

DEMONSTRATED RESERVE BASE FOR COAL IN NEW MEXICO
Final Report

Gretchen K. Hoffman
New Mexico Bureau of Mines and Mineral Resources
Cooperative Agreement DE-FC0193EI23974

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER
G H obs

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

TABLE OF CONTENTS

	Page
1.0 Executive Summary	2
2.0 Introduction	2
2.1 Background	2
2.2 Purpose	3
3.0 Assumptions and Methodology	4
3.1 Use of Existing Data	4
3.2 Reliability Criteria	9
3.3 Mapping and Physical Criteria	9
3.4 Selection and Integration of Coal Quality Data	10
3.5 Use of Judgement and/or Extrapolation	11
4.0 Results	11
Introduction	11
4.1 Regional Results	14
4.11 Fruitland Formation Results	22
Fruitland field	22
Navajo field	26
Bisti field	29
Star Lake field	32
4.12 Menefee Formation Results	35
Barker Creek field	37
Hogback field	39
Newcomb field	41
Chaco Canyon field	43
Chacra Mesa field	46
La Ventana field	49
San Mateo field	52
Standing Rock field	55
Monero field	58
4.13 Crevasse Canyon Formation and Gallup Sandstone Results	61
Gallup field	63
Zuni field	66
Crownpoint field	68
East and South Mount Taylor fields	71
Rio Puerco	74
5.0 Recommendations	76
6.0 Sources	78

	Page
Acknowledgements	79
References	80
Appendices	84
Appendix A- Data sources for CRDB by formation	20 pages
Appendix B- Weighted averages of analyses by formation and township	13 pages

Tables

1. Basic resource criteria modified from Wood et al., 1983 10
2. Remaining DRB by county and formation, San Juan Basin, New Mexico . 15-17
3. Accessible and recoverable DRB by county and formation, San Juan Basin, New Mexico 19-21
4. Remaining DRB for Fruitland Formation, San Juan Basin, New Mexico . . . 23
5. Remaining DRB for the Menefee Formation, San Juan Basin, New Mexico . 36
6. Remaining DRB for Crevasse Canyon Formation and Gallup Sandstone, San Juan Basin, New Mexico 62

Figures

1. Coalfields in the San Juan Basin. Quadrangle names in italics. (Modified from Hoffman Campbell, and Beaumont, 1993). 7
- 2a. Stratigraphic diagram showing sequence, thickness, and nomenclature of Cretaceous rocks in San Juan Basin, New Mexico and Colorado. Modified from Beaumont, 1982, Fig. 2. 8
- 2b. Cross section showing relationship of Cliff House Sandstone and upper part of Menefee Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971, Fig. 7. 8
3. Tectonic map of San Juan Basin in New Mexico. From Beaumont, 1982, Fig. 3 13
4. Index map of Fruitland field, Fruitland Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971. 24
5. Navajo field, Fruitland Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971. 27

	Page
6. Bisti field, Fruitland Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	31
7. Index map of Star Lake Fruitland field. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	33
8. Index map of Barker Creek Menefee area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	38
9. Index map of Hogback upper Menefee area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	40
10. Index map of Toadlena and Newcomb upper Menefee areas. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	42
11. Index map of Chaco Canyon upper Menefee area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	44
12. Map of Chacra Mesa Menefee area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	47
13. Map of La Ventana field, Menefee Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	50
14. Geologic map of San Mateo Menefee area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	53
15. Index map of Standing Rock area, Cleary Member, Menefee Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	56
16. Index map of Monero Mesaverde field. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	59
17. Map of Gallup field, Crevasse Canyon and Menefee Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	64
18. Map of Zuni coal area. Modified from Anderson and Jones, in progress.	67
19. Map of Crownpoint field, Crevasse Canyon Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	69
20. Map of South Mount Taylor, Crevasse Canyon area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	72

	Page
21. Map of East Mount Taylor, Crevasse Canyon area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	72
22. Map of Rio Puerco field, Mesaverde Group. Modified from Shomaker, Beaumont, and Kottlowski, 1971.	75
23. Ash vs density in tons/acre ft	77

1.0 EXECUTIVE SUMMARY

The new demonstrated reserve base estimate of coal for the San Juan Basin, New Mexico, is 11.28 billion short tons. This compares with 4.429 billion short tons in the Energy Information Administration's demonstrated reserve base of coal as of January 1, 1992 for all of New Mexico and 2.806 billion short tons for the San Juan Basin. The new estimate includes revised resource calculations in the San Juan Basin, in San Juan, McKinley, Sandoval, Rio Arriba, Bernalillo and Cibola counties, but does not include the Raton Basin and smaller fields in New Mexico. These estimated "remaining" coal resource quantities, however, include significant adjustments for depletion due to past mining, and adjustments for accessibility and recoverability.

The new estimates also incorporate analyses of available sulfur, heat, and ash content data appropriate for characterizing the State's remaining coal resources. Coal quality data were examined in conjunction with coal resource mapping. Samples from exploration drillholes and coal coring as well as from locations in or near mines within traditional coal resource districts were incorporated in the allocation of coal resource quantities to ranges of sulfur and Btu content. The new allocations place 28 percent of the demonstrated reserve base of the San Juan Basin, New Mexico, in the 0.41-0.6 sulfur category, as compared to 34 percent for all of New Mexico in the previous allocation used by the Energy Information Administration.

As part of the current study, certain factors affecting coal resource availability and recent data on mining recovery rates were also examined. Based on the new estimated demonstrated reserve base, the accessible reserve base for the San Juan Basin is 10.31 billion short tons, and recoverable reserves is 7.71 billion short tons for New Mexico.

2.0 INTRODUCTION

2.1 Background. The Coal Reserves Data Base (CRDB) program is a cooperative data base development program sponsored by the Energy Information Administration (EIA). The objective of the CRDB program is to involve knowledgeable coal resource authorities from the major coal bearing regions in EIA's effort to update the Nation's coal reserves data. This report describes the fourth study in the program to update State-level reserve estimates in cooperation with the geological survey of the State.

The New Mexico Bureau of Mines and Mineral Resources (NMBMMR) entered into

Cooperative Agreement DE-FC0193EI23974 with the U.S. Department of Energy, Energy Information Administration, to update coal resource estimates for northwestern New Mexico. The 12-month project began on June 15, 1993, and ended on June 14, 1994. This project used funds furnished by the EIA.

The CRDB uses an updated set of criteria designed to be nationally consistent but flexible. This program is needed because the traditional source of EIA coal reserve estimates (the demonstrated reserve base (DRB) of coal) was adapted from older published studies from various contributors, many of whom followed somewhat different criteria than those preferred for the DRB. Further, those studies did not usually detail point source data and coal characterization data that are needed for current coal resource evaluation.

2.2 Purpose. The CRDB data are intended for use in coal supply analyses and to support analyses of policy and legislative issues. They will be available to both Government and non-Government analysts. The data also will be part of the information used to supply United States energy data for international data bases and for inquiries from private industry and the public.

The EIA recognizes that mapping of coal resource areas, drilling records, location of historical mine boundaries, site-specific analytical data, and data on geologic features are critical to reliable characterizations of calculated coal resource quantities. Those types of information have been used to various extent in the current study, as described in the following sections. In accordance with the terms of the CRDB program, the supporting data files and detailed documentation will remain with the NMBMMR, where they will serve as

the basis for future updates and revisions, and can be amplified with new data or modified for other (NMBMMR) objectives by technical staff who developed the data. The EIA will maintain copies of the detailed county/formation-level data base and selected source files.

The information in this report was compiled under guidelines that emphasize utilization of previously unexploited coal resource and coal analytical data of immediate availability that can be assimilated during a short-term project. The resulting data base conforms to the criteria of CRDB Phase I level effort. A Phase II level of effort may be indicated in certain States or areas, but would be optional and predicated on EIA priorities and funding availability. Phase II projects would permit development of updated coal resource and reserve estimates and coal characterizations that draw on available but previously unexploited data requiring relatively extensive analysis. This level of effort would be especially beneficial in areas currently lacking reliable coal reserve data. No Phase II projects are authorized at this time.

3.0 ASSUMPTIONS AND METHODOLOGY

3.1 Use of Existing Data. Existing data for this study consists of point source data in the NMBMMR computerized data base for the San Juan Basin (SJB). These data are from published sources, NMBMMR data files (i.e. NMBMMR Oil and Gas Library geophysical logs), data acquired from companies, Bureau of Land Management "inactive files", data from federal coal leases that are no longer active, and tract delineation studies, and NMBMMR coal studies (Appendix A). Collection and entry of these data into the National Coal Resource Data System (NCRDS) is part of a cooperative grant with the U.S. Geological

Survey (USGS). Point source data plotted on 7.5 min. quadrangle maps and hand-planimetered resource area measurements of these data were reexamined for this study. Exposures of coal-bearing formations and/or members from the latest geologic mapping were transferred onto these data-point maps to accurately delineate resource areas. Determination of rank, sulfur, Btu, and ash categories utilized all available data in the NMBMMR quality data base for the SJB. Comparison of three data sources determined the production figures used for depletion of original resources. Percentages of total tonnage by depth and thickness for mining prior to 1962 were determined from individual mine data from Nickelson (1988), the NMBMMR mine and resource data bases, and Territorial and State Mine inspector reports. Data from the New Mexico Energy Minerals and Natural Resources Department (NMEMNRD) annual reports were used for production from 1970 to the present.

Comparison of total production tonnages from the Territorial and State reports and data supplied from the DOE-EIA for this study determined total county tonnages by taking the average of these two numbers. The DOE-EIA and State figures comparable, although differences did occur. Depletion numbers for thickness and depth categories were based on a percentage determined from the individual mine data production divided by the average total production.

The average total tonnage figures (county basis) for the years up to the present (1993) were multiplied by the standard depletion rates, 80% for surface and 50% for underground, to calculate production and mining losses. Recent mine production and losses (1970-1992) were directly subtracted from the original demonstrated resources.

The surface and underground deposits in the SJB, northwestern New Mexico, are

addressed in this study. The SJB includes several coal fields defined by formational and political boundaries (Fig. 1). The Fruitland, Menefee and Crevasse Canyon formations are the major Late Cretaceous coal-bearing units and the Gallup Sandstone contains small resources of coal (Fig. 2a,b). Original resources of these units are evaluated by quadrangle (1:100,000) and county. The remaining demonstrated reserve base (DRB), lbs of sulfur/MBtu, MMBtu/ton, and ash categories are calculated on a county basis. All the county evaluations are based on formation totals from individual field totals in the data base. Accessibility criteria on land-use restrictions is based on Table 1 in USGS Circular 1055 (Eggleston, Carter, and Cobb, 1990). These criteria were digitized on the 1:100,000 quadrangles and areas were overlain with digitized coal resource areas (formation basis) to determine inaccessible regions. The following are the criteria used and the total area affected by the land-use restriction within the coal resource area:

<u>Restrictions</u>	<u>Total Acreage in SJB coal areas</u>
Abandoned Mines	18796
Cemeteries*	
Streams, Lakes, Reservoirs	61355
Residences, Towns, Public Buildings	22065
Historic Sites and non-Federal Public Parks	320
Highways and Railroads	5766
Powerlines, Pipelines	12404
National Parks, Wildlife Refuges,	
Recreation areas	17558
Wilderness Study Areas	42162
Oil and Gas Wells	151476
Total accessible acreage of coal resource areas:	3681791

*Cemeteries are included in acreages for towns

Inaccessible regions within coal resource areas were compared to the total coal resource area on individual 1:100,000-scale quadrangles to calculate the percentage of accessible area.

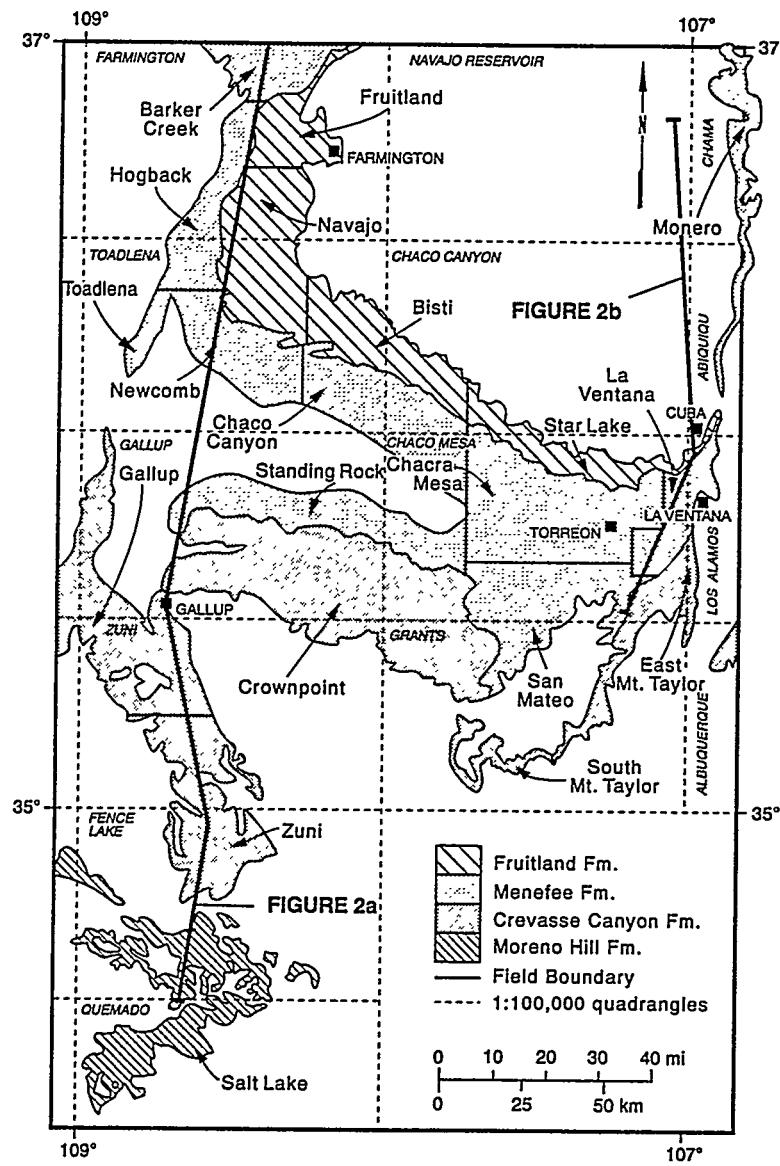


Figure 1. Coalfields in the San Juan Basin. Quadrangle names in *italics*. (Modified from Hoffman, Campbell, and Beaumont, 1993.)

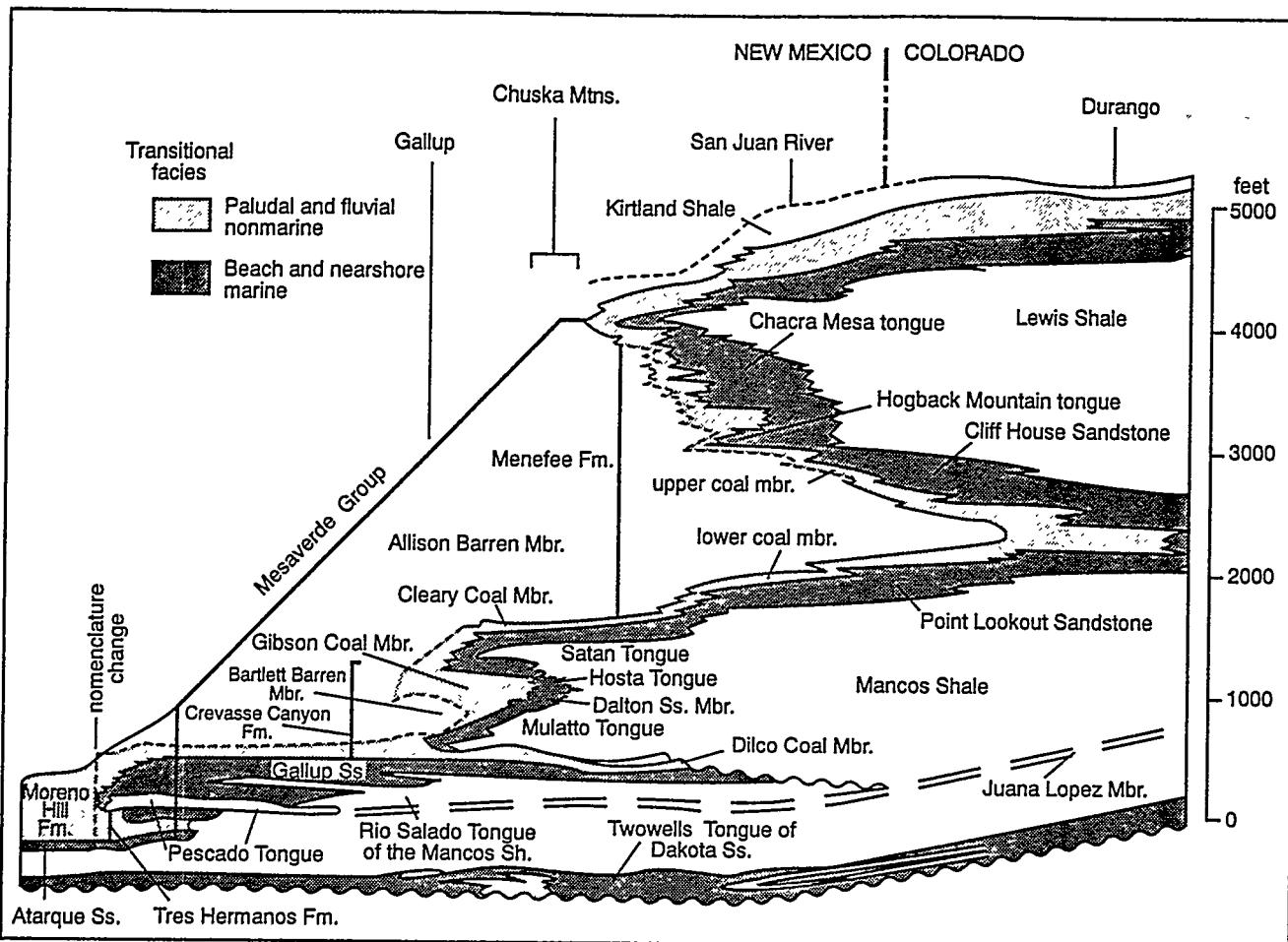


Figure 2a. Stratigraphic diagram showing sequence, thickness, and nomenclature of Cretaceous rocks in San Juan Basin, New Mexico and Colorado. Modified from Beaumont, 1982, Fig. 2.

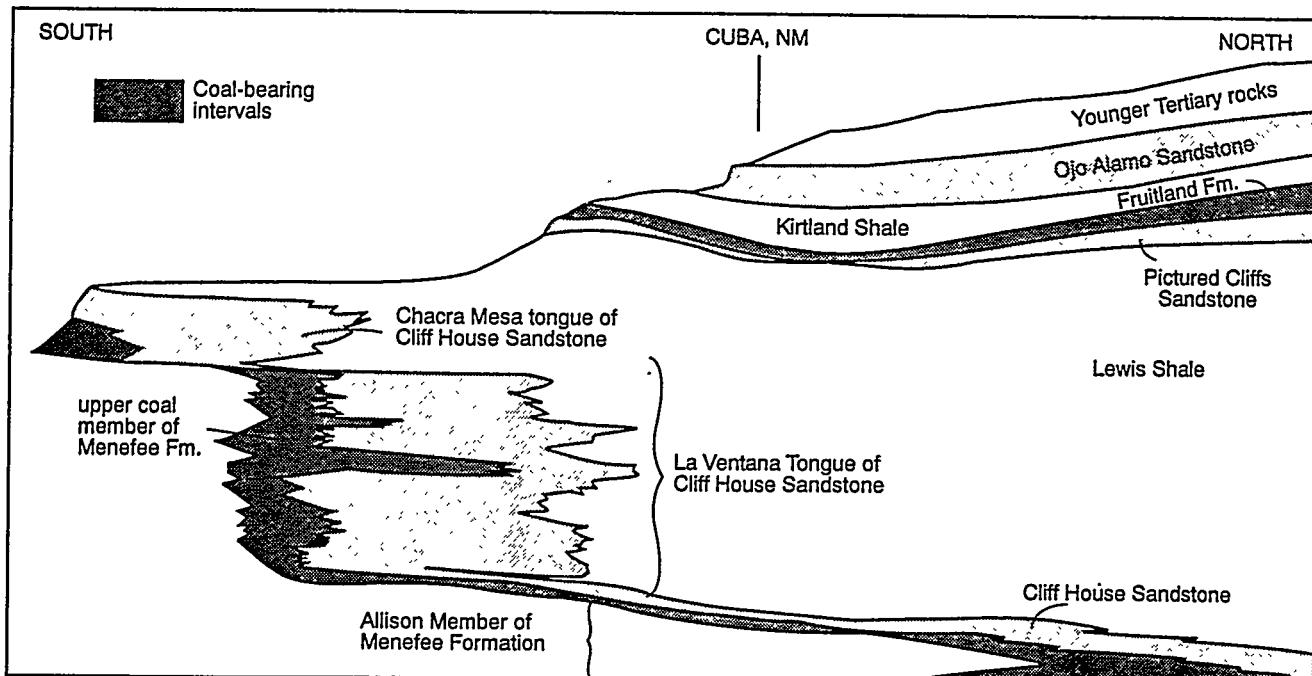


Figure 2b. Cross section showing relationship of Cliff House Sandstone and upper part of Menefee Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971, Fig. 7.

This percentage was applied to the DRB to determine the accessible DRB. From the accessible reserve the surface (88%) and underground (56%) recoverable reserve was obtained (EIA, 1993).

3.2 Reliability Criteria. Estimates within the demonstrated category (measured plus indicated) are based on USGS Circular 891 (Wood et al., 1983). All chemical analyses used to determine quality parameter determination are on an as-received basis with less than 33% ash yield and weighted on total bed thickness. In some areas the resource data and quality data are clustered in exploration or mine areas, but there are many areas that have sparse data coverage, particularly in areas of greater coal depth.

3.3 Mapping and Physical Criteria. This DRB was compiled using the USGS criteria for subbituminous and bituminous coals. Subbituminous coals were assigned a density factor of 1770, and bituminous coal was assigned a density factor of 1800, the standard values assigned by the USGS (Wood et al., 1983). Discussions at the beginning of this study contemplated using different values because of the high ash content of the SJB coal. The inconsistent coverage of analytical data made assigning different density values to all the areas covered by this study difficult, therefore the standard values were applied to all subbituminous and bituminous coals. In the calculation of resources by ash content additional categories of 10.01-15 and greater than 15% ash were added to accommodate the greater percentage of ash in many of the SJB coals. Subbituminous demonstrated resources include coal 2.5 ft or greater in thickness; bituminous demonstrated resources include coal 28 inches

or greater in thickness. Table 1 lists the thickness and depth interval used for the resource estimates. Coal with less than 20 ft of overburden was subtracted from the original resource

Table 1. Basic Resource Criteria. Modified from Wood et al., 1983.

Coal Seam Thickness (underground or surface mining)		Overburden Thickness (depth from surface)	
<u>Bituminous</u>	<u>Subbituminous</u>		
28-42 inches	2.5-5 ft	0 to 200 ft	Surface
> 42 inches	5-10 ft	200 to 500 ft	Underground
	> 10 ft	500 to 1000 ft	Underground

estimate and these figures were used for the remaining DRB analyses. Coal resources with less than 20 ft of overburden were eliminated because coal within this interval is generally weathered and can not be used for energy production within the SJB. Most operating mines in the SJB use the greater than 20 ft depth criteria for calculating mine reserves. The EIA recoverability factors of 88 and 56 percent (1993) for surface and underground mining were applied to the remaining DRB after adjustments for accessibility.

3.4 Selection and Integration of Coal Quality Data. Rank and other coal quality categories used all available coal quality data in the NMBMMR data base for the SJB. The majority of these analyses in the NMBMMR data base are from cores or mine samples totaling 1313 individual analyses. Individual sample analyses were weighted by percent of total seam thickness and statistically averaged by township to determine quality categories for the DRB

(Appendix B). Kriging of these data was attempted, but the mixture of clustered and sparse data made this type of statistical analysis invalid.

3.5 Use of Judgment and/or Extrapolation. Judgment was applied to every aspect of this study although analyses and inference were particularly important with respect to determining quality parameters. Many of the fields, as discussed in sections 4.11–4.13, have very little quality data. This situation is particularly true for the smaller Menefee, Crevasse Canyon, and Gallup Sandstone fields where there has been very little exploration. The Principal Investigator (P.I.) looked at the data available in these fields and data from adjacent areas to determine the quality parameters to assign to the DRB. The extent to which the P.I. used data from adjacent fields depended on the amount of data available within the field; reliance on outside data ranged from 50 to 80%.

4.0 RESULTS

Introduction

Individual coal beds within the Upper Cretaceous Crevasse Canyon, Menefee, and Fruitland Formations (ascending order), in the SJB are highly lenticular and their minable thicknesses rarely extend laterally for more than 6 mi. making it impossible for the scale of this study to discuss individual coal bed resources and highly speculative to calculate inferred resources. Descriptions of coal resources is therefore confined to the coal-bearing members and coal-bearing formations in an individual field or area for measured and indicated resources. These coal fields in the SJB are defined by exposures of the coal-bearing formations and by some political boundaries.

The SJB is roughly an asymmetric circular structural depression, that is deeper in the northeastern part of the basin. Upper Cretaceous and Early Tertiary strata dip steeply into the basin on the northwest along the Hogback monocline, and on the east along the Archuleta arch and Nacimiento uplift (Fig. 3). Gentle dips predominate in the south and southwest sections on the Chaco slope. The deepest part of the SJB is about 30 mi west of the Monero field (Fig. 1) on the northeast edge of the basin, where the Cretaceous coal beds are as much as 9,000 ft below the surface. Along the southern edge of the SJB several structural features affect the Cretaceous coal-bearing units (Fig. 3); faulting is more prevalent in this part of the basin.

The new total DRB estimate for the SJB is 11.29 billion short tons remaining as of January 1, 1992. This is four times greater than EIA's 1/1/92 DRB for the SJB, as estimated from the coal resource and depletion data used to compile the published 1992 EIA DRB that are attributable to SJB coals (Bonskowski, 1994). The EIA SJB estimates were based on older resource studies – primarily on confidential company file data developed between 1977 and 1979 by the U.S. Bureau of Mines and EIA (Energy Information Administration, undated) and on a 1971 NMBMMR report, known as Memoir 25 (Shomaker, Beaumont, and Kottlowski, 1971). In 1983, the EIA updated the New Mexico DRB using data supplied by NMBMMR (Roybal, 1983); however, only 188.0 million short tons were added in the SJB, in the Barker Creek area, because either EIA rank and bed thickness categories were incompatible and could not be resolved at that time, or the existing EIA data exceeded the 1983 NMBMMR data.

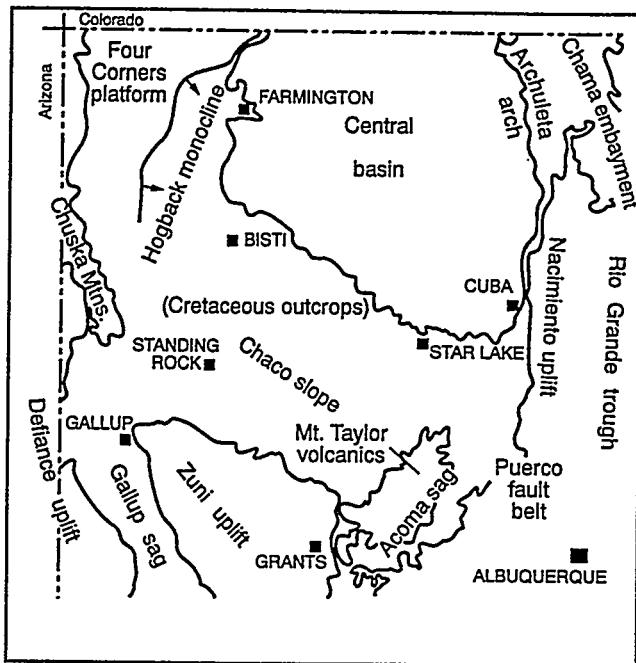


Figure 3. Tectonic map of San Juan Basin in New Mexico. From Beaumont, 1982, Fig. 3.

4.1 Regional Results

SJB coal fields are within San Juan, McKinley, Sandoval, Rio Arriba, Cibola, and Bernalillo counties. Table 2 is a summary of the remaining DRB in the SJB for bituminous and subbituminous coals presented by county, subdivided by depth and formation. Total remaining surface (20–200 ft depth) DRB is 983.83 million short tons of bituminous coal, and 5,367.61 million short tons of subbituminous coal, a total of 6.351 billion short tons. The underground (200–1000 ft depth) remaining DRB in the SJB is 1,473.77 million short tons bituminous coal and 3,466.79 million short tons subbituminous coal, an aggregate of 4.941 billion short tons. The DRB for underground coal is conservative because of the smaller data base available for these depths. San Juan County has the greatest DRB in the SJB, followed by McKinley County and Sandoval County. The Fruitland Formation contains the largest DRB of all the coal-bearing formations.

The DRB for the SJB is divided into four categories of sulfur content, although the majority (85%) of this resource has less than 1.24 lbs sulfur/MBtu, and 28% of the total is in the lowest sulfur category (0.41–0.6 lbs sulfur/MBtu). The remaining DRB is within three heat categories (MBtu/ton) from 15 to 24.99 MBtu/ton, however most of the resources are within the 15–19.99 MBtu/ton classification. In the latest DRB done by the EIA 56% of New Mexico's total DRB is in the 15–19.99 MBtu/ton category. In this study 66% of the total DRB is in this category. The following is a breakdown of the total DRB (million short tons) by heat and sulfur content:

Table 2. Remaining DRB by county and formation, San Juan Basin, New Mexico in millions of short tons.

Bituminous Underground Total
Bituminous Total

Table 2. Remaining DRB by county and formation, San Juan Basin, New Mexico in millions of short tons, continued.

Subbituminous		County	Formation	MBtu/ton	Total	0.41-0.6	0.61-0.83	Lbs Sulfur/MBtu	0.84-1.24	1.25-1.67	5.01-10	%Ash*	10.01-15	>15
San Juan	Fruitland	15-19.99	2539.46	18.18	1059.12	605.61	18.18	874.73					2557.64	
		20-22.99	72.07					72.07					72.07	
	Menefee	15-19.99	10.24					10.24					.10.24	
McKinley	Fruitland	15-19.99	483.89		483.89									
	Menefee	15-19.99	559.10					444.35	114.75				5.82	483.89
		20-22.99	251.03		26.62			224.41					804.31	
	Crevasse	15-19.99	662.51										662.51	
		20-22.99	366.80		262.70	72.73	1.15	31.37					343.47	23.34
	Gallup SS	20-22.99	65.67					35.36	29.16				65.67	
Sandoval	Fruitland	15-19.99	117.35		117.35									
	Menefee	20-22.99	182.13		41.62	39.88		100.63					170.04	
	Crevasse	15-19.99	12.41					12.41					12.41	
Cibola	Crevasse	20-22.99	13.92		13.92									
	Gallup SS	20-22.99	0.56					0.56					13.92	
Bernalillo	Crevasse	15-19.99	12.29					12.29					0.56	
													12.29	
<i>Totals</i>	<i>15-19.99</i>	<i>4459.08</i>	<i>1059.12</i>	<i>1206.85</i>	<i>1415.85</i>	<i>777.26</i>								
	<i>20-22.99</i>	<i>908.53</i>	<i>344.86</i>	<i>131.94</i>	<i>402.57</i>	<i>29.16</i>								
	<i>Ash</i>													
	<i>Subbituminous Surface Total</i>	<i>5367.61</i>	<i>1403.98</i>	<i>1338.79</i>	<i>1818.42</i>	<i>806.42</i>								

*%Ash undifferentiated by MBtu/ton

Table 2. Remaining DRB by county, and formation, San Juan Basin, New Mexico in millions of short tons, continued.

