will be mentioned before
more specific recommendations, that are direct extensions of this study, are presented.
First it would be instructive to repeat the reliability analyses for the LRFD study in
Chapter 4 with data from additional turbines. The similarity of trends for the two
turbines considered gives promise to establishing a general set of load distributions
for specific components, blade designs, etc. Additional data from different turbines
would help establish the feasibility of such distributions.

Note too that our predictions and load factors have been based here entirely on
observed (empirical) loads data from prototype machines. It may also be useful to
consider modeling errors, and resulting load factors, that arise when analytical load
predictions are used. In this case one trades statistical uncertainty, due to a limited
quantity of observed data, for modeling uncertainty due to simplifying assumptions
made in the analysis. This modeling error could be assessed by comparing predicted
and measured loads, statistically, for different wind regimes (and possibly different
turbine types). Results would parallel common practice in the offshore industry, in
which LRFD design reflects both natural variability in the ocean climate, and model
uncertainty in load prediction inferred from measured loads on offshore structures.
Such results could be used to improve design against both overload and fatigue fail-

ures.
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A final recommendation of general interest is to further study, and characterize,
the set of wind characteristics that best explain blade loads and hence fatigue damage.
There is nothing in CYCLES that limits the analysis to considering wind speed and/or
turbulence intensity; other wind parameters could in principle be propagated through
the analysis in a similar way. The main challenge remains in identifying which wind
parameters best “explain” blade loads and resulting damage; this is a question that
classical statistics is often well-suited to address. New methods have also been devel-
oped to efficiently predict, and display, all sets of environmental variables that may
likely contribute to overload failure independent of structural concept (e.g., Winter-
stein et al, 1993). While commonly applied to predict overload failures of offshore
structures, such concepts may prove useful for the wind industry as well-—again for

both overload and fatigue failure applications.

5.3 Specific Recommendations to Extend Current
Work |

Through the course of this thesis, a number of basic developments have been made;
e.g., in modeling loads from limited data, and in propagating this uncertainty ef-
ficiently into fatigue reliability calculations. Based on this experience, we focus
here on suggesting specific avenues of further work, both in the form of document-
ing/implementing our improved algorithms and in further studying the areas we found
challenging to model.

Directing attention first to the reliability algorithm (g—function) used here, further
work could profitably be directed to include formal development and documentation
of an “enhanced” version of CYCLES. The capabilities of such a version could par-
allel those used in the LRFD analysis of Chapter 4. Our research efforts suggest
that it is conceptually straightforward, and of little numerical cost, to generalize our
load models to include dependence on both wind speed and turbulence intensity (or
another vector set of wind attributes). We believe this generalization, through nu-

merical quadrature methods to calculate the mean damage required in our fatigue
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g—function, should be made to significantly broaden the applicability of these meth-
ods. (This more general quadrature routine would also permit other generalizations;
e.g., non-smooth S—N relations.) '

An additional generality has been offered through the creation of generalized,
moment-based load models. These distributions have been used in research versions
of CYCLES, and deserve incorporation into its standard distribution library for dis-
semination. A cause of concern had been its numerical robustness, particularly when
four moments are sought to be fit, with minimum error, from a numerical optimiza-
tion routine. The simpler, 3-moment fits (e.g., quadratic Weibull model) avoid this
numerical optimization, and are believed to be good candidates to include in an au-
tomated package such as CYCLES. Note also that these distributions may have two
distinct uses: (1) to model long-term uncertainties (e.g., in parameters of wind or
load distributions); and (2) to model short-term variations in loads given wind. In
case (2), these generalized distributions need to be included not in the CYCLES distri-
bution library but rather in its g—function. This has already been incorporated in our
in-house CYCLES version; it is recommended that it be included in a newly distributed

version of CYCLES as well.

