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Abstract

Over the past several years, we have performed experimental studies focused on understanding
small-scale flow processes within discrete fractures and individual matrix blocks; much of the
understanding gained in that time differs from that underlying the basic assumptions used in
effective media representations. Here we synthesize the process level understanding gained from
our laboratory studies to explore how such small-scale processes may influence the behavior of
fluid flow in fracture networks and ensembles of matrix blocks at levels sufficient to impact the
formulation of intermediate-scale effective media properties. We also explore, by means of a
thought experiment, how these same small-scale processes could couple to produce a large-scale
system response inconsistent with current conceptual models based on continuum representations
of flow through unsaturated, fractured rock. Based on our findings, a number of modifications to
existing dual permeability models are suggested that should allow them improved applicability;
however, even with these modifications, it is likely that continuum representations of flow through
unsaturated fractured rock will have limited validity and must therefore be applied with caution.

Introduction

Fluid flow in unsaturated, fractured rock is currently being studied with respect to the siting of the
nation's first high-level radioactive waste repository. Spatial scales associated with this problem

~ vary from meters to kilometers, with temporal scales ranging from months *o tens of thousands of
years. Because such scales often preclude direct physical exploration of system response and
detailed site characterization, we are forced to use our understanding (or misunderstanding) of the
underlying physical processes to predict large scale behavior. For this reason, it is essential that
conceptual models used as the basis for prediction be firmly grounded in physical reality.

The unique aspect of flow and transport through unsaturated, fractured rock is that two systems
(fractures and matrix) exhibiting vastly different hydraulic behavior are present within the same
domain. In both systems, assuming thermal-mechanical-geochemical effects to be negligible, fluid
flow is primarily governed by capillary, gravity, and viscous forces, the effects of which are
relatively well understood in unsaturated porous media (i.e., matrix). As a result, virtually all of
our process-related uncertainty is associated with the incorporation of fractures into the system.
This uncertainty is unfortunate, as the physical nature of fractures (relatively large, open,
connected void spaces) implies that they will dominate system hydraulics whether they are flowing

(conduits) or not (barriers).

We are confronted with two primary sets of questions concerning flowing and non-flowing
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1) Under what conditions will fractures conduct flow? When they do flow, how fast, over what
distance, and how will matrix interaction affect fracture flow? Can properties for individual
fractures be modeled and measured? Can "effective" property models for the fracture network
be formulated? If so, at what scales?

- 2) When fractures do not flow, how do they constrain flow in the matrix (capillary barriers)? Can

.. ~.these-constraints be incorporated into "effective" property models for the fractured matrix?

In addition to process-related uncertainty embodied in these sets of questions, we are also faced

'with limited data on material properties (hydraulig and geometric) at all scales. This lack of data

makes the understanding of fundamental underlying processes all the more important in order to
place bounds on expected behavior.

A number of authors have contributed to the development of conceptual models for flow and
transport through unsaturated fractured rock (e.g., Wang and Narasimhan, 1985; Evans and
Nicholson, 1987; Pruess and Wang, 1987; Peters and Klavetter, 1988). However, the paucity of
experimental data forced these, and subsequent authors, to make many assumptions that have
oversimplified the influence of fractures (Eaton et al., 1990). In an effort to explore the validity of
some of these assumptions, a laboratory research program was initiated at Sandia National
Laboratories in 1991 (for a full description see Glass and Tidwell, 1991). The laboratory research
program is directed toward developing and testing the validity of macroscopic, continuum-based
models and supporting effective property models because of their widespread utility within the
context of the Yucca Mountain Project. In order to pursue these goals, physical experimentation is
integrated with conceptual model formulation and mathematical modeling.

In this paper, we consider results of our laboratory experiments that elucidate isothermal, small-
scale processes within the plane of single fractures and within discrete matrix blocks. Our intent is
not to review, but to illustrate some of the implications of these recent results with respect to flow
in fracture networks, ensembles of matrix blocks, interaction between fractures and matrix, and
consequently the formulation of intermediate-scale effective media properties. To stimulate "cross-
scale" discussion among researchers on this project and with practitioners responsible for applying
models to assess the performance of the natural barriers at Yucca Mountain, we also present a
thought experiment in which small-scale processes interact to create a large-scale system response
that is very different than that predicted by current unsaturated flow modeling. Implications of the
thought experiment are far reaching and demonstrate the need within the Yucca Mountain Project of
an integrated, multi-scale approach for model development and validation.

Small-Scale Processes in Single Fractures and Individual Matrix
Blocks

Ultimately we are concerned with flow and transport at the large-scale, or mountain-scale as in the
case of the Yucca Mountain Project (see Jfigure 1). Currently formulated continuum models for
flow in unsaturated, fractured rock require the division of the rock formation into a number of
smaller scale grid-blocks for which effective properties are defined (e.g., Arnold et al., 1994, see
Jfigure 2). Properties of individual grid-blocks necessarily integrate over sub-scale processes and
features. Proper application of continuum models requires that the uncertainty associated with the
underlying assumptions at the grid-block-scale be evaluated, and if possible reduced. It is
therefore necessary to bound the validity of effective continuum conceptualizations and within
those bounds, develop improved conceptual models for defining grid-block-scale effective
properties through consideration of sub-scale processes. In this section, we explore recent
advances in understanding the small-scale processes which govern unsaturated flow in discrete
fractures and individual matrix blocks and that must be properly integrated into larger grid-block-
scale effective media properties.
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Discrete fracture processes

In fractures, as in porous media, geometry of the connected fluid phase will control the system
hydraulic properties at Darcian flow velocities. Under fully saturated conditions, the hydraulic
properties of an individual fracture in any given direction will be defined by the aperture geometry.
However, for unsaturated flow, geometry of the flowing phase (phase structure) will differ from
the aperture geometry (see figure 3). It is therefore necessary to carefully understand the
processes that control distribution of the phases along the fracture plane.