<u>Subbituminous</u>									
County	Formation	MBTU/ton	Total	0.41-0.6	0.61-0.83	Lbs Sulfur/MBtu	0.84-1.24	1.25-1.67	%Ash*
<i>Underground</i>									
San Juan	Fruitland	15-19.99	1458.28	1225.57	199.02	33.69			1501.34
		20-22.99	43.05		43.05				
Menefee	15-19.99	54.25				54.25			57.60
	20-22.99	34.76		3.35		31.41		31.41	
McKinley	Fruitland	15-19.99	127.09	127.09					127.09
Menefee	15-19.99	608.98				300.52	308.46	50.74	853.19
	20-22.99	294.94		148.34		146.60			
Crevasse	15-19.99	457.58					457.58	100.70	457.58
	20-22.99	131.30		25.33	24.17	81.80			30.61
	Gallup SS	20-22.99	11.15			9.95	1.20		11.15
Sandoval	Fruitland	15-19.99	52.21		52.21				
Menefee	20-22.99	186.07		56.01	20.03	110.03		172.78	13.29
Crevasse	15-19.99	0.00							
Cibola	Crevasse	20-22.99	5.80	5.80					
	Gallup SS	20-22.99	1.33			1.33			
<i>Totals</i>	15-19.99	2758.39	1225.57	378.32	388.46	766.04			
	20-22.99	708.40	238.83	87.25	381.12	1.20			
	<i>Ash</i>								
<i>Subbituminous Underground Total</i>		3466.79	1464.40	465.57	769.58	767.24	355.63	1399.94	1711.25
<i>Subbituminous Total</i>		8834.40	2868.38	1804.36	2588.00	1573.66	909.90	3031.07	4893.47

*%Ash undifferentiated by MBtu/ton

Lbs of Sulfur/MBtu						
Depth	MBtu/ton	0.41-0.60	0.61-0.83	0.84-1.24	1.25-1.67	Total
Surface	15-19.99	1059.12	1231.66	1447.15	777.26	4515.19
	20-22.99	495.70	412.70	891.06	29.16	1828.62
	23-24.99				7.63	7.63
Underground						
	15-19.99	1225.57	516.59	657.51	766.04	3165.71
	20-22.99	488.60	601.84	651.63	32.78	1743.27
	23.24.99				31.58	31.58

Ash values for the DRB vary from 5.01 to greater than 15%. Fruitland Formation coals have greater than 15% ash yield and constitute the largest percentage of the DRB (Table 2). The DRB in million short tons for each ash category is given below:

% Ash			
Depth	5.01-10	10.01-15	>15
Surface	880.34	1738.72	3732.38
Underground	860.44	1506.10	2574.05

Accessible and recoverable reserves for each county and formation by sulfur content and heat value are listed in Table 3. Total accessible resources averaged about 90% of the total DRB, the same factor used by the EIA. Total surface accessible resources are 5,993.07 million short tons; recoverable reserves are 5,273.90 million short tons. Total underground accessible resources are 4,320.46 million short tons and recoverable underground reserves are 2,430.65 million short tons for the San Juan Basin, New Mexico. Recoverable reserves are based on 88% recovery for surface mining, 56% recovery for underground mining.

Table 3. Accessible and recoverable DRB by county and formation, San Juan Basin, New Mexico in millions of short tons.

Bituminous		DRB		Accessible		Recoverable		Lbs Sulfur/MBtu		1.25-1.67	
County	Formation MBtu/ton	Total	% Accessible	DRB	DRB	0.41-0.6	0.61-0.83	0.84-1.24			
<i>Surface</i>											
San Juan	Fruitland	15-19.99	56.11	0.89	49.94	43.95	0.00	19.43	24.51	0.00	
		20-22.99	494.05	0.89	439.70	386.94	0.00	36.34	350.60	0.00	
McKinley	Menefee	20-22.99	112.94	0.74	83.08	73.11	0.00	73.11	0.00	0.00	
Menefee	Crevasse	20-22.99	31.88	0.92	29.31	25.80	0.00	0.00	0.00	0.00	
		213.13	0.93	197.96	174.20	92.00	82.20	0.00	0.00	0.00	
Sandoval	Menefee	20-22.99	68.09	0.91	61.96	54.52	5.12	16.69	32.70	0.00	
Rio Arriba	Menefee	23-24.99	7.63	0.89	6.77	5.95	0.00	0.00	0.00	0.00	
<i>Totals</i>		15-19.99	56.11		49.94	43.95	0.00	19.43	24.51	0.00	
		20-22.99	920.09		812.01	714.57	122.92	208.34	383.30	0.00	
		23-24.99	7.63		6.77	5.95	0.00	0.00	0.00	5.95	
		<i>Bituminous Surface Total</i>	983.83		868.71	764.47	122.92	227.78	407.81	5.95	
<i>Underground</i>											
San Juan	Fruitland	15-19.99	407.32	0.80	325.00	182.00	0.00	61.78	120.22	0.00	
		20-22.99	455.48	0.80	363.43	203.52	0.00	91.27	112.25	0.00	
McKinley	Menefee	20-22.99	135.80	0.67	91.58	51.29	0.00	51.29	0.00	0.00	
Menefee	Crevasse	20-22.99	10.51	0.93	9.82	5.50	5.50	0.00	0.00	0.00	
					365.14	204.48	132.58	71.90	0.00	0.00	
Sandoval	Menefee	20-22.99	369.01	0.99							
Rio Arriba	Menefee	23-24.99	64.07	0.94	59.99	33.59	0.00	23.48	10.11	0.00	
<i>Totals</i>		15-19.99	407.32		325.00	182.00	0.00	61.78	120.22	0.00	
		20-22.99	1034.87		889.95	498.37	138.08	237.93	122.37	0.00	
		23-24.99	31.58		27.22	15.24	0.00	0.00	0.00	15.24	
		<i>Bituminous Underground Total</i>	1473.77		1242.18	695.62	138.08	299.71	242.58	15.24	
		<i>Bituminous Total</i>	2457.60		2110.89	1460.08	261.00	527.49	650.40	21.20	

Table 3. Accessible and recoverable DRB by county and formation, San Juan Basin, New Mexico in millions of short tons, continued.

Subbituminous		Total DRB	% Accessible	Accessible DRB	Recoverable DRB	0.41-0.6	0.61-0.83	0.84-1.24	1.25-1.67
County	Formation MBtu/ton								
<i>San Juan</i>									
	Fruitland	15-19.99	2539.46	0.97	2454.90	2160.31	900.99	515.19	744.13
	Menefee	20-22.99	18.18	0.97	17.57	15.47	0.00	15.47	0.00
	Menefee	15-19.99	72.07	0.89	64.34	56.62	0.00	0.00	56.62
		20-22.99	10.24	0.89	9.14	8.05	0.00	0.00	8.05
<i>McKinley</i>									
	Fruitland	15-19.99	483.89	0.97	467.82	411.69	0.00	411.69	0.00
	Menefee	15-19.99	559.10	0.92	514.09	452.40	0.00	0.00	359.55
		20-22.99	251.03	0.92	230.82	203.12	21.54	0.00	181.58
	Crevasse	15-19.99	662.51	0.96	634.29	558.17	0.00	0.00	558.17
		20-22.99	366.80	0.96	351.17	309.03	221.33	61.28	26.43
	Gallup SS	20-22.99	65.67	0.99	65.08	57.27	0.00	1.00	30.84
<i>Sandoval</i>									
	Fruitland	15-19.99	117.35	0.97	113.55	99.92	0.00	99.84	0.00
	Menefee	20-22.99	182.13	0.90	163.90	144.23	32.96	31.58	79.69
	Crevasse	15-19.99	12.41	0.95	11.84	10.42	0.00	0.00	10.42
<i>Cibola</i>									
	Crevasse	20-22.99	13.92	0.95	13.25	11.66	11.66	0.00	0.00
	Gallup SS	20-22.99	0.56	1.00	0.56	0.49	0.00	0.00	0.49
<i>Bernalillo</i>									
	Crevasse	15-19.99	12.29	0.99	12.11	10.66	0.00	0.00	10.66
<i>Totals</i>									
		15-19.99	4459.08		4272.85	3760.11	900.99	1026.72	1181.38
		20-22.99	908.53		851.50	749.32	287.49	109.33	327.08
		<i>Subbituminous Surface Total</i>		5367.61	5124.35	4509.43	1188.48	1136.04	1508.45
									676.45

Table 3. Accessible and recoverable DRB by county and formation, San Juan Basin, New Mexico in millions of short tons, continued.

Subbituminous		Total DRB	% Accessible	DRB	Accessible DRB	Recoverable 0.41-0.6	0.61-0.83	Lbs Sulfur/MBtu 0.84-1.24	1.25-1.67
<i>Underground</i>									
San Juan	Fruitland 15-19.99	1458.28	0.82	1191.41	667.19	560.72	91.06	15.41	0.00
	20-22.99	43.05	0.82	35.17	19.70	0.00	19.70	0.00	0.00
Menefee	15-19.99	54.25	0.90	48.86	27.36	0.00	0.00	27.36	0.00
	20-22.99	34.76	0.90	31.31	17.53	1.69	0.00	15.84	0.00
McKinley	Fruitland 15-19.99	127.09	0.96	122.10	68.37	0.00	68.37	0.00	0.00
	Menefee 15-19.99	608.98	0.93	568.97	318.62	0.00	0.00	157.23	161.39
	20-22.99	294.94	0.93	275.56	154.31	77.61	0.00	76.60	0.00
Crevasse	15-19.99	457.58	0.99	452.78	253.55	0.00	0.00	0.00	253.55
	20-22.99	131.30	0.99	129.92	72.76	14.04	13.39	45.33	0.00
Gallup SS	20-22.99	11.15	0.93	10.36	5.80	0.00	0.00	5.18	0.62
Sandoval	Fruitland 15-19.99	52.21	0.96	50.16	28.09	0.00	28.09	0.00	0.00
	Menefee 20-22.99	186.07	0.94	174.61	97.78	29.43	10.53	57.82	0.00
	Crevasse 15-19.99	0.00							
Cibola	Crevasse 20-22.99	5.80	0.99	5.76	3.23	3.23	0.00	0.00	0.00
	Gallup SS 20-22.99	1.33	0.99	1.32	0.74	0.00	0.00	0.74	0.00
<i>Totals</i>	15-19.99	2758.39		2434.28	1363.19	560.72	187.52	200.01	414.94
	20-22.99	708.40		644.01	371.85	126.00	43.62	201.61	62
	<i>Subbituminous Underground Total</i>	<i>3466.79</i>		<i>3098.29</i>	<i>1735.04</i>	<i>686.72</i>	<i>231.13</i>	<i>401.62</i>	<i>415.57</i>
	<i>Subbituminous Total</i>	<i>8834.40</i>		<i>8222.64</i>	<i>6244.47</i>	<i>1875.20</i>	<i>1367.17</i>	<i>1910.07</i>	<i>1092.02</i>

4.11 Fruitland Formation Results

The Fruitland Formation is the youngest of the coal-bearing sequences in the SJB, part of the last major retreat of the Late Cretaceous shoreline from the SJB. Most of the coals are within a few hundred feet of the contact with the underlying Pictured Cliffs Sandstone, a barrier beach deposit. Of all the coal-bearing sequences in the SJB, the Fruitland Formation coals have the greatest lateral continuity. Exposures of this unit are divided into four fields: Fruitland, Navajo, Bisti, and Star Lake fields (Fig. 1). Most of the Fruitland Formation coal resources are within San Juan County; parts of the Star Lake field are in McKinley and Sandoval counties. Table 4 is a summary of the remaining DRB for the Fruitland Formation fields.

Fruitland field—This field includes the Fruitland Formation exposures from the San Juan River north to the New Mexico-Colorado state line, trending N-NE for about 25 mi, within San Juan County on the Farmington 1:100,000 quadrangle (Figs. 1,4). The overlying Kirtland Formation is similar in lithology but lacks significant coal beds, therefore the contact between the Fruitland and Kirtland Formations is chosen arbitrarily at the uppermost significant coal bed. The Fruitland Formation is relatively flat lying ($\geq 3^{\circ}$ E) in the southern part of the Fruitland field. The angle of dip increases to 18–30°SE along the Hogback monocline on the western edge of the coal-bearing sequence in the northern Fruitland field (Fig. 4).

Fruitland field coals are of bituminous rank and resources were calculated using the 1800 ton/acre ft density factor. The total and percentage division of the point source data in the Fruitland field is:

Table 4. Remaining DRB for the Fruitland Formation, San Juan Basin, New Mexico in millions of short tons.

Rank	Field	MBtu/ton	Total	0.41-0.6	Lbs Sulfur/MBtu	0.84-1.24
Bituminous	Fruitland	15-19.99-19 20-22.99	56.11 494.05	Surface	24.81 46.40	31.30 ← 447.65
Subbituminous	Navajo	15-19.99 20-22.99	1322.62 18.18	186.87	261.02 18.18	874.73
	Bisti	15-19.99	872.25	872.25		
	Star Lake	15-19.99	945.83	945.83		
	Total	15-19.99	3196.81	1059.12	1231.66	906.03
	Total	20-22.99	512.23	0.00	64.58	447.65
	<i>Bituminous Surface Total</i>		<i>550.16</i>	<i>0.00</i>	<i>71.21</i>	<i>478.95</i>
	<i>Subbituminous Surface Total</i>		<i>3158.88</i>	<i>1059.12</i>	<i>1225.03</i>	<i>874.73</i>
Bituminous	Fruitland	15-19.99 20-22.99	407.32 455.48	<i>Underground</i>	138.27 204.26	269.05 251.22
Subbituminous	Navajo	15-19.99 20-22.99	141.79 43.05	57.05	51.05 43.05	33.69
	Bisti	15-19.99	1168.52	1168.52		
	Star Lake	15-19.99	327.27	327.27		
	Total	15-19.99	2044.90	1225.57	516.59	302.74
	Total	20-22.99	498.53	0.00	247.31	251.22
	<i>Bituminous Underground Total</i>		<i>862.80</i>	<i>0.00</i>	<i>342.53</i>	<i>520.27</i>
	<i>Subbituminous Underground Total</i>		<i>1680.63</i>	<i>1225.57</i>	<i>421.37</i>	<i>33.69</i>
	<i>Bituminous Total</i>		<i>1412.96</i>	<i>0.00</i>	<i>413.74</i>	<i>999.22</i>
	<i>Subbituminous Total</i>		<i>4839.51</i>	<i>2284.69</i>	<i>1646.40</i>	<i>908.42</i>

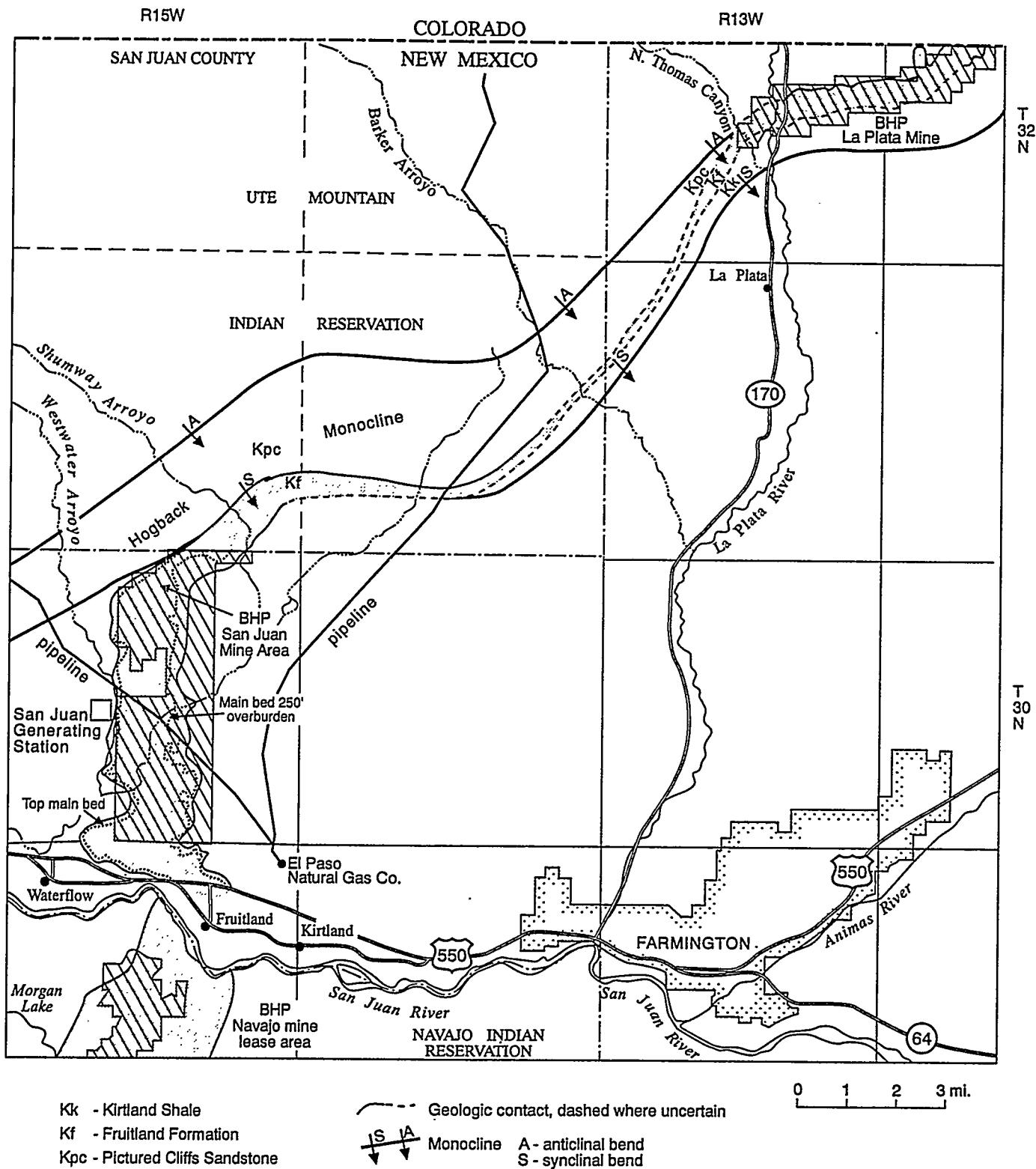


Figure 4. Index map of Fruitland field, Fruitland Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

Total points- 385	37% 20-200 ft depth
	44% 200-500 ft depth
	19% 500-1000 ft depth.

Depletion of original resources in the Fruitland field are from the recent San Juan and La Plata mine production (96.29 million short tons) and some past underground mining production (0.16 million short tons). All past production and mine loss tonnages are from coal greater than 42 inches and within 200 ft of the surface. Remaining surface (0-200 ft) DRB for the Fruitland field is 550.16 million short tons. Remaining underground (200-1000 ft) DRB is estimated at 862.80 million short tons. These resources fall into the 0.61-0.83 and 0.84-1.24 lbs sulfur/MBtu categories (Table 4). These divisions were determined using the weighted averages for each township (where data was available) within the field. The DRB is divided between these two sulfur categories as follows:

Northern Fruitland field:

T32N, R12W-R13W 0.61-0.83 Lbs Sulfur/MBtu

Southern Fruitland field:

T29N-T31N, R15W 0.84-1.24 Lbs Sulfur/MBtu

The Fruitland field DRB is divided into 15-19.99 and 20-22.99 MBtu/ton categories:

T32N, R12W and T31N, R15W 15-19.99 MBtu/ton

T32N R13W, T30N-T29N, R15W 20-22.99 MBtu/ton

All of the Fruitland field coals have ash yields greater than 15%, therefore the entire remaining DRB for this field has an ash content greater than the categories stipulated for this

study. The Fruitland, Navajo, and Bisti field coals average 19% ash, the Star Lake field coals average 22% ash.

Much of the Fruitland field that can be developed for mining is within the San Juan or La Plata mine areas. The Fruitland coal area between these two mines is on the Ute Mountain Indian Reservation. A drilling program conducted by Public Service Company of New Mexico found 10–14 million short tons of surface-minable coal on this Ute Mountain property although the beds have steep dips (18°–30°) because of their proximity to the Hogback monocline (Shomaker and Holt, 1973). In the deeper coal areas east of the active surface mines, restrictions exist because of oil and gas development and population areas such as Farmington and development along the La Plata River valley. The San Juan River valley transects surface and underground coal areas on the southern edge of the field, and two major highways, 64 and 170, intersect areas of surface and underground coal resources. Of the surface DRB, 89% is accessible; 80% of the underground DRB in the Fruitland field is accessible. Accessible and recoverable reserves are listed in Table 3, San Juan County, bituminous rank.

Navajo field—This field is defined by the Fruitland Formation exposures within the Navajo Indian Reservation, a distance of approximately 35 mi from the San Juan River south to Hunters Wash and Coal Creek (T23N), and east to the boundary of the reservation (Fig. 5). The Navajo field is within San Juan County, on the Farmington and Toadlena 1:100,000 quadrangles (Fig. 1).

The predominant dip of the Fruitland beds is less than 5°E–NE and little or no significant faulting is evident in the Navajo field. This area is dissected by the Chaco River; north of the

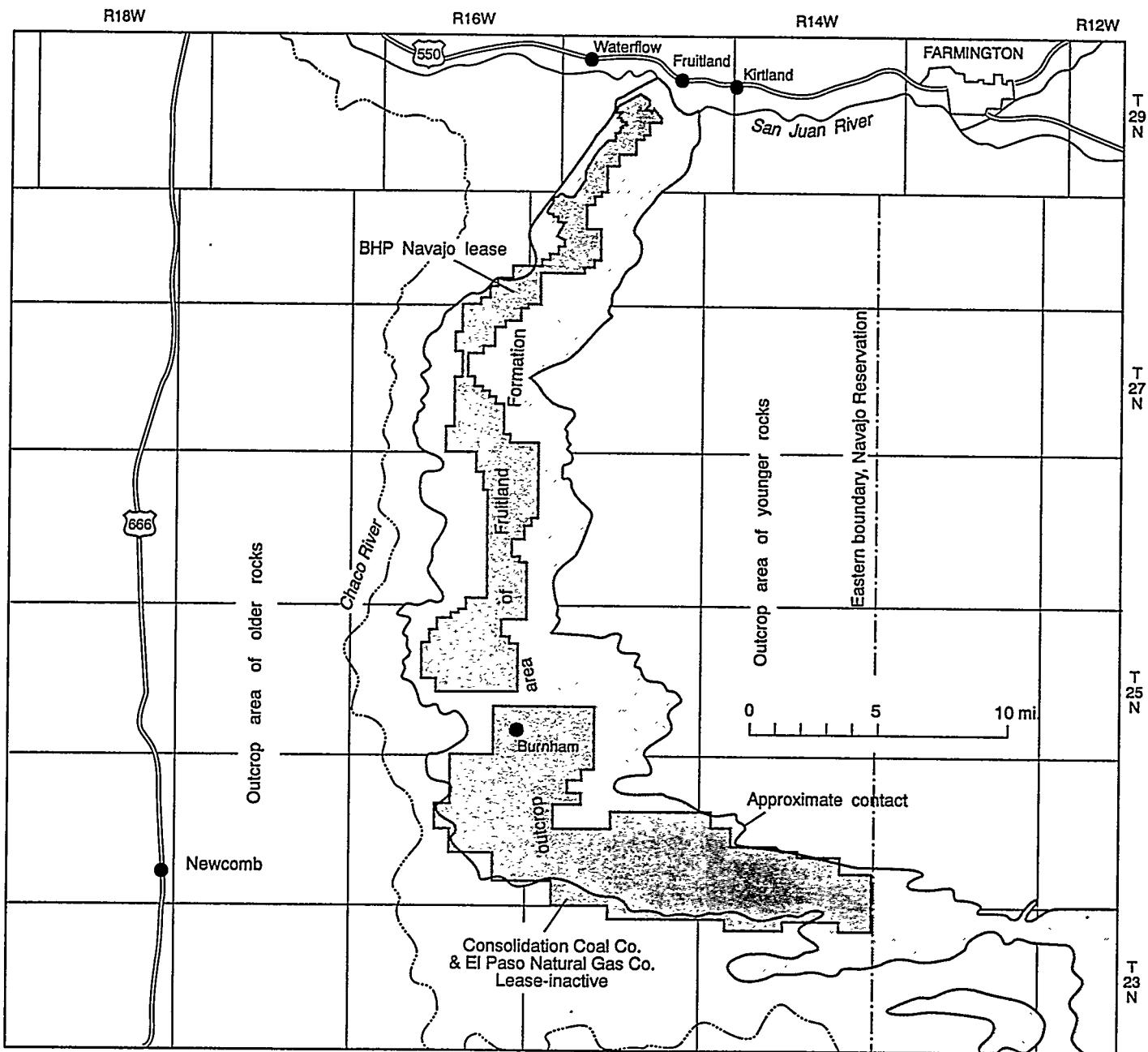


Figure 5. Navajo field, Fruitland Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

river, badlands are the dominant topography and to the south are rolling hills. Numerous coal beds in the Fruitland Formation are near the base of the formation with up to eight minable beds in the southern part of the field (Shomaker, Beaumont, and Kottlowski, 1971). Oscillations of the Late Cretaceous shoreline with minor stillstands, helped to create the relatively thick coal beds en echelon to the north, with increasingly older beds southward (Shomaker, Beaumont, and Kottlowski, 1971, p. 108). The Navajo field coal resources are subbituminous rank and total data point and percentages for different depth categories for this field are:

Total data points- 385: 84% 20-200 ft depth

16% 200-500 ft depth

Depletion of original resources are principally from production and mining losses from the Navajo and Burnham mines. The Navajo mine depletion was used as a source to supplement the original point source data for the northern part of the mine. The adjustment was made using the total production data from the mine. The mined-out areas were planimetered and tonnage calculations were made using these areas multiplied by average coal thickness and average number of beds. Tonnage calculations for mined-out areas where no point source data were formerly available were used to supplement to the original resource figure. The total Navajo mine production figure and mine loss was subtracted from the original DRB, a total of 231.06 million short tons (2.5-5 ft thick; 0-200 ft depth). In addition, 0.71 million short tons were subtracted for the Burnham mine production and mine loss. Remaining surface DRB for the Navajo field is 1.3408 billion short tons. Remaining underground DRB for the Navajo field is 184.85 million short tons, concentrated in the 200-500 ft depth category in beds ranging from 2.5-10 ft thick.

The Navajo field DRB was divided into three sulfur categories. The 0.41-0.6 lbs sulfur/MBtu category resources are from T24N, R14W at the southern end of the field. Resources in T29N R15W, T28N R16W, and T24N R15W are in the 0.61-0.83 lbs sulfur/MBtu category. The highest sulfur category (0.84–1.24 lbs sulfur/MBtu) resources are in T27N to T24N, R16W. The Navajo field coal resources were divided into the 15–19.99 and 20–22.99 MBtu/ton categories. All townships except for T29N (20–22.99 MBtu/ton) were included in the 15–19.99 MBtu/ton category (Table 4). All of the Navajo field remaining coal DRB has ash content averaging 19%.

The Navajo field is entirely within the Navajo Indian Reservation boundary. The Navajo mine occupies the majority of the surface minable area in the field, except for the southernmost area, previously under lease to Consolidation Coal Company (Fig. 5). This company relinquished its coal lease with the Navajo Nation in 1991. There are very few land use restrictions within the Navajo coal area, although there are a few oil and gas wells within underground coal areas, and the Chaco River and its tributaries transect this field, however most of the drainage in this area is intermittent. In the surface minable area 97% of the coal resource area is accessible; 82% of the underground coal area in the Navajo field is considered accessible. The Navajo field accessible and recoverable reserves are grouped with the Bisti field for San Juan County, Fruitland Formation (Table 3).

Bisti field—This field includes the Fruitland Formation exposures that trend southeast from the eastern boundary of the Navajo Indian Reservation, more or less parallel to the Late Cretaceous shoreline (N55W). The Bisti field is about 35 mi long, and is arbitrarily separated at

the boundary between R9W and R8W from the Star Lake field (Fig. 6). All of the field is within San Juan County and on the Toadlena and Chaco Canyon 1:100,000 quadrangles (Fig. 1).

The Bisti field lies within the Chaco slope physiographic area, resulting in gentle dips (3–5°N-NE). The Fruitland Formation and overlying Kirtland Formation lithologies erode into badlands topography and overburden is largely shale and fine-grained friable sandstone. Significant faulting and/or high angle dips are lacking, making surface mining relatively economical in the Bisti field.

Bisti coals are considered subbituminous rank for this resource calculation. The total number of data points used in this study are:

Total data points- 459: 67% 20-200 ft depth;
31% 200-500 ft depth;
2% 500-1000 depth.

Depletion of original resources is from recent mining (De-Na-Zin and Gateway mines) of 2.42 million short tons of surface production and mine loss. Remaining surface DRB is 872.25 million short tons and remaining underground DRB is 1.169 million short tons for the Bisti field. All of the remaining DRB is within the 0.41-0.6 lbs sulfur/MBtu and 15-19.99 MBtu/ton categories. Ash yields for the Fruitland Formation Bisti field coals are greater than 15%, averaging 19% for the field (Table 4).

