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EXECUTIVE SUMMARY

This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho
National Engineering Laboratory- (INEL). The purpose of this evaluation is to provide a basis for
updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves
were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96.
These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West
(ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive
Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North
(TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained
in this report ARE NOT to be used for purposes of seismic design at INEL. A subsequent study
will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific
seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-
specific seismic design values will be incorporated into the INEL Architectural and Engineering
Standards.

The probabilistic seismic hazard analysis methodology used in this study provides for the explicit
inclusion of the range of possible interpretations in components of the model including seismic
source characterization and ground motion estimation. Uncertainties in models and parameters are
incorporated into the hazard analysis through the use of logic trees. Included in this report is the
documentation of the choices of the parameter values on the logic trees, their relative credibilities,
and the basis for the assessments in the available geologic, seismologic, geophysical and
geotechnical data. The data resulting from the site characterization program for the once proposed
New Production Reactor and GSG (geology, seismology, and geophysics) studies performed at the
INEL and concluded in 1995 have been included in the seismic source characterization for this
study.

Seismic sources that may contribute to the probabilistic seismic hazard at the INEL include active
faults, volcanic zones, and areal source zones. The closest late-Quaternary Basin and Range fault
zones, the Lemhi, Lost River, and Beaverhead faults, have been included in the analysis. Each fault
is modeled by parameters that define its three-dimensional geometry, maximum earthquake
magnitude, and earthquake recurrence rate. Recent studies of the Lemhi and Lost River faults
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were used to develop interpretations of the location of the southern termination of the fault, fault
dip, timing and extent of prehistoric rupturés, fault segmentation, maximum earthquake magnitude,
slip rate, earthquake recurrence intervals, and temporal clustering of earthquake activity.
Information on the Beaverhead fault is sparse, although its impact on seismic hazard to the INEL is
offset somewhat by its greater distance to most of the facility sites.

Volcanic zones are modeled for this analysis as source zones that incorporate the volcanic vents
and deformational features related to dike emplacement within volcanic rift zones. Three volcanic
rift zones, the Arco, Lava Ridge-Hell's Half Acre, and Great Rift, and the axial volcanic zone along
the center of the eastern Snake River Plain (ESRP) were included as seismic sources. The Howe-
East Butte zone was also included as another possible volcanic rift zone, although the probability
that it is a volcanic rift zone is judged to be very low. The volcanic zones have been aseismic
during the historical period. Earthquake recurrence rates are estimated based on the frequency of
eruptive episodes within each of the volcanic zones. The geometries and maximum magnitude
estimates for the volcanic zones (both volcanic rift zones and the axial volcanic zone) incorporate
worldwide observations of volcanic rifts, as well as site-specific observations within the ESRP.

Several areal seismic source zones are modeled in the site region, the most important of which are
the ESRP, in which the INEL is located, and the northern Basin and Range province immediately
to the north. The historical earthquake catalogue, with dependent events removed and corrected
for incompleteness, provides the basis for recurrence rates within these source zones. The ESRP
has exhibited an extremely low level of seismicity during the historical period and hence, the size
and location of the 1905 Shoshone, Idaho earthquake are important issues. The analysis
specifically incorporates the uncertainties in this earthquake into estimates of the maximum size of
the ESRP earthquake.

Four empirical ground motion attenuatibn relationships were used in this study to estimate ground
motions. They were selected to represent the uncertainty in empirical modeling of earthquake
ground motions. Site-specific relationships were also developed for each site based on a stochastic
ground motion modeling approach. A comparison of the empirical and stochastic relationships
shows that in general, the latter are lower at short-periods, 0.02 to 0.5 sec and similar at periods
0.5 sec and longer. The differences at high frequencies or short periods can be attributed to the
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interbedded volcanic stratigraphy beneath the INEL which has a lower velocity gradient and tends
to damp out high frequency ground motions.

The probabilistic seismic hazard results are presented along with several sensitivity analyses to
examine the important contributors to the total hazard and to the uncertainties in the hazard. At
almost all return pén’ods, the Lost River and Lemhi faults are the largest contributors to the total
hazard at the INEL, with the former generally having the largest contribution at all sites except
TAN. At high annual probabilities (short return periods of 100 to 300 years), the hazard is
dominated by the northern Basin and Range areal source because of its proximity. Despite the
location of the INEL in the ESREP, its extremely low level of seismicity contributes very little o the
hazard at the INEL.

The following summarizes the peak horizontal accelerations on rock at the ground surface at the
annual exceedance probabilities specified for the various Performance Categories (PC) as described
in DOE Standard 1020-94. (For sites with soil atop bedrock such as TAN, ground motions have
been computed by assuming no soil.)

PROBABILISTIC PEAK HORIZONTAL ACCELERATIONS IN g's ON ROCK
Annual Exceedance Probability (Return Period)
ite =
. N((MIENOEES
PC1-2x10° PC2-1x103 PC3-5x10* PC4-1x10"
(500 yrs) (1,000 yrs) (2,000 yrs) (10,000 yrs)
ANL 0.06 ik @ [; m 0.??;@@? 0.10 0.16
e | e e . e U
ATR 0.08 0.11 0.14 0.24
CPP 0.08 0.10 0.13 0.22
QIENCRARAD
NRF 008 CXME| 5(3}&@& t(’j} 0.15 0.26
PBF 0.06 0.09 0.11 0.18
RWMC 0.08 0.10 0.13 0.23
B TSRO TR
TAN 000 U ES N 0.18 033
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The primary source of uncertainty is the selection of the appropriate attenuation relationship and,
to a lesser extent, the seismicity rates for both the faults and source zones and the value of kappa
estimated for each site particularly at high frequencies of ground motions. The stochastic
attenuation relationships differ significantly from the empirical relationships which accounts for
some of this uncertainty. This is particularly true at high frequencies due to differences in the
interbedded nature of the volcanic stratigraphy beneath the INEL and the somewhat lower kappa.

The hazard results at various spectral accelerations show that at high frequencies (0.2 sec), the
results are very similar to those at peak acceleration; at lower frequencies (1.0 sec), the major
contributor to the hazard becomes the fault zones. The reason for this change in the contributions
to the hazard is a change in the relative contributions from earthquakes in various magnitude
intervals. As the period of the ground motion increases, the larger magnitude events become
increasingly important, dominating the hazard at a period of 1.0 sec. These larger magnitude
events are associated with the Lemhi and Lost River faults. Equal-hazard spectra were developed
for annual exceedance frequencies of 2x1 0%3,10%, 5x10™ and 10™
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1.0
INTRODUCTION

At the request of Lockheed Martin Idaho Technologies (LMIT) and the U.S. Department of

Energy (DOE), the following report describes and summarizes a site-specific probabilistic

evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). This study

was performed by Woodward-Clyde Federal Services (WCFS) and its principal subcontractors

Geomatrix Consultants, Inc. and Pacific Engineering & Analysis. Probabilistic ground motion .
estimates were computed for seven facility sites at the INEL: the Advanced Test Reactor (ATR);

Argonne National Laboratory West (ANL); Chemical Processing Plant (CPP); Power Burst

Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF);

and Test Area North (TAN).

The bases for this analysis are the deterministic ground motion studies performed for the INEL
(Woodward-Clyde Consultants, 1990) and the subsequent deterministic and probabilistic ground
motion evaluations of the proposed New Production Reactor (NPR) (Woodward-Clyde
Consultants, 1992a; 1992b). A significant aspect of this study is the incorporation of the recent
results of paleoseismic studies performed by WCEFS along the southern portions of the Lemhi and
Lost River faults and of site-specific geologic and geotechnical data for each facility site when
possible. '

1.1  OBJECTIVES

The purpose of this study is to provide supporting documentation for revising the seismic design
criteria presently being used at the INEL which is consistent with recently published DOE
Standards for seismic hazards. The specific objectives of this study are:

1) To perform a site-specific probabilistic seismic hazard analysis for the INEL using state-
of-the-art methodologies and incorporating the most up-to-date geological, geophysical,
seismological, and geotechnical data available. The methods being used are aimed
specifically at incorporating the uncertainties associated with seismic source
characterization and ground motion assessment;
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" 2) To review, update and incorporate, where appropriate, the results of the NPR
deterministic and probabilistic evaluations into this study; and

3) To perform sensitivity analyses to ascertain the dominant contributors to the seismic
hazard and the most important elements of the model. These results can be instrumental
in identifying the most. important issues that should be addressed in future site
characterization studies. ;

1.2 DOE SEISMIC DESIGN CRITERIA

In recent years, the DOE through their Natural Phenomena Hazards Project has focused on
addressing the potential hazards that might affect their facilities due to earthquakes, wind,
tornadoes and floods. DOE Order 5480.28 on "Natural Phenomena Hazards Mitigatioﬁ" requires
that all structures, systems and components at DOE facilities be designed and constructed to
withstand the effects of natural hazards including earthquakes. The seismic effects include ground
shaking, fault rupture, and ground failure such as liquefaction and landsliding. This study is
consistent with the following DOE documents:

e DOE Standard 1020-94 Natural Phenomena Hazards Design and Evaluation Criteria
for DOE Facilities (formerly UCRL-15910)

¢ DOE Standard 1022-94 Natural Phenomena Hazards Site Characterization Criteria

e DOE Standard 1023-95 Natural Phenomena Hazards Assessment Criteria (draft dated
July 1995) :

These Standards have been developed to aid in the definition of seismic design basis vibratory

. ground motion for DOE facilities. Appropriate methods and acceptance criteria for evaluating
seismic hazards are described in these documents to insure a consistent approach for all DOE sites
and that state-of-the-art techniques are being used to evaluate facility design.

HACONTRACT\SK9455\SECTIONIZ 1-2 0517961219



According to the DOE Standards:

1) For DOE sites with Category 3 (moderate hazard) and 4 (high hazard) facilities, a state-
of-the-art site-specific probabilistic evaluation of seismic hazards should be performed;

2) An accurate site-specific geologic and seismic data base should be available when
computing estimates of seismic hazard. The following activities need to be considered:

a) Characterization of Quaternary faults within 40 km (25 miles) of the site.  Active
Quaternary faults within 320 km (200 miles) of the site need to be identified and
incorporated into the hazard analysis; -

b)Detailed characterization of all faults that occur within 8 km (5 miles) of the site and
determination if they have been active in the Quaternary. This factor is particularly
important in terms of assessing the potential for fault displacement;

c) Evaluation of liquefaction potential of soils supporting facilities;

d)Assessment of potential slope instability and failure, soil compaction, ground
subsidence and ground collapse; and

e) Evaluation of the potential for site-specific amplification of vibratory ground motion.

3) For vibratory ground motion, a Design/Evaluation Basis Earthquake (DBE) in terms of
a design response spectrum shall be defined in order to perform seismic design and
seismic safety evaluations.

DOE Standard 1020-94 provides guidelines to evaluate, modify or upgrade existing DOE facilities
or to design new DOE facilities for the effects of natural phenomena hazards including those from
earthquakes. UCRL-53582, as referenced by DOE Standard 1020-94, contains site-specific
seismic hazard curves developed prior to 1984 by Tera Corporation (1984) under contract to
Lawrence Livermore National Laboratory. The annual probabilities of exceedance for hazard and
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the peak horizontal ground surface accelerations (average soil/rock conditions) calculated in
UCRL-53582 for the INEL are specified for four Performance Categories:

. AmualHazard |  PeakHorizontal Ground

Usage Category Exceedance Probability Surface Acceleration (g) -
(1) General Use . 2x 10% (500 yrs) 0.12
(2)'Important or Low Hazard | 1x 10 (1,000 yrs) 0.14
(3) Moderate Hazard 1x 10® (1,000 yrs) , | 0.14
(4) High Hazard 2 x 10™ (5,000 yrs) 0.21

DOE recognized that the Tera Corporation seismic hazard curves are outdated and that new site-
specific curves need to be developed using state-of-the-art techniques (DOE-STD-1024-92). It is
with this recognition that the ‘following study has been performed. Tt should be noted. that during
the performancle of this study, the hazard exceedance probabilities for Performance Categories 3
and 4 were revised to 5x-10'j (2,000 yrs) and 1x10™ (10,000 years), respectively, based on DOE
Standard 1020-94. Thus the hazard was calculated at these new probabilities in this study.

1.3  SCOPE OF WORK

There are three primary components of probabilistic seismic hazard analysis: (1) seismic source
characierization; (2) characterization of ground motions from the sources to the site; and (3)
calculations of the seismic hazard at the site. All significant seismic sources in the INEL region
were characterized in terms of capability, maximum magnitude, fault geometry, sense of slip, and
slip rate and/or recurrence intervals. A logic tree approach was used to capture the range of
interpretations for each fault parameter. This approach also enabled explicit quantification of
uncertainty for each fault parameter and the performance of sensitivity analyses to evaluate which
.parameters are critical in terms of the seismic hazard to the INEL. Based on empirical data and
observations, it is well known that near-surface geology can significantly influence, if not dominate,
the level and spectral content of strong ground motions. Specifically, the interbedded volcanic

- stratigraphy beneath the INEL appears to be capable;of strongly affecting ground motions. Based
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on geologic and velocity profiles developed for each of the seven INEL facility sites, stochastic
attenuation relationships were developed and used to characterize the propagation of ground
motions from the seismic sources to the site and up through the site geology. Empirical attenuation
relationships were also used to incorporate the uncertainty in ground motion modeling.

In the implementation of UCRL-15910, DOE has used probabilistic seismic hazard analyses
(UCRL-~53582) as the basis for the seismic design of its facilities. The use of a probabilistically-
based hazard analysis is especially appropriate for tectonic regions such as the INEL region where
the recurrence intervals of faults are on the order of several to many thousands of years. A state-
of-the-art probabilistic seismic hazard analysis was thus performed to incorporate the results of
recently completed GSG studies. Site-specific probabilistic hazard curves for peak horizontal
acceleration and spectral accelerations at periods at 0.05, 0.2, and 1.0 sec were calculated and
equal hazard spectra were developed for all seven sites.

14  PROJECT TEAM AND REVIEW PANEL

DOE Standard 1023-95 recommends that the input into a probabilistic seismic hazard analysis be
derived though either (1) the elicitation of multiple experts, or (2) peer review. The objective of
both processes is to €nsure that the diversity (or uncertainty) of opinion on how to model both
earthquake occurrence and the propagation of seismic energy is properly incorporated into hazard
analysis. In this study, the latter approach was used. A Project Team ("single analyst" as referred
to in DOE Standard 1023-95) developed the probabilistic hazard analysis input which was then
reviewed by multiple experts.

Several members of the Project Team and the reviewers are nationally or internationally known in
their fields. In the seismic source characterization, which requires the more multi-disciplinary
approach, both geologists, whose expertise were in paleoseismology and structural geology and
seismologists participated. The members of the Project Team, the reviewers, and their affiliations
and disciplines were as follows:
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Susan Olig

Mark Hemphili-Haley
Kevin Coppersmith °
Thomas Sawyer
Peter Knuepfer

Andy Gorton

Ron Bruhn

Daning Wu

Ivan Wong

Suzette Jackson
Robert Youngs
Richard Smith
William Hackett

Walter Silva
Ivan Wong
Cathy Stark
Sylvia Li.
Robert Youngs

Jeffrey Kimball
Robert Smith ,
Don Bernreuter

C. Allin Cornell
Robin McGuire
James Zollweg
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Seismic Source Characterization Participants

WCFS

WCFS

Geomatrix Consultants
WCFS

Binghamton University
WCFS

University of Utah
Universify of Utah
WCFS

LMIT

Geomatrix Consultants
LMIT

WRH Associates

Paleoseismology
Paleoseismology
Paleoseismology
Paleoseismology
Paleoseismology
Paleoseismology
Structural Geology
Structural Geology
Seismology
Seismology
Seismology
Volcanology
Volcanology

Ground Motion Characterization Participants

PE&A

WCFS

PE&A

PE&A 1
Geomatrix Consultants

Reviewers

DOE

University of Utah
DOE Consultant
DOE Consultant

Risk Engineering
Boise State University

Seismology
Seismology
Seismology
, Seismology
Earthquake Engineering

Seismology

Seismology

Seismology

Seismic Hazard Analyses -
Seismic Hazard Analyses
Historical Seismicity Catalogue
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2.0
SEISMIC HAZARD ANALYSIS METHODOLOGY

For this study, probabilistic seismic hazard analysis is defined as an evaluation of the
probability or likelihood that various levels of ground motion will be exceeded during a
specified time period. The analysis procedure was originally proposed by Cornell (1968).
Since that time there has been significant progress in our understanding of the earthquake
process and in the techniques for evaluating relevant seismological, geological, and
geophysical data. The methodology used in this study incorporates the significant advances
that have been made in probabilistic seismic hazard analyses (e.g., Youngs and Coppersmith,
1990). The following section outlines the mathematical formulation used. The important
considerations involved in selecting the analytical models and input parameters are also
discussed.

2.1 HAZARD FORMULATION

In probabilistic te;rms, seismic hazard is defined as the likelihood that various levels of
ground motion will be exceeded at a site during a specified time period. It is commonly
assumed that the occurrence of individual mainshocks can be represented as a Poisson
process. Following the approach developed by Cornell (1968), the probability that at a given
site a ground motion parameter, Z, will exceed a specified level, z, during a specified time
period, ¢, is given by the expression: '

PEZ>z|) = 1.0-¢ 7@ < )1 @2-1)

where »(z) is the average frequency during time period ¢ at which the level of ground motion
parameter Z exceeds z at the site resulting from earthquakes on all sources in the region.
The inequality at the right of Equation 2-1 is valid regardless of the appropriate probability
model for earthquake occurrence, and »(z) - ¢ provides an accurate and slightly conservative
estimate of the hazard for probabilities of 0.1 or less provided »(z) - ¢ is the appropriate
value for the time period of interest.
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The frequency of exceedance, »(z), is a function of the uncertainty in the time, size and
location of future earthquakes and uncertainty in the level of ground motions they may
produce at the site. It is computed by the expression:

-]

X . @) = Y a,m) J Am)[ L for|m)- PZ>z|m,H)drldm (2-2)

N

where o, (m°) is the frequency of earthquakes on source 7 above a minimum magnitude of
engineering significance, m°; f(im) is the probability density function for event size between
m° and a maximum event size for the source, m"*; f{r) is the probability density function for
distance to the earthquake rupture; and P(Z>z | m,r) is the probability that, given a
magnitude m earthquake at a distance r from the site, the ground motion exceeds level z.

The distance density function, f{7), is developed by specifying the geometry of the seismic
sources and allowing earthquake ruptures to occur randomly over the source volume. In this
study, individual faults are modeled as segmented planar features with the earthquake rupture
modeled as a rectangular area randomly located on the fault plane. Area sources are
modeled by closely-spaced fault traces, each being an individual fault plane. The rate term
a,(m°) and the density function f{m) are specified by developing a recurrence relationship for
the source. The function f{m) is limited on the upper end by developing an estimate of the
maximum magnitude for the source. The approaches used to develop these functions and
parameters are described in the next section.

The probability functions contained in Equations 2-1 and 2-2 represent the uncertainties
inherent in the natural phenomena of earthquake generation and seismic wave propagation.
For the INEL region (as is usually the case in any region), considerable uncertainty is

. encountered in selecting appropriate models and model parameters required to apply Equation
2-2 arising from limited data and/or alternative interpretatibns of the available data. The
approach used in this study explicitly incorporates these additional uncertainties into the
analysis to assess their impact on the estimate of the expected level of seismic hazard as well
as the uncertainty in that estimate. ) |
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The uncertainty in modeling the natural phenomena is incorporated into the hazard analysis
through the use of logic trees. The logic tree formulation for seismic hazard analysis
(Kulkarni et al., 1984; Youngs er al., 1988; Coppersmith and Youngs, 1986) involves
specifying discrete alternatives for states of nature or parameter values and specifying the
relative likelihood that each discrete alternative is the correct value or state of the input
parameter. The relative likelihoods of the different parameter values are typically based on
subjective judgment, but may be specified by an objective statistical analysis if the available
data warrant an assessment. The components of the logic trees developed for this study are
described in the next section. The selection of the parameters and models for each source
and the bases for parameter selection and relative weighting are discussed in Section 4.

2.2 DEVELOPMENT OF SEISMIC HAZARD MODEL

The seismic hazard at a site is a function of the location and geometry of potential sources
of future earthquakes, the frequency of occurrence of various size earthquakes on these
sources, and the characteristics of seismic wave propagation in the region. In the
methodology used here, these elements are analyzed within a probabilistic framework that
addresses both the randomness of the earthquake process and the uncertainty in modeling the
process. The seismic hazard model consists of two basic components: a model of the
sources of potential future earthquakes and a model of the effects at the site of future
earthquakes. Each potential earthquake source is characterized by parameters that describe
its location, geometry’ maximum magnitude, and earthquake recurrence. The methods used
in this study to characterize the seismic sources are state-of-the-art and provide for the
specific inclusion of detailed aspects of fault behavior. Both published and unpublished data
on specific seismic sources in the INEL region and in other portions of the Basin and Range
province have been incorporated into the study.

Figure 2-1 displays the overall logic tree representing the seismic hazard model developed
for this study. The logic tree is laid out to provide a logical progression from general
aspects/hypotheses regarding the characteristics of seismicity and seismic wave propagation
in the region to specific input parameters for individual faults and fault segments. The
rationale for developing the various levels of the logic tree is discussed below.
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The first three nodes of the logic tree represent the uncertainty in selecting the appropriate
strong ground motion attenuation relationship (Figure 2-1). Attenuation was placed first in
the tree because it is felt that a single relationship (whichever relationship may be "best" at
representing ground motion attenuation)-is applicable to all earthquake sources in the region.
The selection of attenuation relationships is discussed in Section 5.

At this point, the logic tree is expanded into subtrees, one for each of the seismic sources
included in the analysis to model the integrated hazard from multiple sources. To the right
of this node of the logic tree, each source is considered to act independently, and the
distribution in the total computed hazard is obtained by convolving the independent
distributions obtained for each seismic source.

In the logic tree approach, discrete values of the source input parameters have been included
along with our estimate of the likelihood that the discrete value represents the actual value.
Generally all input parameters have been represented by three values: a central value, which
represents our best estimate of the parameter, and lower and higher values to represent the
distribution around the best estimate. The characterization of an input parameter and its
uncertainties using a simple three-point approximation and specific weights for the median
and selected percentiles were generally used in this study based on the studies of Keefer and
Bodily (1983). They state that this approximation is more accurate than other
approximations in characterizing continuous probability distributions "typical of those elicited
via judgmental assessments.” Two sets of weights were used: 0.185, 0.63, and 0.185 to
approximate the 5%, 50% and 95% percentile values, respectively, and 0.3, 0.4, and 0.3 for
10%, 50%, and 90® percentile values. The details of the selection of the parameter values and
their probabilities are presented in the individual source characterizations in Section 4.

Two types of earthquake sources are characterized in this seismic hazard analysis: fault
sources and areal source zones (Figure 2-1). Fault sources are modeled as three-dimensional
fault surfaces and detiils of their behavior are incorporated into the source characterization.
For this study, the fault sources are the nearby late-Quaternary Basin and Range faults
located to the north of the ESRP. Source zones are areal source regions and earthquakes are
assumed to occur randomly within them. Because more distant faults and tectonic provinces,
such as the Intermountain seismic belt, Yellowstone region, and the southern Basin and
Range south of the ESRP, are less significant to the seismic hazard at the INEL (due to
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greater distances), they are modeled simply as source zones rather than discrete faults. The
volcanic zones are also modeled as source zones because seismicity is usually associated with
magma intrusion.

The elements of the logic trees used to characterize fault sources are shown in Section 4.
The first two elements of the logic tree describe the three-dimensional geometry of fault
sources. The first element is the dip of the fault and the second element is the seismogeﬁic
thickness of the crust. The seismogenic crust is the part of the crust within which
earthquakes occur. The combination of dip of the fault and the thickness of the seismogenic
crust defines the downdip width of the fault within the seismogenic crust, which will be
important to maximum magnitude and earthquake recurrence, as described later. The three-
dimensional geometry of the fault also defines the location of the fault rupture relative to
each site. Because of the proximity of the late-Quaternary Basin and Range faults to the
INEL, the uncertainty in the location of the southern end of the faults, and hence the closest
distances to the site, is explicitly included in the logic tree. Ruptures are modeled three-
dimensionally as occurring randomly on the fault, and the size of the rupture is directly
related to the magnitude of the earthquake using the empirical relationships of Wells and
Coppersmith (1994).

The maximum magnitude earthquake, m,,,., is shown as a single node of the logic tree and
is based on a consideration of the dimensions of the fault that might rupture in a maximum
event and the associated displacement. The maximum magnitude is estimated based on
assessments of the maximum surface rupture length, rupture area, and displacement per event
using the relationships of Wells and Coppersmith (1994). Rupture lengths are evaluated
considering the segmentation of the fault, and rupture areas are derived from multiplying the
rupture length by the downdip width. z

Several nodes of the logic tree relate to earthquake recurrence. For fault sources, the
earthquake recurrence rate is estimated based on an assessment of either fault slip rate and
a translation of the slip rate to seismic moment rate or recurrence intervals for the largest
events. To develop an earthquake recurrence relationship from slip rate, the seismic moment
rate must be partitioned into earthquakes of various magnitudes according to an earthquake
recurrence model. Two recurrence models, which describe the distribution of earthquake
magnitudes, are considered in this analysis: the characteristic earthquake model and the
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exponential model. Youngs and Coppersmith (1985) have shown that the characteristic
earthquake model is more appropriate for fault sources, and areal source zones are typically
modeled using the exponential recurrence model. For recurrence relationships developed on
the basis of recurrence intervals for the largest events, the two models are used to define the
recurrence for smaller earthquakes..-

In applying Youngs and Coppersmith’s (1985) characteristic magnitude distribution, the
maximum magnitude assessed for the fault, m,,, is taken to be the expected magnitude for
the characteristic size event, with individual events uniformly distributed in the range of
m,,. + Y magnitude units. The cumulative frequency for earthquakes of magnitude m,,,,-%
is then set equal to the annual frequency of maximum events assessed for the fault and the
upper bound magnitude, m*, in Equation 2-2 is equal to m,,, + %. To provide a consistent
interpretation for the exponential model, the standard truncated exponential distribution
(Cornell and Van Marke, 1969) was modified to treat the upper-bound magnitude in the
density function as uniformly distributed over the range of s, + % magnitude units. The
effect is to smear out the upper boundary of the magnitude distribution without altering the
general shape of the recurrence relationship. In this modified form, the distribution of events
in the range m,,,, + % remains nearly exponential. ‘

Figure 2-2 compares the shape of the exponential, modified exponential, and characteristic
magnitude distributions. Shown on the left are the three distributions developed for an
assessed fault m, of 7.25 with the frequency of events larger than M 7 (unspecified scale)
held constant in all three models. Shown on the right in Figure 2-2 are the magnitude
distributions developed on the basis of equal rate of seismic moment release. As can be
seen, the modified exponential distribution is essentially equal to the exponential distribution
except at the upper bound. The characteristic magnitude distribution results in a factor of
about 10 reduction in-the frequency of small magnitude events compared to the exponential
model when the-absolute level of the distribution is fixed by either the frequency of the
largest events or by the rate of moment release.