For most natural gradient conditions in unsaturated, fractured rock, viscous forces will be small
with respect to capillary and/or gravitational forces. Under such conditions, wetting-phase
invasion of a horizontal fracture plane is controlled by capillary forces and phase accessibility.
Complicated phase structures containing significant entrapped air form regardless of whether water
enters the fracture from the fracture edge (Nicholl and Glass, 1994) (see figures 4a,b); or from
the matrix via contact points (Glass and Norton, 1992) (see figure 5). For both these situations,
significant hysteresis in the pressure-saturation relations and phase structure have been measured
(see figure 6). In experiments demonstrating air entrapment during in-plane wetting-phase
invasion, fracture satiation was reached at saturations (S) of 0.6 to 0.7, with an associated increase
in flow channelization (see figure 7) and decrease in fracture relative permeability (kr) to less
than 20% of the saturated value (Nicholl and Glass, 1994) (see figure 8).

Invasion percolation theory with phase trapping in two-dimensional networks (e.g., Wilkinson and
Willemsem, 1983; Glass, 1993) suggests a well defined percolation threshold pressure exists for
each phase when fractures are much larger than the correlation length of the aperture field (where
the field behaves as a random network). At pressures above this threshold, one phase spans the
system and fully entraps the other; this preclusion of a bi-continua creates a satiated condition (see
JSigure 9). For fractures smaller than the aperture correlation length, the percolation threshold
pressure will be a function of aperture structure, and for highly anisotropic aperture fields, a
directional bi-continua can exist (e.g., Pruess and Tsang, 1990). Relative permeability as a
function of saturation is therefore expected to approximate a step function; finite above the
percolation threshold, and zero below, with an abrupt transition region. Percolation theory also
predicts a fractal nature for the entrapped structure; the existence of phase structure at multiple
scales implies a scale dependence for satiated fracture permeability (inverse with scale). Such scale
dependence is expected even where the correlation length of the fracture aperture field is much
smaller than the fracture size (fractal structure of the aperture field is constrained below this

length). ,

The dissolution or evolution of entrapped phase within the fracture alters phase structure (see
Jigure 10). Gas depleted water dissolves air from the entrapped phase, increasing fluid
saturation (and relative permeability) while supersaturated water evolves gases with opposite
results. The gas exchange process proceeds at a rate dependent on the fluid flow rate, gas
diffusion rate, and the gas concentration gradients within the water surrounding the entrapped
bodies. These quantities in turn are defined by the phase structure and position within the flow
field. Specific changes to the phase structure from gas dissolution are driven by accessibility
concerns coupled with the initial entrapped phase structure and hence will not necessarily drive the
system towards a unique equilibrium structure (e.g., Glass and Nicholl, 1995) (see figure 11).

When fluid supply is insufficient to support gravity-driven saturated flux, gravity-driven “fingers”
are expected to form in non-horizontal fractures (see figure 12 ). Resulting wetted structures will
be relatively compact and oriented along the gravitational gradient (Glass, 1990). In an initially dry
fracture, gravity-driven instability is triggered by reversal of the capillary gradient at the cessation
of ponded infiltration (see figure 13). Linear stability theory (Saffman and Taylor, 1958) has




been used to analyze the breakup (instability) of a planar front advancing downward in porous
media and smooth walled fractures (i.e., Hele-Shaw cells). However, since fluid is never supplied
uniformly in nature, fingers resulting from the cessation of ponded infiltration in rough-walled
fractures (see figures 12-17) will be primarily defined by inflow boundary irregularities (finite
amplitude perturbations) yielding finger widths different from those predicted by linear theory in
either initially dry (Nicholl et al., 1992, 1994) or pre-wetted fractures (Nicholl et al., 1993b).

Instability of an advancing planar front is not required to form gravity-driven fingers. Where
steady flux to a fracture is less than the gravity-driven saturated flux, fingers are expected to form
(Nicholl et al., 1994); initiating from local heterogeneities (point connections) along the fracture's
upper boundary (see figures 18-20). Point sources abound in individual fractures and fracture
networks: wetted regions and contact points where water will enter the fracture from the matrix;
low points along fracture intersections; irregularities in water inflow to a fracture or fracture
network. The velocity (see figure 21) and width (see figure 22) of individual fingers
initiated from single point sources are dependent on supply rate, fracture conductivity, and fracture
inclination (Nicholl et al., 1993a). Steady supply does not necessarily imply steady flow, as
desaturated regions behind advancing finger tips have been observed to display intermittent and
possibly chaotic behavior (see figure 23).

Initial moisture content within a fracture has a significant impact on finger behavior. Fingers tend
to follow existing wetted structure (see figure 24), leading to persistent pathways for successive
events (Nicholl et al., 1993b). In contrast to observations in porous media (Diment and Watson,
1985), initial moisture at the residual value does not necessarily stabilize fracture flow (see figure
25) (Nicholl et al., 1993b). Under uniformly moist initial conditions, gravity-driven fingers are
observed to be faster (see figure 26) and narrower (see figure 27 ) than in an identical, but
initially dry system. Thus, for unsaturated flow in non-horizontal fractures, gravity-driven finger
structures are expected, as long as fracture width exceeds that of the finger (a function of supply
rate, inclination, and fracture permeability).