The Bisti, De-Na-Zin, and Ah-Shi-Sle-Pah Wilderness Study Areas are within the Bisti coal field, comprising 3,946, 19,700, and 6,400 acres of public land, respectively (Fig. 6). These areas contain Fruitland Formation and Kirtland Shale outcrops, creating badlands topography. The wilderness areas are managed by the Farmington BLM and have been

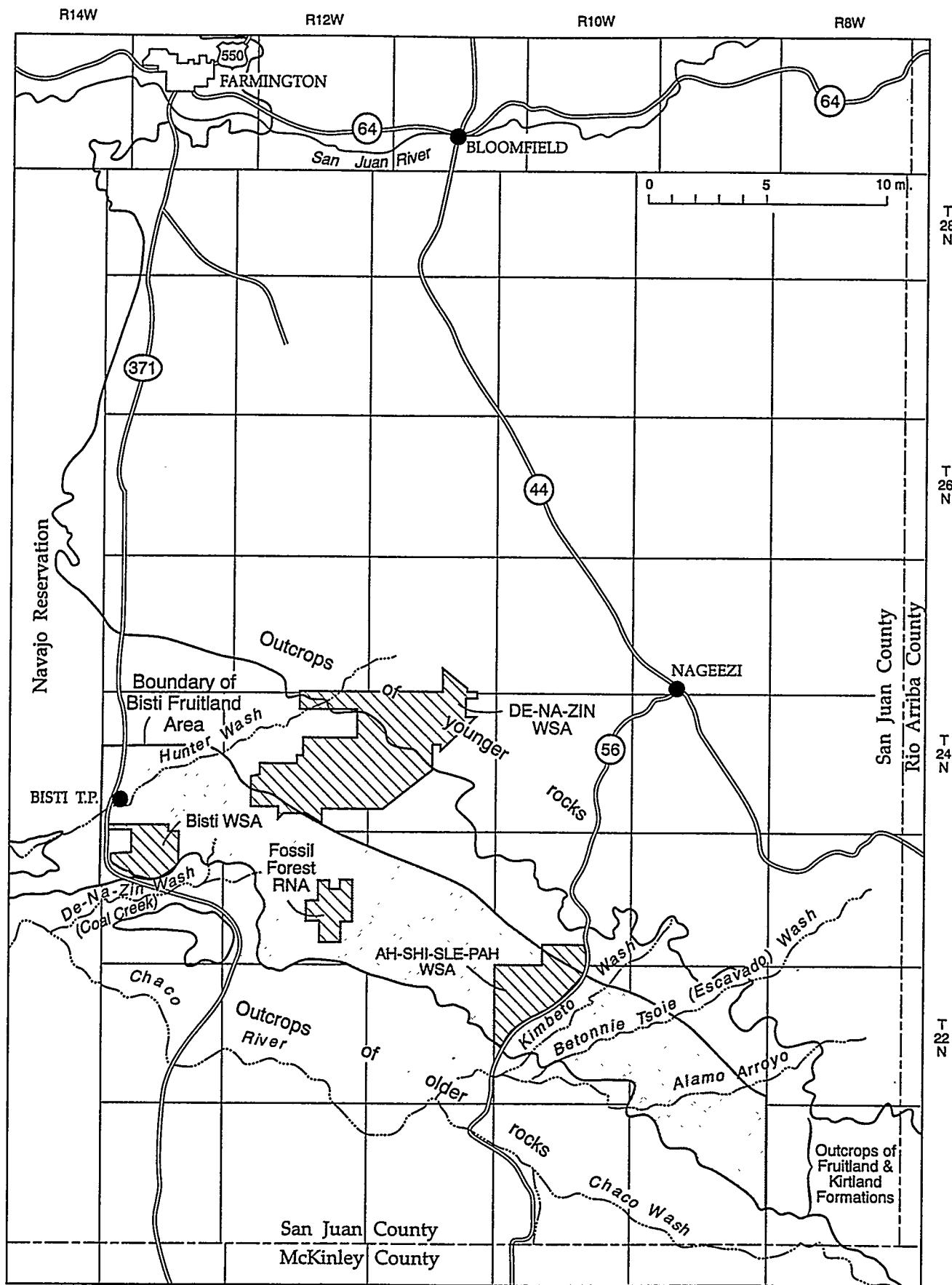


Figure 6. Bisti field, Fruitland Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

withdrawn from mineral entry, therefore they cannot be considered part of the economic Bisti field coal resource. The Fossil Forest Research Natural Area (RNA) is also within the Bisti coal area. Heffren (1992) estimated 111 million short tons at depths less than 250 ft lie within the 2770 acres withdrawn for this research area. The Hunter, Alamo Mesa, Kimbeto, and Escavada washes transect areas of surface and underground coal in the Bisti area, although most of these are considered intermittent streams. Pipelines and powerlines intersect this area and a few small oil and gas fields are within the underground coal areas of the Bisti field. Surface accessible resources are 97% of the DRB, and underground accessible resources are 82% of the DRB (Table 3).

Star Lake field—This field extends E-NE from the Bisti field for 55 mi (Fig. 7). The Fruitland Formation becomes increasingly sandy and pinches out at the eastern edge, southeast of the town of Cuba. Hunt (1984) believed the lithology and overall thinning of the Fruitland in this part of the San Juan Basin was caused by differential subsidence during deposition. The beds dip less than 5°N-NW into the basin and some normal faulting occurs within Star Lake field.

The Star Lake field is within San Juan, McKinley and Sandoval counties. The San Juan County segment is on the Chaco Canyon 1:100,000, and the majority of this field is on the Chaco Mesa 1:100,000 quadrangle (Fig 1). The subbituminous Star Lake original resource is based on the following point source data totals:

Total data points- 442: 77% 20–200 ft depth;
18% 200–500 ft depth;
5% 500–1000 ft depth.

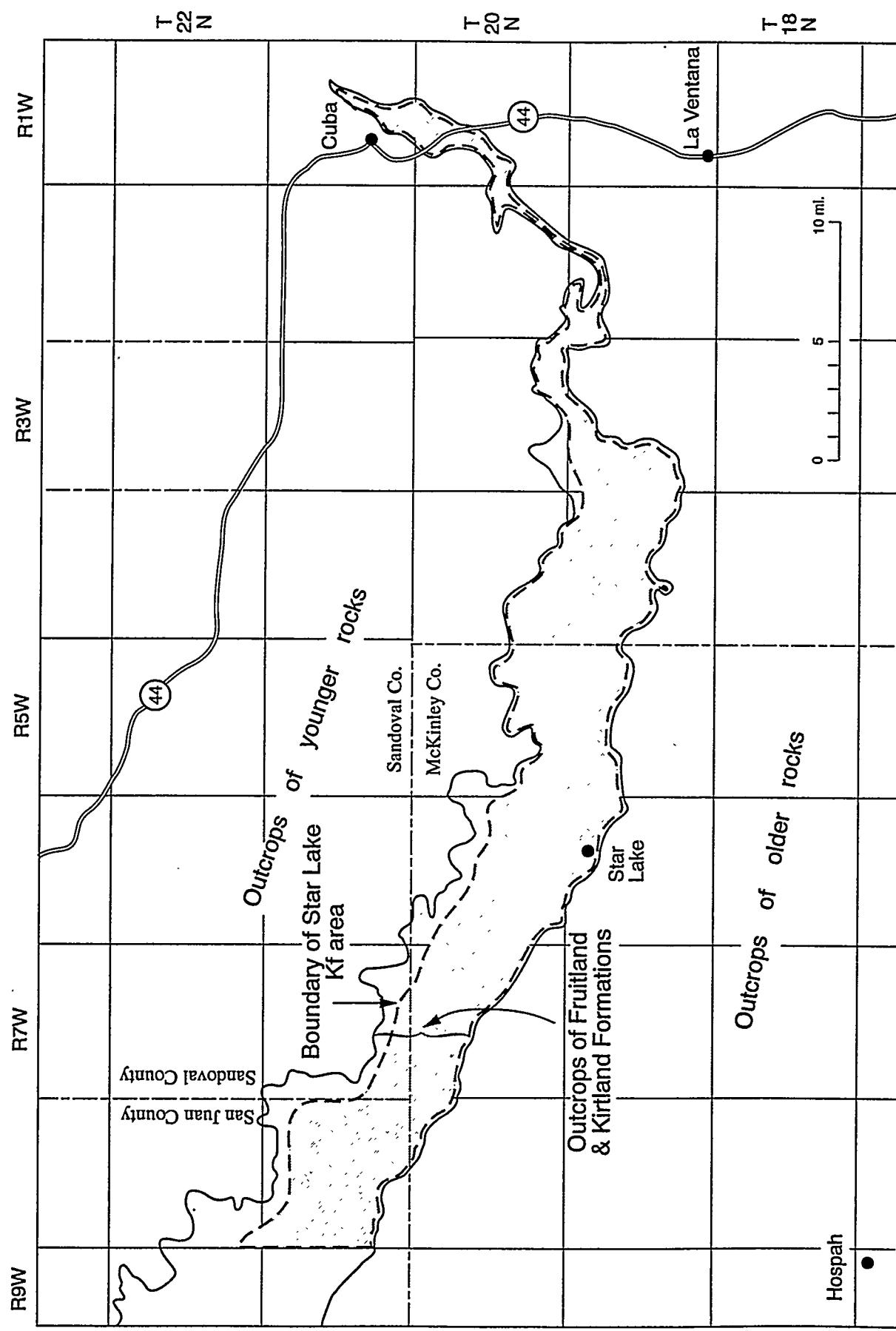


Figure 7. Index map of Star Lake Fruitland field, Modified from Shomaker, Beaumont, and Kotliowski, 1971.

No significant coal mining has occurred in the Star Lake field, therefore there is no depletion of original DRB. Remaining surface DRB is:

Million short tons	County
117.35	Sandoval
483.89	McKinley
344.59	San Juan
<i>Total</i>	<i>945.83</i>

Remaining underground DRB for the Star Lake field is:

Million short tons	County
52.21	Sandoval
127.09	McKinley
147.97	San Juan
<i>Total</i>	<i>327.27</i>

Star Lake field remaining DRB is within the 0.61–0.83 lbs of sulfur/MBtu and 15–19.99 MBtu/ton categories. These coals average 22% ash, the highest average ash content of all the Fruitland Formation coal fields (Table 4).

A small outlier of the Chaco National Historic Monument lies within the surface minable coal area of the Star Lake field. Several small oil and gas fields are within underground coal-resource areas. Two pipelines and a pumping station intersect the Fruitland Formation surface and underground resource areas within the Star Lake field. The surface accessible resources for this field are 97% of the total DRB; underground accessible resources are 96% of the total DRB. The Star Lake field accessible and recoverable reserves are grouped with the Bisti and Navajo fields in San Juan County. The Fruitland Formation accessible and recoverable reserves in McKinley and Sandoval counties are entirely from the Star Lake field (Table 3).

4.12 Menefee Formation Results

The Menefee Formation represents transitional sequences deposited during a major advance and retreat of the Late Cretaceous shoreline across the SJB. The lower coal-bearing sequence, the Cleary Coal Member was deposited landward of a retreating shoreline, in swamps behind the barrier beach sands of the Point Lookout Sandstone. The subsequent advance of the shoreline is represented by the deposits of the upper coal member of the Menefee Formation, the Cliff House Sandstone, and the lower Lewis Shale (Fig. 2b). Within this overall transgressive sequence are minor regressions and major stillstands in the shoreline that deposited the La Ventana Tongue and Chacra Mesa tongue (Beaumont and Hoffman, 1992) of the Cliff House Sandstone which intertongue shoreward with the upper coal member of the Menefee Formation (Fig. 2b). Between these two coal-bearing units is a thick, barren continental sequence, the Allison Member. The two coal members are differentiated in the DRB in Table 5 but not in Tables 2 and 3. The individual discussions of the Menefee fields also discuss what coal members are present within specific fields. Table 5 summarizes the Menefee Formation DRB.

This formation is divided into nine fields within the SJB, the following list indicates name, county, and rank:

<u>Field</u>	<u>County</u>	<u>Rank</u>
Barker Creek:	San Juan	bituminous
Hogback:	San Juan	bituminous
Toadlena*:	San Juan	subbituminous
Newcomb:	San Juan	subbituminous
Chaco Canyon:	San Juan and McKinley	subbituminous
Chacra Mesa:	McKinley and Sandoval	subbituminous
Standing Rock:	McKinley	subbituminous
San Mateo:	McKinley and Sandoval	bituminous and subbituminous
La Ventana:	Sandoval	bituminous and subbituminous
Monero:	Rio Arriba	bituminous

*Toadlena resources not calculated, no point source data

Table 5. Remaining DRB for the Menefee Formation, San Juan Basin, New Mexico in millions of short tons.

Rank	Field	Member	MTU/ton	Total	Lbs Sulfur/MBtu	0.41-0.6	0.61-0.83	0.84-1.24	1.25-1.67	5.01-10	%ASH*	10.01-15
Bituminous	Barker Creek	upper	20-22.99	48.20	48.20	19.75	19.75	48.20	48.20	19.75	44.99	48.20
		Cleary	20-22.99	19.75		44.99						19.75
	Hogback	upper	20-22.99	44.99								44.99
	Monero	undivided	23-24.99	7.63								7.63
	La Ventana	Cleary	20-22.99	61.69								61.69
	San Matco	Cleary	20-22.99	38.28								38.28
Subbituminous	Newcomb	upper	15-19.99	72.07								72.07
	Chaco Canyon	upper	20-22.99	16.06								16.06
	Chacra Mesa	upper	20-22.99	74.30								74.30
	La Ventana	Cleary	20-22.99	66.00								66.00
	La Ventana	upper	20-22.99	55.50								55.50
	San Matco	Cleary	20-22.99	12.94								12.94
	San Matco	Cleary	15-19.99	166.90								166.90
	Standing Rock	Cleary	20-22.99	218.59								218.59
	Standing Rock	Cleary	15-19.99	392.20								392.20
Total			15-19.99	631.17	0.0	0.00	0.00	516.42	114.75			
Total			20-22.99	656.30	106.51	173.67	376.12	0.00	0.00			
Total			23-24.99	7.63	0.00	0.00	0.00	7.63	7.63			
Bituminous	<i>Surface Total</i>											
Subbituminous	<i>Surface Total</i>											
Bituminous	Barker Creek	Cleary	20-22.99	114.99				114.99				
	Hogback	upper	20-22.99	15.15				15.15				
	Monero	undivided	23-24.99	5.66				5.66				
	La Ventana	Cleary	20-22.99	31.58								31.58
	San Matco	Cleary	20-22.99	64.07								64.07
Subbituminous	Newcomb	upper	15-19.99	46.24				46.24				
	Chaco Canyon	upper	15-19.99	8.01				8.01				
	Chacra Mesa	upper	20-22.99	50.36				50.36				
	La Ventana	upper	20-22.99	31.78				31.78				
	San Matco	Cleary	20-22.99	115.50								115.50
	Standing Rock	Cleary	15-19.99	153.21								153.21
Total			15-19.99	633.23	0.00	0.00	0.00	354.77	308.46			
Total			20-22.99	726.14	218.21	200.61	307.32	0.00	31.58			
Total			23-24.99	31.58	0.00	0.00	0.00					
Bituminous	<i>Underground Total</i>											
Subbituminous	<i>Underground Total</i>											
Bituminous	<i>Total</i>											
Subbituminous	<i>Total</i>											

*Tonnage for ash are not differentiated by MBtu/ton or member.

Barker Creek field—The Menefee Formation Barker Creek field is on the northeast edge of the New Mexico portion of the SJB. It is defined by the Colorado–New Mexico boundary on the north and the township line between T31N and T30N to the south in San Juan County (Fig. 8). All of this field is on the Farmington 1:100,000 quadrangle (Fig. 1). Exposures of the Pictured Cliffs Sandstone and Point Lookout Sandstone delineate the east and west boundaries, respectively. The Hogback monocline on the eastern side of the field greatly influences the dip (10–38°E-SE) of the beds and several normal faults trending W-NW are associated with this structure (O’Sullivan and Beaumont, 1957). Northwest of the Hogback monocline the Menefee Formation is capped by Cliff House Sandstone, creating a dissected, steep-sided canyon and mesa topography. Both the upper and Cleary Coal members of the Menefee Formation are present.

Barker Creek original bituminous resources were estimated with sparse coal data:

Total data points 46:	33% 20–200 ft depth;
	61% 200–500 ft depth;
	6% 500–1000 ft depth

Depletion of original surface resources is from production and mine loss of small underground mines operating before 1962, a total of 0.22 million short tons. Remaining surface DRB is 67.95 million short tons (48.20 million short tons upper coal member; 19.75 million short tons Cleary Coal Member) and remaining underground DRB is estimated at 114.99 million short tons, all in the Cleary Coal Member.

There are very few quality analyses for this field, therefore the quality categories used are based on the judgment of the P.I. All of the Barker Creek data is in the 0.61–0.83 lbs sulfur/MBtu, 20–22.99 MBtu/ton and 5.01–10% ash categories (Table 5).

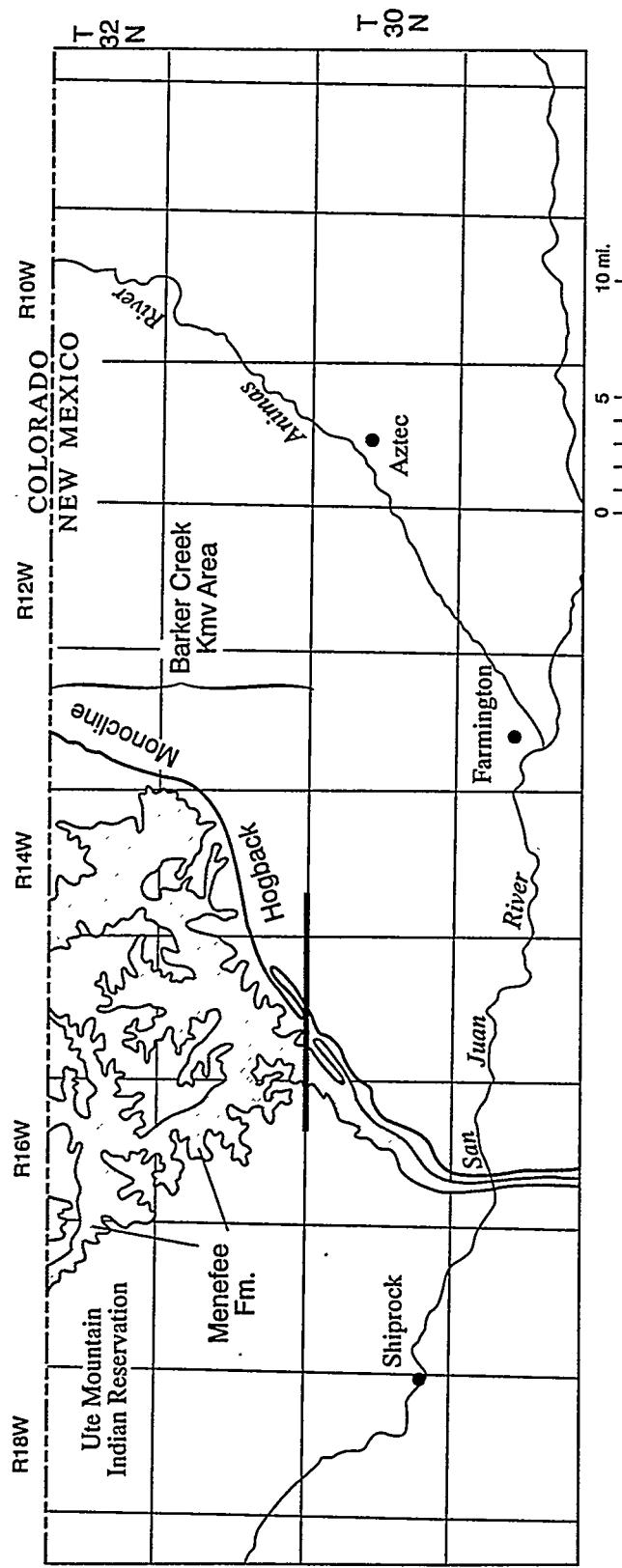


Figure 8. Index map of Barker Creek Menefee area. Modified from Shomaker, Beaumont, and Kotlowski, 1971.

A majority of the Barker Creek field is on the Ute Mountain Indian Reservation. In the southern part of the field, large areas are within producing oil and gas fields. The overlying thick sandstones and steeply dipping beds near the Hogback monocline would make surface mining difficult in the Barker Creek field. Accessible resources are 74% and 67% for of the surface and underground DRB, respectively (Table 3, San Juan County, bituminous, Menefee.

Hogback field—The relatively small Hogback field (140 mi²) is defined by the continuation of the Menefee Formation outcrop on west side of the SJB, south of the Barker Creek field. The north and south boundaries are T30N, R15–16W to T26N, R17–18W within San Juan County and on the Farmington and Toadlena 1:100,000 quadrangles (Figs. 1,9). Contacts of the Pictured Cliffs Sandstone and the Point Lookout Sandstone with the Menefee Formation defines the east and west boundaries, respectively. The east boundary is along the Hogback monocline, creating a sharp, steep slope (Fig. 3). The Menefee beds dip as much as 38°E along this structure, decreasing to 10°E in the southern part of the field (O’Sullivan and Beaumont, 1957). Both the upper and Cleary Coal members of the Menefee Formation are present in the Hogback field.

Very few data points are available for resource calculations in the Hogback field-

Total data points 15: 40% 20–200 ft depth;
 20% 200–500 ft depth;
 40% 500–1000 ft depth.

There is no depletion of the bituminous resources in the Hogback field. Remaining surface

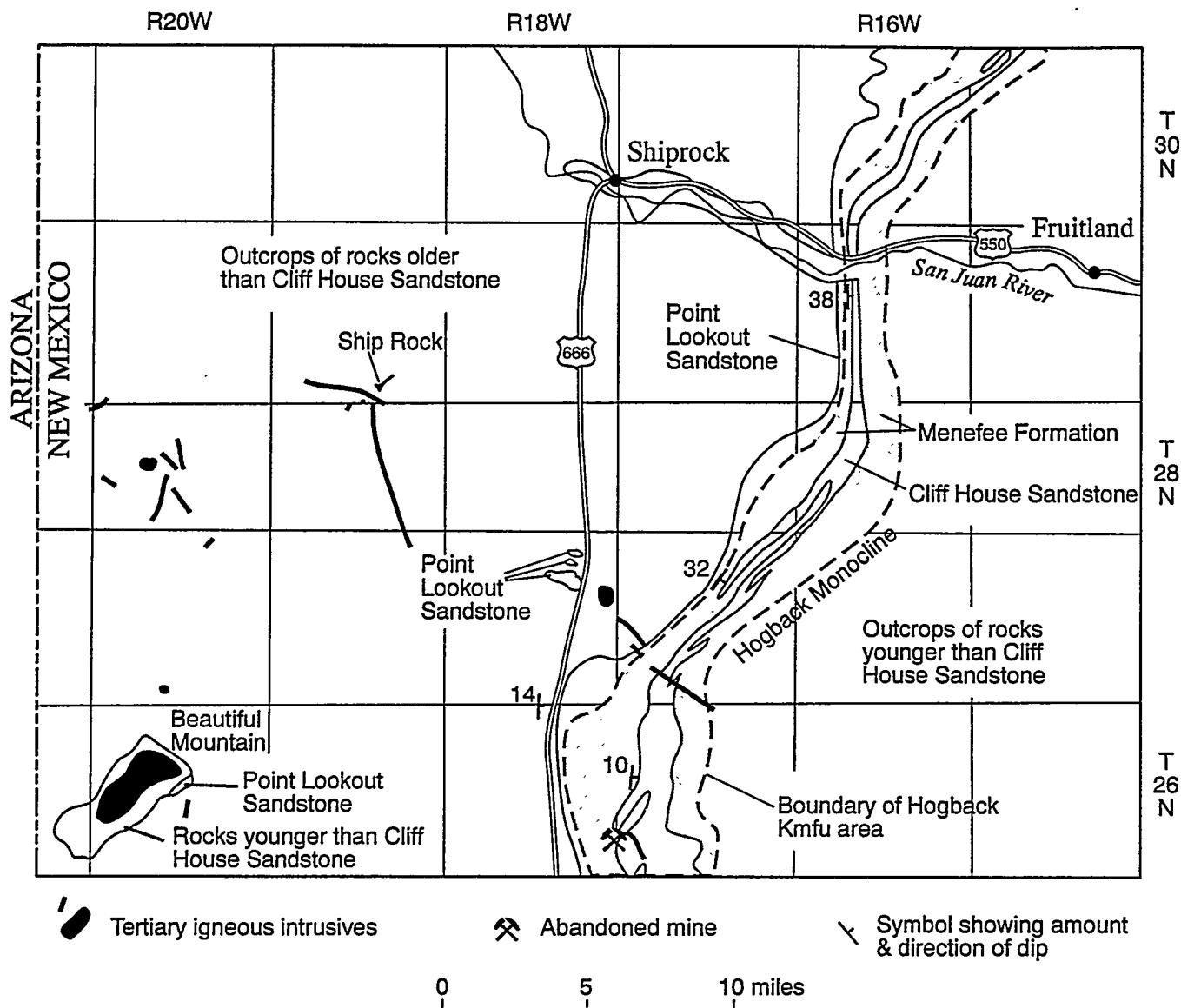


Figure 9. Index map of Hogback upper Menefee area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

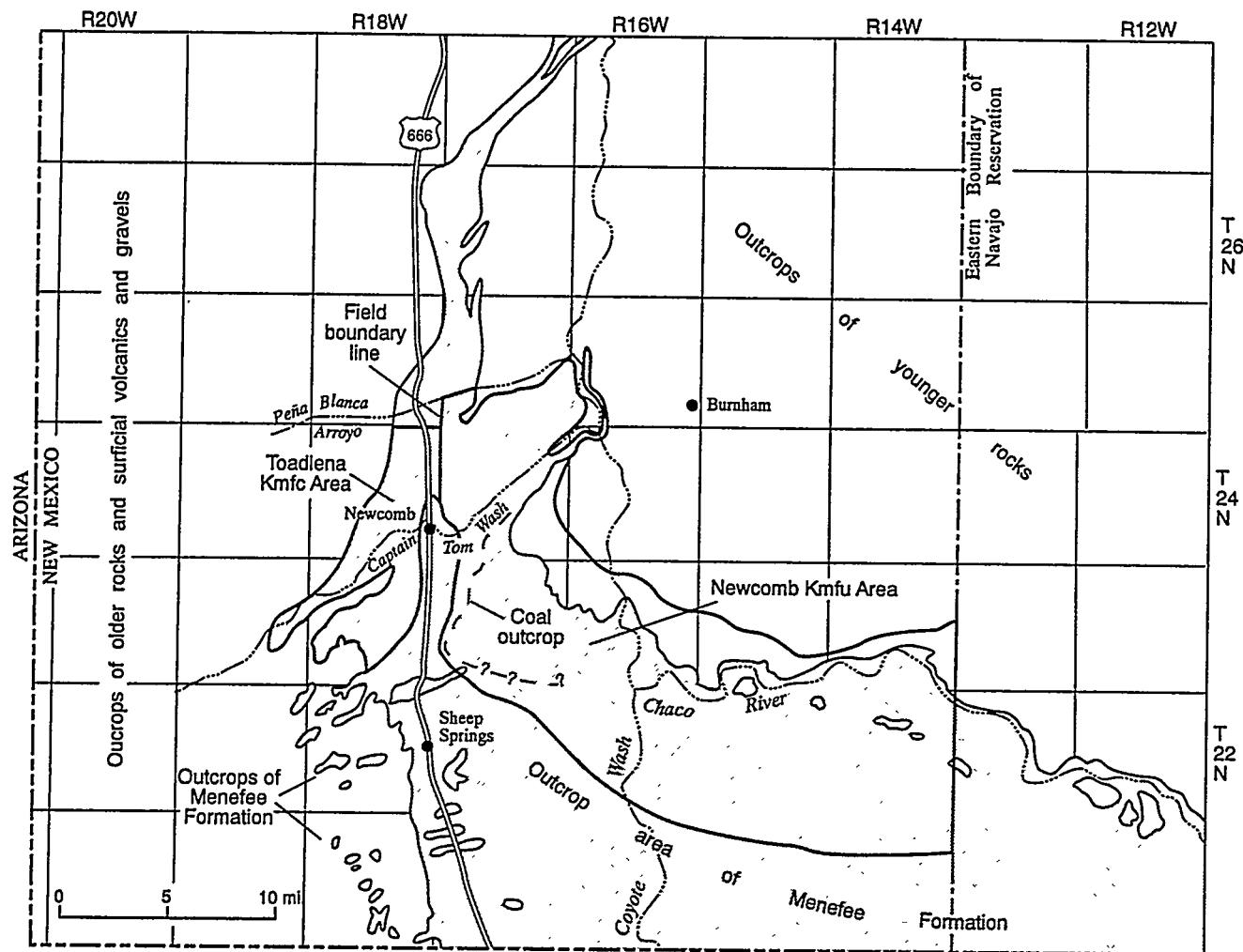


Figure 10. Index map of Toadlena and Newcomb upper Menefee areas. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

Total data points 16: 44% 20–200 ft depth;
 38% 200–500 ft depth;
 18% 500–1000 ft depth.

There is no depletion of resources in the Newcomb field from previous mining. Remaining surface DRB is 72.07 million short tons, all from the upper coal member beds. The remaining underground DRB is 54.25 million short tons (46.24 mill st, upper; 8.01 mill st, Cleary). None of these resources are for coal beds thicker than 10 ft. The Newcomb field resources are within the 0.84–1.24 lbs sulfur/MBtu, 15–19.99 MBtu/ton, and 10.01–15% ash categories (Table 5). The quality data are sparse for this field therefore these categories are based on the judgement of the P.I. using the available data.

As mentioned, the Newcomb field is within the Navajo Indian Reservation. The Chaco River and its tributaries run along the northern edge of this field. There are two small oil and gas fields near the southeast boundary of the Newcomb field. Percentages of accessible resources are 89 and 90 of the surface and underground DRB (Table 3, San Juan County, subbituminous).