For the Lemhi and Lost River faults, earthquake recurrence is estimated in two ways: from
geologic estimates of average recurrence intervals and from fault slip rates. The recurrence
interval estimates come from trenching studies, primarily along the southern parts of the
Lemhi and Lost River faults (Section 4.2). The paleoseismic data for these parts of the
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faults suggest that the occurrence of large earthquakes may be clustered temporally.
Therefore, the logic tree allows for recurrence interval estimates assuming average, intra-
cluster, and inter-cluster behavior. Only fault slip rates were used to characterize earthquake
recurrence for the Beaverhead fault due to a lack of recurrence interval data. Geologic
studies of fault slip rates along all the faults suggest that the central segments have relatively
higher long-term slip“rates than the segments on the northern and southern parts of the fault
zone, and thus this variability in the logic tree is included.

The logic trees for the volcanic zones and the other areal source zones are simpler than those
for the fault sources and consist primarily of assessments of the maximum magnitude and
parameters related to earthquake recurrence. Recurrence rates have been estimated for the
volcanic zones, which have been quiescent in the historical and instrumental seismicity
period, based on the recurrence rates for volcanic eruptive episodeé. For the other source
zones, the observed historical seismicity provides the fundamental constraint on the
recurrence rate. Note that the regional source zones, such as the Yellowstone region, are
known to contain discrete faults. However, because of their distance to the INEL relative
to the closer fault sources and their consequent insignificance to the seismic hazard at the
sites, the individual faults within these source zones are not individually characterized for
this assessment. The faults are considered, however, in terms of estimating maximum
earthquake magnitude for the source region they are contained in.
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3.0
SEISMIC SETTING AND SOURCES

This section describes the seismotectonic setting and historical seismicity of the INEL region.
Potential seismic sources significant to the INEL are identified and discussed.

3.1 SEISMOTECTONIC SETTING

The INEL is located near the northwestern margin of the ESRP in southeastern Idaho
(Figure 3-1). The ESRP is a northeast-trending, topographically-subdued physiographic
province that is bordered on the northwest and southeast by the Basin and Range province
and on the northeast by the Yellowstone Plateau. The northern and central Rocky Mountains
lie to the north and southeast, respectively. The Intermountain seismic belt ISB), a major
zone of seismicity in the western United States, and the Centennial Tectonic Belt, an east-
west-trending seismic zone which may be part of the ISB, wrap around the southeastern,
eastern, northern, and northwestern sides of the ESRP (Figure 3-1). Portions of the ISB
exhibit repeated episodes of surface rupture associated with predominately normal-faulting
earthquakes of M 7 and greater (Smith and Sbar, 1974; Smith and Arabasz, 1991). The
largest historical earthquake within the ISB was the 1959 moment magnitude (M,) 7.3
Hebgen Lake, Montana earthquake. The Centennial Tectonic Belt includes the epicentral
area of the 1983 Borah Peak M,, 6.8 earthquake (Stickney and Bartholomew, 1987) (Figure
3-1). R )

3.1.1 Snake River Plain

Geologic and geophysical evidence support the interpretation that the Snake River Plain is
the continental track of a mantle hotspot that now resides beneath the Yellowstone Plateau
(Pierce and Morgan, 1992). The southwesterly movement of the North American plate over
the hotspot during the past 17 Ma has produced a 600 km by 100 km basalt-covered plain
extending from north-central Nevada to the Yellowstone Plateau. The processes involved
in producing the Snake River Plain are: 1) input of magma and heat into the continental
lithosphere and crust from the hotspot produces uplift, crustal melting, and voluminous silicic
volcanism from large calderas; 2) cooling of the crust, solidification of midcrustal mafic
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magmas and upper crustal silicic batholiths, and subsidence due to thermal contraction and
densification of the crust in the wake of the hotspot as the plate moves to the southwest; and
3) filling of the subsiding elongate basin with basalt lava flows and terrigenous clastic
sediments to depths as great as 1 to 2 km in the ESRP. '

Seismic refraction profiles along and across the ESRP suggest that a lens-shaped zone of
high-velocity, high-density material exists in the mid-crust at depths of 10 to 20 km (Spazlin
et al., 1982). This probably represents the solidified mafic material introduced into the crust
from the hotspot. It is not present in the Basin and Range province or the Rocky Mountains
northwest or southeast of the ESRP. A systematic decrease in surface elevation
southwestward from the Yellowstone Plateau to south-central Idaho is very similar to the
decrease in elevation with distance from mid-ocean ridges, prompting the speculation by
Brott et al. (1978) and Blackwell (1989) that the subsidence is due to thermal contraction in
the wake of the hotspot. The basalt/sediment basin fill reaches a maximum of 1 to 2 km on
the ESRP near INEL and thins to the northeast (Whitchead, 1986). Heat flow in the ESRP
exceeds 100 mWm? compared to about 85 mWm? in the surrounding Basin and Range
province (Blackwell, 1989). ' :

Vents for basaltic ‘volcanism in the ESRP are not random, but concentrated in volcanic rift
zones and along the central axis of the Plain (Kuntz ez al., 1992). The volcanic rift zones
are characterized by alignments of basaltic vents (fissure eruptions and low shield volcanoes)
and presence of numerous fissures, normal faults, and grabens produced by shallow dike
injection processes. They are northwest-trending features, 2 to 20 km wide and 20 to 95 km
long. Extensional features of the volcanic rift zones, such as fissures and grabens closely
associated with volcanic vent areas, are likely produced by injection of shallow dikes (Smith
et al., 1989), and are analogous to features observed to form during historical volcanism
along active volcanic ift zones in Iceland and Hawaii (e.g., Rubin, 1992). Holocene and
Pleistocene volcanic rift zones have similar strikes as the late-Quaternary Basin and Range
faults northwest of the ESRP. a

The axial volcanic zone is a northeast-trending, topographically high belt of volcanic vents

including basaltic shield volcanoes, silicic (rhyolitic) domes and magma-induced uplifts.
Although dike-induced extensional features are rare or absent along the axial volcanic zone,
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it is nonetheless a region of high vent density (of clustered volcanic vents) and is therefore
considered a region of potential volcanic seismicity.

In order to explain perceived discontinuities of late Mesozoic structures in the Idaho-
Wyoming thrust belt that may exist north of the ESRP, a northeast-trending, strike-slip fault
has been postulated t0' underlie the axis of the ESRP (Pratt, 1982; Woodward, 1988). This
feature is hypothesized on the basis of indirect evidence, has no known surficial or
geophysical expression in rocks of any age and if it exists at all, has been subsequently
covered by Neogene and Quaternary volcanic rocks and sediment of the ESRP. The feature
is both hypothetical and of pre-Quaternary age and therefore we have not considered it as
a potential seismic source in this study (Section 3.1.1.1).

Very few stress data are available for the ESRP to characterize the contemporary state of
tectonic stress (Zoback and Zoback, 1989). However, two focal mechanisms (Jackson et al.,
1993) with northeast-striking T-axes and the northwest strikes of the volcanic rift zones in
the ESRP suggest that the region is being subjected to the same northeast-trending
extensional stresses that are affecting the northern Basin and Range province (Hackett et al.,
1991). Absence of borehole breakouts in drillhole INEL-1 suggest low differential stresses
at depths of 2 to 3 km (Moos ez al., 1990).

The Snake River Plain has been recognized as a pronounced aseismic region even on the
microearthquake level (Pennington et al., 1974; Smith and Sbar, 1974; Jackson et al., 1993)
(Figure 3-1). Several investigators (Smith ez al., 1985; Scott et al; 1985; Anders et‘al.,
1989) have proposed that immediately adjacent to the ESRP exists a parabolic-shaped
"collapse shadow" or region of inactive faults and seismic quiescence that is surrounded by
an active region with an outwardly migrating pattern of increased fault activity (Figure 3-2).
Anders et al. (1989) proposed that both regions result from correspondingly increased and
decreased integrated lithospheric strength, respectively, due to thermal effects of the hotspot.
Brott er al. (1981) suggested that deformation within the Plain is aseismic due to the high
heat flow. Recently, Parsons and Thompson (1991) suggested magma overpressure and dike
injection as a mechanism that may suppress normal faulting and seismicity within and near
the BESRP. Smith and Arabasz (1991) suggest that the high-velocity crustal body beneath the
ESRP, which may represent a solidified mafic remnant of the Yellowstone hotspot, may act
to increase the strength and hence, reduce the seismic capability of the ESRP.
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3.1.1.1 ESRP-Basin and Range Boundary -

The nature of the boundary between the ESRP and the Basin and Range province to the north
has been a focus of research for the past.decade. Based on geophysical observations and
borehole data, an abrupt geologic discontinuity exists at the edge of the Plain which separates
Paleozoic limestones as exposed in the mountain ranges to the northwest and late Cenozoic
volcanics or the ESRP to the southeast. Several geophysical approaches have been taken to
characterize the nature of this discontinuity.

Mabey (1978) suggested that the boundary is a major fault with nearly north-south
orientation, based on the interpretation of a steep gravity gradient in the Arco Hills area.
Two-dimensional modeling of magnetotelluric data collected in a 1979 survey on the INEL
also suggested a fault contact between the northern Basin and Range and the ESRP in the
vicinity of the Arco Hills (Stanley, 1982).

_ Sparlin ez al. (1982) developed a crustal model for the ESRP based on ray-trace travel-time
modeling of seismic refraction date collected during the 1978 Yellowstone-ESRP Seismic
Profiling Experiment. The northwest margin of the ESRP was interpreted as a fault structure
with the Plain downthrown by more than 4 km. In contrast, the southern margin of the ESRP
appears to be a downwarp with minor faulting. Computed Bouguer gravity profiles were
also consistent with this interpretation (Sparlin ef al., 1982).

The results of a seismic-refraction survey indicate that a vertical, fault-like discontinuity with
about 1 km of down-to-the-south displacement is located about 2 km from the southeast flank
of the Arco Hills (Pankratz and Ackermann, 1982). The strike of this discontinuity is not
resolvable on the basis of a single refraction line, but other geophysical data including
gravity and aeromagnetic data suggest it is a northeast-trending feature in the subsurface.
The data also suggest that Paleozoic rocks may extend beneath the Plain as far as 5.6 km
eastward of the Arco“Hills (Pankratz and Ackermann, 1982). .If so, they are present only
at great depth, as shown by drillhole INEL-1 (Doherty et al., 1979) which was drilled only
a few kilometers southeast of the Arco Hills and intersected only ESRP volcanic rocks to its
total depth of about 3 km. ‘
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In addition to the obvious topographic contrast along the ESRP - Basin and Range boundary
zone, northeast-trending faults have been identified parallel to the boundary (Rodgers and
Zentner, 1988). Zentner (1989) mapped a set of east-northeast-striking normal faults near
the southern end of the Beaverhead Mountains with steep dips of 65 to 75 degrees both to
the northwest and southeast. Total vertical offset was estimated to be minor, less than 100
m, and no evidence of strike-slip offset was apparent. Zentner (1989) stated that these faults
do not offset Quaternary deposits and are therefore older than about 2 Ma. Such east-
northeast trending normal faults appear to be widespread along the flanks of the ESRP and
within 30 km of its boundary zone. Zentner (1989) proposed that they are related to the
passage of the Yellowstone mantle plume and subsequent downwarping of the ESRP. Such
downward lithospheric flexure is probably due to the combined effects of thermal
contraction, loading By volcanic rocks, and underplating of the lithosphere by magmatic
material (Zentner, 1989). '

Several lines of evidence indicate that the northeast-striking normal faults along the northern
boundary of the ESRP are not significant seismogenic features: (1) they are oriented
perpendicular to Basin and Range normal faults and are therefore not products of the present-
day regional stress field; (2) they do not displace deposits younger than about 2 Ma; and (3)
individual displacements and fault lengths are small suggesting that if the faults were
reactivated, their maximum earthquakes would be M, 5 or less. Such events are
insignificant in a deterministic sense, compared to potential large earthquakes on the Basin
and Range faults that extend to the edge of the Plain, such as the Lemhi fault.

The major subsurface boundary fault that has been inferred from geophysical data has no
surficial expression, and no other evidence has been revealed to suggest it is seismogenic.
One conceptual explanation of the subsurface boundary fault is that it represents a segment
of a buried caldera, associated with Tertiary silicic volcanism on the ESRP. Based on the
above evidence, the ESRP-Basin and Range boundary, whether it is éomposed of one or
several faults of varying extent, is not considered in this study to be a seismic source.

3.1.2 Intermountain Seismic Belt

The ISB, as originally defined by Smith and Sbar (1974) on the basis of seismicity, extends
‘from northern Arizona through Utah, along the Idaho-Wyoming border east and southeast
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of the ESRP and terminates in northwestern Montana (Figure 3-1). The southern portion of
the ISB coincides with the transition zones between the Basin and Range province to the west
and the Colorado Plateau and Middle Rocky Mountains to the east. At Yellowstone, the ISB
turns northwestward into the Northern Rocky Mountains. The deformational processes -
occurring along the ISB are principally in response to ongoing tectonic extension as observed
throughout the Basin and Range province. East of the ESRP, the ISB coincides with a
portion of the Idaho-Wyoming Thrustbelt (Figure 3-1), a portion of the Middle Rocky
Mountains physiographic province that has been subjected to Cenozoic extensional stresses
similar to the Basin and Range province. Within the Thrustbelt, extension appears to be
presently accommodated along (1) older faults that formed in the late Cretaceous and eatly
Tertiary as imbricate, westward-dipping thrust faults and (2) younger normal planar faults.
The late Cenozoic normal faults are thought to be listric faults based on seismic reflection
data (Royse et al., 1975).

Presently, the role of the thrust faults in contemporary tectonics is controversial.
Seismological evidence to date does not support seismogenesis along low-angle listric faults
witliin the ISB (Smith and Bruhn, 1984; Arabasz ez al., 1987a; Doser and Smith, 1989) or
the Basin and Range province (Doser and Smith, 1989). In contrast, West (1992) suggests
that seismogensis along moderate to steeply-dipping normal planar faults (e.g., 1983 Borah
Peak earthquake) represents a late stage in the evolution of faulting from reactivated thrust
faults. Also that in some regions, particularly at the edge of regional extemsion (e.g.,
southwestern Wyoming), seismogenic low angle and listric structures such as decollements
and thrust faults, which represent an early to intermediate stage of extension, may exist.

The Grand Valley and Snake River faults, both within the Thrustbelt and the ISB, are the
closest significant Basin and Range faults located to the east of the INEL (Figure 3-1; the
latter is not shown because it is not considered to be a Quaternary fault). Based on extensive
geologic studies, the U.S. Bureau of Reclamation (USBR) has concluded that the potential
for surface faulting and hence the occurrence of large magnitude (M,, = 6%2) earthquakes
on the Grand Valley and Snake River faults is very low (Piety er al., 1986). Their
investigation shows that the Snake River fault is an antithetic fault to the Grand Valley fault
and has a very low Quaternary displacement rate compared to the Grand Valley fault (Piety
et al., 1986). The USBR does not consider either fault to be a significant seismic source.
Both faults lie within the collapse shadow of the ESRP (Anders et al., 1989) (Figure 3-2).
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The north-striking, 70-km-long Teton fault has experienced significant Holocene surface
displacements (Gilbert ez al., 1983; Byrd and Smith, 1990) (Figure 3-1). The average slip
rate in the past 15,000 to 22,000 years is estimated to be between 0.8 to 1.8 mm/yr, the
highest of any fault in the region (Byrd and Smith, 1990). The most recent event on the
Teton fault appears to have occurred about 4,840 to 7,000 years ago, resultmg in 1.3 m of
displacement (Byxd et al., 1994).

The Centennial fault is another fairly active Quaternary fault within the northern ISB that lies
north of the ESRP, roughly 60 km northeast of the INEL. This 68-km-long range-bounding,
normal fault is somewhat unusual in that it strikes east-west. It displaces Holocene deposits
and, based on fault scarp patterns, may be subdivided into three segments (Stickney and
Bartholomew, 1987).

3.1.3 Northern Basin and Range Province

Immediately adjacent to the northwestern boundary of the ESRP is the northern Basin and
Range province. The development of the Snake River Plain in the late Cenozoic by the
migrating hotspot has essentially divided the Basin and Range province. As a result, the
northern Basin and Range has experienced slightly different post-Laramide tectonism than
the southern Basin and Range (Stickney and Bartholomew, 1987). Stickney and
Bartholomew (1987) define the southern margin of the northern Basin and Range province
as the Centennial Tectonic Belt (Figure 3-1). The belt is the most tectomca]ly and
seismically active portion of the northern Basin and Range province.

Similar to the Basin and Range province south of the ESRP, the northern Basin and Range
is characterized by north-northwest-trending mountain ranges bounded on one or more sides
by steeply-dipping normal faults and surrounded by broad alluvial valleys filled with late
Cenozoic sediments (Ruppel, 1982). In addition to these relatively simple basins in the
northern Basin and Range, some investigators recognize two other modes of extensional
basin development that are probably more prevalent south of the ESRP: (1) asymmetric
tilted basins displaced chiefly by a listric or planar low-angle normal fault and (2) complex
basins, typically with sub-basins, associated with both planar and listric normal faults that
sole into low-angle detachments (Smith and Arabasz, 1991).
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The Basin and Range province immediately north of the INEL includes three major range-
front normal faults, the Lost River (source of the 1983 Borah Peak earthquake), Lemhi, and
Beaverhead faults which extend for a distance of 140 to 150 km from the northwest edge of
the ESRP (Figure 3-1). These faults bound the west side of eastward-tilted Paleozoic fault
‘blocks (Ruppel, 1982; Scott ez al., 1985) and the east side of half-graben structures (Anders
et al., 1989). The footwall of the faults consists of allochthonous Paleozoic and Precambrian
rocks that were transported east to northeastward on gently dipping thrust faults, from as
early as the early Cretaceous and continued into the early Eocene (Ross, 1947; Skipp and
Hait, 1977; Ruppel, 1978). Thrust faulting was followed by Eocene and Oligocene
volcanism and the development of northeast-striking late Cenozoic normal faults (Baldwin,
1951). Finally, late Cenozoic extension resulted in northwest-striking normal faults and the
development of the modern basins and ranges (Reynolds, 1979). Much of the present
topography of the region probably results from Quaternary displacement of the three faults,
which all exhibit prominent evidence of late Pleistocene to Holocene activity (Scott et al.,
1985; Crone and Haller, 1991). Quaternary displacement on the faults is dominantly normal
slip, although a lateral component is recognized locally by er echelon patterns of faults (Scott
et al., 1985) and by the 1983 rupture process along the Lost River fault (Crone and
Machette, 1984; Doser and Smith, 1985; Crone et al., 1987).

Based on focal mechanism data such as the 1983 Borah Peak earthquake, the contemporary
crustal extension in the portion of the Basin and Range province north of the ESRP appears
to be northeast-trending (Smith ez al., 1985; Stickney and Bartholomew, 1987). In the
Hebgen Lake region, the minimum principal stress trends more north-south (Zoback‘and
Zoback, 1989; Smith and Braile, 1993). The dominance of Quaternary normal faulting along
the northwest—trendixi;c; ranges and historic seismicity in the northern Basin and Range
province suggest that rates of crustal extension of 2 mm/yr observed south of the ESRP may
also be characteristic of the region to the north (Smith ez al., 1991).

3.2 HISTORICAL SEISMICITY

The historical earthquake record for the Snake River Plain and adjacent Basin and Range
province (region defined in Figure 3-1; see Appendix A) extends back only to 10 November
1884, the date of the first documented earthquake, an event of estimated Richter magnitude
(M,;) 6.3 which may have occurred near Paris, Idaho. Through 1992, more than 5,800
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earthquakes of approximate M 2.5 (generally M;) and greater have been documented as
occurring within the region (Figure 3-1). Appendix A describes the historical earthquake
catalogue compiled for this study.

The majority of the known earthquakes in the region have been recorded by: (1) the
regional seismographic network in Utah, eastern Idaho, and western Wyoming, operated by
the University of Utah beginning in the mid-1960s; (2) the Yellowstone network that was
operated from 1970 to 1981 by the U.S. Geological Survey and from late-1983 to present
by the University of Utah; and (3) the INEL network which was installed in the mid-1970s.
Prior to this time, seismographic coverage of the ESRP and surrounding region was
relatively poor as only the larger earthquakes (M > 5) were capable of being recorded by
seismographs worldwide and by the intermountain stations in the Worldwide Network of
Standardized Seismograph Stations beginning in the early 1960s. The detection of most
earthquakes prior to the mid-1960s essentially relied on felt reports. The locations of such
felt earthquakes were generally based on the locations of the reported maximum intensity.
Such epicentral locations may be in error by as much as 100 km or more. Because the
ESRP and surrounding region was sparsely populated prior to modern times, poor location
accuracy and incompleteness (except for the largest earthquakes) probably characterize the
historical record until the establishment of seismographic stations.

3.2.1 Significant Earthquakes

Two earthquakes dominate the historical seismicity of the region: the 18 August 1959
M, 7.3 (surface wave magnitude M, 7.5) Hebgen Lake and 28 October 1983 M,, 6.8 (M,
7.3) Borah Peak events (Figure 3-1). The rupture process and fault geometry of the latter
earthquake is discussed in detail in later sections.

The 1959 Hebgen Lake earthquake represents the largest earthquake to have occurred in the
intermountain region in historic times. The event occurred in an area of complex geology
at the juncture of the ISB and the Yellowstone volcano-tectonic system (Doser, 1985). The
1959 earthquake affected an area of 600,000 km? and had a reported maximum Modified
Mercalli (MM) intensity of X (Coffman er al., 1982). Most of the 28 deaths in the
earthquake were due to the Madison River Canyon landslide. Minor to moderate damage,
consisting principally of cracked chimneys and plaster and broken windows, occurred
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throughout southern Montana, northeastern Idaho and northwestern Wyoming (Coffman ez
al., 1982). The mainshock appears to have consisted of two normal faulting subevents that
reactivated pre-existing Laramide thrust faults (Doser, 1985a). Rupture was initiated at a
focal depth of approximately 15 km and propagated unilaterally northwestward. Two faults
appeared to have ruptured during the earthquake: the Red Canyon fault which had up to 6.7
m of vertical displacement and a surface rupture 23 km long; and the Hebgen fault, which
exhibited 6.1 m of maximum vertical displacement and had a rupture length of 14.5 km
(Doser, 1985a). ; : '

The 1983 Borah Peak earthquake ruptured a total fault length of 36 km, which included ail
of the nearly 21-km-long Thousand Springs segment of the Lost River fault (Crone et al.,
1987). The maximum intensity of MM IX was assigned to the area adjacent to the surface
rupture where landslides, rockfalls, and water fountains due to liquefaction were observed
(Stover, 1985). The earthquake occurred in an area characterized by seismic quiescence for
at least two decades prior to the event (Dewey, 1987; King et al., 1987). The earthquake
resulted in two deaths and one injury (Stover, 1985). The earthquake shook eight western
states with minor building damage extending as far as Salt Lake City and Boise (Reaveley,
1985). Damage in the epicentral area was concentrated in the town of Mackay and, to a
lesser degree, in Challis, where moderate to major damage (MM VII) was sustained by
generally unreinforced masonry buildings (Stover, 1985). :

In addition to these two M = 7 earthquakes, several M = 6 events have occurred in the site
region (Figure 3-1) dnd are listed on Table 3-1. Of particular significance to assessing
seismic hazards in the intermountain U.S. is the 1975 Pocatello Valley earthquake. This
event occurred on a "blind" fault which was not evident in the surface geology (Arabasz ez
al., 1981). The fault was also a cross-structure in that its strike was transverse to the
structural trend of the region. The occurrence of the 1975 earthquake has suggested that
similar events could occur elsewhere within the ISB without prior knowledge because of the
absence of any surficial expression of the seismogenic fault (Arabasz ef al., 1981). This
earthquake helped form the concept of a "random" earthquake presently used in state-of-the-
art seismic hazards evaluations of the ISB (Section 3.3.3).

In summary, the M = 6 historical earthquakes in the region reflect the moderate to high
Ievel of tectonism that exists within the ISB and surrounding Basin and Range province. As
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exemplified by the seismic quiescence preceding the 1983 Borah Peak earthquake, however,
the historical earthquake record is often not an accurate indicator of the future occurrence
of large magnitude earthquakes within the ISB, because the recurrence times of such events
can be on the order of several to tens of thousands of years or more. The absence of
historical seismicity within areas of the ISB should not be assumed as an indicator that
individual areas are totally aseismic. '

3.2.2 Seismicity in the ESRP

Based on the historical record, the ESRP has been, to a large extent, seismically quiescent
(Figure 3-1). Most of the reported events in the ESRP are based solely on a few felt reports
and thus their location uncertainties are estimated to be quite large. Many of these
earthquakes may not have occurred within the ESRP, including the 1905 event (Section
3.2.2.1). Two events of possible note are the 28 April 1934 earthquake east of Twin Falls,
which was felt with a maximum intensity of MM IV, and a body-wave magnitude (m,) 4.1
event on 18 August 1964 between Pocatello and Idaho Falls (Figure 3-1). Both events were
probably smaller than M, 4.

In modem times, during which seismographic coverage has been much improved, the
seismicity of the ESRP appears to be characterized by very infrequent and small magnitude
microearthquakes (Pennington et al., 1974; King et al., 1987; Pelton ez al., 1990; Jackson
et al., 1993). In December 1971, the INEL initiated the installation of a regional
seismographic network which has grown from three stations to its present configuration of
26 stations. During the nearly 20-year operation of the regional network, only nineteen
microearthquakes, coda magnitude, M, < 1.5, have been located within the ESRP (King et
al., 1987; Jackson et al., 1993). However, undetected microearthquakes may have occurred
due to their small size and the relatively wide station-spacing of the regional network (50 to
70 km).