We can assemble this understanding to postulate the behavior of relative permeability for single
fractures that are significantly larger than their aperture correlation lengths and in the case of
vertical fractures, the expected minimum finger width. At horizontal orientations, relative
permeability will be a discontinuous function of saturation; zero at pressures below the percolation
threshold and then jump to the satiated value. Fracture satiation, and hence permeability, will be a
function of wetting history and boundary conditions, as well as an inverse function of fracture
extent. If saturations above the percolation threshold are reached through gas dissolution, then
relative permeability will follow a power law relationship (kp~S™) where n likely equals 4 or higher
(Glass and Nicholl, 1995) (see figure 8). In the vertical case, the influence of gravity is
expected to produce an oriented phase structure that fully samples the aperture distribution; under
such conditions, relative permeability will follow fracture saturation (kr~S) with no fixed lower
limit. The compact nature of fingers implies that fracture satiation, and thus satiated relative
permeability, may be an increasing function of gravity; further exacerbating permeability
differences between vertical and horizontal fractures (see figure 28). Also in contrast to
horizontal fractures, gravity-induced anisotropy due to fingers suggests that simultaneous vertical
flow of both phases will occur across a wide range of saturations, while horizontal flow may be
restricted. As a further complication, relative permeability for all fracture inclinations will be a
hysteretic function of pressure.

Discrete matrix block processes: A

In fractured systems, the porous matrix is composed of a series of blocks either fully or partially
separated from their neighbors by bounding fractures. In unsaturated, fractured systems, the




matrix acts either as a buffer to flow when fractures are conducting, or as the primary flow path
when they are not. For both of these behavioral modes, discrete matrix block processes are
controlled by the external connections to other blocks or fractures (the fracture wetted structure)
and the internal block property field. :

In its buffer mode, matrix blocks imbibe (supply) water from (to) fractures depending on the
pressure gradients existing between the fracture and the matrix. The pressure gradient is a time
dependent function of matrix block and fracture properties, flow geometry, and the initial
conditions (or pressure history). For imbibition, the ratio of flux through the fracture to flux from
the fracture into the matrix controls the gross behavior of the system. When this ratio is small
(high permeability and/or low initial saturation of the matrix) the penetration of water into the
matrix can keep pace with the penetration of water down the fracture (see figure 29).
Conversely, when this difference is large (low permeability and or high initial saturation of the
matrix) fracture flow is rapid accompanied by slow, relatively uniform wetting of the matrix
normal to the fracture (see figure 30) (also see analysis by Nitao and Buscheck 1991; Martinez,
1988).

As discussed in the previous section on discrete fracture processes, it is likely that the formation of
complicated phase structures within the bounding fractures will preclude uniform wetting of the
periphery of matrix blocks. In general, matrix imbibition will be proportional to wetted surface
area; however, the associated functional relation will not be linear (1-D flow from a fully wetted
fracture plane will transition to 2- or 3-D as the wetted area decreases thus increasing the imbibition
rate per fracture cross-sectional area) (Tidwell et al., 1995). In addition, the overall matrix block
geometry influences imbibition through both the surface area to volume ratio and the degree of
convergence/divergence imparted to the within block unsaturated flow field (Zimmerman et al.,
1990; Zimmerman and Bodvarsson, 1995). In general, geometries characterized by high surface
area to volume ratios will have higher imbibition rates (high surface area and low flow
convergence) than those with lower ratios. If the time scale for the redistribution of water into and
within the matrix following a transient water pulse within the fracture is longer than the time
between the pulses, non-uniform saturation encountered spatially within the fracture and along the
matrix surface will lead to the persistence of fracture wetted structure. The higher local initial
saturation within the matrix leads to a much reduced gradient driving flow and hence further
reduced matrix imbibition in these zones.

The presence of altered permeability zones along the edge of matrix blocks (e.g., fracture coatings,
mat.ix alteration) influences matrix imbibition (Chekuri et al., 1994; Thoma et al., 1992).
However, detailed knowledge of the internal matrix block properties and their precise spatial
variation has little impact on the modeling of overall matrix imbibition. In comparing a physical
matrix imbibition experiment with numerical simulations using five different hydraulic property
fields of increasing complexity (see figures 31-33) it was found that relatively little detail is
required to capture salient flow features (Glass et al., 1994). In fact, the effective block hydraulic
parameters were noted to closely predict the mean position of the wetting front (see figure 33).
Similarly, the matrix sorptivity (a hydraulic property which quantifies matrix imbibition processes)
exhibits orders of magnitude less variability than the hydraulic conductivity (Tidwell et al., 1995)
(See figure 34).