Chaco Canyon field—This coal field extends from the eastern boundary of the Navajo Reservation to the Chacra Mesa field (R8W). The Chaco Canyon field lies within San Juan and McKinley counties on the Toadlena and Chaco Canyon 1:100,000 quadrangles (Figs. 1,11). The outcrops of the upper coal member of the Menefee Formation along the south side of the SJB defines the area. The northern boundary of the field is defined by the Cliff House Sandstone capping the prominent northeast-trending Chacra Mesa. The general strike of these beds is NW–SE and because this field is within the Chaco slope, the beds

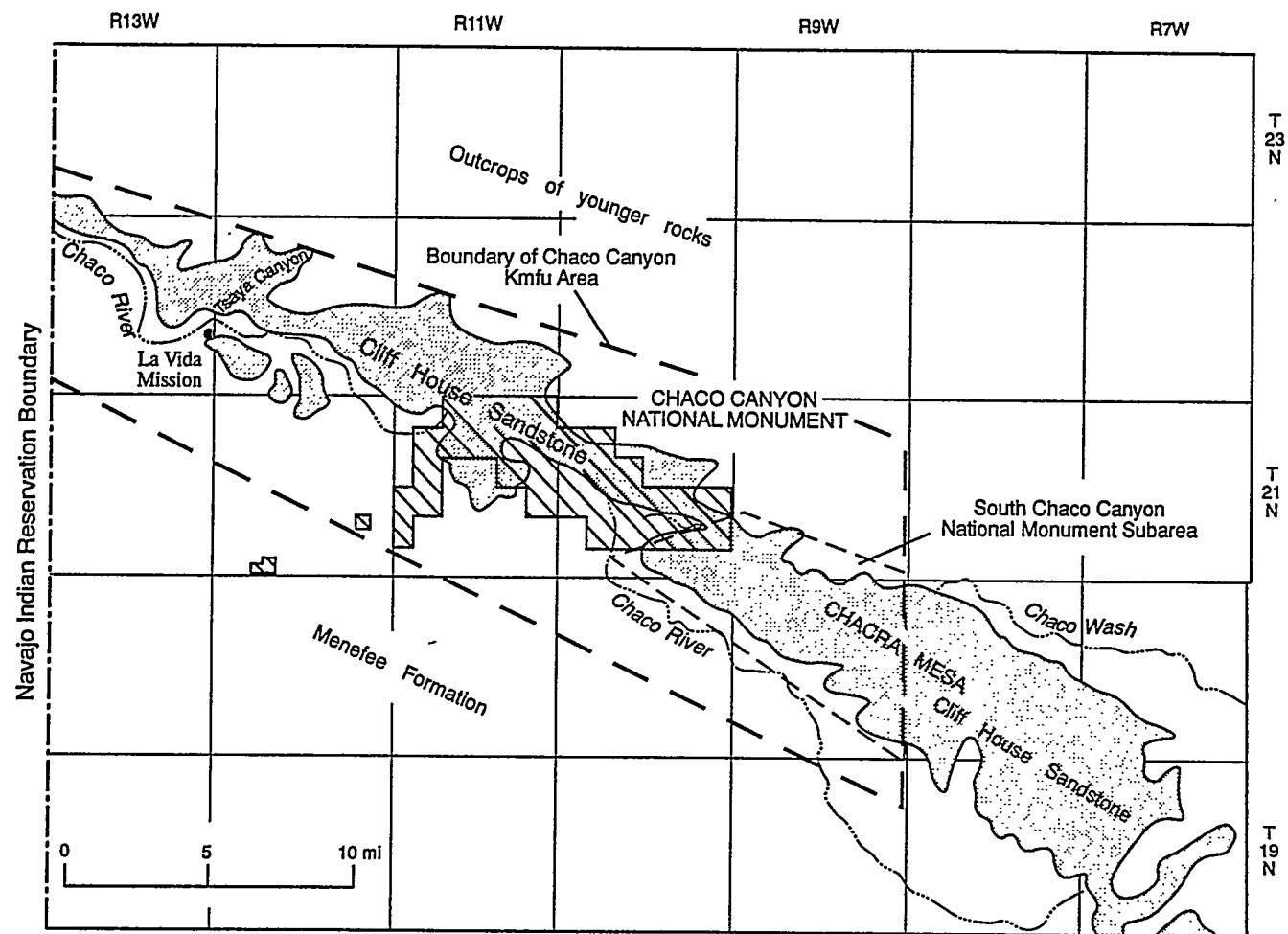


Figure 11. Index map of Chaco Canyon upper Menefee area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

have gentle dips of 1-5° N-NE. Thirty-four data points were used in calculating the subbituminous resources for the Chaco Canyon field. The percentage of the total data points for each depth interval is:

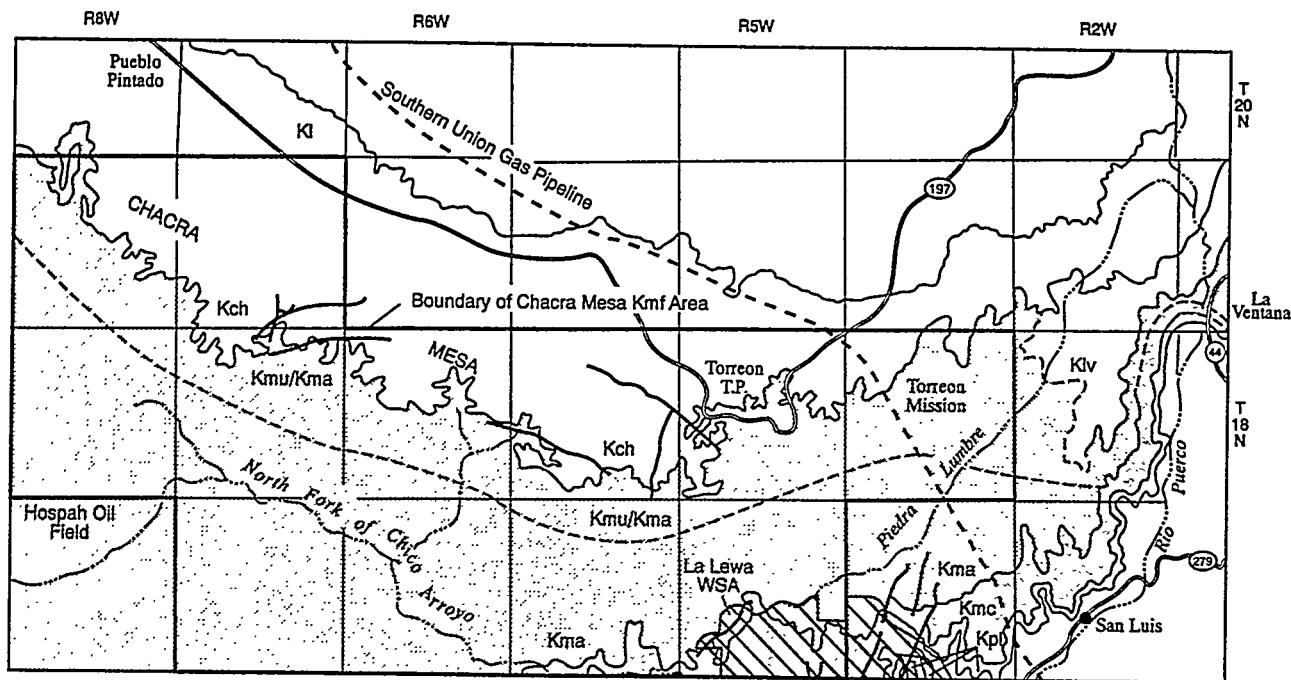
Total data points 34: 9% 20-200 ft depth;
 35% 200-500 ft depth;
 56% 500-1000 ft depth.

Resources were not depleted by any significant mining in the Chaco Canyon field. The remaining DRB is:

Depth	Million short tons	County
Surface	5.82	McKinley
	10.24	San Juan
<i>Total</i>	<i>16.06- all upper coal member</i>	
Underground	50.74	McKinley
	31.41	San Juan
<i>Total</i>	<i>82.15- 50.36 upper, 31.78 Cleary Coal Member</i>	

All of the remaining Chaco Canyon field DRB is placed in the 0.84-1.24 lbs sulfur/MBtu, 20-22.99 MBtu/ton, and 5.10-10.00% ash categories (Table 5). Very little quality data is available for this field (Appendix B), therefore adjoining areas and available data were considered by the P.I. to make a determination on the quality categories.

The Chaco Canyon field includes the Chaco Canyon National Monument, an area of 2763 acres withdrawn from mining interests. The Chaco River, a major drainage in this region is within this coal resource area. The upper member coals are often capped by thick sandstones of the Cliff House Sandstone, that can be prohibitive to surface mining. A few small oil and gas fields are within the underground resource area of the Chaco Canyon field. Eighty-nine percent of the surface DRB is accessible to mining; 96% of the underground DRB is accessible. The Chaco Canyon accessible and recoverable subbituminous reserves are grouped with the Newcomb field in San Juan County and the Chacra Mesa, Standing Rock,


and San Mateo fields in McKinley County in Table 3.

Chacra Mesa field—This field is defined by the continuation of the Menefee outcrops in the Chaco slope physiographic province, along the southern edge of the SJB east from the Chaco Canyon field. Much of this area is covered by northwest-trending valleys and mesas capped by Cliff House Sandstone that overlies and intertongues with the upper coal member of the Menefee Formation. The Chacra Mesa field includes outcrops of the Cleary Coal Member in the southern part of the field (Fig. 12). Most of this field is in McKinley and Sandoval counties on the Chaco Mesa 1:100,000 quadrangle, although a small percentage of underground coal is in San Juan County, on the Chaco Canyon 1:100,000 quadrangle (Fig. 1). A total of 160 data points were used to calculate the subbituminous DRB for the Chaco Mesa field. The division by depth of these data is:

Total data points- 160: 23% 20-200 ft depth;
37% 200-500 ft depth;
40% 500-1000 ft depth.

The DRB for this field was not depleted by any significant production from past mining. The remaining surface DRB:

	Million short tons	County	Cleary	upper
Surface	26.63	McKinley:	15.62	11.01
	113.67	Sandoval:	50.38	63.29
<i>Total</i>	<i>140.30</i>		<i>66.00</i>	<i>74.30</i>
Underground	3.35	San Juan		3.35
	148.34	McKinley	131.92	16.43
	117.02	Sandoval	21.31	95.72
<i>Total</i>	<i>268.71</i>		<i>153.23</i>	<i>115.50</i>

KI - Cretaceous Lewis Shale
 - Cretaceous Mesaverde Group
 Kch - Cliff House Sandstone
 Klv - La Ventana Tongue

Kmu - Menefee Fm. - upper coal member
 Kma - Menefee Fm. - Allison Member
 Kmc - Menefee Fm. - Cleary Coal Member
 Kpl - Point Lookout Sandstone

Figure 12. Map of Chacra Mesa Menefee area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

Sulfur Categories, all within 20-22.99 MBtu/ton:

Depth	0.41-0.6	0.84-1.24	County
Surface	26.62		McKinley
	41.62	72.07	Sandoval
	<i>Total</i> 68.24	72.07	
Underground	3.35		San Juan
	148.34		McKinley
	56.01	61.01*	Sandoval
<i>Total</i>	207.70	61.01	

* upper member coals in T18N R3W are in higher sulfur category.

Ash Categories:

Depth	5.01-10.01	10.01-15	County
Surface		26.62	McKinley
	101.60	12.09	Sandoval
	<i>Total</i> 101.60	38.71	
Underground		3.35	San Juan
		148.34	McKinley
	103.73	13.29	Sandoval
<i>Total</i>	103.73	164.98	

The Chacra Mesa field is in a relatively populated area of the southern SJB. The Torreon Trading post (Fig. 12) is the center of a Navajo population base including a mission and school. A major paved highway (197) transects this area as do two pipelines and powerlines. A few oil and gas wells are within the Menefee coal resource area. A small part of the La Lena Wilderness Study Area intersects the southern Chacra Mesa field, in the Cleary Coal Member. The upper member coals, about half the total DRB of the Chaco Mesa field, are often capped by thick La Ventana Tongue sandstones of the Cliff House Sandstone that could inhibit surface mining. About 90% of the DRB is accessible within the surface (0-200 ft) category and 93% is accessible in the underground DRB. The accessible and recoverable reserves of this field are listed under McKinley, San Juan, and Sandoval counties

in Table 3. Accessible estimates do not exclude the area covered by the thick La Ventana Tongue sandstone.

La Ventana field—The La Ventana field is on the southeastern edge of the SJB, in Sandoval County, on the Chaco Mesa and Los Alamos 1:100,000 quadrangles (Figs. 1,13). The beds are gently dipping (2–5°N–NW) in the western part of the field. The eastern La Ventana field is close to the Nacimiento uplift where the dip of the beds increases from 35–45°NW–W to vertical. This area includes the Cleary Coal and upper coal members of the Menefee Formation. Coal beds average 3–6 ft thick in both coal-bearing sequences, although some individual coal beds in the upper coal member attain a thickness of 10–12 ft. La Ventana field resources are bituminous and subbituminous rank. Bituminous coal is in T17N, R2W & R3W and the remaining areas of the La Ventana field are subbituminous for the resource calculations. Total data points used for bituminous resources are:

Total points 41: 71% 20–200 ft depth;
 12% 200–500 ft depth;
 17% 500–1000 ft depth.

Total data points used for subbituminous resources are:

Total points 40: 53% 20–200 ft depth;
 27% 200–500 ft depth;
 20% 500–1000 ft depth.

Original surface bituminous resources in the La Ventana field were depleted by 0.1 million short tons from previous mine production and loss. The subbituminous original surface resources were depleted by 0.16 million short tons and underground resources by 0.25 million short tons from mine production and loss.

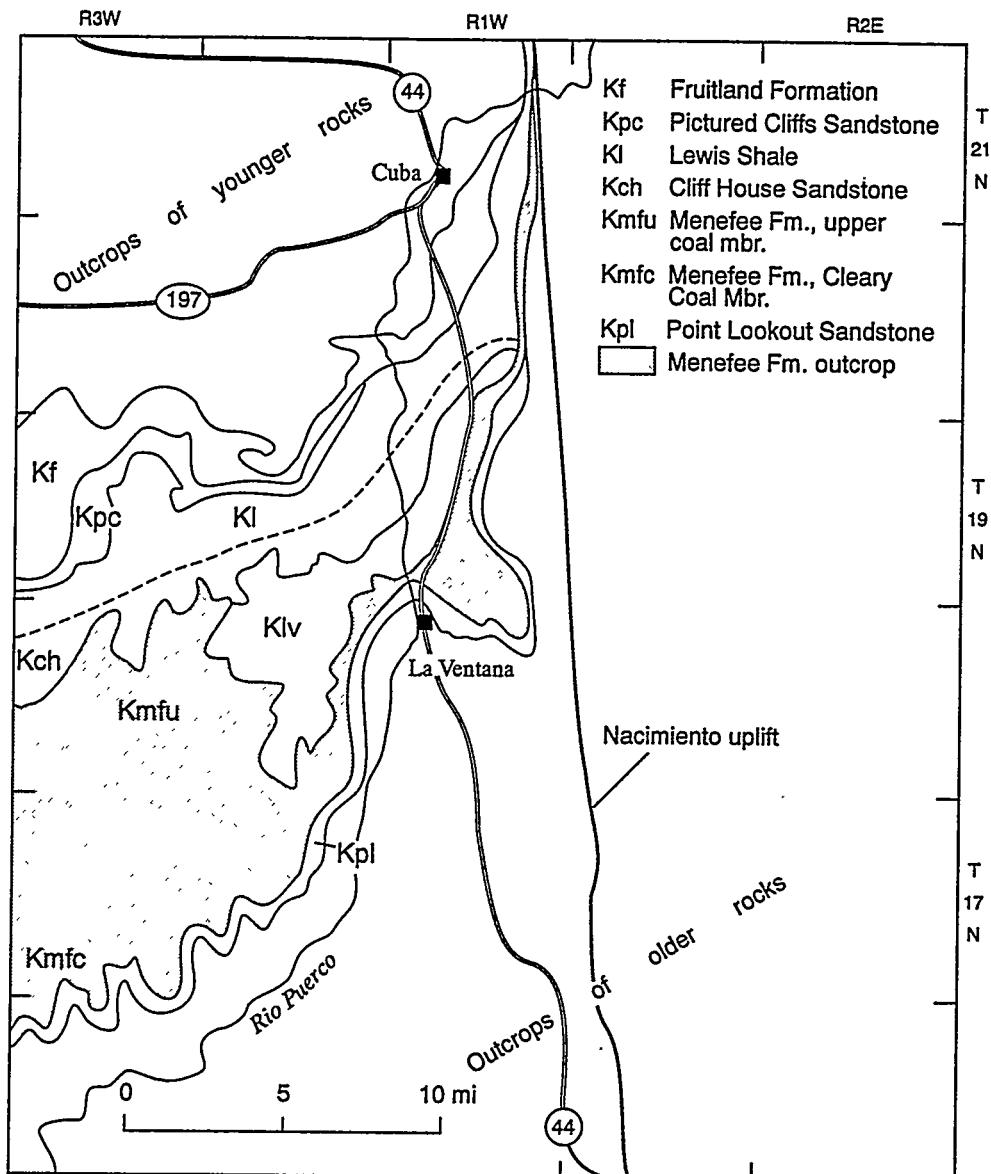


Figure 13. Map of La Ventana field, Menefee Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

The remaining DRB for La Ventana field:

Depth	Million short tons	Rank	Cleary	upper
Surface	61.69	bituminous	61.69	
	68.44	subbituminous	12.94	55.50
<i>Total</i>	<i>130.13</i>		<i>74.63</i>	<i>55.50</i>
Underground	64.07	bituminous	64.07	
	69.05	subbituminous	4.28	64.77
<i>Total</i>	<i>133.12</i>		<i>68.35</i>	<i>64.77</i>

Sulfur Categories, all within 20–22.99 MBtu/ton (in millions of short tons):

Depth	0.61–0.83	0.84–1.24	Rank
Surface	20.85	40.84	bituminous
	39.88	28.56	subbituminous
<i>Total</i>	<i>60.73</i>	<i>69.40</i>	
Underground	44.78	19.29	bituminous
	20.03	49.02	subbituminous
<i>Total</i>	<i>64.81</i>	<i>68.31</i>	

The bituminous DRB is in the 10.01–15% ash category and the subbituminous DRB is in the 5–10% ash category (Table 5).

Highway 44 transects the eastern edge of the field and the Rio Puerco parallels this major highway (Fig. 13). There are significant resources in the Cleary Coal Member and upper part of the Menefee Formation, but because of excessive dips on the east edge, near the Nacimiento uplift, and the thick La Ventana Tongue sandstones associated with the upper coal member potential surface mining areas within the field are limited. The surface accessible resources are 90% of the total DRB; underground accessible resources are 93% of the DRB. Accessible and recoverable reserves are in Sandoval County, both bituminous and

subbituminous, grouped with reserves from the San Mateo field in Table 3.

San Mateo field—This field is northwest of the Mount Taylor volcanic complex (Tb; Fig. 14) and south of the Chacra Mesa field. It includes exposures of the Allison (barren member) and Cleary Coal Members of the Menefee Formation (Fig. 2) in McKinley and Sandoval counties on the Chaco Mesa and Grants 1:100,000 quadrangles (Fig. 1). The San Mateo and San Miguel Creek domes, structural features in the southern San Mateo field, were positive areas during the deposition of the Cleary Coal Member and influenced the thickness of the coal beds, as well as the strike and dip of these beds (Beaumont, 1987). The coal-bearing units on the southwest side of the San Mateo field were also influenced by the Zuni uplift. The San Mateo field includes bituminous coals in T16N, R4W and R5W and subbituminous coals in the remaining townships. The number of data points for bituminous resources:

Total data points-15: 80% 20–200 ft depth;
 20% 200–500 ft depth.

Resources for the subbituminous resource were based on:

Total data points-200: 70% 20–200 ft depth;
 25% 200–500 ft depth;
 5% 500–1000 ft depth.

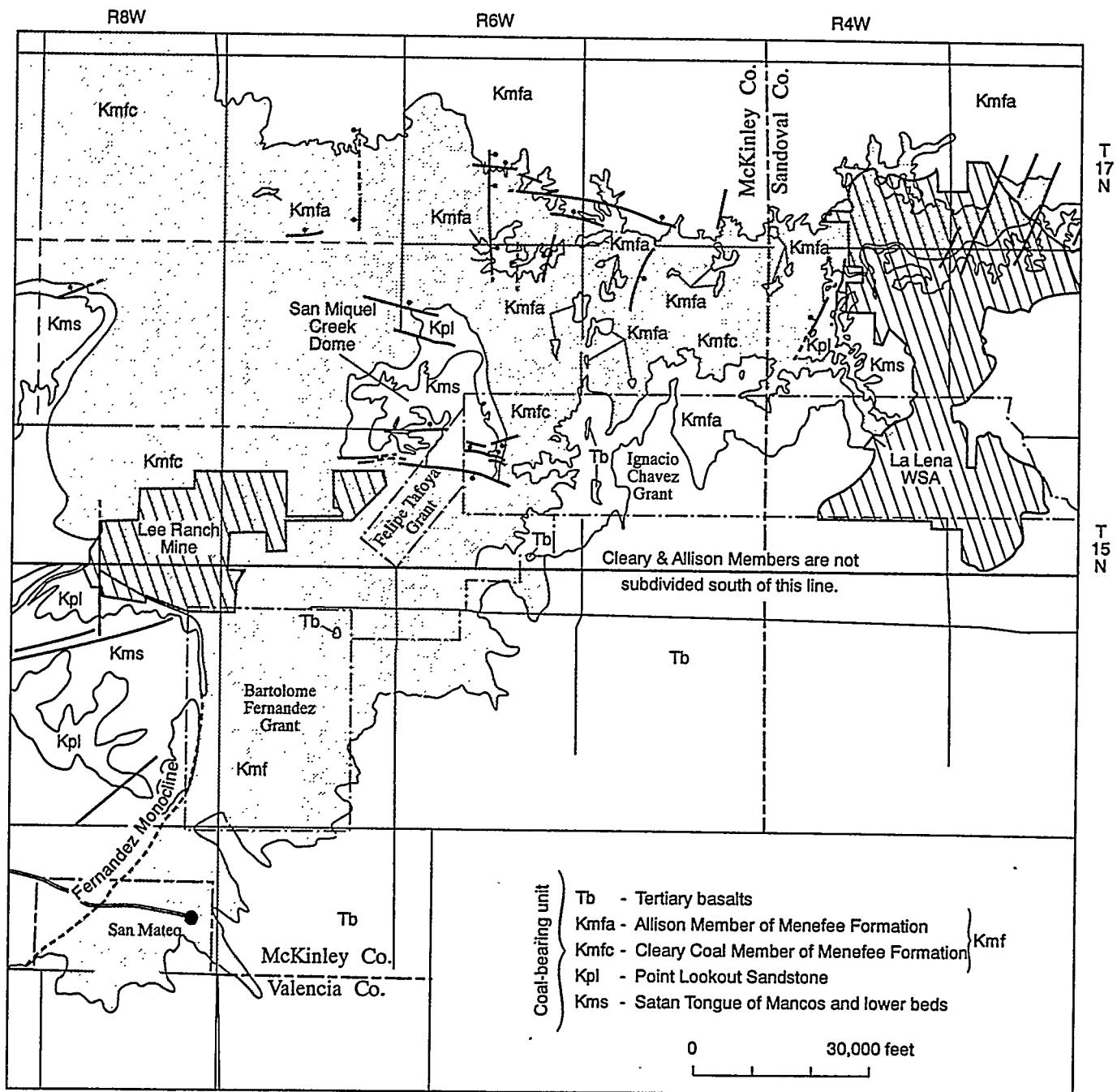


Figure 14. Geologic map of San Mateo Menefee area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

Bituminous resources were not depleted by any previous mining in the area. The remaining bituminous DRB for San Mateo field is:

Depth	Million short tons	County
Surface	31.88	McKinley
	6.40	Sandoval
<i>Total</i>	<i>38.28</i>	
Underground	10.51	McKinley
	0	Sandoval
<i>Total</i>	<i>10.51</i>	

Original subbituminous resources were depleted by production and mine loss from the Lee Ranch mine (McKinley County) by 25.99 million short tons. The remaining subbituminous DRB for San Mateo field is:

<i>Surface</i>	<i>385.49 million short tons</i>	<i>McKinley County</i>
<i>Underground</i>	<i>256.35 million short tons</i>	<i>McKinley County</i>

San Mateo DRB is divided into three lbs of sulfur/MBtu categories:

0.41–0.60	T16N, R4W and R5W- all bituminous resources
0.83–1.24	T15N, T16N, R7W and R8W
1.25–1.67	T15N, R6W

All the bituminous DRB, 38.28 million short tons surface and 10.51 million short tons underground resources, is within the 0.41–0.60 lbs of sulfur/MBtu category. The subbituminous remaining DRB is divided between the 0.83–1.24 and 1.25–1.67 sulfur categories (Table 5). All remaining DRB is within the 10.01–15% ash category.

Exposures of the Cleary Coal Member, Menefee Formation on the southeast edge of the San Mateo field are within the La Lena Wilderness study area on the Chaco Mesa quadrangle. San Miguel Creek dome in central San Mateo field (Chaco Mesa 1:100,000) is a positive area where the Menefee Formation has been eroded. On the Grants 1:100,000

quadrangle, a large area of the potential underground coal resource is covered by the Mount Taylor volcanics. Using Dillinger's map (1989) to calculate this resource area, the total acreage is 13,900 acres of Cleary Coal Member at depths greater than 200 ft. The surface resource area on the Grants quadrangle encompasses the small town of San Mateo (320 acres), a few springs and lakes (137 acres), highways (68 acres), and power lines (184 acres). The total Cleary Coal Member surface resource area minus these minor restrictions is 60,693 acres on the Grants quadrangle. The Cibola National Forest, Bartolome Fernandez, Felipe Tafoya, and Ignacio Chavez land grants are within the San Mateo coal field boundaries. Percentage of accessibility applied to the DRB in this field is 92% and 93% for surface and underground resources, respectively. San Mateo field accessible and recoverable reserves are grouped with the Chaco Canyon, Chacra Mesa, and Standing Rock fields in McKinley County and with the La Ventana field bituminous reserves in Sandoval County (Table 3).

Standing Rock field— This field extends northwest from the San Mateo field, defined by the Point Lookout Sandstone—Menefee Formation contact on the southern edge and the upper most Cleary Coal Member coal exposures define the northern edge of the field (Fig. 15). The arbitrary boundary between the San Mateo and Standing Rock fields is the western border of R8W. The Standing Rock field is within the Chaco slope and the units dip gently N-NW into the SJB. This field is in McKinley County on the Chaco Mesa and Gallup 1:100,000 (Fig. 1). Coal resources are of subbituminous rank. Distribution of the data points in the Standing Rock field by depth categories is:

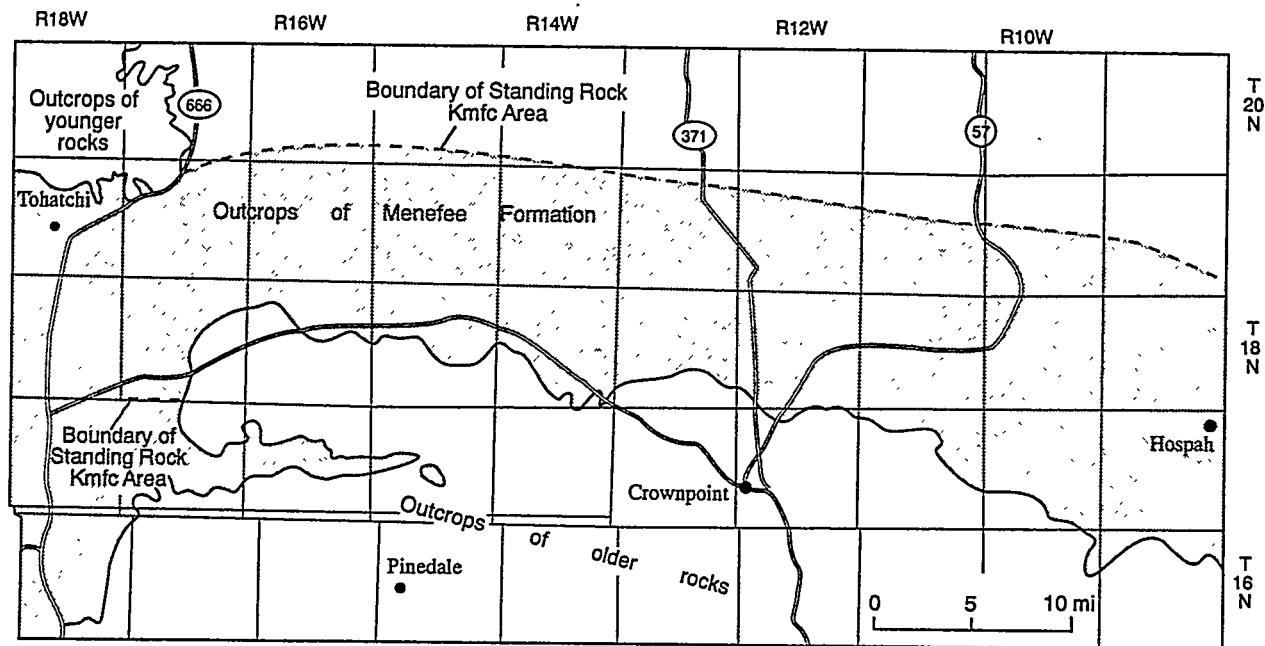


Figure 15. Map of Standing Rock area, Cleary Member, Menefee Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

Total data points-153: 46% 20-200 ft depth;
 49% 200-500 ft depth;
 5% 500-1000 ft depth.

No significant mining has occurred in the Standing Rock field, therefore the original resources are not depleted by production or mining loss. Remaining DRB is:

Surface 392.20 million short tons; 86% is from coal beds 2.5-10 ft thick

Underground 448.49 million short tons; 95% is from coal beds 2.5-10 ft thick

Standing Rock DRB is divided into two lbs of sulfur/MBtu categories:

Category	Area
0.84-1.24	T16N, R9W; T17N, R10W; T18N, R12W
1.25-1.67	T17N, R9W; T16N, R10W

Sulfur Categories, all within 15-19.99 MBtu/ton (millions of short tons):

Depth	0.83-1.24	1.25-1.67
Surface	302.21	89.99
Underground	161.76	286.73

All the surface and underground DRB in the Standing Rock field is in the 10.01-15% ash category (Table 5).

On the Chaco Mesa quadrangle, there are several small oil and gas fields within the Standing Rock underground resource area. An outlier of the Chaco Canyon National Monument (160 acres) is within the surface coal resource area. Two pipelines transect this field and on both quadrangles (Chaco Mesa and Gallup) highways 57 and 371 intersect the coal resource areas. Much of the western Standing Rock field on the Gallup quadrangle is on Indian surface ownership or within the Navajo Indian Reservation. Approximately 92% and

93% of the surface and underground DRB for this field is accessible, grouped with the other Menefee Formation fields in McKinley County (Table 3).

Monero field—This northeastern Menefee field is defined by outcrops of the Mesaverde Group (Fig. 2) that extend 26 mi. southward from the New Mexico–Colorado state line in Rio Arriba County (Chama 1:100,000 quadrangle; (Fig. 1; Fig. 16). The coal-bearing rocks in the Menefee and Fruitland Formations strike N–S, separated from the central SJB from the smaller Chama Basin to the east by the Archuleta arch (Fig. 2a, 3). Most of the northern Monero field is influenced by small domes and southwest-trending synclines that are part of the Archuleta arch (Dane, 1948a). The southern part of the field parallels the N30°W trend of the Gallina arch. Several faults in the Monero field parallel the eastern edge of the basin and are associated and contemporaneous with the folding that took place along the eastern SJB (Dane, 1948a) during the Laramide tectonic activity. High angle or normal faults are widespread with displacement of less than 100 ft (Dane, 1948a,b), generally downward to the west. The dips of the beds are variable because of the complex structure. Outcrops of the Menefee and Fruitland Formations are limited to the steep canyon walls of the fault-block mesas on the eastern edge of the field. Only the Menefee Formation coal at shallow depths has economic significance in this field. The Menefee Formation thins to the northeast and is replaced by marine sandstones of the Point Lookout Sandstone or Cliff House Sandstone (Fig. 2a); the coal beds, therefore, are mainly in the north-central to south-central parts of the field. Bituminous rank Menefee Formation resources were calculated from very sparse data:

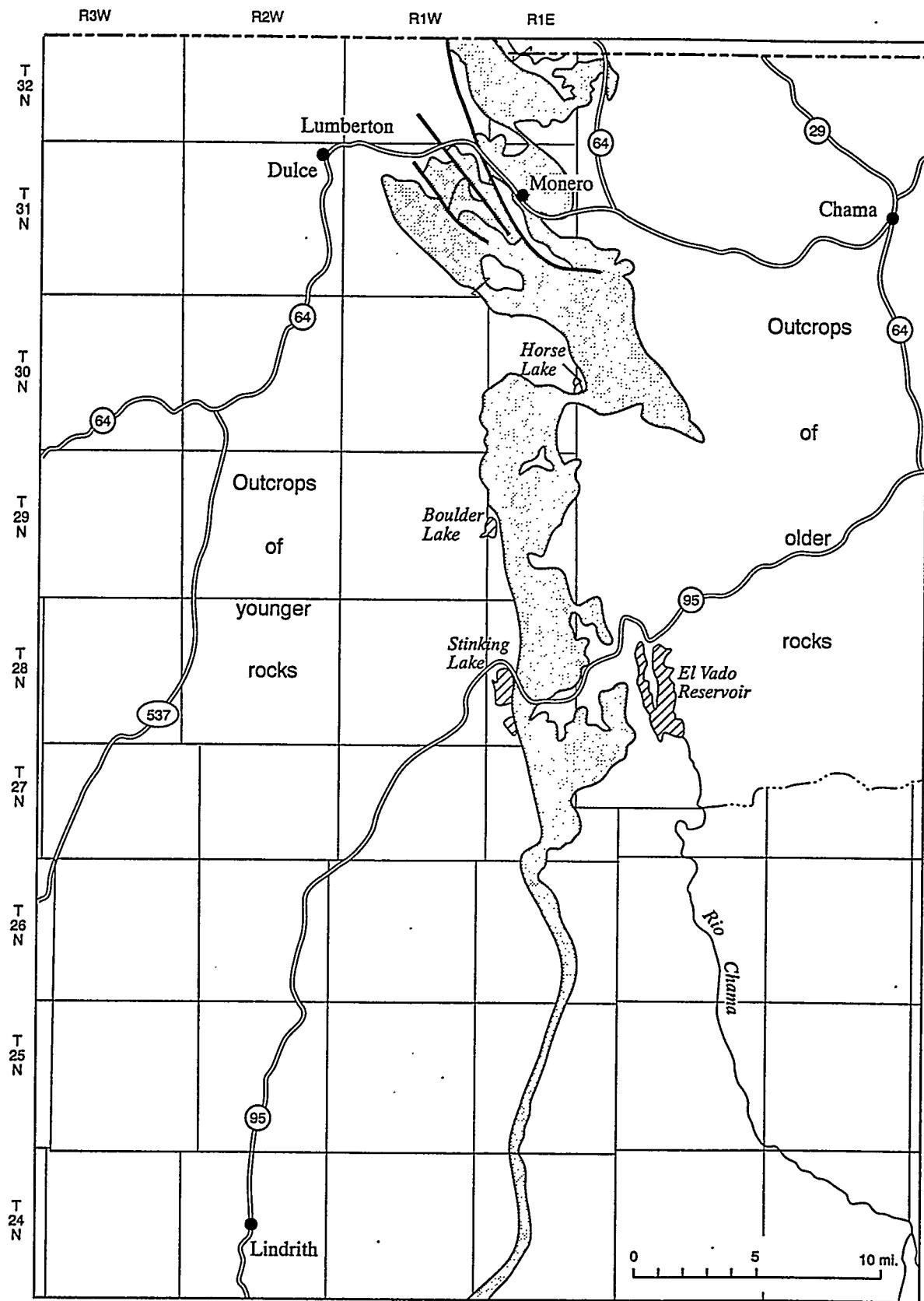


Figure 16. Index map of Monero Mesaverde field. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

Total data points-7: 86% 20–200 ft depth;
 14% 200–500 ft depth.