Based on two portable microearthquake surveys in 1988 and 1989, several small
microearthquakes were located at depths less than 8 km (Jackson er al., 1993). These
relatively shallow depths, although few in number, are consistent with the hypothesis that
elevated crustal températures in the ESRP confine the brittle portion of the crust, and hence
seismogenesis, to the upper 5 to 10 km. Additionally, assuming a heat flow of about
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100 mWm? (Section 3.1.1) and using steady-state static geotherms for typical continental
lithosphere, a temperature of 350°C (approximate maximum value for earthquake occurrence
in the crust) corresponds to a depth of about 8 km (Wong and Chapman, 1990). A
composite focal mechanism exhibited fiormal faulting on northwest-striking planes in
response to northeast-southwest extension, similar to the minimum principal stress direction
observed to the no;th*in the Basin and Rapge province (Jackson ez al., 1993).

3.2.2.1 1905 Earthquake

The only large earthquake M = 6) that has reportedly occurred within the ESRP was the
1905 Shoshone earthquake (Figure 3-1). Until recently, however, the location and size of
the event have been controversial given the. absence of seismographs in the region and
assessment of a few felt reports. Reports of the earthquake have been extensively reviewed
and additional observers’ reports, newspaper accounts, and seismograms were obtained
(Oaks, 1992; Oaks et al., 1992). One of the earliest and most complete accounts of the
event was documented in the Townley and Allen (1939) earthquake catalog for Idaho:

November 11, 2:29 pm local time (22:29 GMT):

"South central Idaho. A shock was felt from Ogden, Utah, to Baker, Oregon,
and seems to have centered in the general vicinity of Shoshone, Idaho,
although the report from that city describing a shock of intensity VII gives the
time as 7:45 p.m. - The shock at 2:29 pm registered at seismographic stations
as far as Europe, and was reported in a Salt Lake City dispatch as felt at
Hailey and Glenn’s Ferry, Idaho, and at Salt Lake City, in addition to the
places mentioned above.

As stated above, the earthquake as reported in Shoshone had a time of 7:45 pm local time
(03:45 GMT November 12):

"RF (Rossi-Forel) VII+? Shoshone, Idaho. Walls of courthouse and school

cracked; plaster broken from ceilings of nearly all buildings. Two shocks in
rapid succession. This did not record instrumentally. There is a possibility
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that this description should be for the shock which occurred at 2:29 pm -
Dispatch from Salt Lake City, November 11, 1905."

Based on a comprehensive examination of diaries, journals, weather observer’s reports,
newspapers and other historical sources, data on damage and distribution of felt effects were
used to assign MM intensities to 25 towns located in Idaho, Utah, Oregon, and Nevada, and
to establish isoseismals for MM intensities IV and V (Oaks, 1992; Oaks et al., 1992). The
area for the MM V isoseismal suggests that the epicenter may be located near the Idaho-Utah
border. The 1905 isoscismals were also compared to those for the 12 March 1934 M; 6.6
Hansel Valley, Utah, 30 Aungust 1962 M, 5.7 Cache Valley, Utah, and 28 March 1975
M, 6.0 Pocatello Valley, Idaho earthquakes. A value of M; 6.0 + 1.0 was approximated
for the 1905 event using the areal size of the MM V isoseismal and comparing it to the other
earthquakes (Oaks, 1992). ‘

A search for North American seismograms of the 1905 earthquake only revealed amplitude
measurements made on two Milne seismographs which were operating in Victoria and
Toronto, Canada (British Association for the Advancement of Science, 1904-1905). (The
original seismograms were lost.) Assuming an epicenter within an uncertainty of 50 km
near the Idaho-Utah border, the calculated magnitude for the earthquake based on the
reported maximum amplitudes at Victoria and Toronto is M, 4.9 + 0.4 (Oaks er al., 1992).
These values are derived from Abe’s (1988) formula for computing M, on a Milne
seismograph incorporating individual station corrections. Based on this analysis, the 11
November 1905 earthquake appears to have occurred within the Basin and Range province
south of the ESRP, with an estimated magnitude of My 5-1/2 4+ 1/2 (Oaks et al., 1992).

3.3 POTENTIAL SEISMIC SOURCES

The following section discusses the three categories of seismic sources considered most
significant to the INEL based on past and current studies: (1) the late-Quaternary Basin and
Range faults immediately north to northwest of the INEL including the Lemhi, Lost River
and Beaverhead faults; (2) the ESRP volcanic zones; and (3) seismic sources within the
ESRP with no geologic surficial expression which would be associated with a random
"floating” earthquake.
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3.3.1 Basin and Range Faults

Three major late-Quaternary Basin and Range normal faults approach the northwest margin
of the ESRP adjacenf to the INEL and are considered significant seismic sources (Figure 3-
3). The Lost River fault extends for 130 to 140 km along the western front of the Lost
River Range from Arco to Challis, Idaho. Crone and Machette (1984) used the present
topography of the Lost River Range and the estimated thickness of the sediments in
Thousand Springs Valley to arrive at a minimum amount of late Cenozoic displacement of
2500.m on the fault. The fault has been divided into six segments by Scott e al. (1985)
with an average length of about 24 km and a range in lengths from 18 to 29 km (Crone and
Haller, 1991). Their segmentation of the fault was primarily based on fault-scarp and range-
front morphology and on the structural relief of the range. We modified southern segment
boundaries slightly (Figure 3-4) based on similar data from more recent studies (Janecke,
1993; Wu and Bruhn, 1994; Woodward-Clyde Federal Services, 1995).. The Thousand
Springs and part of the Warm spring segments, in the central part of the fault zone, ruptured
during the 1983 Borah Peak earthquake (Crone er al., 1985, 1987; Scott et al., 1985).
These segments and the adjacent ségments to the south (Mackay) all had major surface
faulting events during the middle to early Holocene.

The Lemhi fault, the closest and probably most significant fault to the majority of facility
sites at the INEL, is 150 km long and bounds the western front of the Lemhi Range
(Figures 3-3 and 3-4). Haller (1988) and Crone and Haller (1991) divided the fault into six
segments based on several characteristics including behavioral discontinuities along the fault
zone. Turko and Knuepfer (1991) presented a somewhat different segmentation model for
the northern one-half of the fault. Paleoseismic studies by Woodward-Clyde Consultants
(1992¢) and Gorton (1995) indicate that the existing segmentation model for the southern
Lembhi fault also requires revision. The segmentation model of the Lemhi fault proposed in
this'study is based on results from paleoseismic trenching (Woodward-Clyde Consultants ez
al., 1992¢) and detailed mapping (Gorton, 1995) (Figure 3-3).

The 150-km-long Beaverhead fault has been divided into six segments based on fault-scarp
morphology and geometric discontinuities along strike of the fault (Haller, 1988; Crone and
Haller, 1991) (Figure 3-4). The average segment length is 25 km and segments range from
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20 to 42 km in length (Crone and Haller, 1991). Only one segment, the Leadore along the
central part of the fault, has ruptured during the Holocene based on scarp morphology and
mapping studies (Haller, 1988). '

The central segments of the Lost River, Lemhi, and Beaverhead faults appear to have been
more active (e.g., higher long-term slip rates) relative to their distal segments during the
Quaternary (Scott et al., 1985; Crone and Haller, 1991; Pierce and Morgan, 1992), similar
to other Basin and Range normal faults (e.g., the Teton and Wasatch faults). In addition to
higher slip rates, the central segments of these faults tend to show evidence of more recent
surface faulting, as indicated from fault-scarp morphology and paleoseismic trenching.

3.3.2 ESRP Volcanic Zones

Portions of four volcanic zones containing a concentration of volcanic features are located
within the boundaries of the INEL: the Arco volcanic rift zone and‘Lava Ridge-Hells Half
Acre volcanic rift zones, the axial volcanic zone, and the Howe-East Butte volcanic rift zone
(Figure 3-5). Because the two volcanic rift zones are approximately colinear with the
surface traces of the Lost River and Lemhi faults to the northwest, respectively. Active
volcanic rift zones worldwide have exhibited seismicity; thus the seismogenic potential of the
ESRP volcanic rift zones need to be addressed.

Although no volcanic seismicity has ever been observed in the vicinity of the Arco and Lava
Ridge-Hells Half Acre volcanic rift zones or the axial volcanic zone (Jackson et al., 1993),
the potential exists for seismicity associated with potential future volcanism and dike injection
within these zones based on worldwide observations of active volcanic rift zones (Klein ez
al., 1987; Bjornsson et al., 1977). Dike-induced seismicity can occur in the different
geometric relationships to dikes within volcanic rift zones. According to Rubin and Pollard
(1988), these are (1) the zone of dike-induced extension above the dike top and (2) the
process zone ahead of the dike as it propagates laterally. For (1), normal faults, grabens and
fissures are produced, and the extent of graben subsidence indicates that faults extend to or
slightly beyond the dike top. The volcanic rift zone events are generated at shallow depths
along faults above the intruding dike. This constraint on depth and the discontinuous extent
of the faults naturally limits the potential rupture areas and hence the maximum size of any
dike-induced earthquake.
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Although it is difficult to distinguish between different types of volcanic earthquakes, it is
generally accepted that seismic events produced by volcanic explosions and migration of
magma are relatively small and typically have magnitudes of M 5 or less (Hoblitt ez al.,
1987). Empirical data from dike-induced seismicity in volcanic rift zones suggest the
maximum earthquake that is associated with dike injection is about M,, 4 (Woodward-Clyde
Consultants, 1992b; Jackson, 1994; Smith et al., 1996; Hackett et al., 1995). A few dike-
induced earthquakes had magnitudes up to M, 5.5, although this appears to be a rare
occurrence (Jackson, _1994).

The Arco volcanic rift zone is about 20 km long and is characterized by a discontinuous
series of ground deformation and constructional volcanic features (Kuntz, 1977; Smith ez al.,
1989) (Figure 3-5). The ground deformation features consist of fissures and small-
displacement faults that offset the basaltic lava flows at the surface. Fissures comprise about
80% of the total length all such surficial features. The fissures are open vertical cracks;
displacement is characterized by dilational opening only, with no vertical or strike-slip
motion (Smith ez al., 1989). The constructional volcanic features within the Arco volcanic
rift zone conmsist of aligned vents, elongate vents, eruptive fissures, and small shield
volcanos.

Faults are expressed at the surface as both vertical scarps and monoclinal flexures. The
maximum fault length observed within the Arco volcanic rift zone is 5.3 km and is
associated with the "Railroad" monocline (Figure 3-5). The Box Canyon graben could be
interpreted to be as long as 8 km although the longest individual feature within the graben
is only 1.5 km long. Both of these features are probably the result of several dike intrusion
episodes. Fault displacements, which are predominately southwest-side-down, range up to
10 m although generally are less than 5 m. Fissures and faults occur in a branching en
echelon overlapping pattern that is up to 6 km wide.

Although the Lava Ridge-Hells Half Acre volcanic rift zone is not as well preserved or as

well studied as the Arco rift, its surficial features appear to be quite similar (Smith ez al.,
. 1989). The longest fault or fault-related features within this zone are two sets of fissures
associated with the vent area of Hell’s Half Acre lava field (Figure 3-5). These fissure sets
have a mapped extent of 3.8 km but a large part of their length is covered by the lava field;
they may be interpreted to be as long as 15 km. '
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Evidence for the Howe-East Butte volcanic rift zone is meager. It consists of four volcanic
vents and two isolated fissures in a broad area south and southeast of Howe (Kuntz, 1978;
Golder Associates, 1992), and the tenuous association of these with vents in the axial
volcanic zone near East and Middle Buttes and with a positive northwest-trending
aeromagnetic anomaly that may reflect the presence of subsurface basaltic dikes (Josten ez
al., 1993).

In contrast to the northwest-trending volcanic rift zones, the axial volcanic zone (Figure 3-5)
trends northeast parallel to the axis of the ESRP and includes few surface deformation
features. Nonetheless, it is a zone of enhanced volcanic activity, as shown by its
constructional volcanic topography and its numerous volcanic vents. The vent density is
comparable to that of the Arco volcanic rift zone. Geochronometry indicates that the axial
volcanic zone has been an area of basaltic and rhyolitic volcanism for at least the past 1.2
million years, and it is the site of several Holocene lava fields. Because small-magnitude
seismicity invariably accompanies dike injection and volcanism, even in the case where
surface-deformation features are rapidly covered by associated lava flows, the axial volcanic
zone is considered as a seismic source in this study.

3.3.3 ESRP Random Earthquake

Based on the historical earthquake record for the Intermountain seismic belt, Doser (1985b)
stated that the possibility exists for "blind" earthquakes of M 6 to 6 3/4 to occur with very
little or no evidence for surface faulting. As previously stated, the 1975 Pocatello Valley
earthquake was one siich example. A more recent example is the 3 February 1994 M,, 5.9
Draney Peak, Idaho earthquake which occurred east of the INEL near the Idaho-Wyoming
border. Other examples cited as having no reported surface rupture include the 1925 M,, 6.6
Clarkston and 1944 M; 6.1 and 6.0 Seafoam earthquakes (Table 3-1). Thus, within the
Basin and Range province and the Intermountain seismic belt, a random earthquake is often
assigned a maximum magnitude of about M; 6.5. The random earthquake is defined as an
event that can occur without an apparent association with a known or identified tectonic
feature. For instance, the USBR in their seismotectonic evaluations of dams uses a random
earthquake of M, 6%; this was the case for the Palisades Dam located about 100 km east-
southeast of the INEL within the central ISB (Piety er al., 1986). Both Youngs ef al. (1987)
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and Arabasz et al. (1:987b) selected a random earthquake of Mg 6% in their probabilistic
seismic hazard analysis for the Salt Lake Valley region.

In this study, we need to consider a random earthquake for the ESRP. There appear to be
clear differences between the ESRP and the more tectonically- and seismically-active Basin
and Range province, and hence, a smaller MCE is considered to be more appropriate for the
ESRP.

* Despite the observation that the historical seismicity of an area often does not reflect the
level of potential seismic hazard, the historical quiescence of the ESRP in addition to its
recent volcanic history (e.g., high heat flow) and the lack of mapped faults suggests that
significant tectonic earthquake sources are absent and low differential stresses occur within
the Plain (Jackson et al., 1993). Several tectonic/volcanic hypotheses, generally related to
the thermal effects of the advancing Yellowstone hotspot and mechanisms for volcanism
within the ESRP, may explain this seismic quiescence (Section 3.1.1). Consistent with
regulatory precedent,_‘however, a ESRP random earthquake with some specified maximum
magnitude must still be considered for seismic hazard evaluations.

The maximum historical earthquake that has been previously associated with the ESRP is the
1905 estimated M; 5-1/2 earthquake reported near Shoshone. As prev1ously discussed, this
earthquake hkely occurred outside the ESRP.

" Given the possibility of a relatively thin ESRP seismogenic crust, on the order of 5 to
10 km, it is also Iikely that shallow earthquakes larger than M,, 5.5 to 6.0 would have been
accompanied by surface rupture, and repeated events of this size would have produced
recognizable geologic structures at the earth’s surface. Thus, a maximum magnitude of M,
5.5 & 0.5 appears reasonable for a random earthquake in the ESRP because of: (1) the
apparent absence of significant geological structures within the ESRP (other than dike-
induced structures within volcanic rift zones); (2) evidence ‘that the ESRP extends in a
different manner than the surrounding Basin and Range province (i.e., dike-injection versus
normal faulting; see Section 3.1.1); (3) evidence suggesting low differential stresses at 2 to
3 km depth; and (4) aside from the 1905 earthquake, which probably had its source outside
the ESRP, the largest events to have reportedly. occurred within the Plain were probably
smaller than M; 4 in size.
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TABLE 3-1
SIGNIFICANT EARTHQUAKES IN THE SITE REGION

Notes or Additional

Date Magnitude Location References
10 Nov 1884 M 6% Bear Lake, Utah
4 Nov 1897 M; 6.4 Dillon, Montana
11 Nov 1905 M; 5% Shoshone, Idaho Location uncertain;
assigned magnitude as high
as M 6.3 (see Section
3.2.2.1)

6 Oct 1909 M; 6.3 Hansel Valley, Utah

28 Jun 1925 M, 6.6 Clarkston, Montana Associated with Lewis and
Clark zone (Stickney and
Bartholomew, 1987); Doser
(1989a)

M, 6 Clarkston, Montana Aftershock

12 Mar 1934 M, 6.6 Hansel Valley, Utah Produced surface faulting
(Doser, 1989b)

M, 6.1 Hansel Valley, Utah Aftershock 3 hours later
12 Jul 1944 M 6.1 Seafoam, Idaho Centennial Tectonic Belt;
Stickney and Bartholomew
, | (1987) and Dewey (1987)
14 Feb 1945 M 6.0 Seafoam, Idaho Aftershock
18 Aug 1959 M, 7.3 Hebgen Lake, Montana | See Section 3.2.1
M 6.5 Hebgen Lake, Montana | 756 GMT Aftershock;
Doser and Smith (1989)
M 6.0 Hebgen Lake, Montana | 0841 GMT Aftershock;
Doser and Smith (1989)
M, 6.7 Hebgen Lake, Montana | 1526 GMT Aftershock;
Doser (1985a)
19 Aug 1959 M, 6.1 Hebgen Lake, Montana | 0404 GMT Aftershock;
Doser (1985a)

28 Mar 1975 M; 6.0 Pocatello Valley, Idaho | See Section 3.2.1
30 Jun 1975 M; 6.4 Yellowstone, Montana Pitt et al. (1979)
28 Oct 1983 M, 6.8 Borah Peak, Idaho See Section 3.2.1
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4.0
SEISMIC SOURCE CHARACTERIZATION

In this section, the characteristics of each potential earthquake source significant to the INEL
are presented (Figure 4-1). The source characteristics are incorporated into the seismic
hazard analysis through the use of logic trees. In Section 2.2, the basic elements of the logic
trees were discussed. In this section, the parameter values and associated weights that are
included in the logic trees are documented. The historical earthquake catalogue, which was
used to characterize the regional seismic source zones, is described in Appendix A.

4.1 FAULT SOURCES

The Lost River, Lemhi, and Beaverhead faults are the closest Quaternary faults to the INEL
(Figures 3-1 and 3-3) and because of their significance, they have been individually
characterized for this analysis. Logic trees show the source characteristics used for each
fault (Figures 4-2 to 4-4) and this section discusses the bases for these characteristics. The
logic trees have been extensively revised from the draft report to address reviewers’
comments and incorporate new data on the southern Lemhi and southern Lost River faults
(Wu and Bruhn, 1994; Woodward-Clyde Federal Services, 1995; Gorton, 1995; Jackson et
al., 1995).

4.1.1 Source Parameters

Many source parameters are similar for all three faults, including: dip, depth, recurrence
models, weights on segmented versus unsegmented rupture behavior, and empirical relations
used to estimate maximum magnitudes (Figures 4-2 to 4-4). These common parameters are
discussed in this introductory section. We also note here that although the branches for fault
dip and recurrence model appear before the segmentation model branches in Figures 4-2
through 4-4 to streamline the graphical presentation of the logic trees, these parameters
actually vary independently for each fault segment in the analysis.
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'4.1.1.1 FaultDip

Fault dips are based on structural and seismological data, and range from 40° to 60° toward
the southwest, with a preferred value of 50°. The dip of the 1983 Borah Peak earthquake
rupture on the Thousand Springs segment of the Lost River fault was: (1) 45° £ 3° SW
based on the mainshock focal mechanism (Doser and Smith, 1985); (2) 49° based on
inversion of geodetic data (Barrientos et al., 1985); and (3) about 45° based on the dip of
the aftershock zone (Richins er gl., 1987). Main and subsidiary bedrock fault surfaces
measured along the Pass Creek segment of the Lost River fault dominantly dip about 57°
(Wu and Bruhn, 1994). To the south along the Arco segment, subsidiary bedrock faults
dominantly dip between 56° and 65°; however, these smaller structures may not be reliable
indicators of the dip of the main Arco fault segment (Wu and Bruhn, 1994). An average dip
of 50° +5° is suggested for the southern Lemhi fault from measurements of well-exposed
fault surfaces in bedrock and by inferring the dip of the fault from the orientation of
secondary extension fractures (Woodward-Clyde Consultants, 1992a). Doser and Smith
(1989) have assessed the fault dip of about 50 Basin and Range earthquake ruptures from
modeling body waves and conclude that the average dip of fault rupture is about 60° with
a range of 40° to 90°. We chose our preferred value of 50° + 10° primarily based on all
these fault-specific data, which compare reasonably well with regional observations.

4.1.1.2 Seismogenic Depth

Depth refers to seismogenic depth or the thickness of the seismogenic crust. Together with
the fault dip, depth constrains the downdip width of the faults, which in turn affects both
maximum magnitudes and distances calculated in the analysis. The mainshock of the Borah
Peak earthquake was initiated at a depth of 16 + 4 km (Doser and Smith, 1989). Focal
depths of aftershocks are better constrained and are confined to 16 km or less (Richins ez al.,
1987). The hypocenter for the Borah Peak event is interpreted to lie at or near the base of
the seismogenic crust and the rupture propagated unilaterally to the northwest (Doser and
Smith, 1985; Richins:ez al., 1987). More regionally, compilations of the focal depths of
moderate to large Basin and Range earthquakes indicate that these events occurred at or near
the base of the seismogenic crust and that nearly all of the events had focal depths of 15 km
or less (Doser and Smith, 1989). Based on these observations, we have assessed the depth

to the bottom of the seismogenic crust to range from 14 to 18 km for all three faults, with
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a preferred depth of 16 km (Figures 4-2 through 4-4). The basis for the preferred 16 km
is the depth of the Borah Peak earthquake. Of the alternative depths of 14 or 18 km, slightly
greater weight is given to the 14 km value because of the region-wide observations of Basin
and Range earthquakes.

4.1.1.3 Earthquake Recurrence Model

Several elements of the logic trees relate to earthquake recurrence. In order to define the
"shape" of the eartlfciuake recurrence curves, a recurrence model must be selected that
specifies the relative magnitude distribution throughout the range of magnitudes up to the
maximum. Both modified exponential and characteristic recurrence models (Section 2.2)
were used to model earthquake recurrence on fault-specific sources (Figures 4-2 to 4-4).
The modified exponential model assumes that magnitudes are exponentially distributed
throughout the range of magnitudes, and assumes a truncated density function at the
maximum. The characteristic model is based on paleoseismic observations from some faults
which suggest that surface-faulting earthquakes tend to repeatedly rupture with similar size
displacements and lengths (Schwartz and Coppersmith, 1984), suggesting that these events
were similar in magnitude. This model has a distinct nonlinear shape (Figure 2-2), implying
that larger size events occur relatively more frequently than intermediate size events as
compared to the exponential model. We used characteristic distributions after Youngs and
Coppersmith (1985). We weighted characteristic models greater based on: 1) displacement
data from paleoseismic studies of the Lemhi and Lost River faults that suggest dominantly
characteristic behavior for many fault segments (Schwartz and Crone, 1985; Schwartz, 1989;
Baltzer, 1990; Woocfward—Clyde Consultants, 1992¢c; Woodward-Clyde Federal Services,
1995); and 2) studies elsewhere in the Basin and Range province that indicate it is more
appropriate than the exponential model for fault-specific sources (Schwartz and Coppersmith,
1984).

4.1.1.4 Earthquake Recurrence

Slkip rates used in the analysis are discussed in the following fault-specific sections, but a
general note about all slip-rate measurements is included here. Net slip rates averaged over
the area of the fault rupture are used to characterize seismic moment rates and earthquake
recurrence in the analysis. Types of displacement measurements along faults typically vary
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from scarp heights to surface offsets (e.g., Haller, 1988) to net vertical tectonic
displacements (e.g., Woodward-Clyde Federal Services, 1995) to net slip measurements
(e.g., Crone et al., 1987). These differences can be significant, particularly for shallow
dipping faults offsetting sloping surfaces (Caskey, 1995). -For example, a 50° dipping
normal fault offsetting a 5° sloping alluvial-fan surface will result in a dip-slip measurement
that is 41% greater than the surface offset measured. In addition, Crone ez al. (1987) found
roughly a 17% component of lateral slip for the Borah Peak earthquake by measuring offset
piercing points at the surface. Therefore, whenever possible, we attempted to convert
measurements to dip slip assuming a 50° dipping fault and where a component of lateral slip
is indicated, we used an amount comparable to that observed during the Borah Peak
earthquake.  Determining representative average offsets” is more difficult because
measurements are few and typically are located where geomorphic expression is best and
offsets can be closer to the maximum than an average. We considered observations from
the Borah Peak earthquake, where the ratio between the average and the maximum throw
was about one third, tempered with more fault-specific information to determine average
values where appropriate.

4.1.1.5 Fault Segmentation

Numerous studies have found paleoseismic, structural, geomorphic, seismological, and other
geophysical evidence that the Lost River, Lemhi, and Beaverhead faults are segmented, with
segments or portions of the fault tending to rupture independently of each other during large
earthquakes (e.g., Scott et al., 1985; Crone et al., 1987; Crone and Haller, 1989; Schwértz,
1989; Knuepfer et al., 1990; Turko and Knuepfer, 1991; Gorton and Knuepfer, 1993;
Hemphill-Haley et al., 1994; Knuepfer, 1994; Woodward-Clyde Federal Services, 1995).
However, these studies also found evidence for complexities in surface-faulting patterns.
These complexities include some historic and prehistoric ruptures that: 1) extend through
apparent segment boundaries, rupturing a portion of an adjacent segment (e.g., Crone ez al.,
1987; Hemphill-Haley et al., 1994); 2) possibly ruptured two segments (&.g., Woodward-
Clyde Federal Services, 1995); and 3) only ruptured a portion of a segment (e.g.,
Woodward-Clyde Consultants, 1992c). Therefore, to account for these complexities and
uncertainties, we consider both segmented (weighted 0.7) and unsegmented (0.3) rupture
‘models for all three faults. We weigh the former more heavily because we believe that the
evidence supports dominantly segmented behavior with boundaries that are relatively
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persistent. Specific segmentation models are discussed in the following sections for each
fault.