5.4 Challenges for Future Study

Parametric Models. Finally, we seek to elaborate on some of the practical aspects
of our turbine-specific studies, and how they may suggest challenging avenues for
future study. Important issues regarding loads modeling were encountered during the
development of the “enhanced” version of CYCLES for the LRFD analyses, required
to best model the practical cases encountered with the two turbines in Chapter 4.
The technique reported in Chapter 4 is based on a parameitric load model, in which
a power-law relationship is used to define the variation of predicted load moments
(and their standard deviations) across different wind climates. It is perhaps useful to
note here that this was not the first model adopted. We first sought a still simpler
parametric model, in which it was assumed that only the mean load p(V, I) varied

systematically as a function of mean wind speed V and turbulence intensity I. Data
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of the normalized, unit-mean load L, gp=L/pu(V,I) were then created, and pooled
over all wind conditions. (An analogous treatment could be made of fatigue life
data: observed cycles N to fail at different stresses S could be normalized by their
predicted mean, uy(S), and pooled to fit a single distribution of normalized resistance
Neorm=N/un(5).) |

When this single (normalized) load model was implemented for the turbines con-
sidered here, uncertainty due to limited data was typically found to have little or no
impact. This is to be expected: the assumption of a common (parametric) distribu-
tion model reduces data needs enormously, as all data can be pooled/lumped, after
proper normalization, into a common “bin” for fitting purposes. The corresponding
danger of this method is that it is orily as good as its assumptions; namely, it obscures
any true variations that the unit-mean normalized load, L, ,,, may show with wind
conditions. :

Note that our final model was also of parametric form, fitting analytical, power-
law form to observed statistics. It was, however, somewhat more general than the
original 1-parameter normalized load model considered above: the first three load
moments p, (n=1,2,3) were permitted to vary with wind conditions, and power-law
relations were fit to both the mean and uncertainty of each u,(V,I). Our limited
results showed some promise for simpler 1-moment models; e.g., the observed COV
for two turbines remained nearly constant (near unity) for various wind conditions.
This would tend to support the assumption of a common (exponential) distribution
of blade loads, in which only the mean load needs to be fit as a function of wind
conditions. Preliminary experience with other turbine blade loads data suggest that
this conclusion may not be universal. We believe, however, that sufficient loads data
exist to permit critical study of this question; i.e., which load statistics are permissible
to be assumed constant, and which must be kept free to vary with wind parameters
such as V and I. An associated question concerns which parametric form—e.g.,

power-law or polynomial—is most appropriate if one seeks to fit one such form.

As a final caution regarding parametric models, we note our experiences with the
limited-data case of Turbine 2. We predict rather different results than for Turbine

1—e.g., greater importance of wind vs fatigue resistance uncertainty. However, for
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Turbine 2 the greatest damage contribution comes from wind conditions for which we

have little or no data. Thus our conclusions in this case are driven less by our data
than by our assumed curve-fits. This is a common danger of parametric models: while
easy to automate, they create a danger that users will apply them indiscriminately,
outside the range for which the data can validate them. Based on this experience, at a
minimum we propose that future CYCLES versions will also report the most damaging
wind conditions (at the design point most likely to cause fatigue failure). The user
~can then be cautioned as to whether the results are based on wind conditions for

which adequate data are available.

Non-Parametric Models. Finally, we note that as an alternative to the para-
metric load models described above, we have also considered and implemented non-
parametric loads models. These assume no specific functional (“parametric”) form of
any load statistic with V or I. Instead they simply sort data into discrete bins; here,
in 2 discretized dimensions involving bins of V' and I values. Loads distributions—
and uncertainty in their parameters—are sought separately from the data in each
bin. The results are then propagated through the fatigue reliability analysis, using a
numerical quadrature routine to estimate fatigue damage by summing contributions
from each bin. (Several numerical strategies are possible here: 1. optimal quadrature
points may be chosen for the integration, and load statistics at these optimal points
may be interpolated from those observed at prescribed bin locations; or 2. the bins
may be kept as given, and the probabilities lumped optimally into these prescribed
bins.)