Lack of point source data in the 500–1000 ft depth category was supplemented by demonstrated resource calculations from a study on the Jicarilla Apache Indian Reservation by Olsen and Gardner (1987). Although some data in this report is within the 0–500 ft depth category, these resources are grouped together, and therefore are not added to this DRB.

All of Rio Arriba County coal production (1882 to 1964) comes from the Monero area. A considerable amount (63%) of the total production and mine loss is estimated to be from depths of 200–500 ft. Coal resources in this category are very sparse, therefore this production and mine loss (2.12 million short tons) were first added to the original resource then subtracted to obtain the remaining DRB. Depletion of original surface resources totaled 1.25 million short tons.

Total remaining surface DRB is 7.63 million short tons. Total underground remaining DRB is 31.58 million short tons. All remaining resources are in the 1.25–1.67 lbs sulfur/MBtu, 23–24.99 MBtu/ton, and 10.01–15 % ash categories (Table 5).

Except for the northern two townships, the Monero field is on the Jicarilla Apache Indian Reservation. Another section east of T31N, R1E is on the Tierra Amarilla land grant. Highway 64-84 cuts through the northern third of the field and highway 95 crosses Mesaverde Group outcrops near Stinking Lake. The southern part of this field has small oil fields. Most of the surface resources are on fault block cuestas capped by Cliff House Sandstone northeast of Monero. The accessible resources are 89% and 86% of the total surface and underground DRB for the Monero field, Rio Arriba County (Table 3).

4.13 Crevasse Canyon Formation and Gallup Sandstone Results

The Crevasse Canyon Formation coal-bearing members were deposited during a major retreat and advance of the Late Cretaceous shorelines in the southern SJB (Fig. 2). The Dilco Coal Member was deposited landward of the marine Gallup Sandstone, and some coals are within the Gallup Sandstone, probably due to intertonguing of non marine sequences during oscillations in the shoreline (Fig. 2a). The Dilco Member is overlain by the thick, barren, continental Bartlett Barren Member. With the following advance of the shoreline, coal swamps developed shoreward of the Point Lookout Sandstone, represented by coal beds in the Gibson Coal Member. The Point Lookout Sandstone forms the division between the Gibson Coal Member of the Crevasse Canyon and the Cleary Coal Member of the Menefee Formation. Northeast of the town of Gallup is the Point Lookout pinchout and in the Gallup field the Gibson and Cleary Coal Members are undivided (Fig. 2a), referred to as the Gibson-Cleary coal member. All of the coals within this unit in the Gallup field are calculated as resources in the Crevasse Canyon Formation. Table 6 summarizes the Crevasse Canyon and Gallup Sandstone resources.

Six coal fields are delineated by the Crevasse Canyon exposures:

<u>Field</u>	<u>County</u>	<u>Rank</u>
Gallup	McKinley	bituminous and subbituminous
Zuni	McKinley and Cibola	subbituminous
Crownpoint	McKinley	subbituminous
S. Mt. Taylor	Cibola	subbituminous
E. Mt. Taylor	Cibola and Sandoval	subbituminous
Rio Puerco	Cibola and Sandoval	subbituminous

Table 6. Remaining DRB for the Crevasse Canyon Formation and Gallup Sandstone, San Juan Basin, New Mexico in millions of short tons.

Field	Formation	MBtu/ton	Total	0.41-0.6	0.61-0.83	0.84-1.24	1.25-1.67	5.01-10	10.01-15	%Ash ¹	>15
Gallup	Crevasse ²	20-22.99	213.13	112.56	100.57	8.04		213.13	343.46	1.15	
	Crevasse ³	20-22.99	343.46	262.70	72.73						
	Gallup SS	20-22.99	1.15		1.15						
Zuni	Crevasse	20-22.99	23.34			23.34					23.34
	Gallup SS	20-22.99	35.91			35.91					
Crownpoint	Crevasse	15-19.99	662.51					662.51	662.51		
	Gallup SS	20-22.99	29.16					29.16	29.16		
S. Mt. Taylor	Crevasse	20-22.99	13.92	13.92			24.70				
	Rio Puerco	15-19.99	24.70							13.92	
Total		15-19.99	687.21	0.00	0.00	24.70	662.51				
Total		20-22.99	660.07	389.18	174.45	67.28	29.16				
Total		Ash									
<i>Bituminous Surface Total</i>			213.13	122.56	100.57			581.29	742.65		23.34
<i>Subbituminous Surface Total</i>			1134.16	276.62	73.88	91.99		213.13	0.00	0.00	0.00
<i>Subbituminous Total</i>						691.67		368.16	742.65		23.34
Gallup	Crevasse ²	20-22.99	369.01	239.26	129.75			369.01			
	Crevasse ³	20-22.99	100.70	25.33	24.17	51.19		100.70			
Zuni	Crevasse	20-22.99	30.61					30.61			
	Gallup SS	20-22.99	11.28					11.28			
Crownpoint	Crevasse	15-19.99	429.78					429.78			
	Gallup SS	20-22.99	1.20					1.20			
San Mateo	Crevasse	15-19.99	27.80								
	S. Mt. Taylor	20-22.99	3.25	3.25							
	E. Mt. Taylor	20-22.99	2.55	2.55							
Total		15-19.99	457.58	0.00	0.00	0.00	457.78				
Total		20-22.99	518.59	270.39	153.92	93.08	1.20				
Total		Ash									
<i>Bituminous Underground Total</i>			369.01	239.26	129.26	0.00		469.71	475.86		30.61
<i>Subbituminous Underground Total</i>			607.16	31.13	24.17	93.08		369.01	0.00	0.00	0.00
<i>Bituminous Total</i>			582.14	351.82	230.32	0.00		458.78	475.86		30.61
<i>Subbituminous Total</i>			1741.32	307.75	98.05	185.07		582.14	0.00	0.00	0.00
<i>Total</i>								1150.45	1218.51		53.95

Aash undifferentiated by MBiu/on ³Bituminous resources ³Subbituminous resources Note. all resources without footnote are subbituminous

Gallup field—This field in southwestern SJB is defined on the eastern edge by the steeply dipping Nutria Monocline, and on the west by the Defiance uplift (Figs. 3,17). Coal-bearing units between these two structures are influenced by the Torrivo and Gallup anticlines and the Gallup sag (Fig. 3). The arbitrary southern edge of the Gallup field is the southern boundary of T12N. Exposures of Gallup Sandstone, Dilco Coal Member, and Gibson-Cleary coal members are present in this field. Bituminous coal resources were calculated for T15N R18W and R19W; T16N R18–20W. Subbituminous resources were calculated for T17N R20W, T15N R20W, T14N R18W and R19W, T13N R17W and R18W, T12N R17W. Division of Crevasse Canyon point source data for bituminous coal areas by depth are:

Total data points-480: 63% 20–200 ft;
 27% 200–500 ft;
 10% 500–1000 ft depth.

Subbituminous data points for the Crevasse Canyon Gallup field fall into the following depth categories:

Total data points-227: 84% 20–200 ft;
 10% 200–500 ft;
 6% 500–1000 ft depth.

The Gallup field is in McKinley County, on the Gallup and Zuni 1:100,000 quadrangles (Fig. 1). A significant amount of the past and present production for this county is from the Gallup field. Depletion (production and mine loss) of bituminous original resources from underground mining prior to 1962 is 65.45 million short tons. Of this total only 9.59 million short tons was mined within 200 ft of the surface. Production and mine loss from surface mining in the bituminous resource area is 51.20 million short tons.

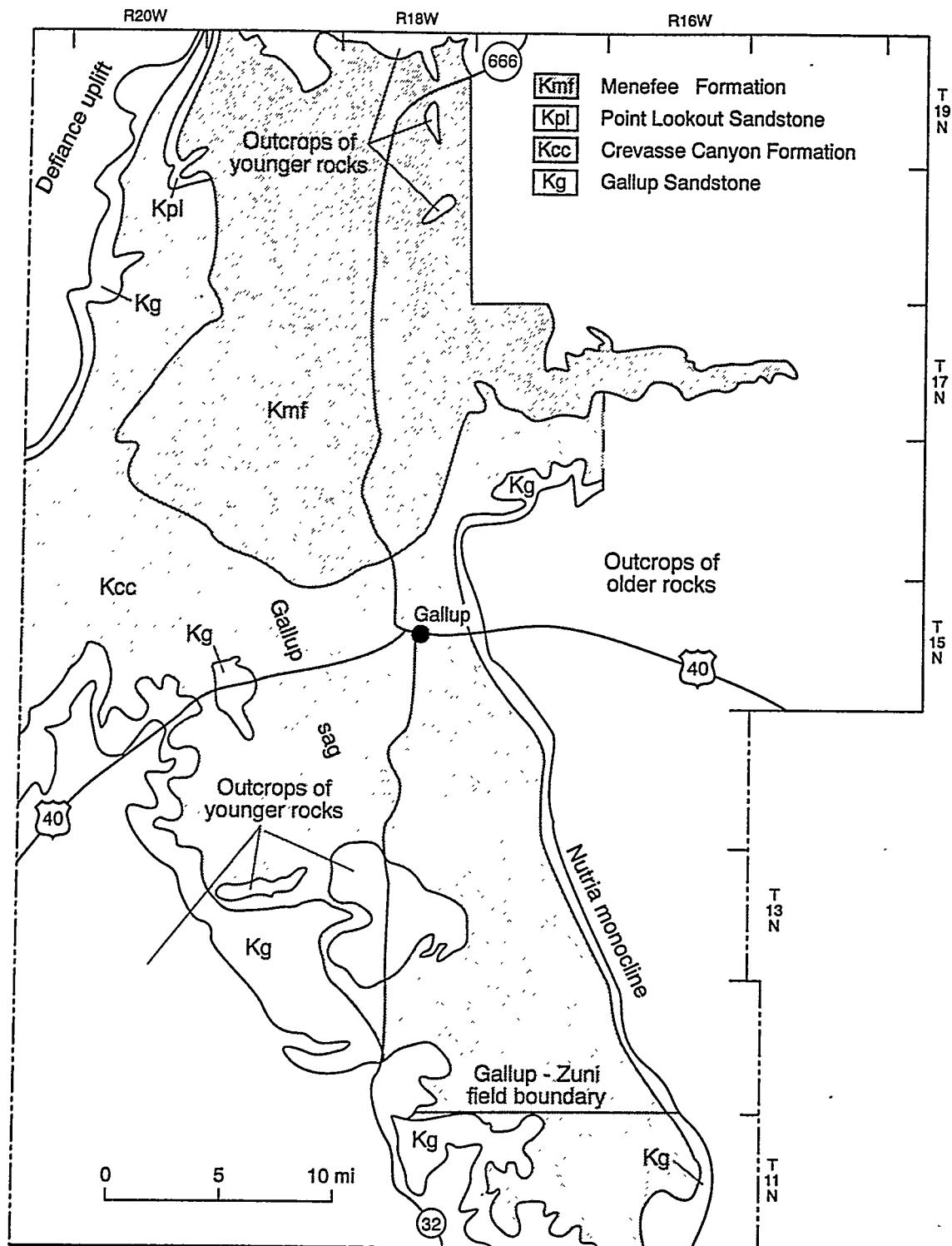


Figure 17. Map of Gallup field, Crevasse Canyon and Menefee Formation, Modified from Shomaker, Beaumont, and Kottlowski, 1971.

Remaining DRB for the bituminous resource is:

Surface 213.13 million short tons

Underground 369.10 million short tons

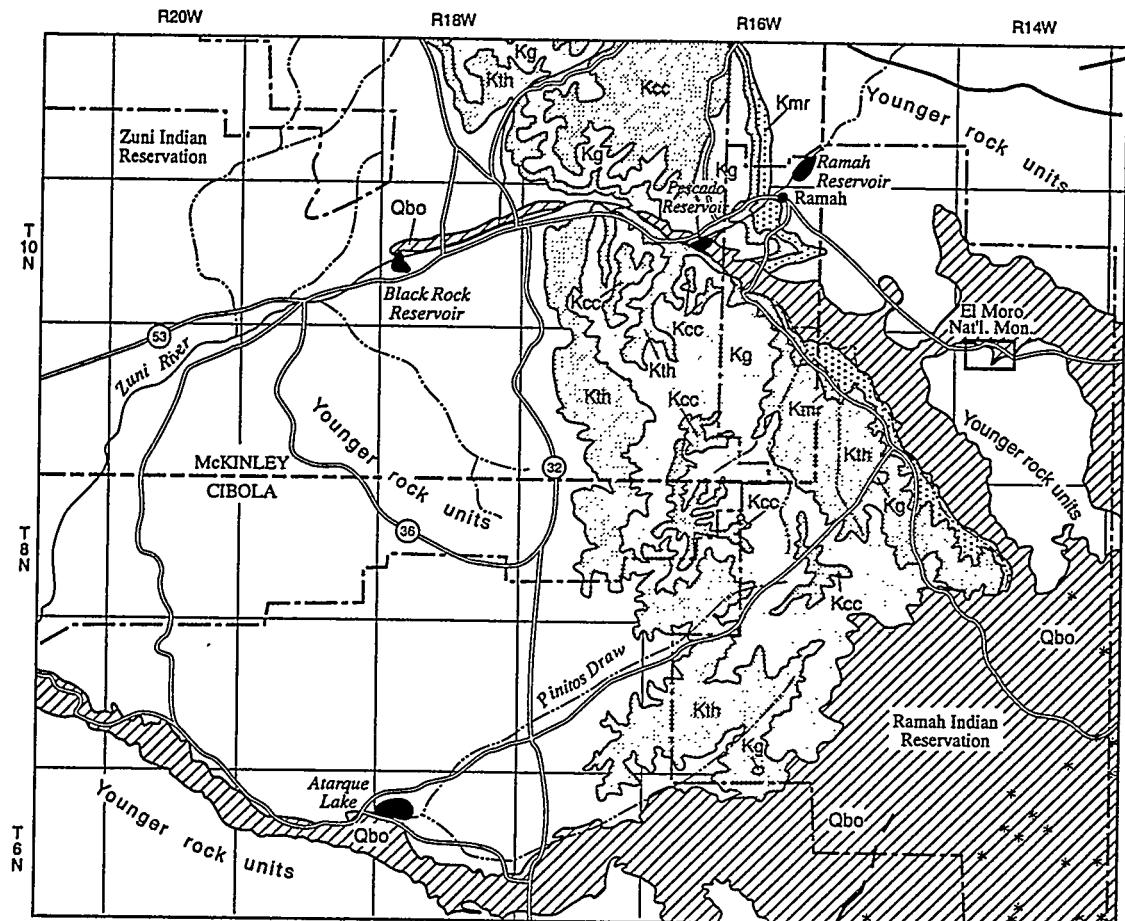
Subbituminous resources in the Crevasse Canyon Gallup field are depleted by 59 million short tons. Remaining subbituminous DRB is:

Surface 343.46 million short tons

Underground 100.70 million short tons

Bituminous and subbituminous Crevasse Canyon DRB are within the 20–22.99 MBtu/ton and 5.01–10 % ash categories, but are split into three sulfur and heat categories. The division by sulfur content is:

0.41–0.60	T17N, T16N
0.61–0.83	T15N, T14N, T13N
0.84–1.24	T12N


The Gallup Sandstone is exposed in the southern part of the field and west of the town of Gallup. The number of data points for this unit is very limited, and only one data point has coal of a qualifying bed thickness in the subbituminous rank categories. The original surface resources are 1.44 million short tons, these are depleted by mine loss and production by 0.29 million short tons. The remaining DRB of 1.15 million short tons is in the 0.61–0.83 lbs of sulfur/MBtu, 20–22.99 MBtu/ton, and 10.01–15 % ash categories (Table 6).

Structural features in along the borders of the Gallup field make mining difficult. The Nutria and Defiance uplifts (Fig. 3) create steep dips along the east and west boundaries that can be deterrents to mining. The Gallup sag in the middle of the field has influenced the depth of the coal beds, and in fact most of this area has been mined by underground

methods.

Significant underground mining near Gallup created a large area in T15N R18W and the southern third of T16N R18W that has old workings. The town of Gallup, in T15N R18W, has residential and commercial development on top of these old mine workings. The majority of private land is just north or south of the town of Gallup. Interstate 40 and the Atchison, Topeka, and Santa Fe Railroad go through the town of Gallup and transect the coal field. Highway 666 goes north from Gallup and highway 32 heads south. Highway 264 crosses exposures of the Gibson-Cleary in the northwest Gallup field. This part of the field is on the Navajo Indian Reservation and part of the McKinley mine is on the reservation. The southeast Gallup field is on Zuni Indian Reservation land. Much of the field on the Zuni 1:100,000 quadrangle is on checkerboard ownership: private, Indian, and federal. The largest owner of land in the Gallup field is the Navajo Nation and individual Navajos. Accessible percentages are 93% and 99% for the surface and underground resources, respectively for the Gallup field. The Gallup area is grouped with the Crownpoint and Zuni fields in McKinley County for accessible and recoverable reserves (Table 3).

Zuni field— At the southern end of the Gallup sag (Fig. 3) the Dilco Coal Member of the Crevasse Canyon Formation and Gallup Sandstone coal-bearing sequences extend south into the Zuni field (Fig. 18). This field has exposures of the Tres Hermanos Formation (Fig. 2a) include some coal-bearing sequences, but the coal resources for this unit are not calculated. The Zuni field is in McKinley and Cibola counties on the Zuni and Fence Lake 1:100,000 quadrangles (Fig. 1). The data points for the subbituminous Dilco Coal Member resources are sparse:

Qbo - North Plains lava flow
 Kcc - Crevasse Canyon
 Kg - Gallup Sandstone
 Kth - Tres Hermanos Formation
 Kmr - Rio Salado Tongue of Mancos Shale
 * - Volcanic vent

Figure 18. Map of Zuni coal area. Modified from Anderson and Jones, in progress.

Total data points 8: 50% 20-200 ft;

50% 200-500 ft depth.

Resources for this field are depleted by 0.02 million short tons from the Crevasse Canyon Formation and 0.01 million short tons from the Gallup Sandstone. Both of these production and mine loss figures come from mining within 200 ft of the surface from coals 2.5 to 5 ft thick. Remaining surface DRB is 23.34 million short tons and 35.91 million short tons for the Crevasse Canyon Formation and Gallup Sandstone, respectively. Remaining underground DRB is 30.61 million short tons, Crevasse Canyon Formation and 11.28 million short tons, Gallup Sandstone. Total DRB for the Zuni field is in the 0.84-1.24 lbs sulfur/MBtu, the 20-22.99 MBtu/ton categories. Crevasse Canyon coals in the Zuni field have greater than 15% ash content, but the Gallup Sandstone coals in this field are in the 10.01-15% ash category (Table 6).

Most of the Zuni field is on the Zuni and Ramah Indian Reservations. Highways 32 and 53 transect the field, although this area is sparsely populated. The area is dominated by mesa and canyons, dissected by streams and mesas capped by thick sandstones. Accessible and recoverable reserves for the Zuni field are listed in Table 3 under McKinley and Cibola counties. The Cibola County figure includes the Mount Taylor fields.

Crownpoint field— This is the largest coal field (930 mi²) in the SJB, encompassing the Crevasse Canyon Formation exposures from northeast of the Gallup field to the western edge of the San Mateo field. The Zuni uplift (Fig. 3) influenced the southern outcrops of the Crownpoint field and faulting is widespread along the southeast border (Fig. 19). The coal-bearing Gallup Sandstone and the Dilco Coal and Gibson Coal Members of the

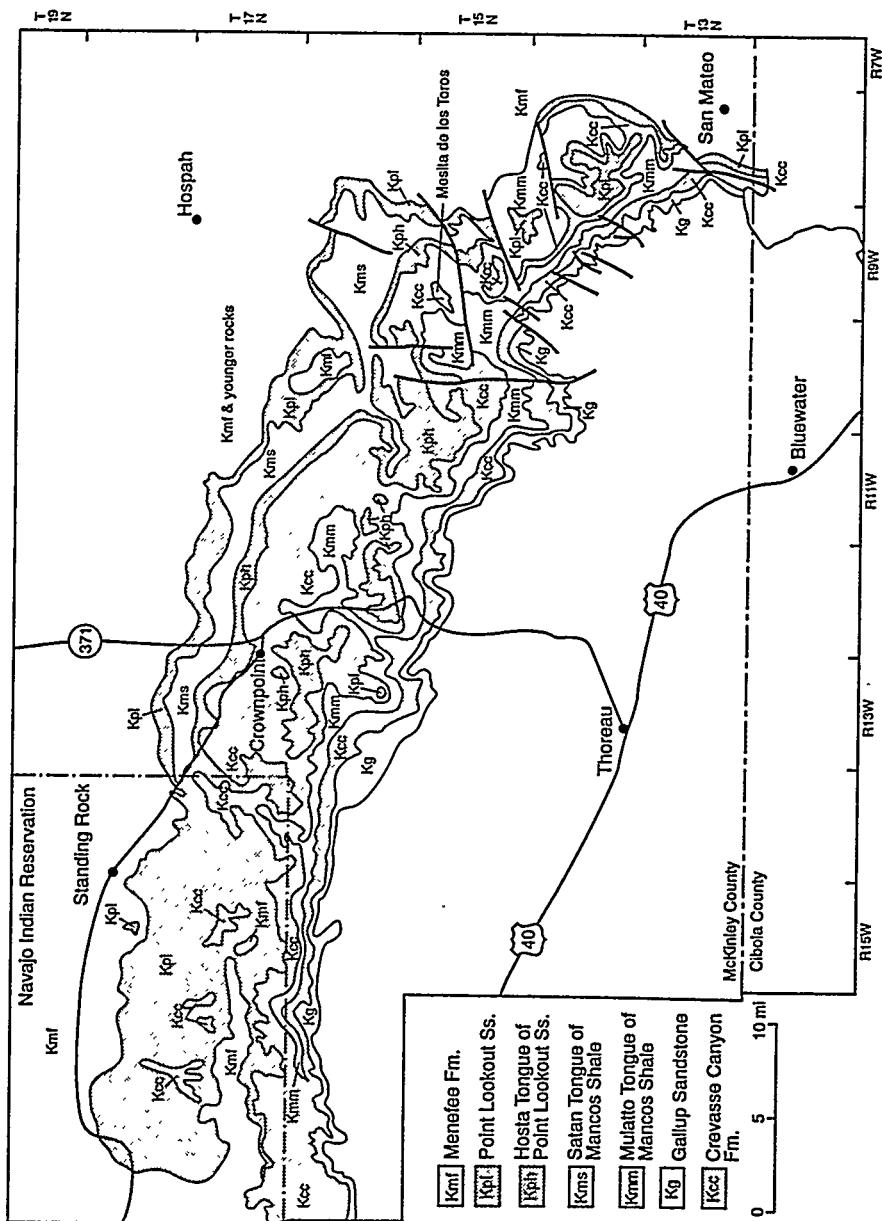


Figure 19. Map of Crownpoint field, Crevasse Canyon Formation. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

Crevasse Canyon Formation are exposed in this field. No economic coal is known within the Gallup Sandstone in this area and the Dilco coal beds are thin and lenticular (Sears, 1936; Dillinger, 1990). The Gibson Coal Member contains the only coal considered economic in the Crownpoint field.

The Crownpoint subbituminous coal area is in McKinley County on the Gallup, Chaco Mesa, and Grants 1:100,000 quadrangles (Fig. 1). Resources were calculated using the following data distribution:

Total points, Crevasse Canyon-313: 66% 20-200 ft;
25% 200-500 ft;
9% 500-1000 ft depth.

Total points, Gallup Sandstone-10: 30% 20-200 ft;
70% 500-1000 ft depth.

Crevasse Canyon DRB in the Crownpoint field is depleted by 0.11 million short tons from mining within 200 ft of the surface from coals 2.5–5.0 ft thick. Remaining surface resources (million short tons) are:

Formation	Total DRB	Gibson	Dilco
Crevasse Canyon	662.51	647.30	15.21
Gallup Sandstone	29.16		
<i>Total</i>	<i>691.66</i>		

Remaining underground resources (million short tons) are:

Formation	Total DRB	Gibson	Dilco
Crevasse Canyon	429.78	317.01	112.77
Gallup Sandstone	1.20		
<i>Total</i>	<i>430.98</i>		

A few data points for underground Crevasse Canyon coal resources are east of the Crownpoint field, within the San Mateo area. These data total 27.8 million short tons of underground coal resources.

The Crevasse Canyon resources in the Crownpoint field and underground coal in the San Mateo area and the Gallup Sandstone are in the 1.25–1.67 lbs of sulfur/MBtu, and 10.01–15 % ash categories. The Crevasse Canyon DRB is categorized as 15–19.99 MBtu/ton and the Gallup Sandstone DRB in this field is in the 20–22.99 MBtu/ton classification (Table 6).

The Gibson coals beds are highly lenticular, and in most parts of the field they are overlain by thick, massive Hosta Sandstone in the mesa-and-canyon terrain on the southwestern rim of the San Juan Basin (Fig. 19, Kph). The western Crownpoint field is on Navajo Indian Reservation and much of the land outside the reservation is Navajo ownership. The town of Crownpoint is in the surface resource area and several highways (Fig. 19) converge at this population center. Two small oil fields are within the underground resource area of this field, subtracting 800 acres from the total area. Accessible reserves for this field are 96% and 99% of the surface and underground DRB (Table 3).

East and South Mount Taylor fields—These small fields are delineated by exposures of Crevasse Canyon Formation along the south and east edges of the Mount Taylor volcanic complex and Mesa Chivato (Fig. 20, 21). The South and East Mount Taylor coal fields were first mapped in detail by Hunt (1936). In most places, the thick volcanic sequence of Mount Taylor overlies minable Gibson coal and prevents surface mining except in small areas in the southwest South Mount Taylor field at the Guadalupe and Rinconada Canyons where the coal

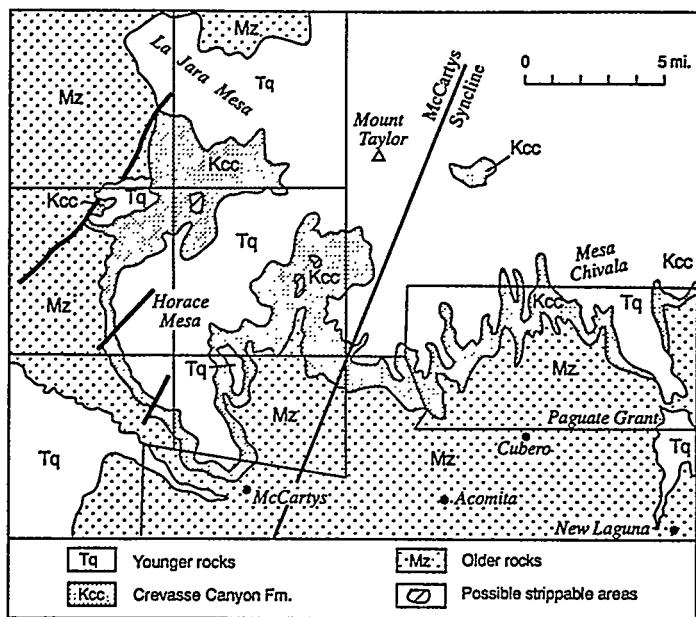


Figure 20. Map of South Mount Taylor, Crevasse Canyon area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

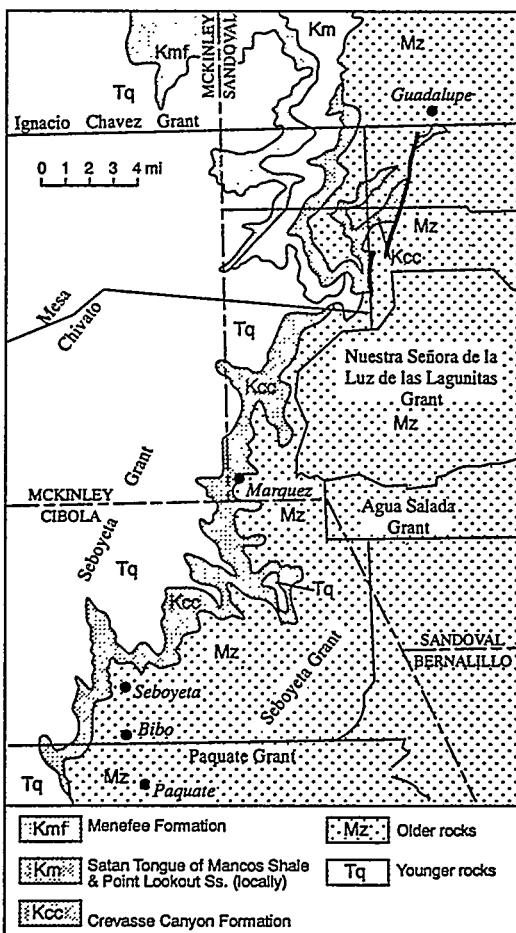


Figure 21. Map of East Mount Taylor, Crevasse Canyon area. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

beds range from 2.5 to 5 ft thick (Dillinger, 1989). Beneath the volcanics, the Crevasse Canyon beds are probably influenced by a broad north-plunging syncline, the McCarty's syncline (Hunt, 1938). The Dilco Coal Member intertongues northeastward with marine strata and thus contains essentially no coal seams in the East Mount Taylor field. The East and South Mount Taylor fields are in Cibola County and East Mount Taylor extends into Sandoval County. No resource data is available in Sandoval County and data in Cibola County is sparse. Both these fields are on the Grants 1:100,000 quadrangle (Fig. 1). Only one data point is available for the East Mount Taylor field for coals greater than or equal to 2.5 ft thick.