In the unsegmented model, continuous sections of the fault are allowed to rupture
unconstrained by segment boundaries. To determine rupture lengths for this model, we first
calculated average segment lengths (from the segmented models) for each scenario on each
fault (Table 4-1). We then considered ruptures with this length (22 to 29 km), twice this
length (44 to 58 km), and triple this length (66 to 87 km), weighted 0.185, 0.63, and 0.185,
respectively. The greater weight for longer, "multiple segment"” ruptures in the unsegmented
model is primarily to account for uncertainty and the possibility of longer ruptures not
accounted for in the segmented model.

Observations of surface-faulting earthquakes in the Basin and Range province indicate that
ruptures with lengths comparable to those that we use in the unsegmented model have
occurred in the past. dePolo ez al. (1991) analyzed characteristics for 11 historical surface-
faulting earthquakes in the Basin and Range, with rupture lengths ranging between 9 and 110
km and averaging about 50 km. They found that nine ruptures involved more than one
structural segment, typically with two and sometimes three or more structural segments.
Structural segments are defined based primarily on kinematic and geometric considerations.
Thus, structural segments may not necessarily correlate with rupture segments, which are
defined based on paleoseismic behavior and directly reflect past rupture behavior of a fault.
dePolo et al.’s analysis included the 36-km-long 1983 Borah Peak earthquake, which
ruptured the Thousand Springs segment and part of the Warm Spring segment. However,
it is noteworthy that other studies have concluded that the primary rupture was probably
confined to the 22-km-long Thousand Springs segment (Crone et al., 1987; Doser and Smith,
1989).

In addition, the identification of structural segments in general needs to be considered with
the following caveat. Ideally, fault segmentation models are based on more than just
structural or geometric considerations, using extensive paleoseismic information to
reconstruct temporal and spatial patterns of surface faulting (e.g., Machette er al., 1991).
However, paleoseismic data sets that are detailed and comprehensive enough to reconstruct
complete rupture histories are rare and more typically an incomplete paleoseismic database
must be heavily supplemented by other data to develop segmentation models.
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4.1.1.6 Maximum Magnitude

To estimate maximum magnitudes for each fault, we used the empirical relations of Wells
and Coppersmith (1994) that relate M, to surface rupture length or rupture area for all fault
. types. These relationships are considered to be the best relationships available to estimate
maximum magnitude. When'data on displacements per event were available, we also used
their appropriate relation for estimating M,, from displacements. Rupture lengths used in the
analysis are shown in Table 1. These lengths are determined by segmentation models and
scenarios developed to characterize uncertainty in the southern termination of all three faults.
Models and scenarios are discussed in the following sections for each fault. Areas were
computed from lengths and down-dip widths. Displacements are also discussed in the
/ following fault-specific sections.

The statistical variability of the data about the empirical relationships between rupture
dimensions and magnitude was not incorporated into the uncertainty assessment of maximum
magnitude. 'As discussed in Section 2.2, the maximum or "characteristic" event on a fault
segment is considered to have a random magnitude in the range of +% magnitude units
about the expected magnitude for this event. This variability is taken to represent the
random nature of earthquake ruptures and is representative of the scatter of individual data
points in the empirical relationships. The logic trees are used to model in uncertainty in
specifying the expected maximum event magnitude. Therefore, one should consider the
uncertainty in the mean relationship between rupture dimensions and earthquake magnitude.
This uncertainty is given by the standard deviation of the individual data points divided by
the square root of the sample size. The standard errors reported by Wells and Coppersmith
(1994) are on the order of 0.25 magnitude units and the sample sizes are typically greater
that 100 events. Thus, the uncertainty in the expected maximum magnitudes from a given
empirical model are on the order of 0.02 magnitude units or less and can be neglected.
Figures 4-5 to 4-7 show the resulting maximum magnitude distributions calculated for each
fault using the values and weights shown on the logic trees. Distributions for each fault are
generally similar with.the Pass Creek and Big Gulch segments generally showing the largest
maximum magnitudes due to greater displacements and/or longer lengths.
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4.1.2 Lost River Fault

4.1.2.1 Segmentation |

Scott et al. (1985) subdivided the Lost River fault into six rupture segments based on late
Quaternary fault activity. From south to north, these segments were named: 1) Arco; 2)
Pass Creek; 3) Mackay; 4) Thousand Springs; 5) Warm Spring; and 6) northernmost. Crone
et al. (1987) proposed the name Challis segment for the northernmost segment and we retain
that name here. Based on patterns. of late Quaternary scarps and kinematic considerations,
Janecke (1993) and Wu and Brubn (1994) proposed sﬁght changes for southern segment
boundaries which are discussed in more detail by Woodward-Clyde Federal Services (1995).
We used the segmentation model of Scott ez al. (1985) with these slight modifications for the
Pass Creek and Arco Segments (Figures 3-3 and 3-4).

4.1.2.2 Southern Termination

The location of the southern rupture boundary of the Arco segment of the Lost River fault
is not well-defined (Woodward-Clyde Federal Services, 1994; Woodward-Clyde Federal
Services, 1995). Three rupture scenarios were selected to represent reasonable possibilities
for the southern rupture termination of the Arco segment (Figure 4-8). In scenario 1, the
rupture terminates less than 1 km southeast of Arco, coincident with the southern end of the
Lost River Range and late Pleistocene range-front scarps (Scott, 1982; Pierce, 1985; Kuntz
er al., 1994). We weighted this scenario highest (0.5) because the nearly continuous late
Pleistocene fault scarps at the base of the Lost River Range indicate that ruptures have most
recently and persistently extended at least this far south to create the topographic and
structural relief of the range, although fault scarps have been modified by paleochannels of
the Big Lost River at the south end of the range (Woodward-Clyde Federal Services, 1994;
Wu and Bruhn, 1994).

“In scenario 2, the rupture terminates less than 2 km west-southwest of Butte City (Figure
4-8), at the southern end of scarps on alluvium (Kuntz ez al., 1994). The age of these scarps
and their relation to the most recent activity on the range-front fault scarps near Arco is not
well-understood (Woodward-Clyde Federal Services, 1994; Woodward-Clyde Federal
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Services, 1995). However, these scarps near Butte City could represent the southern extent
of the Arco segment rupture based on multiple lines of evidence: (1) they are along strike
with the range-front scarps of the Arco segment; (2) a normal fault in this location could
account for the structural and topographic high in the Arco Hills to the northeast; and (3)
interpretation of seismic reflection lines across these scarps indicates that near-surface strata
(roughly between % and 1 km deep) are displaced as much as 85 m (Jackson et al., 1995).
Although there is strong evidence for fault displacement as far south as Scenario 2, the age
of the offset strata and whether these offsets correlate with faulting events on the Arco
segment remains unknown. Considering these uncertainties and because these scarps are not
directly associated with a range front, we weight this scenario 0.4, slightly less than Scenario
1.

The Tupture for Scenario 3 terminates 12 km southeast of Arco (Figure 4-8), at the southern
end of monoclinal scarps and graben within the northern portion of the Arco volcanic rift
zone (Smith et al., 1989; Kuntz et al., 1994). Evidence as to whether these structures that
show such small total displacements (typically less than 10 m; Wu and Bruhn, 1994) are
seismogenically part of the Arco segment is equivocal. They could have formed as a result
of dike injection (Smith ez al., 1989). However, they are also along strike with range-front
fault scarps of the Arco segment and their sense of net surface offset (as measured across
the entire zone of deformation) is down to the southwest, consistent with displacement on
the Lost River fault (Wu and Bruhn, 1994). Boundary element modeling of observed
displacements and geometry of the monoclinal flexures yields several non-unique possible
mechanisms for their formation, including igneous dike injection, displacement along buried
faults, and a mixed-mode of dike injection and faulting (Wu and Bruhn, 1994). Smith ez al.
(1989) noted that slip rates comparable to those for the Arco segment would have resulted
in 50-150 m of throw across these scarps in the volcanic rift zone, which is an order of
magnitude larger than what is actually observed. Seismic reflection data shows no evidence
for net displacements of near-surface strata (roughly between % and 1 km deep) in this part
of the volcanic rift zone (Jackson ez al., 1995). Thus, rupture of the Arco segment does not
appear to have resulted in significant displacement (>30 m based on estimates of minimum
resolution from the seismic data) this far south during the late Quaternary. Therefore, we

o~

only weighted this scenario 0.1.
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4.1.2.3 Displacements Per Event

Displacements per event used for the Lost River fault (Figﬁre 4-2) were based on data from
historic ruptures and trench investigations. Crone ez al. (1987) measured an average throw
along the surface rupture for the 1983 Borah Peak earthquake of 0.8 m and a maximum
throw of 2.7 m. Stratigraphic and geomorphic evidence along the Thousand Springs segment
indicates that net vertical displacements for the penultimate event were similar to those for
the Borah Peak event (Vincent, 1985; Salyards, 1985; Schwartz and Crone, 1985; Crone ez
al., 1987). Therefore, we weighted these values the greatest for this segment and adopted
a range to reflect uncertainties in future ruptures on this segment (Figure 4-2). Data for the
Pass Creek and Arco segments are limited to trench investigations that suggest net vertical
displacements that average 1.2 to 1.5 m per event on the Arco segment and 2.0 to 2.6 m per
event on the Pass Creek segment (Woodward-Clyde Federal Services, 1995). We use these
as our preferred average displacements and adopted a range to reflect uncertainty in how
well these observations from individual sites might represent slip distributions over the entire
segment. Estimated net vertical displacements per event range from less than 1 m to just
over 4 m on the Pass Creek segment and from about 0.5 to 2.5 m on the Arco segment
(Woodward-Clyde Federal Services, 1995). In using this data to determine maximum
displacements per event, we consider uncertainties in the trench data, the expected variability
of displacements along strike, and the fact that trenches were centrally located along each
segment where displacements are often largest for surface ruptures (e.g., Borah Peak
earthquake; Crone and Machette, 1984).

4.1.2.4 Earthquake Recurrence

‘We use both slip rates and recurrence intervals to characterize rates of earthquake recurrence
on the Pass Creek and Arco segments (Figure 4-2). We weight the latter slightly more
because recurrence interval data is adequate, and the slip rate data has larger uncertainties
due to larger uncertainties in determining average displacements. -

Deep trenches excavated across 100,000- to 200,000-year-old faulted alluvial-fan deposits
along the southern segments provide an unusually long record of multiple surface-faulting
events (Malde, 1971; 1985; Pierce, 1985, 1988) that are variably spaced in time, with
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recurrence intervals varying by an order of magnitude or more (Woodward-Clyde Federal
Services, 1995). As temporal patterns do not clearly indicate whether the segments are
presently within or between clusters of surface-faulting activity, we consider three behavioral
possibilities: 1) segments are entering into or are still within a period of accelerated activity
‘(intra-cluster); 2) segments are in the initial stages of a quiescent stage in the seismic cycle
(intercluster); and 3) acﬁvity can be represented by an average recurrence as events are not
necessarily always clustered in time (average) (Figure 4-2).

Distributions of recurrence intervals and slfp rates for the Arco and Pass Creek segments
(Figure 4-2) are based on paleoseismic studies (Malde, 1971, 1987; Pierce, 1985, 1988;
Woodward-Clyde Federal Services, 1995). Evidence on the Arco segment for at least seven
surface-faulting events since 160 ka suggests that: 1) average recurrence values range
between 11,000 and 25,000 years; 2) recurrence intervals have been 1,000 years or shorter
within clusters; and 3) recurrence intervals have been roughly 30,000 and 40,000 years or
more between clusters (Woodward-Clyde Federal Services, 1995). Evidence on the Pass
Creek segment suggests that at least six, and possibly eight, events have occurred since 140
to 220 ka, with a cluster of three events having occurred between 13 and 21 ka (Woodward-
Clyde Federal Services, 1995). Preferred age estimates for events within this cluster would
suggest that average recurrence intervals are on the order of 500 years. Recurrence intervals
between older events are poorly constrained, but buried soils suggest intervals between
clusters are as long or longer than those on the Arco segment. Average recurrence estimates
for the past 140 to 220 ka range from 18,000 to 37,000 years. Depending on the time
period of interest, Woodward-Clyde Federal Services (1995) estimate vertical slip rates of:
1) 0.05 to 1.1 mm/yr for the Arco segment; and 2) about 0.05 to over 1 mm/yr for the Pass
Creek segment.

Only slip rates were used to characterize earthquake recurrence on the central and northern

-segments of the Lost River fault because the paleoseismic record is much shorter, although
the timing of recent events is better constrained (e.g., Schwartz, 1989). In addition, these
segments are farther from the INEL than the southern segments and are not as significant
to the hazard.

From offsets of 3.5 to 4.5 m on the Willow Creek alluvial-fan surface, estimated to be
roughly 15,000 years old, Scott et al. (1985) determined a "mean" slip rate of 0.3 mm/yr
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for the Thousand Springs segment. Vincent (1985) estimated "an average relative
neotectonic uplift rate” for this same location of 0.3 mm/yr. In their scarp morphology
analysis, Hanks and Schwartz (1987) calculated "relative uplift" rates of 0.18 to 0.25 mm/yr
based on vertical offsets of 1.5 to 2.0 m every 8,000 years. Using Borah Peak earthquake
data, we note here that if 0.8 m of average throw occurs on a 50° dipping plane with a 17%
component of lateral slip (Crone et al., 1987) every 6,000 to 8,000 years (Hanks and
Schwartz, 1987), this yields net slip rates on the order of 0.15 to 0.2 mm/yr. Based on all
this information, we chose a preferred slip rate of 0.25 mm/yr for the Mackay, Thousand
Springs and Warm Springs segments. We use similar slip rates for the Warm Spring and
Mackay segments even though they show less topographic relief than the Thousand Springs
segment, because all three segments show similar behavior since the latest Pleistocene, with
two events having occurred since about 15 ka (Schwartz, 1989). We considered slip rates
as high as 1.0 mm/yr to address the uncertainty as to whether future events may be
temporally clustered on these segments, as observed along the Arco and Pass Creek
segments.

Little is known about the activity on the Challis segment. The absence of fault scarps on
older Quaternary alluvium and the relatively poor geomorphic expression, suggest that this
segment had the lowest rates of late Quaternary activity for the entire Lost River fault (Crone
and Haller, 1991; Scott ez al., 1985). Due to the lack of more detailed data, we chose a
preferred slip rate of 0.05 mm/yr for the Challis segment, similar to lower long-term rates
for the Arco and Pass Creek segments.

4.1.3 Lemhi Fault

4.1.3.1 Segmentation

Several previous studies concluded that the Lembhi fault can be divided into six rupture
segments based primarily on variations of the morphology of fault scarps formed in
alluvium, apparent discontinuities in the trace of the fault along its extent, variations in
range-front morphology, and structural relief (Turko and Knuepfer, 1991; Crone and Haller,
1991; Knuepfer et al., 1990; Haller, 1988; Turko, 1988). However, preferred
interpretations for locations of many segment boundaries have changed through time as a
result of more data from more focused and detailed investigations. We followed the
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segmentation model of Turko and Knuepfer (1991) for the northern part of the fault (from
the Warm Creek segment north) and modified Turko and Knuepfer’s (1991) model to
incorporate results from more recent mapping, scarp profiling, and trenching studies along
the southern part of the fault (Woodward-Clyde Consultants, 1992c; Hemphj]i-Haley et al.,
1994; Gorton, 1995).' " From south to north, the segments are: 1) South C}eek; 2) Badger
Creek; 3) Warm Creek; 4) Big Gulch; 5) Falls Creek; and 6) Ellis (Figures 3-3 and 3-4).

4.1.3.2 Southern Termination

Similar to the Lost River fault, there is uncertainty in the southern extent of expected rupture
for the Lemhi fault (Woodward-Clyde Consultants, 1992a). Two rupture scenarios after
‘Woodward-Clyde Consultants (1992a) were selected to represent reasonable possibilities for
+ the southern termination of the Lemhi fault (Figure 4-8). Scenario 1 terminates at a cross-
fault junction about 1%2 km north of Highway 33, and is the same as Scenario A in
Woodward-Clyde Consultants (1992a). Range-bounding, late Quaternary fault scarps die out
a couple of kilometers north of Scenario 1, where they are buried by very young eolian
deposits (Gorton, 1995). Thus, it is not clear how far south late Quaternary ruptures
actually extended in the past but it is noteworthy that displacement has not kept pace with
. latest Quaternary deposition south of Scenario 1. Based on this and the presence of the
cross-fault in the foofwall coincident with a rapid decrease in the structural and vertical
topographic relief in the range, we considered Scenario 1 with a weight of 0.3. Scenario 2
terminates very close to the southern end of Scenario C in Woodward-Clyde Consultants
(1992a). The basis for this scenario is very similar to that outlined in Woodward-Clyde
Consultants (1992a) with additional information from seismic lines in this area that indicate
that near-surface strata are offset in the vicinity of Highway 33, but strata do not appear to
be offset 2 km south of the highway (Jackson et al., 1995). Scenario 2 lies between these -
two seismic lines about %2 km south of Highway 33, south of the southern end of range and
coincident with the northern edge of a northeast-trending gravity trough in the Lost River
Sinks area (Woodward-Clyde Consultants, 1992a). Because of the new seismic data, we
weighted Scenario 2 (0.70) more than Scenario 1 (0.30).

§
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4.1.3.3 Displacements Per Event

Our preferred displacements per event for the Lemhi fault were based on available data from
trenching, scarp-profiling, and mapping studies (Malde, 1987; Baltzer, 1990; Turko and
Knuepfer, 1991; Woodward-Clyde Consultants, 1992c). Similar to our approach for
developing displacement distributions for the Lost River fault, we consider along-strike
variations and the degree to which we believe measurements reflect actual average or
maximum displacements. = Woodward-Clyde Consultants (1992c) estimated vertical
displacements per event of generally between 1 and 3 m, with an average of 2.0 m for 11
measurements on the South Creek segment. However, it is noteworthy that many events did
not necessarily rupture along the entire length of the segment. Displacements per event
along the Warm Creek segment show a similar range and average, even though the Warm
Creek segment is shorter. Surface offsets across scarps thought to be formed in one faulting
event range between 1.1 and 2.7 m, and average 1.9 m for the Warm Creek segment (Turko
and Knuepfer, 1991). Trench exposures of this segment show vertical stratigraphic
separations of 1.7 m and 0.9 to 1.3 m for the most-recent event, and 1.7 m for the
penultimate event (Baltzer, 1990). In contrast, surface offsets across single-event scarps
along the relatively long Big Gulch segment range between 1.5 and 5.0 m, and average
2.8 m (Turko and Knuepfer, 1991). Trench exposures along this segment also support larger
displacements per event, as large as 3.5 to 4 m for the most recent event (Knuepfer et al.,
1990). Finally, surface offsets measured along the Falls Creek segment range from nearly
1 to 2.1 m, and average 1.5 m (Turko and Knuepfer, 1991). The net vertical tectonic
displacement measured for the most recent event at the Falls Creek trench site is less than
1 m (Baltzer, 1990). Haller (1988) measured stratigraphic throw of 1.1 to 1.2 m,
presumably for the most recent event, on faulted buried soil horizons exposed on the south
side of Patterson Creek (note she refers to this part of the Lemhi fault as the Patterson

segment).
4.1.3.4 Earthquake Recurrence

The Lemhi fault has been the subject of several recent geologic studies of late Quaternary
behavior, including the assessment of recurrence intervals along various segments (e.g.,
Malde, 1971, 1987; Baltzer, 1990; Knuepfer ez al., 1990; Woodward-Clyde Consultants
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1992c, Hemphill-Haley ez al., 1994) (see Figure 3-3 for trench site locations). Accordingly,
we considered both slip rates and recurrence intervals to characterize earthquake recurrence
on the South Creek, Warm Creek and Big Gulch segments (Figure 4-3). Different weights
for each method reflect the type of data available for each segment.

Paleoseismic data from four exploratory trench sites (Figure 3-3) (Malde, 1987; Woodward-
Clyde Consultants, 1992c) are used to develop recurrence interval distributions for the South
Creck segment (Figure 4-3). Although these data suggest that temporal clustering of events
occurred during latest Pleistocene time (Woodward-Clyde Consultants, 1992c), the limited
length of a complete paleoseismic record leaves considerable behavioral uncertainties. Thus,
the temporal behavior of earthquake occurrences could range from relatively uniform (i.e.,
evenly-spaced intervals) to highly clustered (Woodward-Clyde Consultants, 1992a). To
incorporate this uncertainty, we have included three behavioral possibilities for the South
Creek segment, similar to the Lost River fault, with intracluster, average, and intercluster
‘branches (Figures 4-2 and 4-3).

For recurrence intervals within clusters of activity, paleoseismic data from the Camp Creek
and Coyote Springs sites suggest intervals of 6,000 years or less, whereas the three events
in 7,000 years observed at the Black Canyon site (Woodward-Clyde Consultants, 1992c)
suggest an average intra-cluster recurrence interval of 3,500 years. These values are
conservative, however, as not all of the events that define these intervals ruptured the entire
South Creek segment (Woodward-Clyde Consultants, 1992¢). Data to constrain recurrence
intervals between clusters is limited. Minimum values are based on the interval between the
most-recent and penultimate events at the Coyote Springs site, estimated to be from about
14,000 to 20,000 years (Woodward-Clyde Consultants, 1992¢). The preferred value is based
on the interval between the oldest event and penultimate event at the Camp Creek site, which
is probably between 30,000 and 50,000 years (Woodward-Clyde Consultants, 1992c).
Maximum values are based on paleoseismic data from the Black Canyon site, where at least
five events offset older alluvial-fan deposits (Malde, 1985), with the three youngest events
occurring since 24 ka (Woodward-Clyde Consultants, 1992¢). If the two older events were
post-Bull Lake (Knuepfer ez al., 1990), but occurred shortly thereafter, say around 120 to
130 ka, then recurrence intervals between clusters could be as long as 100,000 years.
Averége recurrence values were based on: 1) two events since 24 to 25 ka (Camp Creek
site; Woodward-Clyde Consultants, 1992c); 2) three events since 24 ka (Black Canyon site;
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Woodward-Clyde Consultants, 1992c); and 3) five post-Bull Lake events (< 130 ky)
(Knuepfer ez al., 1990).

Slip rate distributions for the South Creek segment are based on long and short term rates.
Preferred values are based on vertical slip rates since 24 ka, which range from 0.15 to 0.25
mm/yr and average about 0.2 mm/yr (Woodward-Clyde Consultants, 1992c). In
comparison, a post-Bull-Lake rate of about 0.1 mm/yr can be estimated if all 15 m of
vertical displacement at the Black Canyon site (Malde, 1985) is assumed to have occurred
since 130 ka. Slip rates as high as 1 mm/yr are considered to incorporate uncertainties in
temporal clustering of events.

The Badger Creek segment is a newly identified, short segment that has no unambiguous
fault scarps younger than early Wisconsin, in comparison to prominent late Pinedale (15 to
25 ka) scarps on adjacent segments (Gorton, 1995). Gorton referred to this segment as the
central segment. Slip rates for the Badger Creek segment in the segmented model are
assumed to be similar to the Ellis segment (P.L.K. Knuepfer, Binghamton University,
personal communication, 1994), which also shows no evidence for activity since early
Wisconsin time (since 60 ka). Multiple events probably occurred on the Ellis segment
between 60 and 160 ka (Knuepfer et al., 1990), and our slip rates for this segment are based
on observations of 10-m-high scarps on pre-Wisconsin alluvial-fan surfaces (Baltzer, 1990).
In the unsegmented model, we used slip rates similar to the South Creek segment for the
section of the fault along the Badger Creek segment because the model requires this, as the
Badger Creek segment lies between two higher slip-rate sections (i.e., the South Creek and
Warm Creek segments). However, we do not believe this approach is overly conservative
because the structural and topographic relief along the Badger Creek segment suggest slip
rates have not necessarily always been lower than along adjacent segments, and these higher
rates for the Badger Creck section in the unsegmented model address this uncertainty.

Slip rates and recurrence intervals for the Warm Creek and Big Gulch segments are
primarily based on data from trenches (Baltzer, 1990) and surface-offsets measured for fault
scarps on late Pinedale (14 to 20 ka) alluvial-fan surfaces (Turko and Knuepfer, 1991). On
the Warm Creck segment, an average surface offset of 1.9 m since 14 to 20 ka (Turko and
Knuepfer, 1991) yields dip-slip values ranging from 0.15 to 0.25 mm/yr, assuming a fault
dip of 50° and that the alluvial-fan surfaces generally slope at least 5°. Baltzer (1990)
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identified both a late Holocene and late Pinedale event, which is the basis for our preferred
recurrence interval of 10,000 years for this segment.

On the Big Gulch segment, an average surface offset of 2.8 m since 14 to 20 ka (Turko and
Knuepfer, 1991) yields dip-slip values ranging from 0.2 to 0.28 mm/yr (with the same
previous assumptions). Evidence from trench exposures indicate at least one or possibly two
post-late Pinedale events have occurred (Baltzer, - 1990).  However, similar-sized
displacements on early Wisconsin alluvial-fan surfaces suggest a relatively long (perhaps
>50 ka) period of seismic quiescence preceded the most recent activity on this segment
(P.L.K. Knuepfer, Binghamton University, personal communication, 1994). Based on this,
we consider recurrence intervals as long as 60,000 years for the Big Gulch segment (Figure
4-3). '

Finally, on the Falls Creek segment, an average surface offset of 1.5 m since 14 to 20 ka
(Turko and Knuepfer, 1991) yields dip-slip values ranging from 0.1 to 0.15 mm/yr (with
same previous assumptions). A trench exposure at Falls Creek indicates the most-recent
event occurred between 7 and 12 ka (Baltzer, 1990).

4.1.4 Beaverhead Fault

4.1.4.1 Segmentation

The segmentation model for the Beaverhead fault was adopted from Crone and Haller (1991)
and also includes six segments (Figures 3-3 and 3-4). From south to north, the segments
include: 1) Blue Dome; 2) Nicholia; 3) Baldy Mountain; 4) Leadore; 5) Mollie Gulch; and
6) Lemhi. Rupture lengths are shown in Table 4-1. Due to a lack of data for displacements
per event, only empirical relations for length and area were used to determine maximum
magnitudes (Figure 4-4).