The effective properties of a discrete block, are dependent on its internal variability in some average
sense. Characterization of this variability is a formidable task as these effective properties are scale
dependent. According to permeability measurements made on volcanic tuffs from Yucca Mountain
(see figure 35) the mean and variance dramatically decrease with increasing sample support
(volume) (see figure 36), while the correlation length scale increases in proportion to the
characteristic length of the measurement (see figure 37) (Tidwell, 1995). For these volcanic
tuffs, up-scaling rules needed to move from the core sample scale to the discrete matrix block scale
must account for the prevalent bi-modal permeability distribution in which one mode is associated
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with the groundmass and the other mode associated with the more porous fraction of the medium
(i.e., pumice, lithics, and lithophysae). Because of these two modes, the effective permeability
will scale as a function of the groundmass/porous fraction ratio and the interconnectedness or
networking of the porous fraction. Where this ratio and networking are high, the effective
saturated permeability will significantly exceed the arithmetic average of the core scale
meastrements. Where the ratio and networking are low, the permeability will approach that of, or
below the groundmass. Finally, since air entrapment within matrix blocks is likely to occur
whenever the largest pores in the medium are poorly connected across the system, satiated values
of the permeability may be as much as an order of magnitude lower than the scaled saturated
permeability depending on the satiated saturation and slope of the relative permeability curve.

Implications for Formulation of Grid Block Scale Effective Media
Properties

At the grid block scale, composite-continuum models (e.g., Peters and Klavetter, 1988) require
definition of a single effective media property that describes the combined behavior of both
fractures and matrix (see figure 2b). The assumptions inherent in this approach (e. g., pressure
equilibrium between fractures and adjacent matrix) make it most suitable for steady-state, uniform
boundary condition flow. To model the highly non-equilibrium situations of importance for
evaluating many scenarios for total system performance assessment at Yucca Mountain (see Barr et
al., 1995), dual-continua models are presumed to be more applicable. Dual-permeability models
(e.g., Kazemi and Gilman, 1993) require definition of separate effective media properties for the
fracture network and ensemble of individual matrix blocks within each grid block, as well as a
transfer function between the two continua (see figure 2d). For computational expediency, it is
often assumed that flow through the matrix continua is negligible, allowing inter-block connections
to be severed (dual-porosity model, Warren and Root, 1963) (see figure 2c). In the previous
section we discussed current understanding of small-scale processes acting within discrete
fractures and matrix blocks. Here we focus on dual-continua models and consider the impact of
these processes on the relative permeability of fracture networks and ensembles of matrix blocks,
and fracture-matrix interaction as required by these models.

Fracture network permeability

At this time, experimental and numerical investigations of flow through unsaturated, fractured rock
performed above the scale of an individual fracture, have not been designed to consider the discrete
fracture behavior discussed above. Thamir et al. (1993) conducted an experiment in a fractured
block that was not designed to allow measurement of such fracture behavior. Kwicklis and Healy
(1993) have numerically studied the permeability of a 2-D network of fractures; however, the
pressure/saturation and relative permeability relations used for the fractures did not incorporate
satiated limits, hysteresis, or gravity-driven fingering in non-horizontal fractures.

The primary uncertainty to be addressed regards potential averaging of discrete fracture properties
by the network. It is unknown at this time if fracture networks will behave similar to 3-D porous
media and smooth out flow heterogeneities that dominate 2-D systems such as individual fractures.
If we assume that the fracture network is in some sense pervasive and fully averages the discrete
behavior of individual fractures, we can use the directional behavior of fractures in the gravity
field, as discussed above, to approximate at first order an anisotropic fracture network
permeability. However, gravity-driven fingers tend to merge in individual fractures and thus, the
possibility of finger confluence at larger scales within the fracture network itself must also be
considered. Fracture intersections could cause the confluence of fingered flow (much as we see in
the laboratory when the bottom boundary of a fracture is left open to the air) with the formation of
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much stronger, more conductive fingers below (see figure 38). By analogy to studies in porous
media (Glass et al., 1989; Glass and Nicholl, 1996), assuming the system evolves to pressure
potential equilibrium in the horizontal, hysteretic response of fractures during fingering would limit
the transfer of fluid from the finger both within the fracture plane and through the matrix to other
fractures (see figure 39). '

Matrix block ensemble permeability

Matrix flow for an ensemble of blocks will ultimately depend on hydraulic connection of individual
matrix blocks across the fractures (see figure 40-42). For dry fractures, connection between
adjacent matrix blocks is controlled by the inter-block contact points. Limited contact area severely
restricts connectivity, and hence, reduces permeability of the ensemble. In partially-saturated
fractures, fracture wetted structure (as discussed above) defines connection between matrix blocks,
introducing a tortuosity term for matrix-matrix communication much different than that suggested
by Wang and Narasimhan (1985). Blocks will have much less connection across vertical fractures
due to fingering in the fracture plane than across horizontal fractures where the connection will
most likely be fractal due to entrapment of air. Since fractures display strong hysteretic response to
changes in matrix pressure, fractures at all angles are likely to form complicated sets of capillary
barriers greatly constraining the transmission of flow from one fracture to other fractures and the
matrix beyond (see figure 41-42). The end result may allow formation of a preferential flow
structure defined primarily by it's dynamic history rather than by heterogeneity in the material
properties.

Fracture-matrix interaction:

Formulation of the transfer function embodying fracture-matrix interaction must include the local
pressure gradient between the fracture and the matrix, matrix hydraulic properties (discussed
above), and a term that defines the area across which the fracture and matrix continua communicate
(i.e., connected wetted fracture area). The local pressure gradient and matrix properties are defined
primarily by the initial saturation of the matrix. Where the matrix is near satiated, the pressure
gradient and sorptivity will be small, hence little imbibition will occur. At any particular pressure,
processes such as air entrapment and gravity driven fingering work to reduce wetted area within
single fractures (see figure 43) and the fracture network, to fractions as low as 0.01 to 0.001 of
the total fracture area. The transfer function under such conditions must account for the 2- to 3-D
nature of matrix imbibition as well as the complex wetting history of both the matrix and fracture
network. Armoring of fractures by mineral precipitates (Chekuri et al., 1994; Thoma et al., 1992)
may work to reduce communication even further. From a combination of these reductions in
permeability and wetted area, matrix imbibition may be reduced by as much as 4 to 5 orders of
magnitude from what would be calculated using state of the art, dual continua models such as
TOUGH2. Unfortunately, matrix imbibition has yet to be investigated under these combined
expected conditions.