South Mount Taylor field:

Total data points 8: 88% 20–200 ft;

12% 200–500 ft depth.

The original resources are depleted by 0.02 million short tons in the South Mount Taylor field, (2.5–5 ft thick, 0–200 ft thick), the remaining surface DRB is 13.92 million short tons. There are no surface resources calculated for the East Mount Taylor field. Underground DRB is 3.25 million short tons and 2.55 million short tons for the South and East Mount Taylor fields, respectively. The DRB in these fields are in the 0.41–0.60 lbs of sulfur/MBtu, 20–22.99 MBtu/ton, and 10.01–15 % ash content (Table 6).

Lakes and reservoirs are within the Mount Taylor Dilco and Gibson coal resource areas on the Grants quadrangle (Fig. 1). Powerlines and one major highway transect this area. Underground coal resources are covered by hundreds of feet of basalt flows and volcanic rock associated with the Mount Taylor volcanic complex. The Mount Taylor fields are grouped with the Zuni field in the Crevasse Canyon accessible and recoverable reserves

for Cibola County (Table 3).

Rio Puerco field—This field is an irregular outcrop belt of Mesaverde Group coal-bearing rocks in the Rio Puerco valley, an outlier of the SJB, about 15 mi southeast of the East Mount Taylor field and extending from T8N to T14N, in R1E to R3W (Fig. 22). The Dilco Coal and Gibson Coal Members of the Crevasse Canyon Formation are present in the Rio Puerco field, but the Dilco coal beds are too thin to mine. Gibson coal beds average 3.8 ft thick, although seams up to 5.6 ft have been mined for local use in the northern part of the field (Hunt, 1936). This field is within the Rio Puerco fault zone (Fig. 3), a N-NE-trending swarm of normal, en echelon faults (Slack and Campbell, 1976), thus the coal-bearing outcrops are in narrow, steeply-dipping fault blocks, and in no place do the coal beds appear favorable for surface mining, although the eastern part of the field is covered by sand that masks the underlying bedrock. Most of the Rio Puerco field is in Bernalillo County on the Grants 1:100,000 quadrangle (Fig. 1). Very few data points are available for this field; a total data points of seven, all in the 20–200 ft depth category.

Resources for the Rio Puerco field are depleted from previous mining and mine loss by 0.06 million short tons, therefore remaining surface DRB for this field is 24.70 million short tons. These resources are in the 0.84–1.24 lbs of sulfur/MBtu, 15–19.99 MBtu/ton and 5.01–10% ash categories (Table 6). The Rio Puerco field is within the Laguna and Canoncito Indian Reservations. Accessible and recoverable reserves for this field are listed in Table 3 under Bernalillo County.

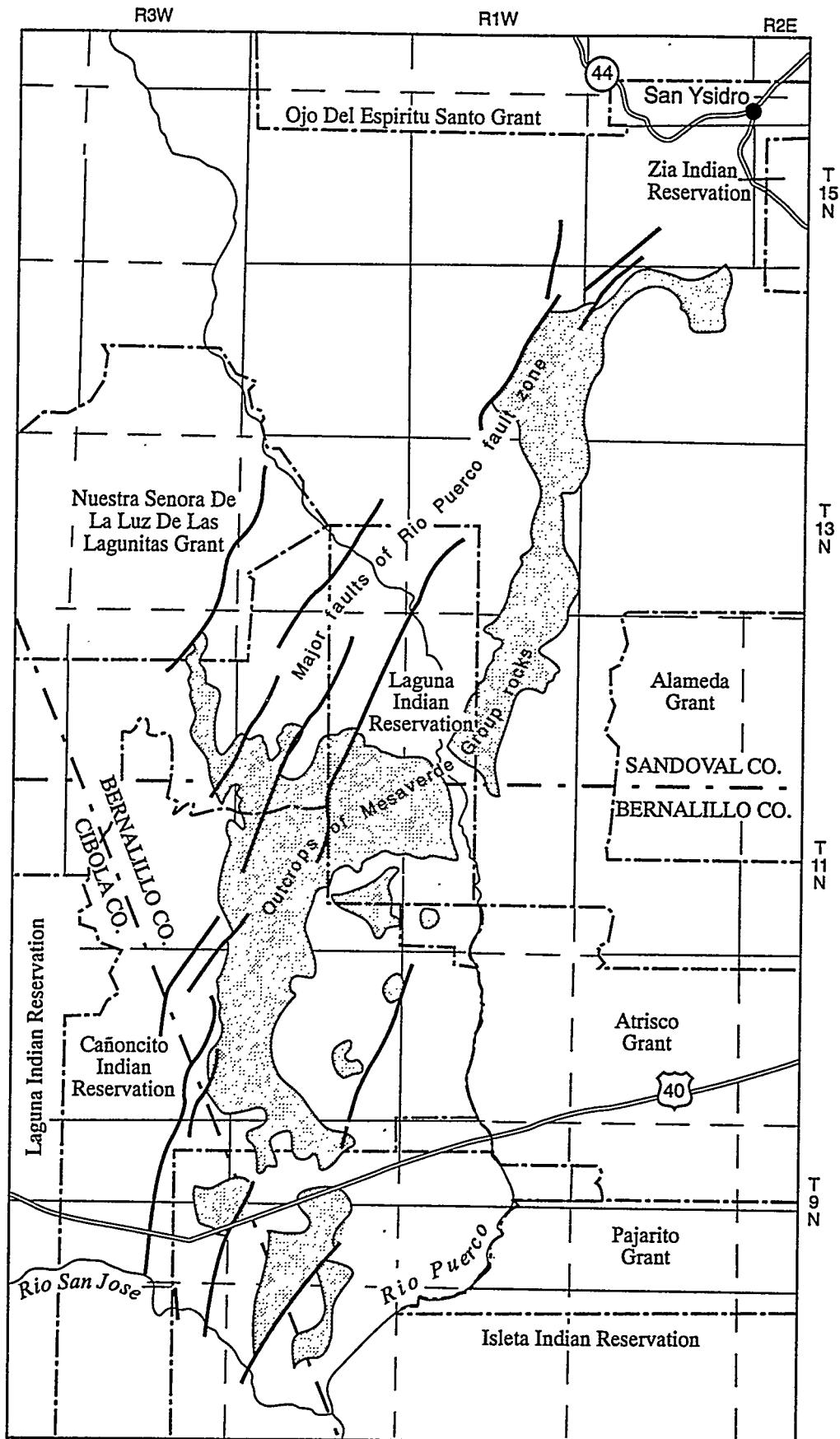
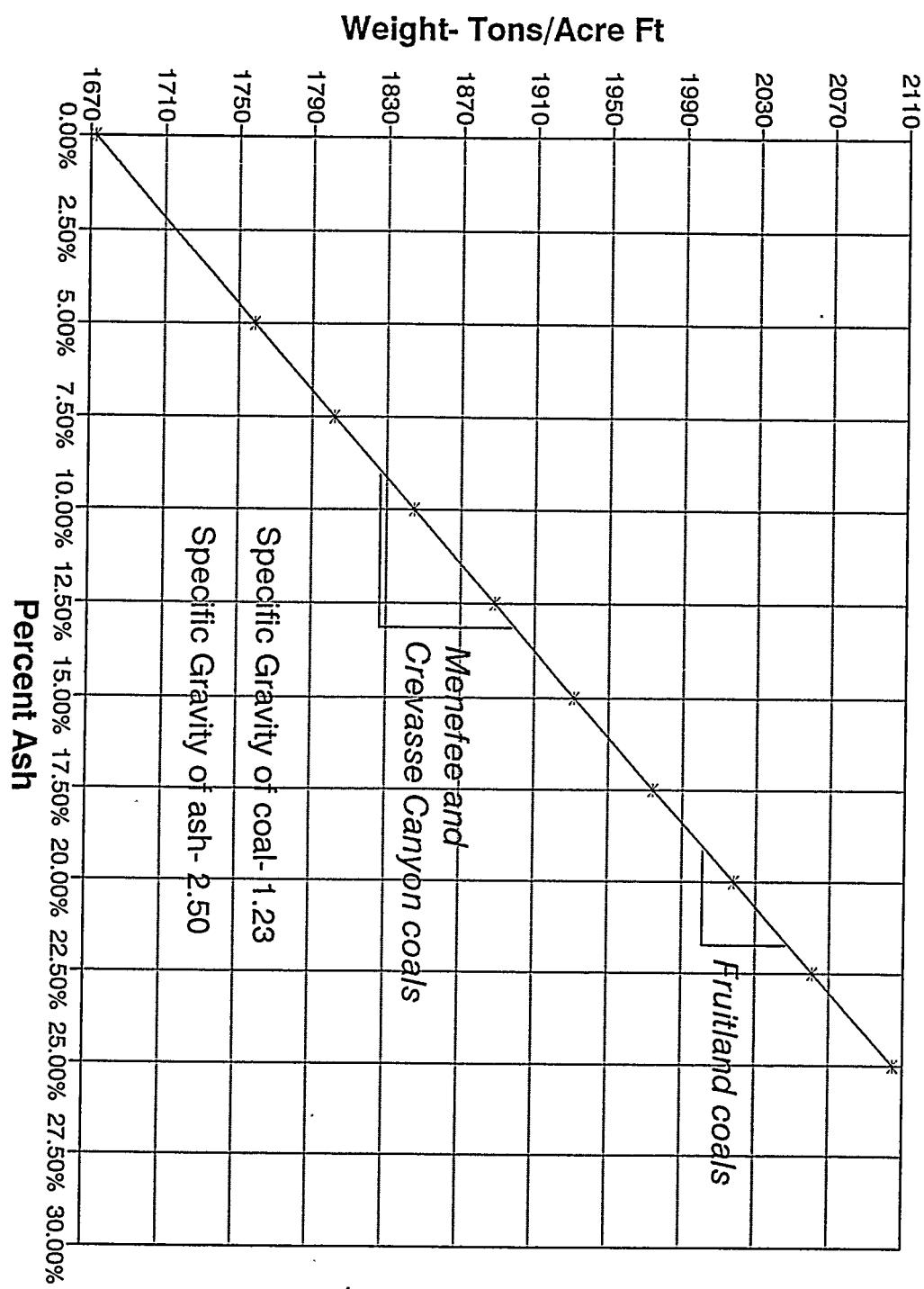



Figure 22. Map of Rio Puerco field, Mesaverde Group. Modified from Shomaker, Beaumont, and Kottlowski, 1971.

5.0 Recommendations

The ash content of the SJB coals is relatively high, and therefore influences the weight of the coals for resource calculations. As stated, this study used the USGS guidelines for subbituminous and bituminous coals using 1770 and 1800 tons/acre ft, respectively. If more quality data for all the coal areas were available, different numbers could have been used to calculate the demonstrated resources. If a 1.23 g/cm^3 is used for pure coal (Levine, 1993) and 2.5 g/cm^3 is used for the ash, based on the high percentage of the ash being SiO_2 , a graph of the tons/acre ft vs percent ash (Fig. 23) illustrates the difference higher ash can make in calculating resource tonnages. For example, the Fruitland Formation coals have greater than 15% ash, increasing the tons/acre ft to greater than 1920. The Menefee and Crevasse Canyon coals fall into the two categories of 5–10% ash and 10.01–15% ash. The first category ranges from 1760 to 1850 tons/acre ft and the second 1850 to 1920 tons/acre ft. These factors would make quite a difference in the resource tonnage. As an example the Fruitland Formation, Fruitland field is bituminous with greater than 15% ash content, on average. If the high ash values are factored into the resource estimate, using 1920 ton/acre ft, the resources would be 6% greater than those calculated at 1800 tons/acre ft. This percentage becomes 8% with the subbituminous Fruitland coals with greater than 15% ash. The ash factor is an important consideration when looking at these high-ash coals and is an area of the DRB that needs more work.

This study included a preliminary assessment of the accessibility in the SJB using the criteria in USGS Circular 1055 (Egginton, Carter, and Cobb, 1990). Because the data was not in a Graphic Information System (GIS), such as GRASS or ARCINFO, determining inaccessible areas was tedious. The basic parameters, major roads, oil and gas well areas,

Figure 23. Ash vs density in tons/acre ft.

abandoned mine areas, pipelines, powerlines, parks, and centers of population were considered within the coal areas. With the implementation of a GIS all the data could be compared and more accurate accessibility numbers could be obtained. Although some technological restrictions were discussed in the text (i.e. thick sandstone overburden, steep dips) no quantitative assessment of these restrictions were included in the calculation of the accessible DRB.

6.0 Sources

Appendix A is a listing of sources for the point source data used to determine resources for this DRB. These data were collected as part of a cooperative project with USGS for the NCRDS that has been ongoing at the NMBMMR for the past fourteen years and is the basis for the NMBMMR resource data base. Many of these point source data are confidential and can only be presented as a composite, therefore individual seam thicknesses and point source locations are not given in Appendix A. Mine data for historic mine production was obtained from Nickelson (1988) and from Territorial and State Mine Inspector reports (1897–1979) and NMEMNRD Annual Reports (1977–1993). DOE mine production data was used to fill in gaps and as a comparison to the production figures reported to the State agencies.

Appendix B lists the weighted average analyses by field, township, and range. Many of these data were collected as part of the cooperative NCRDS grant with the USGS and many were acquired through coal studies at the NMBMMR. A major source of quality and thickness data are from a NMBMMR study funded in part by the New Mexico Research and Development Institute. All the data from this study are available in NMBMMR Open-file

Report 377 (Hoffman, 1991). Many of the data from other sources are confidential and can only be presented in a composite form, such as that shown in Appendix B.

Acknowledgements

The P.I. thanks Frank E. Kottlowski and Edward C. Beaumont for their counsel and participation in this study. Their help in the early stages of this project and reviews of the work in progress made a significant difference in the final product. The technical reviews of Heinz Damberger at the Illinois Geological Survey and William Kaiser at the Texas Bureau of Economic Geology on quarterly reports preceding this summary were very beneficial. The P.I. thanks Rich Bonskowski for his help and guidance throughout this project.

REFERENCES

Anderson, O.J., and Jones, G., in progress, State geologic map project: New Mexico Bureau of Mines and Mineral Resources.

Beaumont, E.C., 1982, Geology of New Mexico coal deposits and geological setting for field trips; in Coal-bearing sequences- modern geological concepts for exploration and development: American Assoc. of Petroleum Geologist, short course notes, March 1982, Figs. 2,3.

Beaumont, E. C., 1987, Geology and mining activity in the Lee Ranch area, McKinley County, New Mexico: in Coal deposits and facies changes along the southwestern margin of the Late Cretaceous seaway, west-central New Mexico: New Mexico Bureau of Mines & Mineral Resources Bulletin 121, pp. 37-40.

Beaumont, E.C., and Hoffman, G.K., 1992, Interrelationships between the upper coal member of the Menefee Formation, the La Ventana Tongue, and the Lewis Shale in the Southeastern San Juan Basin, New Mexico: New Mexico Geological Society 43rd Guidebook, pp. 207-216.

Bonskowski, R.F., April, 1994, Washington, D.C., personal communication, reported results of calculations to identify sources and data used to estimate the 1992 New Mexico demonstrated reserve base, using resource data and depletion adjustments in the counties of San Juan, McKinley, Sandoval, Rio Arriba, Bernalillo, and Cibola.

Dane, C. H., 1948a, Geology and oil possibilities of the eastern side of the San Juan Basin, Rio Arriba County, New Mexico: U.S. Geological Survey, Oil and Gas Investigations Preliminary Chart 78.

Dane, C. H., 1948b, Geologic map of a part of the eastern side of the San Juan Basin, Rio

Arriba County, New Mexico: U.S. Geological Survey, Oil and Gas Investigations
Preliminary Map 78.

Dillinger, J.K., 1989, Coal resources maps of the Grants 30'x 60' quadrangle, west-central
New Mexico: U.S. Geological Survey Coal Investigations Map C-188-B, 3 sheets,
1:100,000 scale.

Dillinger, J.K., 1990, Geology and contour maps of the Gallup 30'x 60' quadrangle: U.S.
Geological Survey Investigations Series I-2009, 2 sheets, 1:100,000 scale.

Eggleston, J.R., Carter, M.D., Cobb, J.C., 1990, Coal resources available for
development—a methodology and pilot study: US Geological Survey Circular 1055,
15 pp.

Energy Information Administration, file data, summary of coal resource data sources entitled
"CONFIDENTIAL, New Mexico Strippable Coal Reserve Base, " supplied as DRB
derivation documentation by Thomas Matson, from company contacts done under the
auspices of the U.S. Bureau of Mines and the Energy Information Administration,
Denver, CO, undated.

Energy Information Administration, 1993, U.S. Coal reserves: An update by heat and sulfur
content: Energy Information Administration DOE/EIA-0529(92) 86 pp.

Hoffman, G.K., 1991, Quality assessment of strippable coals in northwest New Mexico:
drilling data, chemical and petrographic analyses for the Fruitland, Menefee, Crevasse
Canyon, and Moreno Hill Formations: New Mexico Bureau of Mines and Mineral
Resources Open-file Report 377A-AA.

Hoffman, G.K., Campbell, F.W., and Beaumont, E.C., 1993, Quality assessment of
strippable coals in northwestern New Mexico: Fruitland, Menefee, and Crevasse

Canyon Formation coals in San Juan Basin, and Moreno Hill Formation coals in Salt Lake field: New Mexico Bureau of Mines and Mineral Resources Bulletin 141, 100 pp.

Heffren, E.L., 1992, Mineral resources of the Fossil Forrest Resource Natural Area: New Mexico Geological Society Guidebook 43, pp. 50-53.

Hunt, C.B., 1936, Geology and fuel resources of the southern part of the San Juan Basin, New Mexico, Part 2— The Mount Taylor coal field: U.S. Geological Survey Bulletin 860-B, 49 pp.

Hunt, C.B., 1938, Igneous geology and structure of the Mount Taylor volcanic field, New Mexico: U.S. Geological Survey Professional Paper 189-B, pp. 51-80.

Hunt, A.P., 1984, Stratigraphy, sedimentology, taphonomy and magnetostratigraphy of the Fossil Forest area, San Juan County New Mexico [M.S. Thesis]: Socorro, New Mexico Institute of Mining and Technology, 338 pp.

Levine, J.R., 1993, Coalification: The evolution of coal as source rock and reservoir rock for oil and gas, in Law, B.E., and Rice, D.D., eds., Hydrocarbons from coal,: AAPG Studies in Geology #38, pp. 39-78.

Nickelson, H.B., 1988, One hundred years of coal mining in the San Juan Basin, New Mexico: New Mexico Bureau of Mines & Mineral Resources Bulletin 111, 226 pp.

Olsen, A.B., and Gardner, N.K., 1987, Coal resources and geology of the north half of the Jicaralla Apache Indian Reservation Rio Arriba County, New Mexico: Bureau of Indian Affairs - U.S. Geological Survey Interagency Report, 113 pp.

O'Sullivan, R.B., and Beaumont, E.C., 1957, Preliminary geologic map of western San Juan Basin, San Juan and McKinley Counties, New Mexico: U.S. Geological Survey Oil

and Gas Investigations Map 190. 1:125,000 scale.

Roybal, G.K., 1983, Coal resources of New Mexico; Sediment. Gretchen.Txt: New Mexico Bureau of Mines and Mineral Resources resource data file printout submitted to EIA February, 11, 1983.

Sears, J.D., 1936, Geology and fuel resources of the southern part of the San Juan Basin, New Mexico Part 1- the coal field from Gallup eastward toward Mount Taylor: U.S. Geological Survey Bulletin 860-A, 29 pp.

Slack, P.B., and Campbell, J.A., 1976, Structural geology of the Rio Puerco fault zone and its relationship to Central New Mexico tectonics; in Woodward, L.A., and Northrop, S.A. eds. Tectonics and Mineral resources of southwestern North America: New Mexico Geological Society Special Publications no. 6, pp. 46-52.

Shomaker, J.W., Beaumont, E.C., and Kottlowski, F.E., 1971, Strippable low-sulfur coal resources of the San Juan Basin in New Mexico and Colorado: New Mexico Bureau of Mines & Mineral Resources Memoir 25, 189 pp.

Shomaker, J.W., and Holt, R.D., 1973, Coal resources of the Southern Ute and Ute Mountain Indian Reservations, Colorado and New Mexico: New Mexico Bureau of Mines & Mineral Resources Circular 134, 22 pp.

Wood, G.H., Kehn, T.M., Carter, M.D., and Culbertson, W.C., 1983, Coal resource classification system of the U.S. Geological Survey: U.S. Geological Survey Circular 891, 65 pp.

APPENDIX A
Data Sources for CRDB-Fruitland Formation

FRUITLAND Bituminous Source	Field	FRUITLAND longitude	Formation latitude	SAN JUAN Total Coal No. of Seams	County
BLM PROJECT-LA PLATA #2		1081258 1081223	365747 365657	Max Min	125 24
BLM PROJECT-SAN JUAN BYPASS		1082426 1082348	364543 364542	Max Min	32 6
CROCDP		1082440 1080821	365854 364436	Max Min	244 33
HAYES AND ZAPP		1082657 1082654	364803 364730	Max Min	19.7 2
LA PLATA MINE PLAN		1081127 1080637	370000 365834	Max Min	798.84 86
NMBM Circular 134		1082352 1081702	365220 365057	Max Min	220.9 35
NMRDI		1082456 1080714	365943 364605	Max Min	266 31
USGS		1081255 1081223	365733 365619	Max Min	99.1 21
USGS BULL 1938, Albert C. Bruce		1081932 1081932	365054 365054	Max Min	8 1
USGS Bulletin 1938 - 3 states Natural Gas		1082125 1082053	365209 365209	Max Min	41 6
USGS Bulletin 1938 - Humble Oil		1082115 1082115	365137 365137	Max Min	16 3
USGS Bulletin 1938 - Jerome P. McHugh		1082004 1082004	365053 365053	Max Min	10 2
USGS OF 78-960		1082327 1082147	364843 364602	Max Min	578.11 49
WESTERN COAL		1082531 1082307	365101 364720	Max Min	72.3 14
WESTERN COAL CO. SJM		1082540 1082326	365159 364602	Max Min	684.6 76

NAVAJO	Field	FRUITLAND	Formation	SAN JUAN	County
CONPASO BURNHAM MINE		1083113 1082644	362220 361949	Max Min	219.2 39
CONSOLIDATION COAL		1083131 1081629	362213 361627	Max Min	330.7 66

Source	longitude	latitude	Total	Coal No.	Max Depth of Seams
CROCDP	1082401 1081844	364328 364108	Max Min	45 8	463
DEPT. INTERIOR FES 77-03	1082000 1081652	361708 361540	Max Min	9 3	14.6
DEPT. INTERIOR FES 77-03	1082437 1081630	361856 361529	Max Min	459.7 87	255.3
EL PASO COAL	1082453 1081617	361855 361530	Max Min	534.6 73	282.5
HAYES AND ZAPP	1082407 1082401	364453 364436	Max Min	15.9 3	51
PROSPECT	1081550 1081550	361621 361621	Max Min	7.3 1	5.5
USGS MF 1076	1082956 1082348	362132 361549	Max Min	25.2 8	6.9
USGS MF 1080	1082938 1082938	363029 363029	Max Min	3.6 1	1
USGS MF-1080	1082901 1082901	363017 363017	Max Min	3.8 1	1.2
USGS MF-1089	1082430 1082407	364437 364350	Max Min	12.4 4	6.6
UTAH INTERNATIONAL	1083300 1082851	363736 362339	Max Min	629.24 116	251.4

BISTI	Field	FRUITLAND	Formation	SAN JUAN	County
ALAMITO COAL-GALLO WASH		1074817 1074400	360619 360141	Max Min	638.2 117
ARCO COAL		1074511 1074511	360242 360242	Max Min	8.6 2
BLM		1080437 1074544	361244 360556	Max Min	140.05 21
CIRC 155 AND PROF PAPER 676		1075338 1075338	360927 360927	Max Min	29 3
CROCDP		1080822 1074407	362626 360447	Max Min	75 13
DENAZIN MINE PLAN		1081243 1081243	361418 361418	Max Min	7 1
GATEWAY MINE PLAN		1081521 1081421	361641 361556	Max Min	120.5 21

Source	longitude	latitude	Total	Coal No.	Max Depth of Seams
MF 1074	1080927 1080927	361535 361535	Max Min	48.4 4	346.2
MF 1117	1075910 1075231	361008 360756	Max Min	345 31	348.8
MF 1118	1075028 1075028	360827 360827	Max Min	23.3 4	235.2
MF 1120	1074643 1074643	360635 360635	Max Min	16 3	435.9
NICKELSON	1081124 1081124	361142 361142	Max Min	3 1	47
NMBM MEM 25	1080551 1080152	361212 361204	Max Min	69 5	317
NMBM OIL & GAS LIBRARY	1081312 1080731	362200 361727	Max Min	94 12	981
NMRDI	1081155 1074427	361545 360544	Max Min	327.95 37	415.4
USGS OF 77-369	1081423 1080800	361510 361139	Max Min	335.1 58	221
USGS OF 80-1289	1081607 1080731	361728 361302	Max Min	568.72 123	363.8
WESTERN COAL BISTI PROJECT	1081545 1081516	361636 361618	Max Min	6.5 2	19
WESTERN COAL-BISTI PROJECT	1081609 1081028	361636 361415	Max Min	135 20	252.3

STAR LAKE Field	FRUITLAND	Formation	MCKINLEY	County
ARCO COAL	1073325 1073325	355823 355823	Max Min	33 1
BLM PROJECT-STAR LAKE EAST	1072440 1072052	355513 355435	Max Min	54 10
BLM PROJECT-STAR LAKE WEST	1073205 1073028	355856 355805	Max Min	123.5 8
CHACO COAL CO.	1073329 1073101	355805 355716	Max Min	25.4 3
CHACO ENERGY CO.	1073256 1072526	355754 355401	Max Min	488 72
CROCDP	1073950 1073745	355957 355846	Max Min	37.2 8

Source	longitude	latitude		Total Coal No. of Seams	Max Depth
MF 1220	1073201 1073201	355906 355906	Max Min	22.3 1	20.2
MF 1248	1072452 1072243	355443 355353	Max Min	85.5 6	158.7
MF 1249	1072125 1072047	355449 355445	Max Min	34.8 2	77.2
NMRDI	1073615 1071929	355902 355454	Max Min	134.15 18	403.05
PEABODY COAL	1073919 1073708	355952 355852	Max Min	45.3 8	146
STAR LAKE MINE PLAN	1073311 1072455	355822 355341	Max Min	663.15 130	264.9
USGS	1072430 1072430	355530 355530	Max Min	6.5 2	260
USGS OF 77-369	1072738 1072142	361020 355543	Max Min	31.6 4	501
USGS TRACT DELINEATION	1072800 1072119	355705 355445	Max Min	53.5 9	314
STAR LAKE Field	FRUITLAND	Formation	SAN JUAN	County	
ALAMITO COAL-GALLO WASH	1074345 1074058	360229 360138	Max Min	326.5 40	286
ARCO COAL	1074617 1073815	360310 360014	Max Min	128.4 12	228
BLM PROJECT-GALLO WASH	1074001 1073822	360215 360147	Max Min	42 4	330
CROCDP	1074400 1073755	361409 360024	Max Min	449.3 57	984
GALLO WASH MINE PLAN	1074315 1074315	360206 360206	Max Min	19.2 4	146.2
MF 1124	1074314 1073805	360637 360221	Max Min	65.7 5	720
NMBM MEM 25	1073930 1073930	360104 360104	Max Min	19.3 2	55.5
NMRDI	1074337 1073830	360349 360043	Max Min	89.7 8	345.6
PEABODY COAL	1074147 1073910	360658 360053	Max Min	67.3 12	192

Source	longitude	latitude	Total No. of Seams	Coal	Max Depth	
STAR LAKE MINE PLAN	1071119 1071119	355409 355409	Max Min	3.5 1	50	
STAR LAKE	Field	FRUITLAND	Formation	SANDOVAL	County	
ARCO COAL		1073624 1073152	355939 355822	Max Min	43.1 4	179
BLM DEAD FILES		1071733 1071015	355410 355317	Max Min	41.7 11	112.6
CROCDP		1073552 1073200	360723 360010	Max Min	51.4 7	988
CROCDP #14		1072152 1072152	355959 355959	Max Min	3 1	661.5
NMRDI		1073518 1070834	360020 355359	Max Min	41.45 6	354.05

Data Sources for CRDB-Menefee Formation

BARKER Bituminous Source	Field	MENEFEE	Formation	SAN JUAN	County
		longitude	latitude	Total Coal No. of Seams	Max Depth
HAYES AND ZAPP		1082900 1081559	365948 365330	Max Min	210.9 24
NMBM CIRC 134		1082137 1082037	365213 365127	Max Min	69.4 11
NMBM OIL & GAS LIBRARY		1083843 1081627	365726 365250	Max Min	102.5 12
HOGBACK Bituminous Source	Field	MENEFEE	Formation	SAN JUAN	County
		longitude	latitude	Total Coal No. of Seams	Max Depth
CROCDP		1082957 1082603	365052 364752	Max Min	59.3 15
HAYES AND ZAPP		1082903 1082831	364823 364540	Max Min	22.1 2
NEWCOMB	Field	MENEFEE	Formation	SAN JUAN	County
NMBM MEM 25		1083743 1083528	362105 361506	Max Min	54 11
NMBM OIL & GAS LIBRARY		1081625 1081612	360533 360428	Max Min	18 5
CHACO CANYON	Field	MENEFEE	Formation	MCKINLEY	County
Source		longitude	latitude	Total Coal No. of Seams	Max Depth
NMBM OIL & GAS LIBRARY		1080313 1074725	355954 354625	Max Min	52 16
SINCLAIR OIL AND GAS NO. 1 SANTA FE-84		1075229 1075229	355046 355046	Max Min	3 1
TIDEWATER OIL SANTA FE - PACIFIC RR-E		1074834 1074834	354704 354704	Max Min	7 2
USBM TECH 569		1075759 1075759	355754 355754	Max Min	3.7 1
USGS BULL 860C		1074748 1074748	355733 355733	Max Min	9 3

Source	longitude	latitude	Total Coal No. of Seams	Max Depth	
W. E. THOMPSON GONSALES NO. 1	1075040 1075040	354938 354938	Max Min	3 1	898
CHACO CANYON Field	MENEFEE	Formation	SAN JUAN	County	
CROCDP	1075207 1074806	360700 360130	Max Min	21.5 7	836.5
NMBM CIRC 154	1074847 1074847	360203 360203	Max Min	10 3	236
USGS OF 80-184	1080314 1080026	360447 360218	Max Min	10.8 3	294.8
CHACRA MESA Field	MENEFEE	Formation	MCKINLEY	County	
CROCDP	1074311 1072805	355401 354323	Max Min	30.50 10.00	904
NMBM OIL & GAS LIBRARY	1074444 1071841	355206 353917	Max Min	190.00 52.00	975
NMBMMR	1073940 1073940	354247 354247	Max Min	4.00 1.00	595
NMRDI	1071833 1071833	354529 354529	Max Min	2.65 1.00	187.85
S. FELDMAN'S URANIUM LOG REPORT	1074021 1074021	354804 354804	Max Min	4.00 1.00	234
USGS BULL 860C	1074244 1072435	355338 354538	Max Min	13.00 4.00	34.6
CHACRA MESA Field	MENEFEE	Formation	SAN JUAN	County	
CROCDP	1074122 1074037	360302 360208	Max Min	36.00 10.00	1000
CHACRA MESA Field	MENEFEE	Formation	SANDOVAL	County	
DANE 1936, PL. 53 NO. 57	1071651 1071651	354628 354628	Max Min	2.70 1.00	2.6
NMBM OF 102	1071522 1070704	354837 354128	Max Min	51.40 13.00	223.9
NMBM OIL & GAS LIBRARY	1072121 1070628	355243 354408	Max Min	115.30 33.00	998.5
NMRDI	1071645 1070651	354934 354155	Max Min	123.00 33.00	447.1