4.1.4.2 Southern Termination
Similar to the other faults, the southern extent of expected rupture of the Beaverhead fault
is uncertain, but mapping along the Blue Dome segment indicates it has been less active

during the late Quaternary than the southernmost segments of the Lemhi and Lost River
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faults (Haller, 1988; Embree, 1989). Three rupture scenarios were selected to represent
uncertainties in the southern rupture termination of the Beaverhead fault (Figure 4-8). Both
Embree (1989) and Crone and Haller (1991) found no evidence for fault scarps on alluvium
along the Blue Dome segment, and thus there is no direct evidence for late -Quaternary
activity on this segment. Based on these observations, the Blue Dome segment is not
considered active m Scenario 1 and the southern termination of the rupture is at the southern
end of the Nicholia segment near Timber Creek (Haller, 1988). This scenario was assigned
a weight of 0.5. In“Scenario 2, the rupture terminates at the southern end of the range
(Figure 4-8), coincident with the southern end of the most southwestern bedrock splay of the
Blue Dome segment (Kuntz et al., 1994). As the range-front morphology is suggestive of
some Quaternary activity (Haller, 1988) and to include the possibility that the Blue Dome
segment is active and nearing the end of a long period of seismic quiescence, we weighted
this scenario 0.4. |

In Scenario 3 for the Blue Dome segment, we extended the rupture about 8 km south of the
southern end of the range to Richard Butte (Figure 4-8). Although there is no surficial
expression of a recently active structure extending this far into the Snake River Plain, a
gravity trough in the Birch Creek Valley partially extends into the Plain at this location
(Bankey et al., 1985) and Richard Butte is constructed of early Pleistocene basaltic rocks
along the projected strike of the southwesternmost fault splay of the Blue Dome segment.
This evidence is suggestive of a possible older (early Pleistocene?) buried structure in this -
area that could be the southern extension of the Blue Dome segment. Without further
subsurface data, howéver, this scenario is somewhat speculative and so we assign a weight
of only 0.1 for this scenario.

'4.1.4.3 Earthquake Recurrence

Fault-specific recurrence interval data are not available for the Beaverhead fault because
paleoseismic trenching studies have not been conducted. Therefore, only slip rate estimates
were used to characterize earthquake recurrence (Figure 4-4). Slip rates were based on data
from Crone and Haller (1991) and Haller (1988), who profiled fault scarps and estimated
ages of offset surfaces primarily based on soil development and relative geomorphic position.
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Haller (1988) found the youngest activity and highest rates along the central Nicholia and
- Leadore segments, with surface offsets of 0.8.to 2 m on late Pinedale deposits. Assuming
all the displacement occurred since 15 ka yields dip-slip rates on the order of 0.08 to 0.19
mm/yr. Based on this, we used a preferred slip rate of 0.15 mm/yr for these two segments.
We considered rates as high as 1.0 mm/yr (Figure 4-4) to include the possibility that events
may be temporally clustered (as observed along the Lost River and Lemhi faults) because
the limited paleoseismic data do not preclude this possibility.

Very little is known about rates of faulting activity on the Blue Dome, Baldy Mountain and
Lemhi segments. The geileral absence of scarps on the late Quaternary alluvium (Crone and
Haller, 1991) is suggestive of much lower rates of recent activity than along the Nicholia and
Leadore segments. For example, although bedrock fault scarps are present along the Baldy
Mountain segment, Haller (1988) found no scarps on Pinedale deposits and so she infers that
no activity occurred since at least 25 ka. From the range-front morphology and the lack of
scarps on older alluvium on the Blue Dome segment, she infers no activity occurred during
the past 100 ka. Based on this limited information, we assume slip rates for the Blue Dome,
Baldy Mountain and Lemhi segments that are roughly one third that of the Nicholia and
Leadore segments, which, for comparison, show evidence for probably two events offsetting
Pinedale deposits and three or more events offsetting older alluvium (Haller, 1988).

Finally, we note that, in the unsegmented model, the portion of the fault along the Baldy
Mountain segment has the same slip rates as the portions along the Nicholia and Leadore
segments because this is required by the model. The Baldy Mountain segment lies between
the other two segments (Figure 3-4). However, the higher rates used in this model are
supported by the topographic relief along the Baldy Mountain segment, which is intermediate
between that of the Leadore and Nicholia segments (Haller, 1988). Thus, although recent
rates of activity appear lower along the Baldy Mountain segment, very long-term rates could
~ be more comparable to the adjacent Nicholia and Leadore segments and the higher rates in
the unsegmented model attempt to account for this uncertainty.

4.1.5 Predicted Earthquake Frequency

Figure 4-9 presents the earthquake recurrence curves for the Lemhi, Lost River, and
Beaverhead faults based on the source characterization discussed above. The recurrence
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estimates are computed using a b-value of 0.85+0.1 for the exponential portion of the
recurrence curves. Each plot shows the mean recurrence estimate for the fault and the 5®-
and 95"-percentiles of the computed distribution in earthquake frequency. Also shown for
the Lost River and Lembhi faults are the mean recurrence estimates using only slip rates for
those segments where both slip rates and recurrence intervals are given and mean recurrence
estimates using only recurrence interval estimates for those segments where both are given.
A comparison between the observed and predicted seismicity in the vicinity of the three
faults is discussed below in Section 4.3.

4.2 ESRP VOLCANIC RIFT ZONES

Volcanic rift zones are characterized as potential seismic sources that are distinct from the
rest of the ESRP. Although both the volcanic rift zones and the ESRP have been seismically
quiescent during the historical period, studies of active volcanic rift zones worldwide suggest
that during times of volcanic activity, the rift zones are usually the locus of dike injection
and associated seismic activity. Discussion of the earthquake potenﬁal of the ESRP volcanic
rift zones is based largely on analogues of active volcanic-rift zones worldwide (Smith ez al.,
1989; Woodward-Clyde Consultants, 1992a; Jackson, 1994; Hackett ez al., 1996).

The criteria that are used to identify volcanic rift zones in the INEL vicinity are the spatial
distribution of volcanic vents and dike-induced faults and fissures. Based on this criteria,
the Great Rift, Arco; and Lava Ridge-Hell’s Half Acre volcanic rift zones are identified
(Figure 3-5). As described in Section 3.3.2, because the axial volcanic zone is also
associated with processes of magma intrusion, it too must be considered as a seismic source.
Another postulated volcanic rift zone, called the Howe-East Butte Tift zone (Kuntz, 1978)
is also considered in this analysis as a potential seismic source. Kuntz (1978) notes that the
Howe-East Butte volcanic rift zone is poorly defined relative to other volcanic rift zones of
the ESRP and the basaltic lavas tend to be older. Because the density of vents is extremely
low (consisting of only four to five vents total), a low probability of existence (0.1) is
assigned to the Howe-East Butte volcanic rift zone. Equivalently, the low probability reflects
the very small likelihood that the Howe-East Butte is a seismic source and, therefore, would
localize seismicity above the random seismicity that is assumed to occur within the ESRP.
In the cases where the Howe-East Butte is not considered a source (90% of the cases), the
ESRP source includes the region containing the Howe-East Butte zone.
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\
4.2.1 Maximum Magnitude

As part of the deterministic ground motion assessment for the NPR (Woodward-Clyde
Consultants, 1992a5, worldwide volcanic-rift zones were evaluated to form the basis for estimating
potential deformation processes and maximum volcanic earthquake magnitudes for the ESRP
volcanic rift zones. . Based on analogues to other basaltic volcanic rift zones, such as Kilauea,
Hawaii; Krafla, Iceland; Afar, Africa; Taupo, New Zealand; and Long Valley, California, it was
concluded that the maximum magnitude earthquake that can be associated with dike injection in
the volcanic rift zones is a My 5.0 (Jackson, 1994; Smith ez al., 1996; Hackett et al., 1996;
Woodward-Clyde Consultants, 1992a). Earthquakes of this size are generated at shallow depths
along faults above the intruding dikes. Field, geodetic, and seismological observations suggest that
the depth extent of normal faults above or ahead of propagating dikes is about 2 to 4 km (Karpin
and Thurber, 1987; Klein ef al., 1987; Du and Aydin, 1992; Rubin, 1992). The logic trees for the
volcanic rift zones (Figure 4-10) reflect a preference for 2 km based on the geometry of the fissures
and worldwide analogues (e.g., Jackson, 1994; Smith ez al., 1989). In this study, the maximum
dimensions of faults and fissures within the ESRP volcanic rift zones have been re-examined and it
is now concluded that their dimensions would be most compatible with a maximum magnitude of
My 5.0 (Jackson, 1994). For this probabilistic seismic hazard analysis, preference for the
maximum magnitude of My 5.0 is expressed in the logic tree (Figure 4-10) and an uncertainty in
that assessment of about %2 magnitude unit is included.

Although the volcanic zones are modeled in the seismic hazard analysis as source zones, they are
currently observed to be aseismic, thus no recurrence relationship based on observed seismicity can
be established. To constrain recurrence rates, we consider the association of seismicity with
volcanic eruptive episodes. Observations of active rift zones show that earthquakes typically occur
during magmatic intrusive and eruptive episodes. Because of this genetic link between eruptive
episodes and earthquakes, we can use the recurrence rates of eruptive episodes to estimate the
recurrence rates of earthquakes.

4.2.2 Earthquake Reéurrence

In the logic trees for the volcanic zones, the earthquake recurrence model also needs to be
considered (Figure 4-10). In general, the exponential model is usually deemed to be more
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appropriate for seismic source zones that contain several individual faults; the characteristic
mode] best describes the recurrence behavior of individual faults and fault segments. We
envision the volcanic zones to contain a number of dikes and fissures having a variety of
dimensions. Hence, the expected recurrence behavior is exponential and a probability of 1.0
is assigned to this model (Figure 4-10).

Recurrence intervals were estimated using two approaches based on (Table 4-2): (1)
counting of individual vents and fissures which results in conservative bounding values of
minimum (shortest) recurrence intervals; and (2) grouping of vents and fissures into
geologically reasonable cogenetic rupture sets. Groups were selected using the following
criteria: (1) vent/fissure groups each cover a 2 x 5-km geographic area as observed for
many vent/fissure sets of discrete ESRP fissure eruptions; (2) consistency with geologic map
relations; and (3) northwest alignment of vent/fissure groups. Estimated uncertainties
indicate a range of recurrence values (and relative weights) that are defensible from map
relations, geochronometry, and judgment (Hackett and Smith, 1994). '

Recurrence rates for eruptive episodes are assessed based on counts of volcanic vents and
fissures that have occurred over particular periods of time. In order to accomplish this, we
have defined specific boundaries for the ESRP volcanic zones and counted the number of
volcanic vents and fissure swarms within each (maps used are LaPoint, 1977; Kuntz et al.,
1994). All volcanic zones with the exception of the Howe-East Butte zone include Holocene
("zero-age") vents, hence, the time interval of volcanism in each zone is given by the oldest
surficially exposed volcanic rocks, using the K-Ar dates and paleomagnetic data of Kuntz er
al. (1994). Because of overlapping volcanic zones and other uncertainties, we usually give
upper and lower limits for the number of vents/fissures/faults in a given zone. The
maximum vent number (upper limit) is calculated by counting each individual vent within
vent clusters (using 1:100,000 or 1:250,000 map bases), counting groups of "dry"
fissures/faults that are seemingly unrelated to vents (each of these would represent a
noneruptive dike-intrusion episode), and by counting all vents in the overlap zones (vents in
overlap areas are therefore counted twice, once for each of the two zones that overlap)
(recurrence interval 1; Table 4-2). The minimum (lower limit) of a vent number is
calculated by grouping vent cluster and cogenetic fissure eruptives into eruptive events
(recurrence interval 2; Table 4-2).
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Because of the subjective nature of vent-counting, fissure-counting, and defining the areas
of the overlapping volcanic zones, we estimate an uncertainty of +10% for the number of
magma-intrusion events within the Arco and Lava Ridge-Hells Half Acre volcanic rift zones
and axial volcanic zones. In addition, we emphasize that the exercise is almost entirely
based on geologic map data and therefore assumes that the surficial geology is representative
of long-term magmatic processes on the ESRP. This assumption seems justified in light of
geochronologic results (Kuntz et al., 1994), which show that surficial basalts in the INEL
area range widely in age, from about 5 Ka to 1.2 Ma.

The estimated recurrence intervals and their weights for each volcanic zone are averages
based on our evaluation of complex geologic information including geochronometry,
magnetic polarity, the distribution of mapped Quaternary basalts, vent locations, and in a few
cases, borehole data. Values have been rounded off in order not to imply undue precision.
Despite the inherent uncertainties, the results are internally consistent and seem reasonable
in light of what is known about the timing and location of ESRP Quaternary volcanism and
dike-induced surface deformation.

The interpretations of vent numbers, fissure-swarm numbers, and recurrence intervals for
each volcanic zone are summarized in Table 4-2. The well-constrained record of Holocene
volcanism along the Great Rift provides a minimum (upper limit) recurrence interval for
ESRP volcanism at about 2,000 years; all other volcanic zones on the Plain have erupted less
voluminously and less frequently during the past 15,000 years. At the other end of the
spectrum are the "old, relatively inactive" Lava Ridge-Hells Half Acre and Howe-East Butte
volcanic rift zones, for which we estimate recurrence intervals of about 120,000 years. The
Arco volcanic rift zone (recurrence interval ~ 35,000 yr) and axial volcanic zone (recurrence
interval ~35,000 yr) have similar, relatively short magma-recurrence intervals. The
comparatively short recurrence interval for the axial volcanic zone reflects its relatively
frequent Holocene events (Table 4-2). Exclusive of the Great Rift, all Holocene volcanism
on the ESRP has occurred along the axial volcanic zone and its areas of overlap with
northwest-trending rift zones.

A b-value of 1.3 + 0.3 was also used in defining the exponential portion of the recurrence
curves for the volcanic zones (Figure 4-11). This value is based on an estimated average

b-value observed in volcanic rift zones worldwide (e.g., Klein et al., 1987). The calculated
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recurrence relationships incorporating the selected maximum magnitude values for the
individual volcanic zones and for the combined effects of all volcanic earthquakes is shown
in Figure 4-11.

4.3 REGIONAL SOURCE ZONES

In addition to the fault sources and volcanic zones, several regional seismic source zones are
also included in the hazard analysis (Figure 4-1). Most of these source zones lie at relatively
large distances from the INEL and details of their source characteristics are relatively
unimportant to the seismic hazard analysis. The exception is the northern Basin and Range
source zone that lies to the north of the INEL. The major faults within this zone have been
explicitly modeled in the hazard analysis (Section 4.1). This source zone is used to represent
the potential for earthquakes other than those occurring on the Lost River, Lemhi, or
Beaverhead faults. The other source zones are used to represent both earthquakes occurring
on the mapped faults that lie within them and seismicity occurring on small, unmapped,
faults. Because the details of fault geometry are unimportant for all but the northern Basin
and Range zone, and are unknown for the background earthquakes modeled by the northern
Basin and Range Zone, the two source characteristics assessed for the regional source zones
are their maximum earthquake magnitude and earthquake recurrence rates. Maximum
earthquakes are usually derived from consideration of the dimensions of faults within the
source zome. Earthquake recurrence rates are estimated directly from the observed
seismicity, accounting for catalogue incompleteness.

Three alternative models were developed to represent seismic source zonation in the region.
The alternative models address the uncertainty in zonation of the ISB and northern Basin and
Range (Figure 4-12). The alternatives are: (1) the northern ISB (north of Yellowstone), the
central ISB (south of Yellowstone), and the northern Basin and Range are a single source
zone (the 7-zone model); (2) the northern ISB and the northern Basin and Range are one
source zone and the central ISB is a separate source zone (the 8-zone model); and (3) the
northern and central ISB and the northern Basin and Range are three separate source zones
(the 9-zone model). For these models, the treatment of earthquake recurrence and maximum
magnitude is shown in Figure 4-12. The reason for defining three alternative models is
based on the possibility that the seismogenic potential may differ between the northern and
central ISB and northern Basin and Range province to varying degrees. This is discussed
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in the following section. -We have assigned the 7-, 8-, and 9-zone models weights of 0.4,
0.4, and 0.2, respectively (Figure 4-12). These three alternative source zone models were
used to evaluate the earthquake cataloguel completeness (Appendix A) and to compute
earthquake recurrence parameters for the source zomes. Table 4-3 lists the recurrence
parameters for the regional source zones. Figures 4-13 through 4-25 show the logic trees
and distribution of recurrence models of the source zones used in the seismic hazard analysis.

4.3.1 Eastern Snake River Plain

The boundaries of the ESRP tectonic province are defined by topographic changes, the
boundaries of the basaltic volcanic deposits, and by the distinctly low levels of observed
seismicity that separate it from the adjacent Basin and Range province and the Yellowstone
region. The normal faulting and basin and range development that occurs in the provinces
to the north and south of the ESRP are absent within the Plain. It is likely that the
northeast-southwest tectonic extension that occurs outside of the Plain as exhibited by the
range-bounding normal faults is accommodated by magma emplacement and dike injection
in the ESRP (Rodgers et al., 1990; Parsons and Thompson, 1991).

The logic tree for the ESRP source zone is shown in Figure 4-13. The thickness of the
seismogenic crust.is uncertain within the ESRP because of the very low levels of seismicity
and very few earthquakes for which accurate focal depths are known. Based on the
arguments presented in Section 3.2.2, the depth or thickness of the seismogenic crust within
the ESRP source is assessed to be about 8 km with an uncertainty of about + 2 km. Note
that this depth is significantly less than north of the ESRP where the seismogenic crust
appears to be about 16 km thick (Section 4.1.1.2).

Because very few earthquakes have occurred within the ESRP, the location and size of the
1905 Shoshone, Idaho earthquake is a critical determinant in estimating the maximum
magnitude for the ESRP source zone. As described in Section 3.2.2.1, uncertainties in the
location of the event allow for the possibility that the earthquake occurred within the ESRP,
although the available data suggests that the event occurred near the Idaho-Utah border.
This preference is included in the logic tree (Figure 4-13). The size of the event is also
uncertain but the available evidence suggests that it was approximately My, 5% +% (Oaks
et al., 1992). If the 1905 event'is assumed to have occurred within the ESRP (assigned
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likelihood 0.33), the maximum magnitude for the ESRP is judged to range from My, 5% to
6, with the two alternatives equally weighted (Figure 4-13). If the 1905 event is assumed
to have occurred outside the ESRP (assigned likelihood 0.67), the preferred magnitude is My,
5.5 and a range of magnitude values of My, 5 to 6 is included.

Recurrence relationships are shown for the ESRP source zone assuming the 1905 earthquake
occurred within the Plain and one assuming it occurred outside of the Plain within the central
Basin and Range (Figure 4-14).

4.3.2 Other Seismic Source Zones

The northern Basin and Range source zone includes the region of Quaternary extensional
faulting and seismicity north of the ESRP and east of the Idaho Batholith (Figure 4-1). The
Lost River, Lemhi, and Beaverhead faults are part of the northern Basin and Range province,
but are also considered as distinct sources of seismicity within the areal source zone that
contains them. The northern Basin and Range source zone is considered to include the area
in the vicinity of the faults. The level of seismicity within the northern Basin and Range
source zone is notably higher than the adjacent Idaho Batholith and ESRP, but is lower than
the Yellowstone source zone to the east. In the 7- and 8-zone models 1 and 2, we have
considered the northern Basin and Range province as part of the northern ISB; conversely
in the 9-zone model, it is considered a separate seismic source zone (Figure 4-12). Because
they have been characterized as fault sources, the Lost River, Lemhi, and Beaverhead faults,
are excluded from the assessment of maximum magnitude. The maximum magnitude
distribution is My, 6% =+ % for the northern Basin and Range source zone (Figure 4-15).
The recurrence for the three models for the northern Basin and Range is shown in Figure
4-16.

The ISB (Figure 4-1) contains numerous faults that can generate significant earthquakes.
North of Yellowstone;the late-Quaternary faults in the northern ISB or the western Montana
portion of the ISB strike northwesterly. South of Yellowstone along the Idaho-Wyoming
border and central Utah, the faults in the central ISB trend north-south (e.g., Teton and
Wasatch faults). There is little difference between the seismicity rates for the northern and
central ISB; however, we have treated them as separate seismic source zones in the 8-zone
and 9-zone models (Figure 4-12). For the ISB, either northern or central portions, the
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assigned maximum magnitude distribution is M, 7%2 + % (Figure 17). The recurrence for
the ISB are shown in Figures 4-18 and 4-19. '

The Yellowstone source zone (Figure 4-1) encompasses the region of intense seismicity and
the associated silicic yolcanism in the Yellowstone region. The presence of young calderas
and elevated hydrotheimal activity mark a clear distinction between this region, the basaltic
volcanism of the ESRP, and the adjacent Basin and Range province. The maximum
earthquake magnitude for the Yellowstone source is based on the 1959 M, 7.3 (M, 7.5)
Hebgen Lake earthquake. The maximum magnitude distribution, defined as branches of the
logic tree, is My, 7% to % (Figure 4-20). The best estimate seismogenic depth of 12 km is
less than the surrounding source zones because of the high heat flow in the Yellowstone
region (e.g, Smith and Arabasz, 1991). "Figure 4-21 shows the recurrence for the zone.

The Idaho Batholith source zone (Figure 4-1) is a seismically quiet region defined by the
boundaries of the granitic rocks making up the province. No extensive or well-defined
Quaternary faults are mapped within the Idaho Batholith, and the seismic potential is
relatively low (Smith and Arabasz, 1991; Woodward-Clyde Consultants, 1992b). The largest
known earthquakes were the 1944 M 6.1 and 1945 M 6.0 Seafoam events. The maximum
magnitude distribution for the source zone is My, 6 + %2 (Figure 4-22). The recurrence for
the Idaho Batholith source zone is shown in Figure 4-23.

The central Basin and Range source zone is defined as the region lying to the south of the
ESRP and to the west of the more seismically active Intermountain seismic belt (Figure 4—1).
In the region near the ESRP, the central Basin and Range province is characterized by only
a few short normal fauits; however, farther to the south the province contains a number of
late-Quaternary faults and has been the location of some of the largest historical earthquakes
in the whole of the Basin and Range province. The 1915 Pleasant Valley and 1954 Dixie
Valley earthquakes were considered in estimating the following maximum magnitude
distribution of M,, 7% + % (Figure 4-24). The recurrence is shown in Figure 4-25. We
have assumed that if the 1905 Shoshone earthquake occurred outside the ESRP, it was
located within the central Basin and Range province.
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TABLE 4-1

RUPTURE LENGTHS FOR FAULT SOURCES

| Segment Length (km)*

Lost River Fault
Arco - Scenario 1 22
Arco - Scenario 2 28
Arco - Scenario 3 33
Pass Creek 44
Mackay 28
Thousand Springs 25
Warm Spring 17
Challis 25
Average - Scenario 1** 27
Average - Scenario 2%* 28
Average - Scenario 3** 29

Lemhi Fault
South Creek - Scenario 1 30
South Creek - Scenario 2 32
Badger Creek 20
Warm Creek 24
Big Gulch 31
Falls Creek 34
Ellis 13
Average - Scenario 1** 25
Average - Scenario 2** 26

Beaverhgad Fault
Blue Dome - Scenario 1 0 (Not Active)
Blue Dome - Scenario 2 30
Blue Dome - Scenario 3 35
Nicholia 32
Baldy Mountain 21
Leadore 22
Mokie Gulch 17
Lemhi 19
Average - Scenario 1** 22
Average - Scenario 2** 24

| Average - Scenario 3** 24

*Continuous along trace length approximated by straight line sections
**Used for unsegmented model (weighted 0.185), with double this

length weighted 0.63 and triple this length weighted 0.185.