Large-Scale System Behavior?

A major limjtation of current effective continunm models for flow through unsaturated, fractured
rock, is that focusing of flow and the associated formation of rapid transport pathways can only
occur if significant (and perhaps unphysical) heterogeneity is inserted within the system model
(e.g., Bodvarsson et al., 1994; Arnold et al., 1994). Abowve, we have discussed mechanisms that
would permit formation of significant transport pathways within individual unsaturated fractures
and fracture networks. These mechanisms initiate flow features smaller than the typical grid-block-




scale (where effective properties are defined) that may network and form connected flow conduits
at larger scales. The creation of these features within an unsaturated, fractured rock mass would be
primarily process driven, and could occur in a system showing no heterogeneity at the grid-block-
scale. In this section we use a simple thought experiment to demonstrate our point; noting that this
is only one of many possible combinations of assumptions that must be considered. We then
provide observations from natural systems which offer evidence consistent with the outcome of
this thought experiment.

Thought experiment

Consider a fractured rock unit of low matrix permeability/porosity that is dissected by a well
connected fracture network with no specific preferential orientation. We assume that individual
fractures exhibit an uninterrupted spatial extent that is both larger than the expected finger width
and significantly larger than the aperture correlation lengths. As an initial condition, we assume
that the fractures are dry and that the matrix is in a satiated state throughout the domain. The
thought experiment begins by introducing steady flow at numerous discrete locations in the fracture
network that are distributed along a horizontal plane passing through the system (e.g,, non-
uniform leakage from a perched zone or steady recharge focused into point sources by
heterogeneity along a material boundary). The localized flow rates at the top input boundary are
assumed to be high enough that the local potential gradient through the surrounding satiated matrix
is unable to conduct the steady flow.

Gravity-driven fingers develop in inclined fractures near the input locations. Due to the hysteretic
response of the fractures, once formed, these fingers persist. Fingered flow reduces interactions
with the matrix blocks and fracture hysteretic response constrains the ability of the matrix to
transmit fluid to other blocks and fractures. Thus, dissipation of the fingers via matrix imbibition
and flow is severely limited. Heterogeneities in the fracture system (aperture, surface wettability,
horizontal and sub-horizontal fractures) act to alter finger path, increasing the probability of finger
contact and merger. Upon intersecting a large aperture fracture that the finger cannot enter, the
finger will be deflected by the capillary barrier and stop at its lowest point. Other fingers within the
catchment zone of this barrier will merge above the barrier and feed into a confluence zone above
this low point. The pressure within this local tension-satiated confluence zone builds until the
water entry pressure of the barrier fracture is reached. Flow then crosses into the barrier fracture at
one or at most a small number of discrete points from which fingers form and continue downward
t¢, the next barrier/confluence zone. The process of merger due to the barrier/confluence
mechanism allows the focusing of distributed flow sources into a small number of strong flow
paths through the unsaturated, fractured rock mass.

It is important to note that the system-scale preferential flow paths described here are determined by
the networking of small-scale processes (gravity-driven fingering, hysteretic fracture response, and
barrier/confluence mechanisms). While we have observed the individual processes in the
laboratory, experiments have not been conducted to verify the postulated networking. However,
assuming this to be correct, the formation of large-scale preferential flow paths does not require
any particular media or fracture network heterogeneity structure to be present. Therefore, spatial
location of the primary flow paths may move in response to some system perturbations (ie.,
excavation induced alteration of the stress field, climate change, tectonic activity) while remaining
invariant under others (i.e., weather patterns). However, once a structure forms, over time it may
alter system properties through geochemical processes to determine either its persistence or
extinction in time. As currently formulated, continuum based models would dissipate flow from
the point sources along the top boundary of our thought experiment, unless focusing is forced by
significant material heterogeneity. Arbitrary definition of preferential flow structures through
heterogeneous material properties creates features that may be unphysical; that are not expected to
‘respond to system perturbations in the same manner as those created by the coupling of small-scale
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flow processes as described in this thought experiment; and that may either over or under estimate
the focused flux of fluid within the system. Furthermore, without the proper mechanism for
advective transport, predictions for transport (including those incorporating dispersion, adsorption,
ion exchange, etc.) will be based on an erroneous foundation.

Reality of thought experiment

Insufficient data are available at this time to refute our postulated large-scale system behavior; in
fact, the outcome of our thought experiment is consistent with observations af a number of natural
fractured, unsaturated rock systems. The presence of localized fracture flow within otherwise
unsaturated media is commonly encountered throughout the western United States. Specifically,
flowing fractures located ~350 m below ground surface have been investigated at Rainier Mesa on
the Nevada Test Site. Results suggest rapid fracture flow leading to travel times from the surface
on the order of months to a few years (Russell et al., 1987). Similar studies are being performed
on a series of flowing fractures located in a mining portal near the Apache Leap Site in Arizona
(Bassett et al., 1994).