Source	longitude	latitude	Total	Coal	Max Depth
			No. of	Seams	
USGS BULL 860C	1070613	354653	Max	3.00	132.7
	1070613	354653	Min	1.00	
LA VENTANA Field Bituminous	MENEFEE	Formation	SANDOVAL	County	
BLM PROJECT-SAN LUIS MESA	1070525	354414	Max	66.50	291
	1070145	354117	Min	17.00	
BLM TRACT DELINEATION	1070407	354403	Max	40.50	136
	1070149	354230	Min	9.00	
NMBM OF 102	1071140	354052	Max	9.00	221.3
	1071021	353952	Min	2.00	
NMBM OIL & GAS LIBRARY	1071032	354403	Max	20.00	845
	1071032	354401	Min	5.00	
NMRDI	1071052	354315	Max	40.60	509.4
	1070322	354058	Min	10.00	
LA VENTANA Field	MENEFEE	Formation	SANDOVAL	County	
BLM PROJECT-SAN LUIS MESA	1070214	354551	Max	14.00	313
	1070016	354434	Min	4.00	
BLM TRACT DELINEATION	1070106	354503	Max	7.00	46
	1070036	354444	Min	2.00	
DANE 1936 PL. 55, NO. 121, USGS BULL 860-C	1070110	354427	Max	5.50	27.8
	1070110	354427	Min	2.00	
DANE 1936 PL. 55, NO. 124	1070036	354437	Max	3.90	16.5
	1070036	354437	Min	1.00	
DANE 1936, PL. 54 NO. 113	1070122	354757	Max	3.90	16.3
	1070122	354757	Min	1.00	
DANE 1936, PL. 54 NO. 113, USGS BULL 860-C	1070122	354757	Max	2.50	20.5
	1070122	354757	Min	1.00	
DANE 1936, PL. 54 NO. 125, USGS BULL 860-C	1070006	354510	Max	4.60	49.7
	1070006	354510	Min	1.00	
DANE 1936, PL. 54 NO. 151	1065657	355231	Max	5.00	2.8
	1065657	355231	Min	1.00	
DANE 1936, PL. 54 NO. 158	1065445	355700	Max	9.20	10.1
	1065445	355700	Min	2.00	
DANE 1936, PL. 55 NO. 129, USGS BULL 860-C	1070015	354533	Max	2.70	58.5
	1070015	354533	Min	1.00	
DANE 1936, PL. 55 NO. 137	1070044	354821	Max	3.50	11
	1070044	354821	Min	1.00	

Source	longitude	latitude	Total No. of Seams	Coal Max Depth
DANE 1936, PL. 55 NO. 139, USGS BULL 860-C	1070018	354903	Max	3.00
	1070018	354903	Min	1.00
DANE, 1936, USGS BULL 860-C	1070529	355518	Max	23.80
	1065510	354509	Min	6.00
IDEAL BASIC MINE PLAN	1065940	355446	Max	83.40
	1065653	355324	Min	12.00
NMBM OIL & GAS LIBRARY	1070457	355118	Max	4.00
	1070457	355118	Min	1.00
NMRDI	1070435	355457	Max	54.40
	1065647	354619	Min	9.00
SAN MATEO Field				
	MENEFEE	Formation	MCKINLEY	County
BLM PROJECT-LEE RANCH TRACT	1074350	353626	Max	183
	1072923	352947	Min	42
CAPITOL OIL AND GAS	1072834	353602	Max	4.5
	1072834	353602	Min	1
HUNT 1936 USGS BULL 860-B PL. 35 SEC. 145	1073239	353333	Max	5.7
	1073239	353333	Min	1
LEE RANCH MINE	1073937	353340	Max	105.05
	1073433	352951	Min	24
LEE RANCH MINE PLAN	1074219	353608	Max	65.3
	1073825	352942	Min	10
NMBM MEM 25	1073528	353228	Max	6
	1073528	353228	Min	2
NMBM OF 102	1072208	353632	Max	2.5
	1072208	353632	Min	1
NMBM OIL & GAS LIBRARY	1074204	353908	Max	131
	1073440	352403	Min	26
NMRDI	1074356	353839	Max	117.6
	1072619	353012	Min	22
S. FELDMAN'S URANIUM LOG REPORT	1074401	353908	Max	106
	1073320	352933	Min	26
SANTA FE MINING	1073655	353017	Max	30.5
	1073651	352949	Min	7
USGS	1074001	353204	Max	58.9
	1073724	352941	Min	10
USGS-SANTA FE MINING	1074045	353433	Max	140.75
	1073416	352950	Min	22

Source		longitude	latitude	Total Coal No. of Seams	Max Depth
SAN MATEO Bituminous	Field	MENEFEE	Formation	MCKINLEY	County
NMBM OF 102		1072345 1071712	353900 353426	Max Min	12.7 4
NMRDI		1072142 1071945	353900 353848	Max Min	5.55 2
NORTHWESTERN RESOURCES		1072429 1071912	353909 353641	Max Min	26.3 9
SAN MATEO Bituminous	Field	MENEFEE	Formation	SANDOVAL	County
NMBM OF 102		1071825 1071825	353830 353830	Max Min	3.5 1
MONERO Bituminous	Field	MENEFEE	Formation	RIO ARRIBA	County
NMBM BULL 89		1064455 1064455	364635 364635	Max Min	5 1
NMRDI		1065502 1065021	365450 365247	Max Min	5.8 2
ROCHESTER COAL		1065617 1064938	365402 365341	Max Min	13.16 4
STANDING ROCK	Field	MENEFEE	Formation	MCKINLEY	County
BLM		1080849 1080841	355012 354702	Max Min	16 3
CROCDP		1083729 1083729	354055 354055	Max Min	5.5 1
CROWN COAL MINE PLAN		1080344 1080330	354352 354348	Max Min	14.7 2
HUGHES AND HUGHES NO. 1 SANTA FE TRACT 13		1074935 1074935	354101 354101	Max Min	10 3
NMBM MEM 25		1082034 1075059	354839 353952	Max Min	58.6 12
NMBM OIL & GAS LIBRARY		1081358 1074431	355908 353927	Max Min	224.8 39
NMRDI		1080724 1074503	354814 353823	Max Min	51.93 11
S. FELDMAN'S URANIUM LOG REPORT		1080314 1074650	355110 354030	Max Min	57 15
SEARS 1934, PL.14, NO.137		1083427 1083427	354049 354049	Max Min	4 1

Source	longitude	latitude	Total No. of Seams	Coal	Max Depth
SEARS 1934, PL.17, NO.272	1082820 1082820	354204 354204	Max Min	6.4 2	96.3
SEARS 1934, PL.17, NO.274	1082658 1082658	354147 354117	Max Min	7.6 2	21.3
SINCLAIR OIL AND GAS SANTA FE 77 SEVEN	1075718 1075718	354535 354535	Max Min	4 1	402
SOUTH HOSPAH MINE PLAN	1075417 1074515	354145 353839	Max Min	225.9 51	410
USGS TRACT DELINEATION	1085906 1075715	354410 354157	Max Min	57.3 12	115

Data Sources for CRDB- Crevasse Canyon Formation

CHACO CANYON Field	CREVASSE CANYON Formation			MCKINLEY	County
Source	longitude	latitude		Total Coal No. of Seams	Max Depth
S. FELDMAN'S URANIUM LOG REPORT	1080251 1080117	355311 355231	Max Min	10 3	995
MICHAEL WHYTE LOGS	1074838 1074838	360208 360208	Max Min	4 1	948
CROWNPOINT Field	CREVASSE CANYON Formation			MCKINLEY	County
ANACONDA	1083049 1083049	353929 353929	Max Min	11.9 1	317.6
BLM	1080107 1075848	354027 353634	Max Min	9 3	85
BLM PROJECT-DIVIDE TRACT	1075311 1074726	353554 353406	Max Min	54.25 17	226
CROCDP	1083729 1083729	354055 354055	Max Min	14.5 2	174.4
HUNT 1936, PL. 29, NO. 21	1075357 1075357	353258 353258	Max Min	3.5 1	18.3
HUNT 1936, PL. 29, NO. 8	1075254 1075254	353017 353017	Max Min	2.6 1	21.1
HUNT 1936, PL. 31 NO. 63	1074933 1074933	353213 353213	Max Min	2.9 1	31
HUNT 1936, PL. 31 NO. 71	1074710 1074710	353159 353159	Max Min	2.8 1	4
HUNT 1936, PL. 32 NO. 107	1074234 1074234	352409 352409	Max Min	3.3 1	52
HUNT 1936, PL. 32 NO. 108	1074318 1074318	352408 352408	Max Min	3.3 1	52
HUNT 1936, PL. 32 NO. 110	1074155 1074155	352407 352407	Max Min	5.7 2	46.1
HUNT 1936, PL. 32 NO. 117	1074151 1074151	352614 352614	Max Min	5 2	134.3
HUNT 1936, PL. 32 NO. 119	1074045 1074045	352623 352623	Max Min	2.8 1	81
MOBIL	1081708 1080453	354556 353944	Max Min	479.2 113	837
NAVAJO TRIBE WW 15T 513	1075434 1075434	353333 353333	Max Min	15 4	387

Source	longitude	latitude	Total No. of Seams	Coal	Max Depth
NMBM OIL & GAS LIBRARY	1081306 1072804	354037 352724	Max Min	42 12	650
NMRDI	1081034 1075402	354308 353413	Max Min	66.95 21	277.65
NX LAND-UNION CARBIDE	1080809 1080809	353645 353645	Max Min	10 3	370
NZ LAND TETON	1081356 1081356	353907 353907	Max Min	4 1	243
NZ LAND UNION CARBIDE	1080915 1080655	353628 353552	Max Min	6 2	498
NZ LAND WESCO RESOURCES	1080524 1080524	353334 353334	Max Min	6.5 2	403
NZ LAND WESTERN NUCLEAR	1081242 1081028	353823 353757	Max Min	19 5	969
NZ LAND-CONOCO	1080542 1080458	354147 353931	Max Min	13 4	724
NZ LAND-HFC OIL	1080800 1080613	353723 353431	Max Min	24 8	963.5
OIL & GAS WELLS	1080257 1075441	353731 353443	Max Min	69 8	672
S. FELDMAN'S URANIUM LOG REPORT	1084359 1074232	354231 353055	Max Min	69 18	810
SEARS 1934 PL 11, NO. 18	1083838 1083838	353736 353736	Max Min	3.5 1	87.5
SEARS 1934 PL 13, NO. 116	1083802 1083802	354043 354043	Max Min	12 1	179.9
SEARS 1934 PL.16 NO 220	1080522 1080522	353706 353706	Max Min	4.5 1	348.5
SEARS 1934, PL. 13, NO. 105	1084130 1084130	353941 353941	Max Min	6.1 2	48.3
SEARS 1934, PL. 13, NO. 112	1083947 1083947	354019 354019	Max Min	3.1 1	211.2
SEARS 1934, PL. 13, NO. 113	1083852 1083852	353948 353948	Max Min	3.2 1	4.9
SEARS 1934, PL. 15 NO. 159	1082210 1082210	353922 353922	Max Min	2.6 1	15.3
SEARS 1934, PL. 15 NO. 160	1082125 1082125	353905 353905	Max Min	2.8 1	48.3

Source		longitude	latitude	Total Coal No. of Seams	Max Depth	
SEARS 1934, PL. 15 NO. 161		1082103 1082103	353908 353908	Max Min	2.5 1	157.9
SEARS 1934, PL. 15 NO. 162		1082020 1082020	353903 353903	Max Min	6.5 2	148
SEARS 1934, PL. 15 NO. 163		1082007 1082007	353918 353918	Max Min	5.5 1	120.6
SEARS 1934, PL. 15 NO. 164		1082031 1082031	353925 353925	Max Min	3.3 1	24.3
SEARS 1934, PL. 15 NO. 191		1081450 1081450	353846 353846	Max Min	2.5 1	100.9
SEARS 1934, PL. 15 NO. 193		1081337 1081337	353806 353806	Max Min	4 1	212.3
SEARS 1934, PL. 15 NO. 199		1080833 1080833	354023 354023	Max Min	3.5 1	42.6
SEARS 1934, PL. 15 NO. 205		1080802 1080802	353923 353923	Max Min	2.6 1	6.1
SEARS 1934, PL. 16 NO. 212		1080803 1080803	353739 353739	Max Min	5.8 2	156
SEARS 1934, PL. 16, NO. 214		1080633 1080633	353657 353657	Max Min	2.5 1	127.1
SEARS 1934, PL. 16, NO. 228		1080658 1080658	353415 353415	Max Min	4.1 1	252.4
SEARS 1934, PL. 16, NO. 230		1080537 1080537	353435 353435	Max Min	2.8 1	226.9
SEARS 1934, PL. 16, NO. 234		1080503 1080503	353615 353615	Max Min	5 1	164.5
SEARS 1934, PL. 16, NO. 235		1080415 1080415	353601 353601	Max Min	2.5 1	180.7
SEARS 1934, PL. 16, NO. 240		1080319 1080319	353413 353413	Max Min	8.5 2	93.1
SEARS 1934, PL. 16, NO. 241		1080232 1080232	353426 353426	Max Min	7.1 2	115.8
SEARS 1934, PL. 16, NO. 244		1080635 1080635	353527 353527	Max Min	5.4 2	60.3
SEARS 1934, PL. 16, NO. 2476		1080102 1080102	353535 353535	Max Min	3.2 1	41.8
SEARS 1934, PL. 16, NO. 249		1080101 1080101	353430 353430	Max Min	4.5 1	119

Source	longitude	latitude	Total No. of Seams	Coal Max	Depth
SEARS 1934, PL. 16, NO. 253	1075937 1075937	353316 353316	Max Min	6.6 2	117.1
SEARS 1934, PL. 16, NO. 256	1075937 1075937	353234 353234	Max Min	11.6 3	61.1
SEARS 1934, PL.12, NO.49	1082940 1082940	353903 353903	Max Min	3.5 1	7.5
SEARS 1934, PL.14 NO.125	1083248 1083248	354408 354408	Max Min	5 1	37.3
SEARS 1934, PL.14 NO.153	1082732 1082732	353916 353916	Max Min	7.7 2	68.3
SEARS 1934, PL.14, NO.123	1083420 1083420	354327 354327	Max Min	8 1	85
SEARS 1934, PL.14, NO.124	1083258 1083258	354257 354257	Max Min	2.8 1	28.5
SEARS 1934, PL.14, NO.130	1083016 1083016	354314 354314	Max Min	3.8 1	25.8
SEARS 1934, PL.14, NO.132	1082917 1082917	354257 354257	Max Min	12.1 3	109
SEARS 1934, PL.14, NO.133	1082549 1082549	354253 354253	Max Min	10.4 3	70
SEARS 1934, PL.14, NO.134	1082504 1082504	354152 354152	Max Min	4.3 1	75.2
SEARS 1934, PL.14, NO.136	1082508 1082508	354142 354142	Max Min	5.6 2	76.4
SEARS 1934, PL.14, NO.141	1083213 1083213	353930 353930	Max Min	6.2 2	99.5
SEARS 1934, PL.14, NO.146	1083014 1083014	354013 354013	Max Min	10 3	51.3
SEARS 1934, PL.14, NO.148	1082944 1082944	354022 354022	Max Min	2.5 1	20.4
SEARS 1934, PL.14, NO.151	1082748 1082748	354002 354002	Max Min	5.4 2	115.1
SEARS 1934, PL.14, NO.155	1082552 1082552	353908 353908	Max Min	3.1 1	25.3
SEARS 1934, PL.14, NO.157	1082354 1082354	353932 353932	Max Min	11.5 3	20.7
SEARS 1934, PL.15 NO.171	1081706 1081706	354230 354230	Max Min	4.1 1	57.2

Source	longitude	latitude		Total Coal	Max Depth
			No. of Seams		
SEARS 1934, PL.15, NO.167	1081848 1081848	354042 354042	Max Min	2.5 1	48.3
SEARS 1934, PL.15, NO.169	1081742 1081742	354153 354153	Max Min	2.5 1	36.4
SEARS 1934, PL.15, NO.174	1081713 1081713	354204 354204	Max Min	3.5 1	48.2
SEARS 1934, PL.15, NO.175	1081715 1081715	354149 354149	Max Min	3.5 1	63.8
SEARS 1934, PL.15, NO.176	1081722 1081722	354128 354128	Max Min	13.1 3	160.3
SEARS 1934, PL.15, NO.177	1081655 1081655	354107 354107	Max Min	10.8 3	141.9
SEARS 1934, PL.15, NO.178	1081647 1081647	354042 354042	Max Min	6.1 2	128.6
SEARS 1934, PL.15, NO.180	1081748 1081748	351748 351748	Max Min	5 2	117.2
SEARS 1934, PL.15, NO.181	1081738 1081738	353013 353013	Max Min	2.5 1	104.4
SEARS 1934, PL.15, NO.184	1081838 1081838	353910 353910	Max Min	4 1	26.7
SEARS 1934, PL.15, NO.185	1081808 1081808	353857 353857	Max Min	6.1 2	296
SEARS 1934, PL.15, NO.186	1081738 1081738	353842 353842	Max Min	9.1 3	265.4
UNITED ELECTRIC COAL CO.	1080530 1075644	354056 353631	Max Min	21.4 7	76

GALLUP	Field	CREVASSSE CANYON	Formation	MCKINLEY	County
BOKUM CORP NO.78		1083338 1083338	351523 351523	Max Min	13.8 2
CARBON COAL		1084218 1084218	351844 351844	Max Min	6.5 2
DOBBIN 1932, UNPUB. MAP NO. 43		1085800 1085800	353222 353222	Max Min	3 1
DOBBIN 1932, UNPUB. MAP NO. 65		1085737 1085737	353352 353352	Max Min	2.5 1
MCKINLEY MINE PLAN		1090105 1085501	354433 353643	Max Min	573 120

Source	longitude	latitude	Total No. of Seams	Coal	Max Depth
NAVAJO TRIBE	1084537 1084537	352006 352006	Max Min	2.7 1	230.5
NMBM OF 154	1084533 1084118	352005 351640	Max Min	24 7	587
NMBM OF 154-UTAH INT'L	1084142 1084142	351847 351847	Max Min	6.9 2	855
NMBM OIL & GAS LIBRARY	1083844 1083844	351821 351821	Max Min	12.6 3	898
PITTSBURG & MIDWAY	1085829 1083749	354234 352415	Max Min	207.28 53	858
S. FELDMAN'S URANIUM LOG REPORT	1083433 1083433	353745 353745	Max Min	4 1	356
SEARS 1934, PL. 11, NO. 19	1083822 1083822	353720 353720	Max Min	4 1	133.9
SEARS 1934, PL. 11, NO. 5	1083940 1083940	353613 353613	Max Min	2.9 1	137.3
SEARS 1934, PL. 11, NO. 8	1083930 1083930	353702 353702	Max Min	3.6 1	137.3
SOUTHWEST FOREST INDUSTRIES	1084006 1083758	352829 352619	Max Min	66.8 17	324.8
USGS OF 77-369	1083957 1083939	352750 352738	Max Min	23 7	201
USGS TRACT DELINEATION	1085037 1084922	352835 352507	Max Min	31.5 10	255
UTAH INTERNATIONAL	1084633 1084633	351825 351825	Max Min	5.5 2	185
USBM TECH 569	1083757 1083757	354136 354136	Max Min	5 1	5

ZUNI	Field	CREVASSE CANYON	Formation	MCKINLEY	County
CARBON COAL CO.		1083538 1081517	351240 351226	Max Min	33.5 8
GALLUP	Field Bituminous	CREVASSE CANYON	Formation	MCKINLEY	County
CARBON COAL		1084347 1084226	354226 352846	Max Min	895.25 200
CARBON COAL MINE PLAN		1084304 1084304	352924 352924	Max Min	2.5 1

Source	longitude	latitude	Total No. of Seams	Coal	Max Depth
CITY OF GALLUP, RAY NO. 1	1084731 1084731	353814 353814	Max Min	29 8	990.5
CONOCO URANIUM	1085211 1084125	353208 352940	Max Min	12.2 4	216
DOBBIN 1932, UNPUB. MAP NO. 59	1085834 1085834	353747 353747	Max Min	3 1	4.5
DOBBIN 1932, UNPUB. MAP NO. 81	1085745 1085745	353752 353752	Max Min	2.5 1	10
EBASCO REPORT	1084420 1084420	353344 353344	Max Min	11 3	440
MCKINLEY MINE PLAN	1085750 1085611	353721 353510	Max Min	74 15	89
NAVAJO TRIBE 16T-550	1085656 1085656	353832 353832	Max Min	18.5 5	960
NMBM OIL & GAS LIBRARY	1084602 1084602	353720 353720	Max Min	15 4	976
NMRDI	1085456 1084249	353713 352850	Max Min	141.58 33	499.95
PITTSBURG & MIDWAY	1090054 1085513	353901 352736	Max Min	458.83 93	809
S. FELDMAN'S URANIUM LOG REPORT	1085938 1084309	353807 353501	Max Min	46 12	982
SEARS 1925, PL. 11, NO. D12, USGS BULL 767	1084736 1084736	353258 353258	Max Min	13.7 4	440.8
SEARS 1925, PL. 14, NO. D118, USGS BULL	1084522 1084522	353358 353358	Max Min	16.9 4	340.2
SEARS 1925, PL.15, DH NO.24, USGS BULL 767	1084420 1084420	353349 353349	Max Min	10.9 3	426.4
SEARS 1925, PL.8, NO.62, USGS BULL 767	1084214 1084214	353654 353654	Max Min	2.5 1	42.6
SEARS 1934, PL. 7, NO. 3, USGS BULL 767	1084439 1084439	353051 353051	Max Min	3.9 1	107.4
TUSCON GAS & ELECTRIC	1085113 1084929	353429 353105	Max Min	63.8 17	252
USBM TECH 569	1085111 1084140	353444 352957	Max Min	41.09 12	8.6
USGS BULL 767	1084930 1084303	353528 352858	Max Min	377.4 85	906

Source	longitude	latitude	Total Coal No. of Seams	Max Depth
E. MT. TAYLOR Field	CREVASSE CANYON	Formation	CIBOLA	County
USGS BULL 860-B	1072346	351357	Max Min	2.5 1
RIO PUERCO Field	CREVASSE CANYON	Formation	BERNALILLO	County
BLM TRACT DELINEATION	1070518	350307	Max Min	3 1
USGS BULL 860-B	1070409	351032	Max Min	12.1 4
USGS BULL 860-B	1064914	352823	Max Min	10.7 2
S. MT. TAYLOR Field	CREVASSE CANYON	Formation	CIBOLA	County
USGS BULL 860-B	1074307	351303	Max Min	29.3 7
USGS-BIA ACOMA REPORT	1074357	351002	Max Min	2.5 1
SAN MATEO Field	CREVASSE CANYON	Formation	MCKINLEY	County
NMBM OIL & GAS LIBRARY	1073855	353138	Max Min	45.5 11
S. FELDMAN'S URANIUM LOG REPORT	1074259	353909	Max Min	18 4
STANDING ROCK Field	CREVASSE CANYON	Formation	MCKINLEY	County
HUGHES AND HUGHES NO. 1 SANTA FE TRACT 13	1074935	354101	Max Min	2.5 1
NMBM OIL & GAS LIBRARY	1081117	355658	Max Min	19.5 6
S. FELDMAN'S URANIUM LOG REPORT	1080207	355118	Max Min	7 2

Data Sources for CRDB- Gallup Sandstone

CROWNPOINT Source	Field	GALLUP longitude	Formation latitude	MCKINLEY		County
				Total No. of Seams	Coal Max Depth	
CONFIDENTIAL		1080953	354327	Max	4	936
		1080953	354327	Min	1	
MOBIL		1081544	354357	Max	22.3	911
		1080956	354203	Min	6	
WESTERN NUCLEAR		1081023	352927	Max	23	178.5
		1080952	352923	Min	3	
GALLUP	Field	GALLUP	Formation	MCKINLEY	County	
DOBBIN 1932, UNPUB. MAP NO. 64		1085804	353435	Max	4	30.2
		1085804	353435	Min	1	
NMBM OF 154		1084526	352101	Max	3	962.5
		1084526	352101	Min	1	
S. FELDMAN'S URANIUM LOG		1085938	353807	Max	12	743
		1085507	353740	Min	4	
ZUNI	Field	GALLUP	Formation	CIBOLA	County	
USGS		1083428	355707	Max	8.5	388.8
		1083357	355628	Min	3	
CARBON COAL CO.		1084039	351319	Max	3.3	191.9
		1084039	351319	Min	1	
HAMILTON BROS.		1083816	350810	Max	5.4	114.4
		1083816	350810	Min	2	
USGS		1083456	355835	Max	9.2	130.6
		1083456	355835	Min	3	
USGS BULL 767		1084403	351238	Max	58.5	260
		1083546	350502	Min	10	

APPENDIX B

Weighted Averages-Fruitland Formation

Fruitland Field		lb_sulfur/ mbtu				Averages by Township		
		mbtu	mbtu/ton	%ash	wtd avg	lb_sulfur/ mbtu	mbtu/ton	%ash
-108.41	36.7133	0.69	19	20.1	1 29N	15W		
-108.41	36.7575	0.55	22	9.3	1 29N	15W		
-108.42	36.7606	0.84	20	18.2	1 29N	15W		
-108.42	36.7569	0.55	22	9.9	1 29N	15W		
-108.43	36.7619	0.85	19	18.8	1 29N	15W	0.73	20.29 15.80 Avg
-108.44	36.7611	0.66	21	13.9	1 29N	15W	0.14	1.28 4.39 Std
-108.44	36.6769	0.95	19	20.4	1 29N	15W	7	7 7 no.
-108.38	36.8147	2.29	21	12.7	1 30N	15W		
-108.39	36.8181	1.24	20	16.54	1 30N	15W		
-108.4	36.8506	0.79	21.3	14.3	1 30N	15W		
-108.4	36.8256	0.91	21	15.43	1 30N	15W		
-108.4	36.82	0.52	23	8.3	1 30N	15W		
-108.4	36.8106	1.15	20	19.28	1 30N	15W		
-108.4	36.7964	1.01	20	17.32	1 30N	15W		
-108.4	36.7889	0.82	20	17.82	1 30N	15W		
-108.4	36.7744	0.75	20	17.04	1 30N	15W		
-108.4	36.8325	0.59	21	15.93	1 30N	15W		
-108.4	36.8397	0.73	22	13.18	1 30N	15W		
-108.4	36.8042	0.71	21	16.72	1 30N	15W		
-108.4	36.7672	1.01	19.74	18.86	1.0001 30N	15W		
-108.4	36.8611	0.72	22.02	11.36	1 30N	15W		
-108.4	36.8611	0.69	21.97	11.57	1 30N	15W		
-108.41	36.7681	0.76	19.8	18.28	1 30N	15W		
-108.41	36.8256	0.84	19	19.37	1 30N	15W		
-108.41	36.8106	1.36	21	16.33	1 30N	15W		
-108.41	36.7889	0.82	21	14.91	1 30N	15W		
-108.41	36.7817	0.74	20.59	16.6	1 30N	15W		
-108.41	36.7672	0.87	19.3	18.24	0.9998 30N	15W		
-108.41	36.8106	1.33	21	15.74	1 30N	15W		
-108.41	36.8325	0.58	22	13.75	1 30N	15W		
-108.41	36.7744	0.78	20	17.19	1 30N	15W		
-108.41	36.8472	0.73	20.57	15.21	1 30N	15W		
-108.41	36.8397	0.76	20.65	16.43	0.9999 30N	15W		
-108.41	36.8367	0.71	21	14.82	1 30N	15W		
-108.41	36.7875	0.99	19.78	19.6	1 30N	15W		
-108.41	36.7744	0.99	20	17.26	1 30N	15W		
-108.42	36.8158	1.1	20	16.55	1 30N	15W		
-108.42	36.8325	0.77	20.49	15.78	1 30N	15W		
-108.42	36.8256	1.11	20.2	15.99	1 30N	15W		
-108.42	36.8039	0.35	17	24.66	1 30N	15W		
-108.42	36.7964	0.79	19	15.67	1 30N	15W		
-108.42	36.7672	0.83	19	17.56	1 30N	15W		
-108.42	36.8181	0.87	19.76	17.41	1 30N	15W		
-108.42	36.8397	0.7	20.97	13.34	1 30N	15W		
-108.42	36.7814	0.89	20	15.85	1 30N	15W		
-108.42	36.8178	0.86	21	13.2	1 30N	15W		
-108.42	36.7964	0.81	20	17.43	1 30N	15W		
-108.42	36.8397	0.88	18.17	14	1 30N	15W		
-108.42	36.8036	1.18	19	19.7	1 30N	15W		
-108.43	36.7672	0.69	19	18.31	1 30N	15W		
-108.43	36.8325	0.65	21	11.9	1 30N	15W		
-108.43	36.7892	0.62	21	15.17	1 30N	15W	0.87	20.37 15.94 Avg
-108.43	36.7817	0.72	22	13.04	1 30N	15W	0.29	1.09 2.71 Std
-108.44	36.7647	0.82	20	13.7	1 30N	15W	47	47 47 no.
-108.36	36.87	0.93	19	17.64	1 31N	15W		