Our preliminary experience with these models was that they provide a flexible
load representation, more faithful to observed trends (and uncertainties) found in the
loads data. However, due to their discrete nature, it was found difficult to use them
to achieve converged, FORM-based analysis to predict fatigue reliability. This is
~ typical with “noisy,” non-smooth g—functions: gradient-based searches for the most
likely failure point are likely to have convergence difficulty, due to non-systematic

variations in g and its derivatives with one or more uncertain variables.

Therefore, we believe that both nonparametric as well as parametric load modeling

methods provide useful topics for future study. Regarding the non-parametric models,
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new Inverse-FORM methods, which switch the objective function (failure probability)
and the constraint (limit state function g), may be more stable for noisy g—functions
(Winterstein et al, 1993). Simulation and other analysis methods are also appropriate
for these cases.

A practical implementation question in these non-parametric models concerns the
choice of optimal binning strategy. Indeed, any binning is effectively parametric;
i.e., load statistics are at least assumed to be equal for all data that fall within the
prescribed wind-condition bin. Thus, the extent of the bin width (in one or more
dimensions) reflects the modeler’s assumption as to how uniform the turbine loads
are with varying wind conditions. This bin width will in turn govern how much data

are accumulated per bin, and hence the requisite data needs.
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Appendix A

Statistical Moment Estimation

A brief background in statistical moment estimation is provided here. If we seek to
estimate the ordinary mean value E[X]=u from data X;... X,,, a natural estimate is
the simple average value 722?:1 X;/n. Similarly, the k-th order “ordinary” moment,
E[X¥], is naturally estimated by the corresponding average >+, XF/n.

The difficulties arise when we instead seek, as in many applications, to estimate
not ordinary but central moments; i.e., of the form p,=E[(X — u)¥] for k=2, 3, 4....
Note that only the first four moments are required, e.g., k=4: am=u§/ 2, az=ps3/us>,

and oy=p, /3 for the generalized models developed in Section 3.3.

The problem here lies in its circular aspect: we must first estimate the unknown
first moment y before seeking to estimate p,=E[(X — p)*]. And, if we use the same
data set for both purposes, we typically find too-low estimates of o, usz, p4, etc.
because our p value is artificially tuned to best match the mean of the observations.
Those exposed to a standard statistics course will best recognize this phenomenon
when estimating the variance uy: to inflate the sample variance to account for this
bias, the sum of squared deviations is divided by n — 1 rather than n.

While unbiased estimates of the higher moments p3, p4, ... are less familiar, they

are available in the statistical literature (Fisher, 1928):
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in terms of the sample central moment my=3 . (X; — 7)’“ /n. Eq. A1 is the

conventional result for the sample variance.

Remaining Bias.

The routine FITTING which produces generalized load models using constrained
optimization, exmploys a companion routine, CALMOM, to compute statistical moments
of a given data set. The routine CALMOM uses Equations A.1 thru A.4 to estimate
the quantities o, by p3?, a3 by us/(ui®), and a4 by ps/(u3). Because these vary
nonlinearly with p,, they may still contain some bias although the p, estimates do

not.

For example, if we fit a Gumbel model to the 19 wave height data from Section
3.3.4, the true skewness and kurtosis values are 1.14 and 5.40. However, simulating
10000 data sets of size n=19 and running each through CALMOM, we find on average
the skewness 0.79 and kurtosis 3.89 (Winterstein and Haver, 1991).

To address this problem, the FITTING routine has an automatic check for remain-
ing bias through simulation. After FITTING constructs a distribution with moments
from the input data, many similar data sets (of identical size) are simulated from
this distribution. If the moments predicted from CALMOM differ appreciably on aver-
age from the input values, new theoretical estimates of the moments are constructed.
This estimation-simulation loop is continued iteratively until satisfactory convergence

is found.

Figure A.1 shows the effect of enabling this “unbiased” option and disabling it
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Figure A.1: Effect of Ignoring Bias: Wave Height Example.

(using “raw” moments from CALMOM directly) for the generalized Gumbel model pro-
duced for the example given in Section 3.3.4. There is relatively little difference
found in these cases. Larger effects may be found for cases of (1) fewer data and/or
(2) distributions with broader tails.
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