HACONTRACT\SK4S5\TABLE 4-1\1

M0208961325






(€81°0) SIA 000°002

so|jewoue {eoisAydoab sdnoib 2661
(£9'0) s4£ 000001 eoeunsans Aq uedui |  aunssyuaa ofeusbiod g (erep onoubewosjed |  ‘sejefpossy (73N fenued)
PayIuapP} ‘PBISA0D-JUBIPSeS *S8INJea) 8UBI0JOH ou ‘Bupep Jv-y) | Joploo ‘266l | ouoz YIH ojuedjoA
{€81°0) s14 000'0L pue pasodxa Apood ‘pjo 5198 aunssy @ SIudA £ | SIA 000°0€L - 000°0€2 | ‘8261 ‘ZIuny a|ung ise3-omoH
(13NI uselses B yuou)
(e81°0) s:4 000°08 eaJe 3N 8y} (suoz yu dloA aung
uj syeseq 1sabunoA pue i1sapjo | sdb ssyiuea o11susbos g (erep oneubewosjed a|ey/eung 2D
(€9°0) s4A 000°0V sepnjouy ‘A10isly eapdrnue *0I0V JeH SlIoH ‘uoqueoojpel sopnjdul) auoz My
Buoj Ajpwaxa JaN| usoIses :P19}) BAR] BUBDO0IOH | ‘Bupep aw-3) | v66L ‘9864 | oJUBDIOA 019V jieH
(eg1°0) s1£ 000'G2 _’3 uisyiou joaye pinod :S}os anssy B SudA gy | SIA 000°002'E - 000°G ]  “Ie 18 ziuny siioH-ab6piy eaeq
(€81°0) SIA 000'VE
. (erep oneubewos)ed 661 “le 19
(€9°0) s1L 000°'LL sdb ssyuan onausboo ge © BupgepL| zwuny ‘6861 (13aNI wsisamyinos)
TN u1Bisamynos *Spjay BAe| aued0joH 2 | pue Jy-) ‘uoqueoopes)| “lewygwus | auoz MY djuedjoA
(€81°0) SIA 000'2 108Jje pjnod WSIUBOIOA | ‘s}as ainssy @ siuaa €8] SJA 000'009 - 000'0L | ‘8261 ‘Ziuny 021y
(€81°0) SIA 000°2€E sdb ssy/iuaA oidusbod Gy
3N 1oedwi pjnod 1eyl ssuoz *SBUO0Z }JU DIUBDJOA (elep opsubewosjed
(€9°0) s4A 000°9L | O1UEOJOA ||B JO aAloR Alusnbal) Aq paJeys way} jo ¢ ‘uoguegoipes
pue Ajjusoas 1sow I INI ‘Sp|a}} eAe| 8USD0IOH ¢ ‘Bunep ay-y) | v661 ‘9861 (13NI useyinos)
(g81°0) 24 000°01 | UiayInos jo yonw }oaye pinoo {S19S 8INSSH) 9 SUBA €7 si1£ 000°0SZ - 000'G| “[e 19 Zjuny | BUOZ JIUBIIOA [BIXY
WIS|UedJoA d4S3
a.n|nj jo ease ajqeqoxd Jsow *(souo9 pue smoj}
(581°0) sih 000V 1dHS3 a4)ud 10} BOUBNDAI a|diynwt Bupnjous yoes
-wnwiuiw sepiaoid snyy | pue ‘seunjusd 10 sapessp
(€9°0) s1A 000'2 |  !sOUOZ YU JUST |1 J0 BAROE | Moy e Bupse] yoes) spousd (13Nt
Auanbaly pue Ajusoal isow oAlldnia auso0j0H 8 (Bupep uocquesopes) | 8861 ‘9861 §O 1SoMYINOS WY G2)
(g81°0) sJA 051 13N uo joedwi ou SjuaA 001 < siA 000'GL - 00L'2] “le 1o ziuny By eald
(swybjom™ %) sSdnoYd | iuesasd alojoq SiA]
JON3IHHNO3Y MOTd HO S3HNSSId WSINVOTOA 40| S3DHNOS FT0H3IHOE HO
a3ilLviNiLs3 SLNIWWOD | ‘SINIA 40 HIGWNN TYAHILNE 3SNLL vivdad dNOZ JINVITOA

SANOZ JINVOTOA H0d STVAYHEINI HONHIINIDHTA JINVITOA AALVINILSH

&y HTAdV.L







THI963020N

ISP RTIVISSISISUD VEINOOVH

(€01°0F)0S6°0 (0v8°0+)682 'S £€T “ZE619 7[9g JIWSIGS UMAUNOUNSIU] JO 158
(8Z1°0F)poL 0 @is'oFWwiTe £€'C *SH8IT oYsp] UISYION
(€€0'0F)1£6°0 (LTS TFILYT 8 £€°T Y4 0)! QUOISMOJOX
(8€0'0F)806°0 (081°2F)860°9€ ££'7 *99€1 € Jjog PIWSIeS UIHUNOWLISIUL ISYHION
(s€0°0F)s88°0 @@L TFNes e £€'C "€0€8S J[oFl OIWSIOS UIBUNOWION]
(0€1°0F)$99'0 (ezvoF)ses 1 £€'T *860¥1 yisjoyieg oyepy
(611°0F)E19'0 (81%°0F)8eS'1 £€'T *9S0SP S061 /m oBuwy pus uiseg [BnUaD
. (921°0F)L59'0 (6T¥"0F)oLs'1 £€'T *9505¥ S06] o/m oBumy pue uiseq [BNUD
(1$0°0F)808'0 (BeL' TFNT8 €T £€'T *68I8E o3uvy pus ulseq uIeIION
(v81°0F)s50'7 (8L2°0F)H69'0 €€'7 *'91962 S061 o/m JASA
(1L1°0F)e88°0 (89Z°0F)989°0 £€'T *91962 SO61 /8 JUSH
[opouI JUOZ INN0S-§ FUFRIMNSSY
8T 0F)T60' T 806 TFIPIS O £€C "TEGI9 7j°g SIWSIE UTEUNOWIG)] JO 3507
(€sT°0F)148°0 (8t6’0F)10M'€ £€'7 "Sy8IT oljep] UISYON
(€€0'0F)616°0 (€1 TF)STH 90 £€'C *ST101 QUOISMOY[IX.
(ve0'0F)pL8 0 (oL1'zF)ov1's¢ ££'7 *€0E8S Jjog olwisieg ulmunOULISIUY
(CTARESTXTA] (Lee0FIocL'T £€'T *86097 ysotieg oyepy
(091°0F)p69'0 (816°0F)10L'T €€'T *9505Y S061 /@ o3uwy pus uiseq JAUSD
(891°0F)shL 0 (056°0F)618°C €€'T '9S0S¥ S0GT o/ oBuwy pue utseq Janud)
(0£0°0F)L06"0 (198°¢F)IST 6L £€'7 *15569 GSIN/oBuBY pus Ulseg UISYIION
(sob*0F)16€°1 1y oF)LLe o £€'T *91962 SO6T O/ JASH
(0LT°0F)688°0 (zse'0F)88L 0 £€'C ‘91967 S061 /4 JIsH
[2Poul U0z INMOS-§ Fupmunssy
611T°0FJ050°1 @O TF)IL9°8 TEC "TE619 I[od SIUISTOS UMGuNOWIaju] JO 3507
(8¥1°0F)978°0 (918'0F)6s0°€ £€'T *SPBIT oYBp] UIGYION
PE0°0FIrP6°0 (169°2F)$99°08 £€'T *STI01 QUOISMO][X
(8s1°0F)8TL 0 WyLoF)seee £€'T *86041 yitjoyieg oyepy
(op1°0F)1L9'0 (ocL'0F)80€T €7 *9505Y SO6T /M e3uwy pue uiseq [enua)
(bsT°0F)ozL 0 wsL 0F)L6eT €€ ‘9505 S061 o/m o3uwmy pue useq [enUsD
(€20°0F)206'0 (Tve vy F)8IE 01T £€'T "pS8LTY gS1/e3uny pus uiseq useyHoN
(sgr-0F)eLo't (e€€0F) £28°0 £€'T '9196T S061 o/% J¥Sq
FL1'0F)106°0 (61£°0F)908°0 £€°T *91962 SO6I /4 JUSH
[9pow dU0z 3AN0S-2 Jununssy
A IVA-q GUN o vaav FOUNO0S

SHALHNVIVY SINTRRINDITA ANOZ J0dN0S DINSIIS

€p ATEVL







s0b '6u0A/969210/0004 V-GS PEINS

b SIIVNOHLHYI INIANIJIANI S3dIAIRS [eJapadd SpAID-pIempoom
oInBi 40 NOILNGIYLSIA VILVdS ] SSYENS
: ANV S3OHNOS DINSITS Seshjeuy onslliqeqold - 3N ‘oN 108lolg
o
@
1y
O
oy
O
%% 1 .
(o)
YA °
¢ o)
R a4 L4 o
o S o
¢ O
o L O
Gy 8 O
JANLINDVYN
000'000'S:} 9E2S

‘601

euoz uiejseg 23
oyep) uayuoN  IN
QUOISMOlISA  SA
yioyeg oyep|  gi
ebuey pue uiseq jeuen HED

abuey pue uiseg ueyuoN HEN

J1eg ojwsies
ujelunowsiul UIBULON ESIN

leg ojwsies
urlunowselul [eus)  gS

Ule[d JaAly axeug weises dHSH
S3INOZ FOHNOS TYNOID3YH

eung jse3-amoq g3H

aioy
JleH slieH-o6pid eAR YHH

Hyiesln HO

8UO0Z JlUBD|OA leiXY  ZAVY

ooy  HV
S3INOZ 14IH JINVOTIOA

leAH 1s07  H1T

ywey W3

pesyteresg Hg
si1nvd

anN3ov3I







(o) (9°0) {s81°0)

oBelony eauennoey W /
(e9'0) (2'0)
g

ueweoe|ds|q
{s81°0) / afelony
wg'o
(s81°0)
we
(e9°0) (e0)
wg'g \usweoe|dsiq 30010 sSBy
(s81°0) unwxey
wi
0 (e'0)
L) (o) VN AT
(s0) ooy djs VN . (20)
w0 T yiBue
(2'0) (9°0)
Hwwgpo EENY
(sgt0) \
LT \. fexprpy
(€9°0) / WN o (r0)
S ggo \- elby djis © yiBueq
{s81°0) (s81°0)
A 1o weg
(€9°0) \_(z0)
wi'e \usweoejds|g
(sg1°0) /  wnuixey
wi
(s81°0) (s81°0)
My we
(e90) /. o (£9°0) \, (€0}
JAuw 52°0 P ey dis wgo \uswese|ds|q sBupdg puesnoyy,
(s81°0) :\! (581°0) / oBerony
(LTI ET) . ws'o
(e0)
YN oy
L (20)
N yibue
(90)
Iﬂ/
(581°0)
LTy /- \- Bupds wiepm
(€9°0) WN o (v}
M gg'o oy dig T ybueq
(s61°0) \< (90)
FLTVNN) Boly
(s81°0) /
Hpuw 6o \. stiieyn
(£9°0) VN o (v0)
JAUW 50°0 ey dis T ybueq
(s81°0)
i Zo°o
BAl3U] 2UdLINDD [e]¥) ) sapn} ube [po
! \o“mm dis H muﬂow._:w‘mm uswaoelds|q Em:.:__meE :%:.Emme_\umom

10} Uopeley
clBauduwig

(s0)
pojuswBog

uopejuswbsg

JuopBUULISY.

Yidaq _ dia

ao1nog




{oW'auoA/969+40/0004V-SSYEIS

(% 1INV HIAIY LSO
HO4 3341 01901

S321A13S |es9pad 9pAID-PIEMPOOM

sasleuy ansiiqeqold - 1aN| CIAY

*ON 103l01d

tgo) 18)0U}1004
ealy .
(e0)
N pejuswBesun
o VN (v°0)
N g0 oy dig - T
(z0)
wuw Lo
(1°0)
Hww 60'0
(z°0)
w200
(584°0)
00005
(€9°0) (e'0)
000°0e 18]SN{0-16]U)
{581°0) {s81°0)
000°0¢ ws'g
{50) ) {e9°0) (z0)
Ko0'se N, (o) (o'0) wg't /jusweapidsiq
(50) /" eboieny ©ouonndey (s84°0) LT .
2K 000" 1 W50 (10}
{581°0) (s81°0) £ 0J1BUBIS . .
%/ We (20} {s81°0)
{e90) (€0) {e9'0) (©0) {v0) (€0) un g} o09
TA000'F 1BI5N[o-8NY) \usweoeidsiq GEIY ZoNeueos | eueuodxg
wnwxepy {5°0) (€9'0) yned
. wy gy <08 JaMY 1501
(&'0) 50) {0) \
o) wory POUBURS  rciepEIeyD ©0) (681°0)
(e0)
yibuey wy p1 o0p

LTITEY) o1ed diIS

;\EE_
ﬁo.s /r s.e
(s2'0) \

AW s0'o

k00005 \\_. _ (€0} .

‘lepow
pejuswbesun ey} uj SUCJJO8S 8S8LY) 0} PEJOYISal LON eseseintdns jey)
60N "UOJO8S S[[eyD 8y} 10} S8lBI 8Y) SMOYS Yaueiq Osy} seeisym
‘AjeAnoadsel ‘uo}jo8s 001y pUB %8810 SSed BU) 10} sejel djjs Smoys
yourlq v pue Od syl ‘Apejus 'sejer issybiy sy Gujrey (Aexoep-
pue ‘sbupdg puesnoyl-s. ‘Bujidg wiept-sm) uoptod eiusd auyy
yim ‘jnej ey Buoje painquisp e1em setel djjs Moy moys seyouelg v
‘suojinquisip epmjubew wnwixew Bupjnsel 10 G- einblg e8g '
‘st)i6ue) Joj 1-p ejqeL pue sjuswbes Jne} jo dew 1of p-g 81nbly 88g 2
'sopeusds Bumoys deuw 1o} g-p einblg eeg °}




Wy oy Y wor g - - S e e ST TR sm = T e mmsmoeems mepeosee oo s Ty e N 4 1 - - our - N ;
Kuw 2o aley dis
(s81°0) {9°0)
w10
(s81°0) ,
/it §°0 %8017 Jobpeg
(eg0) (0°1) YN—e (o) |
Hww 50°0 oleg dig e Wbue
(s88°0)
AUt 20°0 :
(e°0)
JA000'GH
(o) {s0)
00001 esusInoley (s81'0) .
(c'0) we .
1A 000’ {e9'0) {r'o) '
. we uetwede;ds|
(s81°0) — aah_e_,m
juut {s81°0) ('0) (o)
(€9'0) (5°0) wy vay . 4eelD usepm pejuswies
Huw gz'0 oiey dis {z'0)
{s81°0) Uibusq
Mjww 1o
(581'0)
J1£000'09
(e9°0) (€°0)
JK000'SL ©0uBINI0eY
. (s81°0)
(s81°0) Wwo =
140002 o)
{£9°0) °0,
(581°0)
we juswaoe|ds
Hpw om%m»m
(s81°0) (o)
(£9'0) (20)
we'p Boy Wono 6jg
W 52°0 ojey dis _
(sav'0) AL
WMww Lo .
(s81°0) (581°0)
JAjww 60 we '
(€9'0) ()] _ (eg0) (0 V
A 2o ey dis we'g juatusoeldsiq .
eferony :
(s8s°0) (s81°0) (+0)
AW 50°0 wgo valy %8810 S|Ie]
(s81°0) (2°0) .
1Ajww g0 yibus !
(€90} (1) R e 29 ﬂ
AW 20°0 ey dis - saly “
(ss1°0) W
w200
wbue _
s{eA1au] 6
eouauNa POWON |,y iiaadsiq | SPPMIUDEBN | 2 jepon {spopy uopsujUaY,
sopue oY M___m aousinaay |} 19810 | “wnwixew |uopejuswibos | UONBMEWBSS| o0y ginaay |* waynos uideg dia éanog
10} suojiejey
gl83plows




1oW'eUoA/969}40/000}V-SSPENS

e
ainbi4

.

- 1NvH HNET
YO F3HL 01901
|

S30IAIBS [elapad apA|D-plempoop

SSPES
*'ON 109[01d

sosA|euy onsiiqeqold - TaNi

(s81°0)
1Apuw |

(e90)

JLTTTER)

(s84°0)
(o

(s81°0)
N

(£9'0)

»08'08

o)

_ (9°0)

W g'o

(s81°0)
A 60'0

{581°0)
K |

(eg0)

»y3804

Hjww €0

(581°0)
Hjuw 10

(s81°0)
15000008

{eg0)

»OM'08

(e'0)

1A000°0F
(s81°0)
1K000'S1

(c0)
1400092

(v0)

1o|snp
-10)u}

(vo)

eley djs N

{90)

3K000°28

(e0)
1K000'8

(0
1K000'9

(s'0)

oBuioay

(c0)

1A.005'e

(o)
JA 005

(sa1-0)

1018N[0
-oju|

©2UBINJdBY

(s81°0)
we

(£9°0)

BolY

(°0)
ZuBueT

{v0)

wg

(581°0)

uBtiese|ds|q
efesony

(0}

‘lepow pejusBesun sy} uj SUOJOBS 658U 0} PBJOLISEL 10N ole
saindni Jey) 8loN A(eApoadsel ‘uojjaes 388D Yinog pue }ees) sefpeg
8U) 10} S6JBI SMOYS Youelq HS pue Og eyl Seesym ‘'uopss s|||3 pue
%8810 S| oy} 10} sajel djjs SMOYS yaueiq J pue D4 au) ‘Ale|jwis selel
1586y eyi Sujaey (o8 wWiep—OM Pue yojno 6ig-vg) uojiod jenusd
sy} yym ‘)ine) ey Buoje painguisip e1em sejel djjs Moy moys seyouelg ‘i
'suopnquis|p epnijubew wnuwixew Gupnses 10 9-p 6164 868G 6
'syiBus| e1njdnl 1o) |- 8[qeL pue sjuswbas jjnej jo dew 1o} y-g einb)y 8eg 2
'soleusos Gumoys dew o) g- einf)4 eag )
. '$6)j0uj004]

(e0)
—————————
YN psjuswBoasun

(e0)

 Teiueuodxa

wy

PRy

[

(20)
yi6ue

0013 Uinos (o) z0) {s81°0)

2 0}18UBdg

wy 8} 09

(2:0) (5°0) (£9°0)

[

wy g4 «05

ned [yueT

(€°0) (€°0) (s81°0)

-0 avoliona

ey Ao




BUOA/SE822L/0001V-SSYEMS

Vv 11Nvd4 AvaHY3AvIg

HO4 3341 31901

SIDINIDG [EL3PI] SPAID-PIEMPOO

sesAjeuy ofisiiqeqold - T3NI

SSYeNS
*ON J08lo1d

‘|epow pejuswbesun ey} uj SUORoS 9S8y} O} PojoLIsel JON o8
seinjdni Jey ejoN "sejel 1seybly el Bujaey uoiod jenues ey yum
“line} ey Guoje peinqguisip elem sejel dijs MOY MOYs seyouelg ‘v
'suopngisip epnjjuiew wnwxetw Bupinses Jo} /-y 8inbl4 eeg g
c

._>Aww_..ov. *syibuel 10) L-p 6]qBL pue sjuewbes )jne} jo dew 10} -¢ e1nbl4 eeg °
/i €0 e pue *sojreusss bumoys dew o} g-p einbi4 eeg °i
(€9°0) 'Wains eliiow ‘o10U1004

AW 50°0 ‘ewoQ] en|g Jo4
(s81°0)

JApuW 20°0
{s81°0) (9°0)

A ealy
(€9:0) yolopeen] pue ' VN-e. (€0)
A g1'g “uyN Apjeg pejuewbesun
'BlloyoN JoJ
(s81°0) {+'0)

At go'o yibua
(s84°0)

AW g0 sjuewbas |ywe

ue
(£9°0) ‘Yolny m__wos_ {e0) (10) 20 {581°0)
JAuW 600 “u)N Apjeg swog onjg [epuauodxgy € olieusdg uy gt «09
‘swo an|g 104
{s81°0) (°0) {5°0) {€9°0) yneg
JAuw 20°0 EJ[OYOIN ¢ Olleusds un 9l 00§ PESYloneag
{s81°0) {90) (20) (5°0) (€'0) (s81°0)
JAAUW | Baly Ulelunop Apjeg ETSICIREIT ) } OlIeU8dS wy vl O
(€9°0) sjuswbas (2°0)
JAIW GO alopesT pue alopoa | peuswbag
BJIOYOIN 104
{s81°0) {+°0)
JAnuw 50°0 YibuaT yoino sjlloN
1w
sapnjubepn 1apo 1°PoN uopBUjULIG)
oey diis  wnwixey uopeuewBeg | UONEIMSWBSS _ 99U1IN29Y  wiagnog uideg dia

10} suopefoy
jeapidwy




BUOAN/S69221 /0001 V-SSYENS

SIVINIDS [BIopad SpAID-PIempoo

1 4 F1Nvd H3AIH L.SOT HO4
ainbi4 SNOILLNGIYLSIQ FANLINDVIN WNWIXVIN sesAjeuy onsyiqeqold - NI .oﬂmm@% d
apnuubopy apnubo apnpubo
L 9 L 9 S 8 L 9 S
1 _ ] _ L] i — — '
apnrubo H F ~
L 9 g 4 L .
1 _ 1 O
-z Ma ooy ¥oauny ssod | [ ApsoopN |
=)
o ! | ) i ) ! ] ] | ! ! | I I !
i Q
ox
n“ i — 1 L] _ _ 1 1 _ _ i
N
14 & 1 L |
psjuswbasun ] I -
] — L] — ] wo | i |
sbundg pupsnoy), sBuudg wuop, 1 sipyy |

RN R SR B

1 _ 1 _ L

Anqoqoug

A1qoQoudg




BUOA/S6822 1 /0001 V-SSYENS

S30IAI9G [Blopod] SPAID-preMpooM

o-¥ 1INV IHW3T HO4
ainbi4 SNOILLNGIHLSIA 3aNLINDYIN WNINIXYIN sesfjeuy ons|Iqeqoid - 13NI .oﬂmmmv_% d
apnuubojy apnaubop apnauwbo i
8 L 9 g 8 L 9 g 8 L 9

apnuubopy

8 L 9 S

o

I ]
] ,
<
A1112QQoLg

pajuswbasun

1 _ 1 _ ] m.

%8ed) ygnos

Nesa) Jabpog

39840 WIDM

38819 s||04
N T

N

<

N
Anqoqoag

<

A1q0Qoudg




BUOA/S68221/0001Y-SSPEIS

LY
ainbi4

11Nvd dv3HY3AvV3E HOA
SNOILNGIH1SIA 3ANLINDYIN WNINIXVIN

STOIMIDG [B19Pa4 SpAID-PIEMpPOO

sasfjeuy onsligeqoid - 13N

GSYeMS
‘ON 108lo1d

apnpubopy
L 9

pejuswibasun)
| I B

N

~

apNPLULD I

S

8

apnpubopy
L 9

apnpubo iy
8 L 9

awoq an|g

DIIOYDIN

uipjunopW Ap|og

Ai1111Qu QoL

210p0oaT

I B

Yoo slion
R

N

Anpqoqo.g

A1qoQougd

e e e mintr g e e o 220
N



EXPLANATION

=== INEL Boundary
i \ . —N—-
X Site A Scenario 1
Volcanic Rift Zone Fissure n
or Fault
BLUE DOME SEGMENT
_v— Volcanic Rift Zone Monocline OF BEAVERHEAD FAULT
- """ Range-Bounding Normal Fault
(Ball on down dropped block)
A Southern Termination for
Rupture Scenarios
A Butte Location
Scenario 2
0 5 10 15  20km | /{ x ‘ :
1 ! | ] J ’f l
- l Richard H
chnano 3AAB““6 l
SOUTH CREEK H
SEGMENT OF
LEMHI FAULT
Scenario 1 AN H
1%, I
: A LIy
ARCO SEGMENT OF - =
/ LOST RIVER FAULT . l
( ’
Knob Butte \Kath ’Fissure k
te Butt H
j’ NRFFissuesEﬁ;{s}\ue ;]
Arco o, Scenario 1 Rt i N $ %3
AN Butte Cuty / hgua"'s:gm—; : ‘
Scenario 2 A e Ne 5 ARG Butte P
4 ATRRA .~ _—
/1 \\\A&OO ~¥; L
\’/ Scefjatio 3 '] %, —
J (\ ~- %% \
: Y. <g
~j N 7,50, BRWMC
— 6‘6\
: N\
1 e

Project No.
SK9455

Woodward-Clyde Federal Services

INEL Probabilistic Analyses

SOUTHERN TERMINATIONS AND
RUPTURE SCENARIOS FOR FAULTS

Figure
4-8

SK9455-A1000/122895/gos, vone




BUOA/S682C1/0001 V-GSYENS

S11Nv4 AvIHY3IAVIE ANV ‘IHWN3T

SADIAIIG [IOPI] IPAID-PreMPOO

Lo ; 'HIAIY LSO IHL HOH SAIHSNOILY13Y P
: JONIHHNOIY 3.L01a34Hd sesfjeuy apsjiqeqoid - AN ‘ON j08[01d
apnuubo py apnauwbo iy apnRUbD I
8 L 9 g v 8 9 ) v 8 L 9 S 14
[ L _ 1 Ll n.l O —‘
)
1
- ' R 5 . E
1
B 1 | - B R
\
I _ 11 I ]
- — - - b= -
- _ 1¢C ) ]
- , 1 E - :
- \ 1 F - 4 y-01
1
\
= — - - - -y
1
- 1 - - . N .
) 1 ” ] >
- N 1k - ; W
alll i .. . —] o O _. n
\ Q
5 A - - - - T~
\
- , - - = -
i I L i i ®
X 1 F C V] WQ
- 1 E X 1 ol m
= 41 E = E
S
Q
i i i i <
3 i E 3 N o
[DAIBJU] 8DOUBLINDBY 4 —— AR [oAlBjU| BOUBMINDBY  + —
- o sjoy dis . — M OF apoy diis - — N \
| seiyuecisd ygE ‘uig - - - - I | semueosed wigs ‘ws ---- 1 | semueossd yige ‘yis - --- N
5 TLEDY 1 L UDON e 4 } uDap .-
- pDayJaApag 1 F Iywa 1 F JBAY }SO7 3
” L — ] _ ! H m 4 _ 1 — 1 H ” ! — ! — L — 1 ” F




10W'8U0A/969 L LO/000LY-GSHENS

S99IAIaS [eJapad apAjg-piempoom

OoL-v S3ANOZ Ldld JOINVOTOA
8Inbi "O4 3341 01901 sesfieuy onsiigeqosd - TaNI | 2 vOHS
G810 .

1X6)_ U] UBA|D

aouanInday
ayenbyjey

ek

apnjjubep
wnw)xep

0’} €0
EIEELLE R wy ¥
S8UOZ OJUBD|OA [BIXY pUR
. ‘alng 1se3-emMoH ‘YiY Jeas
L0 ‘e10y JieH s||oH-o6piy BART ‘00ly
uny g
|opo uidag aainog
89UdLIN23Y




8UON/G60221/000 1 V-SSYENS

SIDINISG [e13po] SpAIO-PIempoo

oIl | SdIHSNOLLYT3H JONIHHNOZH G3LOIOTH | semtes seves
v ollsligeaold - TANI | .qnosiong
apnubopy apnPUbD
L 9 S ¥ ¢ L 9

]

|IIIIII

Illllll

Illllll U

Illllli

L

sojpuaosad YGE ‘YS - ---

UDap PaUIqIoY

S}y 21UpdIoA (1Y (q)

i

1 _ 1 _ L

l!llll'

lllllll 1]

1]

|lllllll

i

lllllll

ayng §Sp3—9MOH X —~
840y 4oy S|IBH  + —
By foatg . —

HIY 0%y - --=
8U07 DIXY ——

SUIY [onplapuy (o)
! | ) | ! ]

LI S B |

-

llllll/’l

I!lllll

-0}

-0l

-0l

-0l

-0l

Rouanbasf 10nuny




0B ‘[owr'au0N/96+2 10/000Y-SSHENS

i SANOZ 30HNOS OINSITS 9S1 ANV S91AIDS [212P9 ] SPAIQ-PIEMPOO
S JONVH ANV NISYE NHIHLHON ; P
4 40 INJWIVYIHL HO4 3341 01901 Sesfieuy aNsHIqeqoid - TaNI - | .o\ odong
S8UO0Z 82IN0S-§ ° 0c'0

10} 5681} 91607 * gyeiedes YgN KBWN BWES pUB eoUBLINDB] GS] (LSO PUE UIBY)0U Bjeledes [OpOy BU0Z-6

$0U0Z 60IN0S-g o oy'0 HaN pue gg|
40} seay} 0j607] xew)y ejesedes ‘esueindes YaN pue gs) LieyloU aujGuIon jo juswyees
XBlW ewes ‘eouslinoe! gg| [eUed pue uleyliou ejeredes POy 8UOZ-8
S$8U0Z 82IN0S-/, ov'o

1o} seel} oj607] @ Xewl\ ejeledas :80Us1IN0e) HEN PUE GS} UIGWOD OPO BUOZ-L




BUOA/G68221/00LLY-SSPE)S

S99I/IaS [elapad apA|D-piempoop

15154 INOZ 30HNOS dHs3
2inby HO4 334H.L 019071 sosfeuy onsiigeqoid - Tanl | ow_mmvwv__om g
§81°0
9
xeL €9°0 290 S81°0
uj UsAlD e/l s ddS3 Ul 10N w0l
§81°0
S €90
S0 wy g 8U0Z 82IN0S dYS
w «
€e°0 S81°0
dys3au un 9
S0
e/ s
9ouaINOaY apnyjubepw ajenbyyes o6l widag
ajenbylieg wnwixe Jo uojeaoT




BUO0A/568221 /0001 V-SSPEMNS

- INVNOHLHYI S06+ SaJIAIaS [esopad apAD-prempoom
ombig IH.L HLIM INOZ 30HNOS dHS3 SSrES
. HO4 SdIHSNOILY 134 3ON3HYNO3Y sesheuy asiiaeqold - TANI | 0N joefoig
apnavubo apnILUbD Jy apnIUbD py
8 L 9 c8 L 9 & c8 L 9 S

llllll

LI

seyuaosed YiGE ‘WS - ---

uDapy
pamasq0 @
sauoz |puoibas g

X | 1 | L !