At Yucca Mountain, Nevada, saturation data suggest that many of the fractured welded units are at
saturations above 0.6 at depth (A.L. Flint, personal communication, 11/29/94). Since satiated
values for welded tuff have been found to range from 0.4 to 0.9 (E.M. Kwicklis, personal
communication, 11/29/94) these units may be very near or at satiated saturations, thus greatly
limiting matrix absorption of fracture flow as we assumed in our thought experiment.

Geochemical data (CI36, tritium, C!4) collected at Yucca Mountain to date have provided evidence
for possible rapid movement of some water within the unsaturated fractured rock. Liuetal.,

(1995) reports bomb pulse chlorine CI36 at depths of over 350-450 m below surface. Locally

elevated levels of tritium (420-430 m below surface) and C14 (369-435 m below surface) also
indicate the presence of modem water at depth at Yucca Mountain (I.W. Yang, personal
communication, 11/29/94). While other causes for elevated concentrations of these elements are
under evaluation, the fact that all three are found at depth is highly suggestive of rapid flow paths.

Currently accepted effective continuum models for flow in unsaturated, fractured rock do not
support such rapid water movement without including extreme heterogeneity and boundary
conditions. The combination of heterogeneity and boundary conditions could be considered to
form a competing hypothesis to that proposed in onr thought experiment above. It is most likely,
however, that heterogeneity, boundary conditions, and small-scale processes all combine to focus
flow at the system scale. Because system response to perturbations (boundary conditions) will be
dependent on the relative importance of heterogeneity and processes, it is important to resolve the
significance of each. To test the relative importance of each in forming preferential flow structures
within unsaturated fractured rock will require carefully designed physical experiments and
numerical simulations at a variety of scales and sites.

Conclusion

In order to formulate conceptual models for flow and transport through unsaturated, fractured
rock, we must consider the processes affecting system response at a variety of scales. Small-scale
(time, space) experimentation and analysis provide fundamental understanding of flow and
transport processes. Coupling of these processes in a complex physical system yields
hypothesized system responses that can be tested through intermediate-scale physical experiments
and numerical simulations that explicitly include small-scale processes. At large scales,
observations of both the natural system of interest and natural analog systems must be explored in




the context of both small- and intermediate-scale understanding, with an ultimate goal of firmly
grounding predictive models in physical reality.

To date, this approach has been only partially implemented within the Yucca Mountain Project.

Here we have synthesized our current understanding of small scale processes as determined from
laboratory experimentation and hypothesized system responses at intermediate and large scales. As
the hypothesized responses differ significantly from the effective media models currently used in
performance assessment calculations, numerical simulations must be formulated and conducted to
test these hypotheses. In the past, testing such hypothesis would not have been possible, as
numerical tools capable of explicitly incorporating fractures at arbitrary angles into a participating
matrix are only now becoming available (e.g., Zyvoloski et al., 1995). In addition, planned field
tests for the ESF must be evaluated to determine if they are still well founded and capable of
resolving these flow mechanism issues.

Our current understanding suggests several simple modifications to dual permeability models that

can be made and evaluated with respect to model sensitivity:

* satiated permeability for a fracture network is anisotropic and given by the saturated value in the
vertical direction and the satiated value in the horizontal (approximately 0.2 of saturated value)

* relative permeability of the fracture network is anisotropic and of the form illustrated in figure
28

* matrix ensemble permeability for satiated fractures and matrix is anisotropic and given by the
satiated value (order of magnitude reduction) times the cross-sectional fracture area open to
flow (approximately 1.0 for vertical and 0.6 for horizontal)

* matrix ensemble permeability for satiated matrix and dry fractures is reduced dramatically to
account for reduced cross-sectional area open to flow across the fracture and enhanced
tortuosity. This will be anisotropic with less contact area for vertical fractures and more for
horizontal fractures due to stress loading with depth, except possibly in the near field and
thermally disturbed regions.

* fracture matrix interaction terms must be modified to account for reduction in fracture wetted
area. This term also must be anisotropic with higher values for horizontal fractures and lower
for vertical fractures.

Preliminary dual-permeability modeling with a reduction by two orders of magnitude in the fracture
wetted area have shown significant influence on flow velocities and travel times (Ho, 1995).
Implementation of the full list of modifications above will alter flow and transport substantially
beyond that predicted by the preliminary study. However, even with this and the other
modifications listed above implemented, it is highly questionable whether dual permeability models
will be able to truly represent flow in unsaturated fractured rock for the many scenarios required by
the Yucca Mountain Project without complete reconceptualization. Small-scale experiments
suggest that the permeabilities of each continua, the fractures and the matrix, are coupled to create
local behavior that is not easily represented at a larger grid-block-scale. This coupling cannot be
fully accounted for in dual permeability model's interaction term. Fractures that are not flowing
below the grid block scale form local capillary barriers to flow in the matrix continua. In addition,
hysteretic response acting differentially in the fracture network within a single element cannot be
represented. In the thought experiment we further extrapolate the essence of this small scale
understanding past the intermediate to the large scale. Our end result hypothesizes the formation of
preferential flow structures at a variety of scales and defined by dynamic history.