]

llllll

1]

] Illllll

lllllll

I

i

LI

sa|yuactad yige ‘Yis - - -~

ubap
panesq0 @
sauoz |puoibau g

I!IIY!I

'lllll

Illlll

lllllll

LRI

—-——— - s e - -

se|yuaoiad Yige ‘UG - - -~

UuDapy
pantasqQ m
sauoz |puojbau #

1

'Illl!

c-01
y-0l
3
0l u
-0l &
e
o
x
®
Q
o §
=3
Q
N
-0l




\ BUOA/GE8221/000 L V-GSHENS
QW i-b IIVYNOHLHEYI S061 - | s9dInog [BIapa ] SpAID-PIEMPOO
anbiy dHL LNOHLIM INOZ 30HNOS d4S3 CSYES
' HO4 SJIHSNOILLY13d 30ON3IH"NO3Y sesAleuy olIsiliqeqoid - TaNI "ON 10801 !
apnIUbo Iy apnaubopy apnIVUbD P
8 L 9 ) 14 ¢ 8 L 9 S 14 ¢ 8 L 9 S 14 ¢ :
[ _ 1 _ { ] i _ |l i _ 1 _ 1 —— i _ L] ml- O —. r
! | ]
I ] t }
- 1 1 - 1 i ! ! N
§ § ]
| ! 1L 11 X : .
- ] N » n . i ! N
_ 1 N 2 | [ ! ! -
. ! J . N - | ! N
2 | 1 E 1k \ i ]
- _— —] [— 1 — —— " - le—
1
. R . i N \
A 1F . N
- 1 k 1 [ W ,
[ . — - — o O —. n
Q
- . N l | T~
| 1 L L 3
R A . i | ®©
[ i 1EC Q -
: 1 E 1k -~
\ e 3
/ O
i v T 17T N
i N I 1L
\ \
- \ A1 . A L.
_ \ R 5 v R
. \ K - A -
- \® [ A\® F
—_ 1 // " — 1 3 [~ —lOv
\ AN
- sojyuecuad YiGE ‘YIS - - -~ N} osemusossd wigs wig —--- ‘d | semueosed yee ‘wg ~--- \d
R ubapy T L ILE Y L unap Y
5 panesqo @ 4 L panasqo @ 4 L paniesqo @ i i
- sauoz jouoibal 6 1 [ seuoz |puoibas g 1 | souoz jpuoiban ¢ -
” L] — — ] _ ] — 1 H 1] — 1 — 1 — ] _ 1 “ ” L] — ] _ L] _ ¥ — 1 ”
- i




BU0A/G68221/001LV-SSYENS

S0IAISG [elapa- apAjD-piempoop

Gl-tr INOZ 30HNOS
oInbi JONVH ANV NISYE NHIHLHON p SSPEYIS
' HO4 3341 21901 SeSAleUY oisHIqeqold - 1aNI .oy 1oslolg
S8l wy sgl”
vie9 un 02
el €9’ wy €9° ebuey B ujseq

upueAln c/L 9 wy G uleyUoN
g8}’ wy 681°
Vit 9 wyzgl

SIETYENT apnmyjubepy _ thdag

asualinoay wnwixep




BUOA/S68221 /0001 V-GSYENS

INOZ 3DHNOS SAOINIOG [eiopa apAID-PIEMPOOM
o 3ONVH ANV NISYE NHIHLHON SSronS
H HO4 SdIHSNOLLY 134 3ON3HHNO3d sesfjeuy aisiiqeqold - T3NI ‘ON 1080.d
apNnIUbD apnubo apnaubo py
8 L 9 ) 14 ¢ 8 L 9 S 14 ¢ 8 L 9 S 14 ¢
1 I 4 _— i _ ¥ _ T _ ] t _— i _ i _ ] _ I VI. o —‘
! ! :
\ )}
b= -] - — - - ﬂ -4
i 11 ___ ! 1L ___ ,,_ ]
- - - \ 1 - - \ \ -4
- - L. \ \ . L. 1 \ o
X 1E . 1k _ ]
- - - 1 N - \ -
[~ —] . \ ] . \ = nloﬁ
H 1t 1L ] AN
: 1 1 [ m 3
e = - - I || 7= (8]} n
Q
L N | n | n T~
i 116 1 L i ]
i 1t 1t ] ®
: 1F 1k . o~
3 1 E qE 1 o §
S~
0
i 171 17T 1 <
= 4 E i I i
- sapquecsed YiGE ‘Y ——— - 1 | semueocsed uyige ‘ug ---- 1 | somueossd uige ‘uig - --- 1
R ILETY \ R ubap 1 L unap
R paatasqo U * B paAasqQ U 4 k paatasqQ U
- sauoz |puoibal g L sauoz |puoiBes g .4 [ seuoz |pucibau ¢
L L. \-] N

SR T S R S | '

]

]

] — 1 — ll




10W‘8U0A/9691 1000 LY-SSVENS

LI 1739 DINSI3S S99IAI9S |eiapad SpAID-paempoom
omby | NIVAINNOWHILNITYHLINIO ANV NHIHIHON P,
’ HO4 3341 01901 sashleuy aysiiiqeqold - TaNI ‘o 199l01d
S8L up| G81°
vie L wy 02
xeL €9’ wy £9° jleg ojwsies
uj usajn clL L uy g} ujejunowLsiu)
S8J° wy g}
v L uy gl
s[eAlaju} apnjubep wdeag

IIVUINIBY wnwixew




10W'8U0A/969110/0001 V-5S¥ENS

11349 JINSI3as

' SOIIMIDS [el9pad apA[D-prempoop

8l-v
onbi4 NIVLNNOWHILNI TvHLNIO ANV NHIHLIHON sosAeUY SNSIIGEA0Id - TaNI SSYENS
HOd SdIHSNOLLY13H 3ON3HHNO3Y v onsht d ‘ON 108f01d
apnubo apnpubo apnubop
8 L 9 S 14 ¢ 8 L 9 G 14 ¢ 8 L 9 S 14 ¢
i "— 1) _ 1 _ 1 _ i [ ] — 1 _ 1) _ 1 _ L 1 —_ ] _ ¥ _ ¥ — [ vlu O P
L} |
! ) 1
B ] 1} ) 4 F 1 i
! ] 1
- } -} - | - - 1 -
5 ! 1 k I 4 I 1 .
\ \
A 3 i I _ i
B ' 1 F 1 E ]
. 1 - - - - -1
. - || . T —] o= 0l
A 1¢E i i A
- 1 1 F ; W
. . [ -] . —] z- O — n
Q
_ N _ n = o T~
- 1L ]l L i ]
i 1 L | B i ®©
o 4 F 4 F 4 Q
- 1 E 1E ; S
= 4 F 41 F 10 3
Q
i 171 17T 1 <
= 4 E 4 E 4
- ss|puedsad yigE ‘yig - seljusdsed Uige ‘Y ~~--- - sejyusosad YGE ‘Yig - - - -
= UDBH s = UDapy . UDapN
N paniesq0 @ 5 panesqQ @ B paniesqo @
- seuoz |puoibau g L ssuoz |puoifsi g [ sauoz |puoibau ¢
SIS DTN USSR SR ST N S N ST R R N |

ol




1ow'suon/soydest;06.£1 G0/0001 V-SSYENS

6L-v
ainbi4

L1389 0INSIAS SedIeS 21334 3pAID-pIempoom
NIVLNNOWYHILNI TVHLNID SSPEMS
HOd SdIHSNOLLY134 JON3HHNO3IH seshleuy dlisiigeqoid - TaNI ‘oN 103lo1d
apmpUbo apnuubopy apMAULD Jyf
8 L 9 S 14 ¢ 8 L 9 S ¢ 8 L 9 S ¢
L] T — T _ 1 [ m _ T _ i — ¥ i “ _ [ _ ¥ — 1 i vl o F
! '
. R R ! o - I R
! 1
5 N . ! v 5 1 i
! '
: ] L _ 1 I ! .
i 1 F \ 1Tr J ]
- 1F \ 1k | .
il -] [— —] . - o Ot
- 1L 1 [ ] A
: e 1 f : 3
= 4 E 4 E 4 .o 8
Q
1 . = N _ N T~
H , 11 11 .
. i B 1 L i ®
- 1k I ] o~
- 1 F 1 E . N
= 1 F 1 F 1 -0t S
Q
i 1T 17T 7 <
I 1 I I ]
- 4 E 4 E 4
- se|juadiad UYigE ‘Uilg - - -~ Ny - sa|yusadtad yige ...:.m —-——— - sauadted YigE ‘Y - - - - .
R ubap B ubsp B ubspy i
5 panesqo @ R paAlasqQ U L , pamasq0 @ N
- souoz jpuoibau g - sauoz |puoibaus g - sauoz jouoibau ¢ -
U IR T N SRS NENTR R R ST ST N N d o




OUOA/G68221/00L 1 V-G5VEMIS

S201MDG |esapo] SpAID-piempoom

0c-v INOZ FOHNOS ANOLSMOTIIA
einbi "O4 3341 01907 sesAleuy NsIIRA0d - TANI  |-on: taon
S84’ upf g81°
vieL uy G}
xeL 9’ LUy £9°

Uj UBAID) o/t L un g} ©UOJSMO||BA
S8l wy §81°
viL L wy O}

slemau] epmyubiew _ yideg
e9uesInoey winwixepn




BUOA/G68221/000L V-SSPEMS

S3IJINIDG |elapad apA|D-piempoop;
le-v ANOZ 30HNOS ANOLSMOTIFA
ainbi- HO4d SdIHSNOLLYT3H 3ON3HHNO3Y sesAjeuy ons|Iqeqold - 13N .oﬂmmvmmw*om_m
apnaubo aPNIULD I apnILULD Y
8 L 9 ) 14 ¢ 8 L 9 S 14 ¢ 8 L 9 S ¥ ¢
i i [ 1 i i ¥ ] i ] 1 1 1 ) 1 1 - O F
" _ _ _ T _ _ I _ T _ _ v W
[ ! | i
o ! -] - ] - . i . !
) I I _
3 ] - - | - - I -1 .
| ' 11 1 1L ' ] |
\ \ \ '
- | 1 r ! 1¢LE ] A,
E L 1E \ 1E W\ :
- /. Y - 4 F ,— ' - 4 E / \ - 4 .ol
\ . W\ \ /
R \ d | \ d L v\ .
\ » \
. - - - . \ \ -
AR
N 1 [ 1 ¥ WY ] A
X 1F 1r \ ]
¥ 4 1 e 1 E ® \\\ . W
5 - - i - / /, T -1 z- 0 _. n
\\ Q
R J L i \ . &~
\
i 1t it - R
N - \ - - . - - - / / - AM
L. - - - - \ .
- 1Et 1k \N . b
- I 1 F B\ N . ol m
[— - e - [— \ ] |-
/ \ u
= -3 - - - / // -4 O
/ . Ny
= N - R = W\ v
- -4 - - = / / -t
A\
X 1 FE 1¢C N ]
» ] R 3 N \ 1
- 4 k= q - // - {
W
W
- sajyuesiad YiGE ‘Uig 1 | semuecssd yige ‘us - --- 1 | semusosed yigs ‘wg ----  N\¢ T :
R uoapy 4 L LE R TLEDY L
L panasqQ W L paatasqQ m N pamssqQ m \
m sauoz |puoibai g m ssuoz |puolbaus g m sauoz [puoifas m
” L] — 1 — 1 — ] _ ” 1 —’ ] _ 1 _ L] — - 1 — ] — ] _ 1 — ] Y o F




OUO0A/G68221/001 V-GSVBIUS

S89IMIaS |e4apad apPA(D-PIEMPOOM

e INOZ JOHNOS HLIMOH.LYE OHYAI
eunbl €04 3341 31901 sesfjeuy OiSHIORA0Id - NI |-onp e
gs8l’ uy 681’
e/ 9 wy 0g
XeL €9’ wy g9’ ulioyieg

U UBAD 9 Wh GF ouep]
g8l w gg1°
</t S wy g

S|gAIBIU apmjubep _ uideq

osussNIey wnuixep




6U0A/S68221/0001 V-5 ¥ENS

€
ainbi4

IANOZ 30HNOS HLIMOH1vE OHVAl
HO4 SdIHSNOILLTVY3H 3ON3HHNO3Y

SIS [esapad 9pAjD-piempoom
SSYEMS

sesAjeuy olislligeqoid - 713NI

‘0N 108[01d

apMILULD J apnubopy apnILUb I
8 L 2] S ¢ 8 L 9 S ¢ 8 L 9 S 14 ¢
+ _ ¥ _ 1 " _ i L _ i _ L] 1 — ¥ ¥ _ i _ LI | _ ¥ _ [ vIOP
I |
§ I 1
- " - |- I - - “ -
5 I ! 41 1 I 1 I J ! .
| ) ! 1 L I I J L ! ! |
X ) ! J F ] ] i J ! N
- ] ! 1 F ] 1 4 F ! ! .
n ) ! 1 F 1 1 ] E ! ! 3
— I ! 1 1 I 1 F ! ! ~1 -0l
' ! 1 ' " "
X ) " i \ " J L ! ! .
I I I
B ! R ] J F ! ]
1 \ \ / \
A - \ I \ ] >
m m .. 1 E ,, -
- E 91 F , 4 .00 8
- i ! - g
\
H ” H AL ] F
i 5 K \ N ©
- L N \ ] Q
n . N . ] e
- - - q4 0ol ®
S
O]
A - - <
- - N k. T
- sopueciad YGE ‘WS - - - — 4 | sewmuecsed yige ‘wig - --- 1 } somusosed wgs ‘wig ---- :
R TLET] 1 L ubsp 1 L ubap i
R pantasqQ W 4 F panasqQ U 1 L pamasqQ W J
- sauoz [puoibau g 1 [ seuoz |puocibas g 1 [ souoz jouoibas 1
“ ] — ] — 1 — I3 H ” L — ] — 1 _ 1 H ” 1 _ ] _ ] — L — ] ” OP




jow'eu0A/96y2L0/00 L V-SSVENS

va-y INOZ IOHNOS S90IMBS [e4opa 8pA|D-pIeMPOO
oInbi IDNVH ANV NISYE TIYHINIO IS
’ HO4 3341 01901 sesfjeuy oNsiigeqold - 1aNI | o) josforg
£€°0
HWao ulioN
S8t wy 6810 ebuey pue
ek L wy 0e ujseg {enuen
Xe), €9’ wy €9°0 190
U] UshD VI L W GF yaou|
S8l wy G81°0
z w2t
sjeataju) apnjjuep _ wdaq ayenbylieg so61
aouansay wnwxepw }0 uopeso




BUOA/S68224 /0001 V-SSYEUS

ege-v
ainbiy

INVNOHLYVYS G061 HLIM

SOJINIBG [BI9PI] SPAID-PIEMPOOA

INOZ 30HNOS FONVH ANV NISVE TVHLN3D GSYENS
HOH SdIHSNOILV13H 3ONIHHNO3Y seshieuy onisiaeaoid - TANI | onjoforg
apnLubo Iy apnaubo py apnpubo py
8 L 9 S 14 ¢ 8 L 9 S 14 ¢ 8 L 9 S ¥ ¢
¥ i 1 1 VI- o F

- = = -0l

A A ] AN

- - ; W
Q

R i ] &~

- s - S

A - ] ®

_ - . Q

: : : S

— — -1 - 0 | w
Q

- - <

= - M 1

- sajyuadsad YIGE ‘Ui - - -~ 1 | semusdsad yige ‘Yig - - - - 1 | semueodad yge ‘yig ---- .

[ ubapy R | ubap | | unap i

. panasqo W 4 Lk pealasqQ U 4t panasq0 @ ]

- sauoz |puoifai 6 1 [ seuoz jpuoibas g 1 [ seuoz |puoibas 4 -

H [N — 1 — 1 — 1 _ 1 H ” 1 — ] _ | x— 1 H ” 1 — 1 _ 1 — ! — 1 H O —v




BUOA/568221/000LV-GSPEMS

a52- INVNOHLHYI S061 LNOHLIM S30IALRS [esopad apAID-premMpoom
oinbig INOZ JOHNOS FONVH ANV NISVE TVHLNIO SSPEMS
. HO4 SdIHSNOILLY13H 30N3HHNO3Y sesAjeuy ajisiiiqeqosd - 13N ‘ON 108l01d
apnubo jy apMPUbD I apMUbD
8 L g S 14 ¢ 8 L 9 g 14 ¢ 8 L 9 S 14 ¢
i _ L1 _ I _ 1 i 1 *.I O —‘

. 11 .

- \ -] - -

N ' 1 F N

- ! 1E N

- \ 1 F -

- \ / = - . ¢ 01l

/ _
- N ] - -
\
A

|~ \ \ - - B

- \ \ 1 [ - S

- \ 1 F N

- \ ] E : 3

- 1 F - -0t 8
g

I i I Mu

B | i ©

- - - 3

5 - s S

I — . [ O — w
Q

A . - <

3 F E = 1

- sapyueciad UiGE ‘WS ——~ - L 1 | semusossd yes ‘wig - -~ - -

[ ubapy 1l L ubap . 1 L ubapy a

R panasq) @ 1 k paniasq0 @ J L pan1asqQ U J

L ssuoz |pucibal 6 1 | seuoz |pucibas g 1 | seuoz ouoibau £ 1

” 3 _ [] ~ ] — L] — 1 “ ” ] _ 1 _’ 1 — ) — L] “ ” | . _ i — 1 — 1 _ ] “ o F




5.0
ATTENUATION RELATIONSHIPS

The INEL is located adjacent to the Basin and Range province which is characterized by
extensional tectonics and associated normal-faulting earthquakes. There is limited empirical
strong ground motion data from the Basin and Range province necessitating the use of
empirical data from other regions and direct modeling of ground motions using numerical
techniques. The comparisons presented in Woodward-Clyde Consultants (1992a) indicate
that empirical attenuation relationships developed to model strike-slip earthquake motions in
California provide a reasonable estimate of the ground motions that may be experienced at
the INEL from predominantly normal-faulting earthquakes occurring in the region. Thus,
four empirical attenuation relationships were used in the analysis to represent the uncertainty
in modeling ground motions in the region.

In addition, to incorporate the effects of site geology into the characterization of ground
motions, a state-of-the-art stochastic ground motion modeling approach was used to develop
site-specific attenuation relationships for each of the seven facility sites. The earthquake
source model, called the Band-Limited-White-Noise (BLWN) model, combined with random
vibration theory (RVT) is appropriate for an engineering characterization of ground motion
since it captures the general features of strong ground motion with a minimum of free
parameters. In applications to strong ground motion, this stochastic methodology has been
especially effective in the frequency range of engineering interest, 1 to 35 Hz.

5.1 EMPIRICAL GROUND MOTION RELATIONSHIPS

Four empirical relationships were chosen to represent the uncertainty in em;)irical estimation
of ground motions: Joyner and Boore (1982), Idriss (1991), Sadigh e al. (1993), and
Campbell (EQE International, written communication, 1994; cited in future as Campbell
[1994]) (Figure 5-1). The relationships developed by Sadigh ez al. (1993) and Campbell
(1994) represent the latest efforts of researchers to analyze the available recorded strong
motion data and were developed as part of the seismic safety review of the Diablo Canyon
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Nuclear Power Plant. The relationships developed by Sadigh ez al. (1993) are based on
analysis of strong motion data recorded on rock sites, including data recorded during the
1989 M,, 7.0 Loma Prieta, California earthquake. The relationships developed by Campbell
(1994) combine the peak acceleration attenuation relationships developed by Campbell and
Bozognia (1994) with the spectral attenuation relationships developed by Campbell (1993)
and explicitly include factors for predicting ground motions on-hard rock sites. The
relationships developed by Idriss (1991) are also based on evaluations of the extensive rock
site strong motion data set from California. ‘The relationships for the standard error were
revised by Idriss (University of California at Davis, written communication, 1993). The
relationships developed by Joyner and Boore (1982) are less current than the other three, but
they are the standard by which many other relationships are evaluated and they represent an
alternative approach to modeling the empirical data. The relationships of Campbell (1994),
Idriss (1991), and Sadigh ez al. (1993) include a term to account for differences between
reverse faulting earthquakes and other styles of faulting. They all consider that normal
faulting earthquakes produce ground motions similar to strike-slip earthquakes.

Figure 5-1 compares the four sets of median peak horizontal acceleration relationships for
M, 5, 6, and 7 earthquakes. - The relationships all define magnitude in terms of M. As
shown, all four relationships yield similar estimates, except at very close distances to the
fault. Part of the differences in the empirical relationships at close source-to-site distances
is due to the different distance measures used by the four sets of relationships. Joyner and
Boore (1982) used shortest horizontal distance to the surface projection of the earthquake
rupture. Idriss (1991) and Sadigh ez al. (1993) used the shortest distance to the fault rui)ture
plane. Campbell (1994) used the shortest distance to the fault rupture plane at a depth where
high-frequency seismic waves can be generated (typically at depths of 2 to 4 km). Use of
the four relationships provides a measure of the uncertainty in modeling earthquake ground
motions in the near-field. . The comparisons shown on Figure 5-1 were developed
considering the distance to a vertical strike-slip fault with a seismogenic depth of 2 km used
for the Campbell attenuation relationship.

Figures 5-2a and 5-2b compare the median 5 %-damped response spectra predicted by the
four sets of relationships for M, 5, 6, and 7 events at a distances of 15 and 50 km,
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respectively. The four relationships tend to diverge in their estimates of the response spectra
for smaller magnitude events.

Figure 5-3 compares the estimates of the standard error in the natural log of peak ground
motion used by each of the relationships. The Campbell (1994), Idriss (1991), and Sadigh
et al. (1993) relationships incorporate magnitude-dependent values of standard error.

5.2 STOCHASTIC GROUND MOTION RELATIONSHIPS

The BLWN-RVT approach was used to develop site-specific attenuation relationships for use
in the hazard analysis. The following describes the BLWN-RVT point-source methodology
and its application in developing site-specific attenuation relationships. Both point source
and finite fault versions of the methodology have been developed. The latter is described
in Woodward-Clyde Consultants (1992a).

5.2.1 Band-Limited-White-Noise Point Source Model

The BLWN ground motion model first developed by Hanks and McGuire (1981) (sometimes
referred to as the stochastic model), in which the energy is distributed randomly over the
duration of the source, has proven remarkably effective in correlating with a wide range of
ground motion observations. Time-domain measures, such as peak acceleration and peak
velocity, Wood-Anderson magnitude, and short-period P- and S-wave amplitudes, as well
as frequency domain measures, such as relative velocity response and Fourier amplitude
spectra, have been predicted with reasonable accuracy using the BLWN ground motion
model (Hanks and McGuire, 1981; Boore, 1983, 1986; Boore and Atkinson, 1987; Silva and
Lee, 1987; Toro and McGuire, 1987). The ground motion model employed here uses an «?
Brune source model (Brune, 1970, 1971) with a single corner frequency and a constant-stress
parameter (Boore, 1983; Atkinson, 1984).
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The acceleration spectral density a(f), where f is frequency, is given by

a) = ¢ —L— 20 ppy 4 & PO
1+(fif)* R , 5-1)
where:
M, Seismic moment
R Distance to the equivalent point source
B, = Shear-wave velocity at the source ,
Q) = Frequency-dependent quality factor model where Q(f) = Q, f; Q,
and 7 are model parameters
A(f) = Near-surface amplification factors
P(f) = High-frequency truncation filter
f, = Source corner frequency and

C 7 = (1/p82x @2 x(0.55) x 1V2) x .

C is a constant which contains source region density p, and shear-wave velocity terms and
accounts for the free-surface effect (factor of 2), the source radiation pattern averaged over
a sphere (0.55) (Boore, 1986), and the partition of energy into two horizontal components
V).
Source scaling is provided by specifying two independent parameters, the seismic moment
(M,) and the high-frequency stress parameter (Ao) (Figure 5-4). The seismic moment is
related to M,, by the relation

log M, = 1.5 M, + 16.1 | (Hanks and Kanamori, 1979)(5-2)

The stress parameter Ao relates the corner frequency f, to M, through the relation

f, = B, (Ad/8.44 M)'? ' (Brune; 1970, 1971)(5-3)
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The spectral shape of the single-corner-frequency w? source model is then described by the
two free parameters M, and Ac. The corner frequency increases with the shear-wave
velocity and with iricreasing stress, both of which are region dependent.

5.2.1.1 Random Vibration Theory

In order to compute peak time-domain values, i.e., peak acceleration, peak particle velocity,
and peak oscillator response, RVT is used to relate rms calculations to peak value estimates
(Boore, 1983; Boore and Joyner, 1984). The procedure, in general, involves computing the
rms value by integrating the power spectrum from zero frequency to the Nyquist frequency
and applying Parseval’s relation. Extreme value theory is then used to estimate the expected
ratio of the peak value to the rms value of a specified duration of the BLWN time history.
The duration is generally taken as the inverse of the corner frequency (Boore, 1983).

5.2.1.2 Stress Drop

The stress parameter, for earthquakes which have a source spectrum consistent with a single-
corner-frequency «? model, is the stress drop of the earthquake. In this case, the stress drop
may be computed by determining M, and f, and inverting Equation 5-3 and is generally
referred to as the Brune stress drop. A convenient way of assessing the appropriateness of
the BLWN source model used here is to compare stress drops using Equation 5-3 with the
root-mean-square (rms) stress drops, both computed from data recorded in the region of
interest.

The rms stress drop was introduced by Hanks (1979) and is defined as the stress drop
required in the single-corner-frequency w? Brune model to predict observed rms
accelerations. If both the rms stress drops and the Brune stress drops are equivalent, then

the observed source spectra are consistent with Equation 5-1.
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5.2.1.3 Near-Surface Crustal Amplification

In a half-space model, the near-surface amplification factors, A(f), account for the increase
in amplitude as the seismic energy travels through lower velocity crustal materials near the .
surface (Boore, 1986; Silva and Darragh, 1995) (Figure 5-4). These factors depend on
average crustal and near-surface shear-wave velocity and denmsity. In this study,
amplification by near-surface velocity gradients is accounted for in the detailed velocity
model. '

5.2.1.4 Near-Surface Crustal Damping

The P(f) filter models the observation that acceleration spectral density appears to fall off
rapidly beyond some region-dependent maximum frequency. This observed phenomenon
truncates the high frequency portion of the spectrum and is responsible for the band-limited
nature of the stochastic model. This spectral fall-off has been attributed to near-site
attenuation (Hanks, 1982; Anderson and Hough, 1984) or to source processes (Papageorgiou
and Aki, 1983) or perhaps to both effects. Hanks (1982) termed the phrase £, to describe
this site-dependent corner frequency. In the Anderson and Hough (1984) attenuation model,
which is adopted in this study, the form of the P(f) filter is taken as

P = & ™ . (5-4)

k(@) is a site- and distance-dependent parameter that represents the effect of intrinsic
attenuation on the seismic waves as they propagate through the crust from source to receiver.
x depends on epicentral distance (r) and on both the shear-wave velocity (8y) and quality
factor (Q,) averaged over a depth of H beneath the receiver or site. At zero epicentral
distance, « is given by :

*(0) = =
PO ' (5-5)
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The value of «(0) (herein referred to as kappa) is attributed to attenuation in the very shallow
crust directly beneath the site (Hough and Anderson, 1988) (Figure 5-4). Silva and Darragh
(1995) suggest that the predominant kappa effects extend from the surface down to several
hundred meters and possibly as deep as 1 to 2 km. The intrinsic attenuation along this part
of the path is thought to be frequency-independent, but site-dependent (Hough et al., 1988).
Kappa ha$ been determined for several rock and soil sites representative of western North
America (WNA) (Anderson and Hough, 1984; Anderson, 1986). For an average WNA rock
site, a value between 0.02 and 0.06 sec is appropriate (Boore, 1986; Silva and Darragh,
1995).

5.2.1.5 Path Attenuation

The anelastic attenuation from the source to just below the site is modeled with. the
frequency-dependent quality factor Q(f) (Figure 5-4). Geometrical attenuation is taken as
1/R or 1/\/ R (for distances greater than 100 km). In order to accommodate the effects of
direct and supercritically reflected waves in a crustal structure, this simple geometrical
attenuation can be replaced by a formulation developed by Ou and Herrmann (1990). With
this technique, the geometrical attenuation and duration for direct plus post-critical reflections
in a manner appropriate for the BLWN-RVT model may be computed.

5.2.1.6 Layered Crustal and Site Structures

The Fourier amplitude spectrum (a(f)) models direct shear waves in a homogeneous half-
space (with effects of a velocity gradient through the A(f) transfer function). For vertically
inhomogeneous layered structures, the plane-wave propagators of Silva (1976) are used to
propagate Sy motion through the layered structure.

5.2.2 Ihput Parameters

To calculate the point-source estimates of ground motions for the range of relevant
magnitudes and distances upon which the stochastic site-specific attenuation relationships will
be derived, source, path and site parameters need to be defined. They are described in the
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following and summarized in Table 5-1 with their associated uncertainties which were
incorporated into the analyses.

5.2.2.1 Source Parameters

- Ground motions were calculated for a range of magnitudes: M, 5, 6, 7, and 7'2. The range
of stress drops considered in the analyses was from 25 to 150 bars with the distribution and
~ weights shown in Table 5-1. OQur preferred value of about 75 bars is based on an analyses
of stress drops for Basin and Range normal faulting earthquakes (Appendices B and C). The
magnitude-dependent focal depth distributions was based on instrumental observations of
contemporary seismicity in the Basin and Range province (e.g., Richins ez al., 1987).

5.2.2.2 Path Parameters

The epicentral distances considered in developing the stochastic attenuation relationships
ranged from O to 200 km. Ground shaking from seismic sources beyond 200 km is
insignificant to any site in the western U.S. The seismic attenuation along the path from
source to site is parameterized in the model by Q, and % and Equation 5-1. Based on an
analysis of I, waves recorded at a seismographic station in Hailey, Idaho, Singh and
Herrmann (1983) determined a regional crustal coda Q, of 450 and an 7 of 0.2 for the
frequency-dependent quality factors Q(f). These values were considered to be average values
since it is unlikely that the Q, and 4 are the same for both the Basin and Range province and
the ESRP. For example, Braile ez al. (1982) observed high attenuation in a seismic
tefraction experiment within the ESRP and they attribute it to low Q values in the volcanic
rocks (Q, 20 to 200) and throughout the crust (Q, 160 to 300) where Q, is the P-wave quality
factor. A study of Lg waves by Chdvez and Priestley (1986) in the southwestern portion of
the Basin and Range province estimate Q, of 214 and # of 0.54.

Based on an inversion of regional earthquakes recorded by a 16-station temporary network
operated at the INEL in 1989 (Woodward-Clyde Consultants, 1990) and a seismic
experiment performed by the University of Oregon in 1993 and Borah Peak aﬁersﬁocks, a
best estimate value of Q(f)= 150f*¢ were calculated (Appendix B) and used in our analyses
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(Table 5-1). Lower and upper-bound values of 100 and 660, respectively, were also
considered to incorporate the uncertainty in Q,. The latter is a typical central U.S. value.
These estimates are based on earthquékes to the north, east, and south of the INEL. A half-
space shear wave velocity of 3.55 km/sec and density of 2.7 g/cm® were assumed appropriate
for the path between the bottom of the site profiles (see following discussion) and the
earthquake source.

5.2.2.3 Site Parameters

The subsurface geology at a site influences the ground motions in two ways. A gradient of
increasing velocity with depth amplifies motions, while material damping reduces the
motions. In our model, the near-surface damping is parameterized by kappa and the
amplification is modeled by propagation through a site-specific velocity profile. The
inversion of regional earthquakes and Borah Peak aftershocks described in Appendix B
provided estimates of kappa at several seismograph stations at the INEL. These values were
used for sites ANL, PBE, and RWMC, where instruments were actually located. For ATR,
kappa from the nearest station TRAW was used, and for TAN, kappa was derived from the
nearby LOFT. There were no seismic recordings near CPP or NRF so the log-average
kappa (over the INEL) of 0.024 sec was assigned to these sites (Table 5-2). The « values
ranged from a low value of 0.012 at ANL to 0.033 at PBE. The log-average « for the INEL
is at the slightly lower end of typical western U.S. rock values (Section 5.2.1.4).

k, as previously stated, is inversely proportional to the shear wave velocities and Q, beneath
each site. The lower the «, the more efficient the transmission of seismic energy up through
the geologic profile. The presence of relatively dense, high-velocity basalts probably
accounts for the generally lower than typical western U.S. « values at the INEL sites.

This effect, however, is probably offset by the low velocity sedimentary interbeds within the
basalt section. An evaluation of borehole data at the INEL suggests that the number and
thicknesses of interbeds generally increases towards the Big Lost River, their probable source
(Woodward-Clyde Consultants, 1992a). ANL which is quite distant from the Big Lost River
has few interbeds (Bartholomay, 1990), consistent with the lowest k value (Table 5-2). PBE,
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which is located near the floodplain, probably has numerous interbeds and thus a higher «
value. ATR, TAN, and RWMC are also located within the fioodplain.

Lithologic and velocity profiles were developed at each site for the stochastic site-specific
modeling (Appendix D). The deepest drill hole or well at each site was used to develop the
lithologic profiles. The profile at each site was estimated to depths below the bottom of each
site’s deepest drill hole by appending the lithology of several deep exploration drill holes to
the deepest site drill hole. The deep exploration drill holes used for this purpose are INEL-1
in west-central INEL, Corehole 2-2A in north-central INEL, and WO-2 in central INEL.
The deep parts of these holes were appended singly or in combination, depending on the
proximity of the sites to various of the deep holes. Based on several different data sets, a
shear wave velocity and density profile were estimated for each hole. The data include
cross-hole compressional and shear wave velocity measurements at the NPR site and at CPP;
borehole sonic logs and density logs from INEL-1, Corehole 2-2A, and WO-2; laboratory
determinations of velocity and density for samples from INEL-1 and Corehole 2-2A; and
detailed surface-to-borehole and suspension logs of compressional and shear wave velocities
in corechole ANL-1 (Appendix D). The velocities with greatest uncertainties are those for
the sediment interbeds. The velocity profiles for sediment interbeds are constrained by near-
surface cross-hole logs and refraction surveys, by some sonic logs from Corehole 2-2A, by
measured velocities in core samples, and by analogy to density and velocity profiles
developed for sediments which have lithologies similar to ESRP sediment interbeds in young
geologic basins. The compressional wave velocity profiles developed with these constraints
were then used in conjunction with an estimated Poisson’s ratio of 0.35 for the interbed
sediments to estimate the shear wave velocity profiles. ’ o

5.2.3 Site-Specific Relationships
Based on the BLWN-RVT methodology and the input parameters previously described, site-

specific relationships were developed for use in the hazard -analysis. Point-source ground
motions were simulated for a range of magnitudes and source-to-site distances using the
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parameter variability described in Section 5.2.2. The simulations were performed using a
magnitude-dependent distribution of point-source depth and a distribution of stress drops to
represent the randomness in ground motions from earthquake to earthquake.

The parameters Q(f) and x were treated as uncertain variables in the seismic hazard model
and attenuation relationships were developed for each site for the alternative Q(f) and «
values. Because it is believed that a single value of Q(f) should be appropriate for estimating
ground motions in the region, the choice of Q(f) was treated explicitly in the hazard model
logic tree (Figure 2-1). Similarly, it is believed that a single value of « is appropriate for
a given site. Uncertainty in « for a site was modeled by considering the best estimate value
listed in Table 5-2 and values that were larger or smaller by a factor of two. Thus, nine
different stochastic models were developed for each site.

Attenuation relationship for peak ground acceleration and peak spectral accelerations for the
seven sites were obtained by fitting the simulated data with the functional form

In(Y)=C, +C,(M~6)+Cy(M-6)%+C,In(R)+C,R forR<90km
In(¥)=C, +C,(M~6)+C,(M~6)2+C,In(90) +Cjn(R//90)+C,R forR>90km
R'=R+exp(C,+CyM)

G-6)

where Y is the peak ground motion parameter, M is moment magnitude, R is the shortest
distance to the surface projection of rupture (similar to the Joymer and Boore [1982]
empirical attenuation model), and C; through C; are parameters fit to the data. The change
in distance attenuation coefficient at 90 km matches the geometric spreading model used in
the stochastic estimates (Section 5.2.1.5). Figure 5-5 shows and example of the results of
the simulations and the fitted attenuation model.

The standard error associated with each attenuation relationship was specified by combining
the standard error generated by the random depths and stress drops with the modeling error.
The standard error was computed for distances less than 10 km, where the effect of random
depth is the largest and for distances greater than 10 km. Figures 5-6a and 5-6b show the
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modeling standard error and the total standard error for each site (averaged over the nine
attenuation models) for the distance range of 0 to 10 km and greater than 10 km,
respectively.

Figures 5-7 through 5-13 compare response spectra predicted by the stochastic and empirical

. attenuation relationships at distances of 15 and 50 km.  The nine stochastic response spectra
correspond to the possible combinations of Q(f) and « as previously described. At short
periods (0.02 to 0.5 sec) or high frequencies, the stochastic relationships are lower than the
empirical relationships with the exception of ANL. At longer periods, 0.5 sec and beyond,
the two types of relationships generally agree (Figure 5-7). The high frequency difference

" is probably due to the attenuating effects of the interbedded volcanic stratigraphy beneath the
INEL and its relatively low velocity gradient which results in lower ground motions. At
ANL, there are few interbeds as reflected in its relatively low kappa value of 0.012 sec and
so the high frequency spectral accelerations as predicted by the stochastic model may exceed
(M,, 7 at 15 km) or be similar to the values predicted by the empirical relationships.

5.3 REPRESENTATION OF UNCERTAINTY IN GROUND MOTION MODELING

As shown in the general logic tree for the hazard analysis (Figure 2-1), three levels of
uncertainty in specifying attenuation relationships were considered in the hazard model. The
first represents a choice between empirical attenuation relationships developed generally from
California strong motion data and the site-specific stochastic ground motion estimates. The
- site-specific mo&eﬁng results are weighted more favorably (0.6) because they rely on local
data on crustal properties and because the local site conditions are significantly different than
those of a typical California rock site. The empirical relationships are credible because the
comparisons shown in Woodward-Clyde Consultants (1992a) indicate that they provide a
reasonable estimate of normal faulting ground motions.

Geomatrix Consultants (1995) developed relative weights for the Idriss (1991), Joyner and
Boore (1982), and Sadigh er al. (1993) attenuation relationships in terms of their relative
ability to match the distribution of peak accelerations and peak spectral accelerations of
California strong motion data recorded on rock sites. They used a relative likelihood
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statistical measure to develop weights of 0.4, 0.25, and 0.35, respectively, for the three
relationships. For this analysis, we have included the relationship of Campbell (1994)
because they provide specific estimates for hard rock sites (older sedimentary deposits,
metamorphic rock and crystalline rock). Given that the INEL sites are located on basalt, we
judge that the Campbell (1994) relationships should be given equal weight as the highest
weighted of the three general California rock site attenuation relationships. Accordingly, the’
weights assigned to the four models are Campbell (1994) (0.285), Idriss (1991) (0.285),
Joyner and Boore (1982) (0.18), and Sadigh ez al. (1993) (0.25).

Conditional on use of the site-specific attenuation models, two levels of uncertainty were
modeled in the hazard analysis, regional Q and site-specific x. The weights assigned to the
Q, values were 100 (0.185), 150 (0.63), and 660 (0.185) under the assumption that these
represent, 5%, 50®, and 95® percentile values of the distribution of regional Q (Figure 2-1).
Similarly, the weights assigned to the site-specific « values were 0.63 for the best estimate
and 0.185 each to values that are larger or smaller by a factor of two.
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6.0
SEISMIC HAZARD ANALYSIS RESULTS

Seismic design criteria for DOE facilities are probabilistically based. To evaluate the levels
of ground motions associated with the probability or likelihood of being exceeded in a
specified time period, a probabilistic seismic hazard analyses was performed. The following
presents the results of the probabilistic analysis of the seven INEL sites.

6.1 ANALYSIS PROCEDURE

Seismic hazard calculations were made for peak horizontal ground acceleration (assumed to
be at 50 Hz) and 5 %-damped response spectral accelerations at periods of 0.03, 0.05, 0.1,
0.2, 0.3, 0.5, 1.0, and 2.0 sec (30, 20, 10, 5, 3.3, 2, 1, and 0.5 Hz, respectively). The
attenuation relationships used to compute the hazard use a distance measure of minimum
distance to the fault rupture or minimum distance to the surface projection of the fault
rupture. Therefore, the seismic sources were modeled as fault planes with randomly located
rupture areas. The rupture size of an event was specified by the relationship In(rupture area)
= 2.095M,, - 8.007 developed by Wells and Coppersmith (1994). This relationship gives
the mean rupture area for a specific magnitude rather than the median (mean log) rupture
- area. Studies by Bender (1984) have shown that the use of mean estimates of rupture size
in the computation of hazard yields results nearly equal to those obtained when the statistical
uncertainty in the size of individual ruptures is incorporated in the analysis. The fault-
specific sources were modeled as segmented planar fault surfaces.

The areal source zomes were modeled as a set of closely spaced parallel fault planes
occupying the source regions defined in Figure 4-1, allowing for consideration of magnitude-
dependent rupture dimensions in defining the distribution of source-to-site distance. The
fault planes were oriented parallel to the general trend of mapped faults in each source zone.
Seismicity was assigned to each fault in proportion to the fraction of the total source area
that it occupies (fault length x fault spacing). The depth distribution of earthquake
hypocenters was set equal to the observed depth distribution of earthquakes in the region.
The hazard was computed with the distribution in peak ground motion, about the median
attenuation relationships truncated at three standard deviations.
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peak horizontal accelerations for the four PC annual exceedance probabilities (or return periods)
for each site are summarized in the Executive Summary. For all return periods, the highest peak
accelerations are at TAN and the lowest at ANL. The values range from 0.06 to 0.09 g for 500
years and 0.16 to 0.33 g for 10,000 years. The highest hazard is at TAN because it is the closest
site to the northemn Basin and Range province including the three major faults and the background
zone and conversely, ANL has the lowest ground motions because it is the furthest site from the
province. Sites near the central part of the INEL have similar ground motions due to their
proximity to each other.

Figures 6-2a through 6-2g show the contributions of the three main source types to the mean
hazard at the seven sites. The regional source zones and the fault sources have similar
contributions to the total hazard as compared to the volcanic rift zones which contribute very little
to the total hazard. The fault sources become more significant at lower probability levels and at the
sites nearer to the Lost River and Lemhi faults. Note for TAN which is the closest site to the

Beaverhead fault, the contribution of the faults is not as pronounced as at ATR or NRF because the -

Beaverhead fault is not as significant in terms of hazard as the Lost River or Lemhi faults (see
following discussion). The relative contribution of the fault sources increases as one considers
longer period motions because of the increased effect of magnitude on ground motion levels at
longer periods, resulting in an increased domination of the hazard by larger magnitude events. The
fault zones are expected to have higher frequency of large-magnitude events and the largest
maximum magnitudes compared to the nearby regional source zones.

Figures 6-3a through 6-3g show the relative contribution of the three fault sources. For ATR, CPP,
PBE, and RWMC, the Lost River fault contributes the most hazard at these sites because of its
proximity and its relatively higher recurrence rates than the other two faults (Figure 6-3). For ANL
and NRE, the Lost River fault contributes the most to hazard at shorter return periods and the
Lemhi fault at periods longer than about 2000 years. At TAN, the Lemhi fault is generally the most
significant contributor to hazard. The Beaverhead fault is the least significant of the faults because
of its lower slip rate.

Figures 6-4a through 6-4g show the contributions to the mean hazard from the volcanic sources.

Note the scale change on the vertical axis. The volcanic sources have minimal contribution to the
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6.2.2 Sources of Uncertainty and Sensitivity

The distributions in the computed hazard shown in Figure 6-1 represent the cumulative effect

"of all levels of parametric uncertainty included in the hazard model logic trees (Figure 2-1
and Section 4). The relative contribution of various components of the model to the overall
uncertainty can be identified readily from the logic tree formulation by computing the hazard
holding individual parameters fixed at specific values.

For example, the contribution of uncertainty in selecting the appropriate type of attenuation
model can be obtained by computing the mean hazard assuming each of the two approaches,
site-specific stochastic or empirical is, in turn, the "correct" approach, with weight of 1.0,
and the other approach has zero weight. The resulting hazard curves are shown on Figures
6-7a through 6-7g. The difference between the resulting mean hazard for the empirical and
stochastic attenuation approaches represents the uncertainty in the computed hazard due to
uncertainty in selecting the appropriate attenuation approach.

The results shown on Figures 6-7 indicate that the choice of attenuation relationship is a
major portion of the uncertainty for short-period motions. This results from the effect of the
local geology on the site-specific attenuation model predictions as discussed in Section 5.2.3
which can lead to significantly different predictions of site-specific ground motions than are
obtained using the empirical rock relationships. The stochastic model ground motion
predictions tend to be lower than those obtained using empirical attenuation relationships at
periods lower than about 0.1 sec. At longer periods such as 1.0 sec, the two approaches
lead to similar estimates of ground motion hazard. Thus the effects of site geology at the
INEL and differences with typical western U.S. rock sites are most pronounced at high
frequencies (> 10 Hz). Note the smallest difference between the empirical and stochastic
approaches to attenuation is at ANL (Figure 6-7a). This is probably due to the general
absence of sedimentary interbeds bemeath ANL which are important in reducing high—
frequency ground motions at the other sites where they are present (e.g., NRF).

Figures 6-8a through 6-8g show the effect of uncertainty in the choice of empirical
attenuation relationship on the hazard computed using only the empirical attenuation models.
As indicated, the model developed by Campbell (1994) (designated C94) produces the lowest
hazard, with the greafest difference at a period of 1.0 seconds. This large difference results
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at most sites. The influence is greatest on the hazard from the Beaverhead fault at the TAN
site. However, the hazard at TAN is controlled by the other fault sources.

Figures 6-16a through 6-16g show the effect of the alternative regional source zonation
models on the computed hazard. Because the recurrence rate for the dominate source zone,
the northern Basin and Range, is similar for all three zonation models, there is negligible
effect on hazard.

The impact of the 1905 Shoshone earthquake occurring in the ESRP or to the south in the
central Basin and Range province on computed hazard from the regional source zones is
indicated on Figures 6-17a through 6-17g. Assuming that the event occurred in the ESRP
results in higher hazard because it results in higher estimated rates for events of M, 5 and
greater (Figure 4-14) and results in higher estimates for maximum magnitude. This results
in a higher hazard from the ESRP source. However, the contribution of the ESRP source
to hazard becomes noticeable only at very low probability levels (<10%) and so the effect
of the 1905 earthquake location is, in general, insignificant.

In summary, the greatest source of uncertainty in the ground motion estimates is the selection
of the attenuation model. The rates of seismicity for both the faults and areal source zones
and the value of kappa at the individual sites at high frequencies are also significant sources
of uncertainty. At low ground motion levels, the magnitude distribution (i.e. characteristic
versus exponential models) and at high ground motion levels, the b-value for the ESRP
source zone are important parameters.

6.3 EQUAL-HAZARD SPECTRA

Equal-hazard spectra were developed for the seven facility sites by selecting the peak ground
motion levels from the mean hazard curves at the various spectral acceleration periods for
the PC return periods of 500, 1,000, 2,000 and 10,000 years (annual frequencies of
exceedance of 0.002, 0.001, 0.0005, and 0.0001, respectively). Figures 6-18a through 6-
18g present composite plots of the mean hazard curves computed for the nine spectral
periods (0.02 [PGA], 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, and 2.0 seconds). Peak spectral
amplitudes were interpolated from these hazard curves for the four return periods and these
are summarized in Table 6-1.
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for the NPR site, the values for CPP, which is located just to the west, are nearly identical (Table 6-
1). Despite the differences in approaches (multiple experts versus team of experts and seismic
source and ground motion input), the results are somewhat surprisingly similar.
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TABLE 6-1

EQUAL HAZARD SPECTRAL ACCELERATIONS (5% DAMPING)

Spectral Period “7%10° i
(sec) (500 yrs) (1000 yrs) (2000 yrs) (10,000 yrs)
0.02 0.057 0.075 0.098 0.163
0.03 0.071 0.097 0.127 0.231
0.05 0.084 0.114 0.151 0.279
0.10 0.121 0.161 0.212 0.366
0.20 0.127 0.170 0.390
0.30 0.113 0.151 0.354
0.50 080 o =-0:116 0.276
1.00 2,050 0.067 0.158
2.00 0.03 0.077

ATR
Annual Hazard Exceedance Probability -
(Return Period)

Spectral Period 2x10° 1x10° 5x10* 1x10*
(sec) (500 yrs) (1000 yrs) (2000 yrs) (10,000 yzs)
0.02 0.081 0.110 0.141 0.239
0.03 0.281
0.05 0.323
0.10 0.495
0.20 0.599
0.30 0.543
0.50 0.426
1.00 0.251
2.00 0.127

CPP
Annual Hazard Exceedance Probability
(Return Period)

Spectral Period 2x107 1x10° 5x10% 1x10*
(sec) (500:y1s) : (10,000 yrs)
0.02 - 0.075: 0.220
0.03 0.248
0.05 0.285
0.10 0.471
0.20 0.551
0.30 0.502
0.50 0.394
1.00 0.232
2.00 0.110
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TABLE 6-1

EQUAL HAZARD SPECTRAL ACCELERATIONS (5% DAMPING) (CONT.)

Canlp
ZaT

Spectral Pefiod il “A2416° AL edx107
(sec) (500 yrs) (1000 yrs) (2000 yrs) (10,000 yrs)
0.02 0.084 0.114 0.148 0.258
0.03 0.090 0.121 0.159 0.275
0.05 0.099 0.133 0.177 0.314
0.10 0.167 0.232 0.310 0.538
0.20 0.190 0.265 0.358 0.642
0.30 0.167 0.235 0.319 0.577
0.50 0.127 0.246 0.457
1.00 G 0078 BT ' 5 0.279
2.00 036 | 0.138

Annual Hazard Exceedance Probability
(Return Period)

Spectral Period 2x10° 1x10° 5x10% 1x10*
(sec) (500 yrs) (1000 yzs) (2000 yrs) (10,000 yrs)
0.02 0.063 0.085 0.111 0.184
0.03 0.066 0.089 0.115 0.194
0.05 0.071 0.098 0.126 0.220
0.10 0.383
0.20 0.466
0.30 0.425
0.50 0.345
1.00 0.221
2.00 0.111

RWMC
Annual Hazard Exceedance Probability
(Return Period)

Spectral Period 2x10° 1x10° 5x10* 1x10*
(sec) (500 yrs) (1000 yrs) (2000 yrs) (10,000 yrs)
0.02 97 SFRRA R A, 034 @ 0.233
0.03 0.279
0.05 0.344
0.10 0.513
0.20 0.570
0.30 0.514
0.50 0.396
1.00 0.226
2.00 0.107
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TABLE 6-1
EQUAL HAZARD SPECTRAL ACCELERATIONS (5% DAMPING) (CONT.)

Spectral Pegiod

; " 3 ) %10~
(sec) (500 yrs) (1000 yrs) (2000 yrs) (10,000 yrs)
0.02 0.093 0.129 0.177 0.328
0.03 0.105 0.146 0.202 0.368
0.05 0.117 0.166 0.230 0.430
0.10 0.188 0.268 0.371 0.694
0.20 0.209 0.299 0414 - 0.788
0.30 0.179 0.256 0.355 0.685
0.50 0.255 0.496
1.00 0.282
2.00 0.135
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