It must be emphasized that physical experimentation has not yet been designed or conducted to test
our hypothesized intermediate- and large-scale system responses. Based on our experience in
designing and conducting experiments, it is our view that such experimentation would not be
overly difficult or expensive to undertake. It is also our view that since the implications of these
hypotheses for the behavior of Yucca Mountain as a potential high-level waste repository are
profound, that such tests must be designed and conducted in the future., Until such time, the ability
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of all continuum based numerical modeling to adequately predict flow and transport in fractured,
unsaturated rock is questionable. In addition, since our current synthesis excludes the coupling of
thermal, mechanical, and geochemical processes to the hydrologic processes, we contend that
analyses in these other areas where hydrologic processes are important are also of questionable
validity.
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Figure 7: Channelization of fracture flow induced by the entrapped phase structure: The effects of phase structure on flow channelization are considered
in a horizontal, statistically homogenous (see Figure 3) analog fracture (30 by 15 em) with no flow boundaries on the long sides, and full-width inflow/outflow
manifolds on the short sides. Dyed water in the analog fracture is displaced by pure water to visualize flow processes within the complicated entrapped phase
structure formed by non-equilibrium phase invasion (see Figures 4a, 4b-top, and 5); a sharp transition between fluids is accomplished by flushing the inlet
manifold prior to entry of the clear water. Flow path tortuosity induced by the entrapped air phase occurs at scales significantly larger than that of the aperture
field correlation length (0.07 cm). Note the "dead zones" that are connected to the flowing phase, but participate solely through diffusional processes; thereby
acting to extend the tail of the residence time distribution (RTD) curve (Nicholl and Glass, 1994).
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(Sw = 0.66, k; = 0.16)

Figure 4b: Wetted structure formed by invasion from the fracture edge: The effects of phase
invasion history on relative permeability are considered in a horizontal, statistically homogenous (see
Figure 3) analog fracture (30 by 15 cm) with no flow boundaries on the long sides and full-width
inflow/outflow manifolds on the short sides. Top - Air invasion of the water saturated fracture to
breakthrough is followed by steady flow of water (black); resulting in large, complicated, and well-
connected entrapped air structures (blue). Bottom - Drainage of the water saturated fracture to
residual through application of suction, followed by steady water flow creates a much more uniform
entrapped phase structure. Although phase structures for these two cases differ significantly, water
phase saturation (§ ) and relative permeability (k ) are similar. However, solute transport properties
will be radically different; channelization in the ore complicated structure (top) shortens first arrival
tir]ne, wtglge;1 dead zones will act 10 extend the tail of the residence time distribution curve (Nicholl and
Glass, 1994).
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Figure 3: Fabrication of a reproducible, statistically homogeneous rough-walled analog fracture: A test cell (a) is used to hold the two halves of an
analog fracture (size of up to 50 x 100 cm). Data is captured by passing light through the analog fracture and measuring changes in intensity induced by
fluids within the aperture field (air, water, dye, sucrose solutions). Acquisition of data in this manner requires that the analog be transparent or translicent;
appropriate materials include textured glass plates, flat glass plates, and replicas of natural or machined fracture surfaces cast in transparent epoxy. In order
to eliminate warpage of the fracture surfaces, and thus assure a repeatable aperture field, a confinement pressure (typically 20 psi) is applicd normal to the
fracture plane (see figure for location of pressure reservoirs). A statistically homogenous aperture ficld is formed by using plates of commercially available
textured glass for each half of the fracture. The resultant experimental fracture is orders of magnitude larger in lateral extent than the aperture correlation
length and thus is considered statistically homogeneous at the macroscopic scale; a small segment of the aperture field is shown for illustrative purpases (b).
Measured hydraulic properties of the analog fracture are consistent with those reported for natural fractures (4 = 0.0084 - 0.0462 ¢m and Ks=1.14-14.0
cnys) by Hakami (1989) and the mean apertures (0.012 -0.541 cm) reported by Snow (1970). Aperture measurement requires clear and dyed fluids with
index of refraction matched to that of the analog fracture. Lambert's law for light absorption is then applied on a pixel-by-pixel basis to images of the
fracture filled with each fluid; the results compare well to measurements (c) based on laser profilometry (Glass, 1993; Nicholl and Glass, 1994),
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115 minutes o b) t= 233 minutes ¢) t =355 minutes

a) t

Figure 42: Capillary barrier formed by a vertical fracture: Regardless of orientation (compare
with figure 41), unsaturated fractures have a significant influence on ensemble matrix block flow.
The fracture-matrix system shown here is composed of four voleanic tuff slabs (each measuring 50

spanned the ‘fracture; relative saturation (0 to 1) is depicted by the standard color bar (black (0)-blue-
green-yellow-red(1)). Images were collected at (a) 115, (b) 233, and (c) 355 minutes after initiation
of flow. .

= 22 tvert wop harte




e i) )y

(1661 ‘IIomp1], pue ssejn) 24MORY D1 Pass0.d sey Jajem [eunui 1ok ‘suonIpuod

pajLINIES Judu sayaeds xtnew saddn oy (p) pue ‘qe|s a1 jo apis yaj oy Jeou 9IndBY $S0108 syedlq Jajem pue saseatoul uonelnies

XLt (q) ‘mopy yooq XLew-10)ut siuoadsd aanioeyy pojesmiesun ay1 (e) yj .:_%8-30__ox-coew-o:_iov yo8[q) Jeq Jojod piepueis o)

Aq paridap st (] o) 0) uoneanies sanejaa ‘spjoy MO)J Judisuess oy a8ewn £joanenjenb oy pasn sem uolsstiusuen W31 a1ym yoo|q x1ew
Jaddn ayy o1 poryddns sem PIBA "oamdel) pajiem y8nos e £q uaxouq (outr anym oy £q pareaurjop ‘wo 90 49 01 £q ¢1) aneyd ssejd patojuls
€ JO posodwiod s1 umoys wajsks XLljew-a1nidoey ay [, "a19y umoys se samoely £1p jo aouasaid oy Aq paiotnsas Kpeold aq ued Ayjiqeattod
9014 9|qUIdSUD 20U puk UOIIBIIUNWILIOD 490]q XLew-Ig1u] saanyoeay IFJUOZLIOY JB3U B AQ pauwntof JaLLIRq Asejide) 1y aungds A

“aImory

PRt Y opye s Moo
TN N St fawana N8 K

(221108)




(sonio1 320qu01) 0y

O1qUasu §00[q XLjew oY) Jo Lij1qeatnsod aAle[o1 Suonpar £qa10u) paonpui st A31son1103 o1dodsolorw
€ 083109 Jo eale oy unownsal Ag ‘sosnyade wo_E._SmBSmEmoaHoscogfoﬁ_o%mofmmouo:_a Boc

U2omiaq moy 03 s1ateq Liefjides se o8 [jim samoey

pajelmestf) :u0132auL0d }20[q-19)ul pagiuy| £q paonpui

*$)j00[q X11jeW JuvoE(pe
Aysonjaog, :op aanSiy




{s33 fpw 13 srmAy)"¢¢

uoneInjeg

0l 00 0T

(9661 “lIOYIIN PUE SSEID ‘6861 “Ie 19 SSE[D) AM[IqEIsUT UDALIP-ANALIS
OM} 918310 0) UMOYS UI3q Se] WsIueydaW Jejiunts v *Ajiqeotutad

uoneanyes

Sumom

aSeurelg

XUjew oy} elA a1moey Arewndoy

0’0

810200 Surrofuy
AIdYM 1njoey AIeuiLlg

0} P3Jo3UU0D AIMPORY AqieaN




Figure 38: Confluence and merger of fingers in a fracture network: This conceptual drawing
shows two matrix blocks separated by a sub-horizontal fracture and bounded by vertical fractures.
Gravity-driven fingers moving down a vertical (bounding) fracture wander in response to
competition between capillary and gravitational forces; when two fingers contact, they merge.
Individual fingers are unable to jump the capillary boundary formed at the intersection between the
vertical and sub-horizontal fracture. Water collects along the boundary forming a local tension-
satiated zone along the fracture plane. When this zone reaches a pressure sufficient to cross the
capillary boundary, a drip point is formed and a single, larger finger develops. Repetition of this
confluence/merger process at increasingly larger scales could act to form large scale preferential
pathways through an unsaturated fractured rock mass. The spatial distribution of such pathways
would be defined by a combination of flow processes and material properties; therefore, their
existence and spatial location would exhibit a sensitivity to system perturbations not expected for
alternative mechanisms of preferential flow (e.g., simple material heterogeneity).
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-31.4 -27.1 -22.9 -18.6
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Figure 35: Matrix block heterogeneity: The scale dependency of effective media properties has
important implications for a wide range of performance assessment calculations; however, relativel y
litle physical investigation of this effect has been accomplished. To help meet this need, gas
permeability fields have been measured at different measurement scales on a block of tuff (1.2 by
1.2 by 0.75 m) collected from the Upper Cliff microstratigraphic unit of the Tiva Canyon Mcmber of
the Paintbrush Tuff at Yucca Mountain. Permeability is measured by compressing a tip seal against
the rock surface and injecting gas (nitrogen) at a constant pressure into the rock. Permeability is
calculated based on the measured flow rate, injection pressure, and seal geometry. Different sized
lip seals are used to measuré gas permeability at different sample volumes. Shown are the
permeability fields for tip seals with inner radii of a) 0.31,b) 0.63, ¢) 1.27, and d) 2.54 cm. Note the
distinct smoothing in the field as sample volume is increased (Tidwell, 1995).
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a) t =4 minutes b) t = 6 minutes

c) t =10 minutes d) t = 15 minutes

Figure 29: Imbibition of water into a fracture-matrix system, small fracture to matrix
permeability ratio: The ratio of fracture to matrix permeability plays a significant role in defining
the nature of fluid interactions between a vertical fracture and the adjacent porous matrix. Ir the
fracture-matrix system shown, matrix permeability is of the same order as the fracture permeability.
As aresult, the depth of penetration of water in the fracture from a zero pressure water source
located at the top of the fracture is closely matched by the depth of penetration in the matrix. The
fracture-matrix system is composed of a sintered glass plate (15 by 10 by 0.6 cm) cut by a single,
vertical slot fracture (0.1 mm gap, see arrows). To avoid anomalous pressure build-up, all
boundaries are left open to atmospheric pressure. Beginning with a completely dry system, water is
supplied to the top of the fracture and transmitted light imaging is used to obtain transient saturation
fields during imbibition; rélative saturation (0 to 1) is depicted by the standard color bar (black 0)-
blue-green-yellow-red(1)). Saturation fields are shown for (a) 4, (b) 6, (c) 10, and (d) 15 minutes
following initiation of flow (Glass and Tidwell, 1991).
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implempntations of percolation theory (b-d); for illustrative purposes, a single air-filled cluster

occupyng a 1.95 x 1.77 cm section of the aperture field is shown. Numerical simulations are run

illustrate the order of dissolution, as follows: violet-blue-green-yellow. The physical experiment (a)
differs significantly from both standard percolation (b) and standard invasion percolation (c).
Modification of invasion percolation to include in-plane interfacial curvature (e.g., Glass, 1993)
provides greatly improved results (d) (Glass and Nicholl, 1995).
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