Weighted Averages-Fruitland Formation
Averages by Township

-108.37	36.8694	1.04	19	19.84	1	31N	15W	1.03	19.76	16.66	Avg
-108.39	36.8611	1.01	20	15.92	1	31N	15W	0.08	0.85	2.41	STD
-108.39	36.8539	1.15	21.05	13.24	1	31N	15W		4	4	no.
-108.08	36.9725	0.61	23	13.1	1	32N	12W				
-108.12	36.9953	0.73	19.84	26.05	1	32N	12W				
-108.12	36.9953	0.8	18.68	28.11	1	32N	12W				
-108.13	36.9939	1	12.72	29.29	1	32N	12W				
-108.13	36.9925	1.07	16	19.09	1	32N	12W				
-108.13	36.9953	0.49	20	22.91	1	32N	12W				
-108.13	36.9967	0.57	21.45	19.77	1	32N	12W				
-108.13	36.9956	0.52	20	21.37	1	32N	12W				
-108.13	36.9956	0.41	25	12.5	1	32N	12W				
-108.13	36.9936	0.56	20	26.06	1	32N	12W				
-108.13	36.9956	0.87	20	25.06	1	32N	12W				
-108.13	36.9897	0.79	14	18.17	1	32N	12W				
-108.14	36.9961	0.4	23	14.01	1	32N	12W				
-108.13	36.9956	0.49	20.59	18.92	0.9543	32N	12W				
-108.14	36.9922	0.47	21	20.4	1	32N	12W				
-108.14	36.9964	0.51	21	20.97	1	32N	12W				
-108.14	36.9897	0.49	22.4	18.17	1	32N	12W				
-108.14	36.9878	1.15	15	25.41	1	32N	12W	0.66	19.55	21.06	Avg
-108.15	36.9856	0.53	18.77	21.67	0.925	32N	12W	0.22	3.04	4.58	Std
-108.17	36.9825	0.76	18.52	20.25	0.9131	32N	12W	20	20	20	no.
-108.15	36.9869	0.71	19.03	22.52	0.9381	32N	13W				
-108.15	36.9853	0.81	20.41	20.31	1	32N	13W				
-108.15	36.9842	0.8	19.52	26.34	1	32N	13W				
-108.16	36.9844	0.65	19.95	23.52	1.0001	32N	13W				
-108.17	36.9803	0.65	20.14	21.41	1	32N	13W				
-108.17	36.9867	1.09	17.75	29.75	1	32N	13W				
-108.18	36.9825	0.58	22	19.17	1	32N	13W				
-108.19	36.9806		25	10	1	32N	13W				
-108.19	36.9792	0.5	24	11	1	32N	13W				
-108.2	36.9736		25	8.4	1	32N	13W	0.79	21.22	18.91	Avg
-108.21	36.9675	1.13	23	11.9	1	32N	13W	0.20	2.39	6.65	STD
-108.22	36.9492	0.93	18.87	22.56	0.9726	32N	13W	10	12	12	no.
Avg		0.81	20.27	17.50							
STD		0.27	1.96	4.56							
no		88	90	90							

Weighted Averages-Fruitland Formation

Navajo Field

	lb/sulfur	mbtu/ton	%ash	Wtd Avg			Averages by Township		
	lb_sulfur/	Mbtu	Mbtu/ton	%Ash					
-108.27	36.2744	0.42	16.87	19.43	1 24N	14W			
-108.34	36.2742	0.69	18	16.27	1 24N	14W	0.59	17.57	18.67 Avg
-108.38	36.2936	0.51	18.12	18.54	1 24N	14W	0.13	0.52	1.54 Std
-108.38	36.3158	0.73	17.28	20.45	1 24N	14W	4	4	4 no
-108.29	36.4458	1.34	15.88	27.14	0.9999 24N	15W	(discounted)		
-108.43	36.3156	0.98	19.4	15.89	1 24N	15W			
-108.43	36.2742	0.81	18	20.84	1 24N	15W			
-108.45	36.3625	0.92	16.82	22.95	1 24N	15W			
-108.45	36.3458	0.58	17.95	18	1 24N	15W	0.76	18.59	17.93 Avg
-108.47	36.3158	0.59	21	9.67	1 24N	15W	0.15	1.32	4.31 Std
	36.3625	0.7	18.39	20.24	1.0001 25N	15W	6	6	6 No.
-108.5	36.3158	1.27	18	19.29	1 24N	16W			
-108.53	36.3458	0.77	18.36	16.91	1 24N	16W	**		
-108.51	36.3961	0.69	15.94	21.13	1 25N	16W			
-108.51	36.4261	0.88	18.04	20.76	0.9999 25N	16W	0.86	17.62	20.03 Avg
-108.52	36.4172	0.99	18.23	19.25	0.9999 25N	16W	0.11	0.97	0.93 STd
-108.53	36.4142	0.88	18.25	18.96	1 25N	16W	3	3	3 no.
-108.51	36.4403	0.69	18.08	19.92	1 26N	16W			
-108.53	36.5067	0.64	17.37	14.08	0.904 26N	16W	**		
-108.48	36.5069	0.72	18.93	19.38	1.0001 27N	16W			
-108.5	36.5242	0.93	18.34	20.54	1 27N	16W			
-108.5	36.5583	0.82	17.84	22.02	1 27N	16W			
-108.51	36.5336	0.99	19.06	17.81	1.0001 27N	16W			
-108.51	36.5464	1.15	17.29	23.12	1 27N	16W			
-108.51	36.5061	0.91	18.26	19.01	1 27N	16W	0.90	17.91	20.71 Avg
-108.52	36.5633	0.65	16.44	20.96	0.9231 27N	16W	0.15	0.85	1.77 Std
-108.52	36.5844	0.99	17.13	22.83	1 27N	16W	8	8	8 no
-108.47	36.6125	2.07	19.19	16.6	1 28N	16W			
-108.47	36.6028	0.53	19	18.7	1 28N	16W			
-108.48	36.6267	0.84	18.3	19.88	1 28N	16W	0.71	18.72	18.72 Avg
-108.5	36.6208	0.75	18.19	21.45	0.9999 28N	16W	0.11	0.40	1.80 Std
-108.51	36.595	0.72	18.94	16.99	0.9999 28N	16W	4	5	5 no.
Avg		0.81	18.03	19.34					
STd		0.21	1.02	3.03					
no		31	32	32					

Weighted Averages-Fruitland Formation

BISTI Field	lb_sulfur/						Averages by Township			
	Mbtu	Mbtu/ton	%ash	wtd avg	t.	r.	lb_sulfur/	mbtu	mbtu/ton	%ash
-107.72	36.027	0.46	21	7.59	1	21N	9W			
-107.74	36.0414	0.87	16	26.24	1	21N	9W			
-107.75	36.0486	0.32	18	17.45	1	21N	9W			
-107.75	36.0564	0.55	16	23.04	1	21N	9W			
-107.76	36.0636	0.6	16	23.5	1	21N	9W			
-107.77	36.0708	0.75	16	25.36	1	21N	9W			
-107.79	36.0856	0.6	16	24.93	1	21N	9W	0.58	17.38	19.97 Avg
-107.8	36.0814	0.49	20	11.66	1	21N	9W	0.16	1.93	6.55 STd
-107.87	36.1236	0.69	17.17	21.32	0.9996	22N	10W	8	8	8 no.
-107.88	36.1458	0.52	19	16.1	1	22N	10W			
-107.88	36.2019	0.59	17	21.8	1	22N	10W			
-107.91	36.2117	0.58	15.96	25.58	1	22N	10W	0.59	17.54	19.26 Avg
-107.92	36.1394	0.64	16.8	17.67	1	22N	10W	0.04	1.22	3.89 STd
-107.93	36.1811	0.64	18.95	15.16	1	22N	10W	5	5	5 no.
-107.74	36.0958	0.58	15.62	23.18	1	22N	9W			
-107.78	36.1122	0.76	16	28.65	1	22N	9W	0.69	16.18	24.44 Avg
-107.81	36.1089	0.69	16.11	24.15	1	22N	9W	0.07	0.51	2.58 STd
-107.84	36.1286	0.71	17	21.76	1	22N	9W	4	4	4 no.
-107.96	36.1844	0.61	14.11	26.37	1	23N	11W			
-107.99	36.1989	0.63	13.94	18.49	1	23N	11W	0.54	15.6875	21.565 Avg
-108.02	36.2014	0.34	17.61	19.61	1	23N	11W	0.12	1.67	3.02 Std
-108.03	36.1914	0.58	17.09	21.79	1	23N	11W	4	4	4 no.
-108.03	36.2356	0.52	15.24	21.76	0.9304	23N	12W			
-108.06	36.2356	0.55	18.16	14.65	1	23N	12W			
-108.08	36.2017	0.22	19.12	17.94	0.9999	23N	12W			
-108.09	36.2403	0.51	18	17.6	1	23N	12W			
-108.1	36.2033	0.67	15	19.3	1	23N	12W			
-108.13	36.2625	0.49	18.65	16.78	0.9932	23N	12W			
-108.13	36.2256	0.58	19.05	20.9	1	23N	12W			
-108.13	36.2389	0.5	21.42	13.32	1	23N	12W	0.50	18.45	16.77 Avg
-108.15	36.2336	0.48	21	12.3	1	23N	12W	0.11	1.97	3.16 Std
-108.16	36.2533	0.52	18.81	13.13	1.0001	23N	12W	10	10	10 no.
-108.17	36.255	0.72	15.33	25.58	1	23N	13W			
-108.2	36.2572	0.71	16.98	19.31	1	23N	13W			
-108.21	36.2447	0.7	18.12	17.42	1	23N	13W			
-108.22	36.2514	0.52	23	10.5	1	23N	13W			
-108.24	36.2514	0.79	18.13	18.31	1	23N	13W			
-108.24	36.2517	0.59	17.24	17.56	1	23N	13W			
-108.25	36.2686	0.5	16.49	20.21	1	23N	13W	0.64	18.25	17.31 Avg
-108.25	36.2394	0.63	20	12.3	1	23N	13W	0.09	2.12	4.23 STd
-108.27	36.2369	0.56	19	14.6	1	23N	13W	9	9	9 no.
-108.24	36.2444	0.59	17	28.7	1	24N	13W			
-108.24	36.2692	0.64	18	13.1	1	24N	13W			
-108.25	36.275	0.53	19	16.2	1	24N	13W			
-108.27	36.2747	0.64	19.14	11.85	1	24N	13W	0.58	18.64	16.46 Avg
-108.27	36.2817	0.7	18.68	22.69	1	24N	13W	0.10	0.94	7.38 STd
-108.27	36.2619	0.4	20	6.2	1	24N	13W	6	6	6 no.
Avg		0.58	17.70	18.80						
Std		0.12	1.93	5.34						
no.		47	47	47						

Weighted Averages-Fruitland Formation

Star Lake field		lb_sulfur/				Averages by Township				
		Mbtu	mbtu/ton	%ash	wtd avg		lb_sulfur	Mbtu	Mbtu/ton	%Ash
-107.14	35.9128	0.96	15	30.7	1 19N	3W	**			
-107.2	35.9125	0.81	16	26.03	1 19N	4W				
-107.24	35.9097	0.75	17	24.66	1 19N	4W	**			
-107.36	35.9153	0.82	17	24.59	1 19N	5W				
-107.39	35.9133	0.6	18.22	22.41	1 19N	5W	**			
-107.42	35.9086	0.86	16.8	25.92	1 19N	6W				
-107.42	35.8961	0.44	18	15.55	1 19N	6W				
-107.42	35.9106	0.65	15.87	26.86	1 19N	6W	0.66	16.98	22.97	Avg
-107.43	35.9086	0.67	18.51	19.49	1 19N	6W	0.13	1.12	4.64	Std
-107.46	35.9103	0.69	15.72	27.03	1 19N	6W	5	5	5	no.
-107.35	35.9217	0.63	18	19.18	1 20N	5W				
-107.35	35.9169	0.62	18	21.71	1 20N	5W				
-107.38	35.9286	0.46	18.31	20.81	1 20N	5W				
-107.38	35.9186	0.63	18	22.06	1 20N	5W	0.59	17.86	21.71	Avg
-107.41	35.9178	0.59	18.27	22.42	1 20N	5W	0.06	0.58	1.49	Std
-107.42	35.9086	0.6	16.59	24.06	1 20N	5W	6	6	6	no.
-107.44	35.9486	0.63	17.39	23.38	1 20N	6W				
-107.44	35.9219	0.7	18	21.83	1 20N	6W				
-107.45	35.9214	0.54	16.5	27.23	1 20N	6W				
-107.46	35.9297	0.84	18	22.72	1 20N	6W				
-107.46	35.9294	0.75	17	24.77	1 20N	6W				
-107.48	35.9367	0.63	17.5	21.57	0.99 20N	6W				
-107.49	35.9364	0.59	16.35	25.33	1 20N	6W				
-107.49	35.9394	0.6	17	24.82	1 20N	6W				
-107.51	35.9653	0.64	17	26.6	1 20N	6W				
-107.51	35.9519	0.65	19	19.94	1 20N	6W	0.68	17.31	23.94	Avg
-107.52	35.9794	0.64	18	22.34	1 20N	6W	0.10	0.81	2.22	Std
-107.52	35.9611	0.9	16	26.71	1 20N	6W	12	12	12	no.
-107.53	35.9681	0.58	19.11	18.42	1 20N	7W				
-107.54	35.9783	0.59	17	22.91	1 20N	7W				
-107.54	35.9628	0.68	19.18	16.38	1 20N	7W				
-107.55	35.9542	0.57	17.18	22.01	1 20N	7W				
-107.56	35.9686	0.4	16	28.98	1 20N	7W	0.57	17.58	22.01	Avg
-107.6	35.9836	0.59	17	23.35	1 20N	7W	0.08	1.17	4.00	Std
-107.59	36.0056	0.39	17	22.99	1 21N	7W	6	6	6	no.
-107.56	36.0122	0.76	18.21	19.96	1 21N	8W				
-107.64	36.0322	0.5	18.36	15.61	1 21N	8W				
-107.66	36.0181	0.62	16.64	23.46	1 21N	8W				
-107.67	36.0314	0.63	16	27.76	1 21N	8W				
-107.68	36.0403	0.53	16	22.88	1 21N	8W				
-107.69	36.0342	0.54	17	21.15	1 21N	8W				
-107.71	36.0478	0.61	16.24	22.98	1.001 21N	8W				
-107.72	36.0675	0.91	22	9.5	1 21N	8W	0.65	17.36	20.64	Avg
-107.73	36.0639	0.82	16.17	23.18	1 21N	8W	0.13	1.74	4.76	Std
-107.73	36.0342	0.55	17	19.94	1 21N	8W	10	10	10	no.
avg		0.65	17.31	22.72						
std		0.13	1.21	3.81						
no		45	45	45						

Weighted Averages-Menefee Formation
Averages by Township

CHACRA	UPPER	lbs_sulfur				Wtd Avg	lbs_sulfur	Mbtu	Mbtu/ton	%ash
		Mbtu	Mbtu/ton	%ash						
-107.11	35.8119	1.18	18.94	11.35	1	18N	3W			
-107.14	35.8261	1.17	21	5.66	1	18N	3W			
-107.14	35.8175	0.94	19.69	11.95	1.0006	18N	3W			
-107.14	35.8	1.63	19.8	10.16	1	18N	3W			
-107.15	35.7814	1.04	19.42	7.11	1	18N	3W	1.00	20.08	8.89 Avg
-107.16	35.7703	0.6	20.16	8.97	1	18N	3W	0.32	0.87	2.02 Std
-107.16	35.7569	0.57	19.76	7.53	1	18N	3W	8	8	8 no.
-107.18	35.7756	0.9	21.84	8.39	1	18N	3W			
-107.2	35.7883	0.67	22.91	7.45	1.003	18N	4W	0.45	21.54	7.11 Avg
-107.24	35.8008	0.26	19.27	7.02	0.99	18N	4W	0.17	1.62	0.25 Std
-107.28	35.7717	0.41	22.45	6.85	1	18N	4W	3	3	3 no.
-107.31	35.7583	0.32	19.9	11.93	1	18N	5W			
-107.33	35.8125	0.33	19.69	17.5	1	18N	5W	0.27	20.18	14.40 Avg
-107.4	35.7739	0.17	20.95	13.77	1	18N	5W	0.07	0.55	2.32 Std
	Avg	0.73	20.41	9.69				3	3	3 no
	Std	0.41	1.19	3.17						
	no.	14	14	14						

LA Ventan upper
Lbs Sulfur/

	Lbs Sulfur/	Mbtu	Mbtu/ton	% Ash	Wtd Avg	Lbs Sulfur/	Mbtu	Mbtu/ton	% Ash	
-107.04	35.8158	0.66	21.09	6.38	1	18N	2W	0.93	21.17	6.36 Avg
-107.08	35.8142	1.19	21.24	6.33	0.999	18N	2W	0.27	0.07	0.02 Std
0	0	0.98	21.22	7.54	1	19N	1W	2	2	2 no
-106.94	35.9111	2.04	20.62	4.8	1	19N	1W			
-106.95	35.8917	1.09	20.36	7.14	1	19N	1W			
-106.95	35.8858	1.68	20.9	6.01	1	19N	1W			
-106.95	35.9056	1.16	19.43	8.5	1	19N	1W			
-106.95	35.9128	1.69	19.74	9.36	1	19N	1W			
-106.96	35.8844	1.63	21.03	7.32	1	19N	1W			
-106.96	35.8917	1.28	20.72	5.17	1	19N	1W			
-106.96	35.9061	1.49	16.88	25	1	19N	1W			
-106.96	35.8431	0.8	17.58	4.5	1	19N	1W			
-106.97	35.8919	1.7	21.84	6.96	1	19N	1W			
-106.97	35.9061	1.17	21.43	10.2	1	19N	1W			
-106.97	35.9125	0.79	20.97	6.5	1	19N	1W	1.38	20.38	8.36 Avg
-106.98	35.8594	2.56	21.88	7.6	1	19N	1W	0.51	1.40	4.72 Std
-106.98	35.8433	0.6	21.07	8.77	1	19N	1W	15	15	15 no.
0	0	0.64	20.72	5.36	1	19N	2W			
-107.01	35.8328	1.25	20.86	7.3	1	19N	2W	0.98	20.05	8.17 Avg
-107.02	35.8344	1.35	17.82	9.9	1	19N	2W	0.32	1.29	1.96 Std
-107.02	35.8347	0.67	20.8	10.1	1	19N	2W	4	4	4 no.
-106.95	35.9158	1.78	20.6	5.05	1	20N	1W			
	Avg	1.28	20.40	7.99						
	Std	0.50	1.31	4.08						
	no.	22	22	22						

NEWCO UPPER

-108.63	36.2519	0.65	15.32	22.7	1	23N	17W
-108.59	36.3511	1.3	19.42	12.29	1	25N	17W

Lbs Sulfur

Weighted Averages-Menee Formation

CHACRA	CLEARY	Mbtu	Mbtu/ton	% Ash	Wtd Avg	Averages by Township			
						lbs_sulfur	Mbtu	Mbtu/ton	%ash
-107.22	35.6989	0.55	19.53	12.87	0.99 17N	4W			
-107.25	35.6908	0.35	22.54	9.8	1 17N	4W	0.42	21.80	11.97 Avg
-107.29	35.6575	0.35	23.32	13.24	1 17N	4W	0.09	1.63	1.54 Std
						3	3	3	no.

LA VENT CLEARY

-107.03	35.7372	0.89	21.14	16.89	1 17N	2W			
-107.04	35.7211	3.47	20.8	9.99	1.001 17N	2W	discount lb sulfur		
-107.04	35.7169	0.92	21.08	9.08	1 17N	2W			
-107.04	35.7111	0.55	20.56	11	1 17N	2W			
-107.05	35.7131	1.18	19.88	14.17	1 17N	2W			
-107.05	35.7103	1.28	19.95	14.7	1 17N	2W			
-107.05	35.7142	1.44	20.76	12.01	1 17N	2W			
-107.05	35.7194	1.31	22.01	9.02	1 17N	2W			
-107.07	35.7042	1.89	19.57	15.82	1 17N	2W			
-107.08	35.7156	0.72	20.06	9.99	1 17N	2W	1.11	20.77	11.82 Avg
-107.09	35.6878	0.78	22.5	8.05	1.001 17N	2W	0.37	0.83	2.78 Std
-107.09	35.7211	1.26	20.91	11.15	1.001 17N	2W	11	12	12 no.
-107.11	35.7033	0.94	21.66	10.43	1 17N	3W			
-107.14	35.6828	0.8	18.85	15.99	0.99 17N	3W			
-107.18	35.6769	0.59	23.66	8.7	1 17N	3W	0.74	21.20	12.78 Avg
-107.18	35.6878	0.64	19.97	12.88	0.99 17N	3W	0.12	1.66	2.91 Std
-107.2	35.6608	0.71	21.85	15.91	1 17N	3W	5	5	5 no.
-107.01	35.7714	0.45	22.02	8.1	1 18N	2W			
-107.01	35.7661	0.4	19.69	13.82	1 18N	2W			
-107.02	35.7458	0.9	21.46	6.65	1 18N	2W			
-107.02	35.7719	0.54	18.41	14.98	1 18N	2W	0.76	20.17	11.09 Avg
-107.03	35.7525	0.89	20.17	14.48	1 18N	2W	0.34	1.24	3.40 Std
-107.03	35.7478	1.38	19.27	8.48	1 18N	2W	6	6	6 no.
-106.92	35.8467	0.88	20.56	6.6	1 19N	1W			
-106.94	35.9006	1.35	19.81	8.39	1 19N	1W	0.84	20.94	7.02 Avg
-106.98	35.8333	0.56	21.58	7.2	1 19N	1W	0.33	0.80	0.91 Std
-106.99	35.8322	0.55	21.8	5.9	1 19N	1W	4	4	4 no.
Avg		0.92	20.74	11.13					
Std		0.36	1.17	3.31					
no		26	27	27					

Lbs Sulfur/

SAN MAT	CLEARY	Mbtu	Mbtu/ton	% Ash	Wtd Avg				
-107.44	35.5586	1.35	17.78	20.27	1 15N	6W			
-107.46	35.535	0.92	21.08	11.76	0.999 15N	6W			
-107.49	35.5097	1.64	19.57	11.77	0.999 15N	6W	1.35	19.91	13.31 Avg
-107.5	35.5156	1.21	19.93	11.72	1 15N	6W	0.27	1.24	3.49 STd
-107.5	35.5161	1.61	21.19	11.03	1 15N	6W	5	5	5 no.
-107.55	35.5033	1.24	20.05	12.11	1 15N	7W			
-107.57	35.5183	0.89	21.32	8.41	0.999 15N	7W			
-107.58	35.5628	1.14	19.66	16	1 15N	7W			
-107.59	35.5033	0.66	19.48	13.27	1 15N	7W			
-107.6	35.5119	1.14	19.52	12.71	1 15N	7W			
-107.6	35.5111	0.8	20.78	11.84	1 15N	7W	0.91	20.00	12.87 Avg
-107.61	35.5061	0.73	19.32	15.93	1 15N	7W	0.22	0.66	2.26 Std
-107.62	35.5344	0.67	19.87	12.72	0.999 15N	7W	8	8	8 no.

Weighted Averages-Menefee Formation
Averages by Township

								lbs_sulfur	Mbtu	Mbtu/ton	%ash
-107.63	35.5203	1.16	19.43	12.8		1	15N	8W			
-107.63	35.5203	1.16	19.43	12.76		1	15N	8W			
-107.64	35.5156	0.85	17.47	14.12		1	15N	8W			
-107.65	35.5058	0.51	20.75	9.79	0.9996	15N	8W				
-107.67	35.5111	1.06	20.72	8.98	1.001	15N	8W				
-107.68	35.5083	1.33	20.83	7.95		1	15N	8W			
-107.7	35.52	0.62	19.93	19.25		1	15N	8W			
-107.7	35.5411	0.7	20.38	10.45		1	15N	8W			
-107.71	35.5161	0.75	19.83	14.96		1	15N	8W			
-107.71	35.5197	0.67	19.5	7.4		1	15N	8W			
-107.71	35.5494	0.89	21.09	14.12	0.999	15N	8W				
-107.72	35.5597	1.35	18.64	17.39		1	15N	8W			
-107.72	35.5539	1.06	16.9	18.45		1	15N	8W			
-107.72	35.5639	2.09	20.31	14.39		1	15N	8W	1.08	19.61	13.44 Avg
-107.73	35.5586	1.47	19.09	19.68		1	15N	8W	0.41	1.14	3.77 Std
-107.73	35.5542	1.68	19.5	12.54		1	15N	8W	16	16	16 no.
-107.32	35.6483	0.64	21.07	11.95		1	16N	5W			
-107.33	35.6469	0.35	22.52	11.08		1	16N	5W			
-107.33	35.6331	0.5	21.97	5.59		1	16N	5W			
-107.36	35.65	0.46	21.28	15.32	0.99	16N	5W				
-107.39	35.6214	0.67	21.38	9.77	0.9962	16N	5W	0.57	21.56	10.95 Avg	
-107.39	35.6239	0.8	20.94	15.08	0.999	16N	5W	0.14	0.51	3.32 Std	
-107.41	35.6175	0.54	21.73	7.83	0.999	16N	5W	7	7	7 no.	
-107.42	35.6036	0.74	19.78	16.74		1	16N	6W	0.60	18.83	17.82 Avg
-107.43	35.5789	0.45	17.87	18.9		1	16N	6W	0.15	0.96	1.08 Std
-107.57	35.5778	0.9	19.2	14.25		1	16N	7W			
-107.68	35.6072	1.08	20.55	11.06	1.001	16N	8W				
-107.69	35.5858	0.87	19.76	14.62		1	16N	8W	0.91	20.09	12.08
-107.7	35.5922	0.72	19.89	10.94		1	16N	8W	0.13	0.30	1.50
-107.73	35.6444	0.96	20.16	11.68	0.999	16N	8W	4	4	4	
Avg		0.95	20.03	13.01							
Std		0.38	1.17	3.42							
no.		43	43	43							

Lbs Sulfur/

STANDIN	CLEARY	Mbtu	Mbtu/ton	% Ash	Wtd Avg			Lbs Sulfur/	Mbtu	Mbtu/ton	% Ash
-107.84	35.6436	1.24	19.14	13.07		1	16N	10W	1.54	19.29	12.11 Avg
-107.84	35.6486	1.64	20.26	8.72		1	16N	10W	0.22	0.74	2.47 Std
-107.84	35.6453	1.74	18.46	14.55		1	16N	10W	3	3	3 no.
-107.75	35.64	0.84	20.76	8.1		1	16N	9W			
-107.78	35.6508	0.54	19.87	11.2		1	16N	9W			
-107.8	35.6528	0.84	18.15	18.1		1	16N	9W			
-107.81	35.6519	0.7	19.03	13.1		1	16N	9W			
-107.82	35.6525	0.71	19.2	11.34		1	16N	9W	1.01	19.20	13.14 Avg
-107.83	35.6478	2.19	17.69	17.7		1	16N	9W	0.52	0.97	3.34 Std
-107.83	35.6528	1.26	19.7	12.43		1	16N	9W	7	7	7 no.
-107.84	35.6567	0.77	19.11	11.78		1	17N	10W			
-107.85	35.6619	1.54	18.78	13.98		1	17N	10W			
-107.86	35.6594	1.83	18.92	13		1	17N	10W			
-107.86	35.6597	1.1	18.54	15.9		1	17N	10W			
-107.86	35.6697	1.02	18.94	13.5		1	17N	10W			
-107.87	35.6672	0.81	19.49	10.61		1	17N	10W			
-107.87	35.67	0.94	18.16	16.76		1	17N	10W			

Weighted Averages-Menefee Formation
Averages by Township

							lbs_sulfur		
							Mbtu	Mbtu/ton	%ash
-107.89	35.6689	1.08	19.77	9.59	1	17N	10W		
-107.9	35.6797	0.98	20.02	13.68	1	17N	10W		
-107.9	35.6781	1.29	19.34	13.46	1	17N	10W		
-107.91	35.6997	1.3	17.5	11.22	1	17N	10W	1.11	18.68 13.79 Avg
-107.93	35.7219	0.53	15.15	24.48	1	17N	10W	0.33	1.20 3.65 Std
-107.95	35.7394	1.23	19.12	11.31	1	17N	10W	13	13 13 no.
-107.79	35.665	1.31	19.22	13.26	1	17N	9W		
-108.06	35.7792	1.09	19.34	9.96	1	18N	12W	1.04	18.29 12.96 Avg
-108.08	35.8053	1.36	18.18	14.41	1	18N	12W	0.29	0.81 2.12 Std
-108.12	35.7972	0.66	17.36	14.52	1	18N	12W	3	3 3 no.
Avg		1.13	18.86	13.32					
STD		0.40	1.08	3.28					
no		27	27	27					

Wtd Avg's Lbs_Sulfur

BARKER			Lbs_Sulfur		
	Mbtu	Mbtu/ton	% Ash		Mbtu
-108.54	36.7944	21.06	12.7	1	30N
-108.56	36.8028	24.18	3.4	1	30N
-108.56	36.7986	23.74	5	1	30N
				16W	22.99 7.03 Avg
				16W	1.38 4.06 Std
				16W	3 3 no

CHACO CANYON

0	36.1167	1.47	20.44	7.5	1	21N	11W		
0	36.1181			8.4	1	21N	11W		
0	36.1194	0.88	20.44	10.2	1	22N	13W	0.88	20.41 7.80 Avg
-108.18	<u>36.1383</u>	0.88	20.38	5.4	1	22N	13W	0.00	0.03 2.40 Std
Avg		1.08	20.42	7.88				2	2 2 no
Std		0.28	0.03	1.73					
no		3	3	4					

HOGBACK

-108.53	36.8025	0.75	23.54	3.85	1	30N	16W
---------	---------	------	-------	------	---	-----	-----

MONERO Lbs Sulfur/

MONERO			Lbs Sulfur/						
	Mbtu	Mbtu/ton	% Ash		Mbtu				
-106.84	36.8797	1.78	23.13	10.29	1	31N			
-106.84	36.8992	2.06	24.37	13.46	1	31N			
-106.85	36.8917	0.9	24.44	13.8	1	31N			
-106.89	36.8936	2.75	25.48	9.9	1	31N			
-106.9	36.8961	0.58	24.32	5.3	1	31N			
-106.89	36.8903	2.3	25.18	10.5	1	31N			
-106.89	36.9161	0.4	19.88	6.5	1	31N			
-106.92	36.9142	1.75	24.28	15.44	1	31N			
-106.92	36.9181	1.7	25.92	10.4	1	31N			
-106.95	36.9181	1.9	24.86	11.51	1	31N			
-106.95	36.9117	0.51	27.46	6.9	1	31N			
Avg		1.51	24.48	10.36					
Std		0.75	1.80	3.03					
no		11	11	11					

NEWCOMB

-108.64	36.3681	0.97	18.56	6.8	1	22N	14W
---------	---------	------	-------	-----	---	-----	-----

Weighted Averages-Monongahela Formation**Averages by Township****lbs_sulfur**

Mbtu Mbtu/ton %ash

STANDING ROCK	Lbs_Sulfur/			Lbs_Sulfur/		
	Mbtu	Mbtu/ton	% Ash	Mbtu	Mbtu/ton	% Ash
-107.85	35.6581	0.6	20.14	9.7	1 17N	10W
-108.33	35.7961	0.69	20.54	8.98	1 18N	14W
-108.34	35.8108	0.74	18.49	15.62	1 18N	14W
Avg		0.68	19.72	11.43		2
STD		0.06	0.89	2.97		2
no		3	3	3		no

Weighted Avg's for Mesaverde Group-(Crevasse Canyon)

Lbs_Sulfur

Rio Puerco	Mbtu	Mbtu/ton	%ash	Sec.	T.	R.
0 35.3333	0.96	18.72	7.6	1	10N	2W
-107.09 35.0978	1.46	19.16	6.3	1	10N	2W
0 35.1667	1.09	18.4	10	1	11N	2W
-106.86 35.4633	0.41	19.28	9.5	1	14N	1E
Avg	0.98	18.89	8.35			
Std	0.38	0.35	1.48			
no	4	4	4			

Weighted Avg's for Crevasse Canyon Fm
Averages by Township

		Lbs Sulfur/		Mbtu		Mbtu/ton		% Ash	
		Mbtu		Mbtu		Mbtu/ton		% Ash	

		Lbs Sulfur/		Mbtu		Mbtu/ton		% Ash		Wtd Avg			
		Mbtu		Mbtu		Mbtu/ton		% Ash		Mbtu		Mbtu/ton	
GALLUP	DILCO	35.2775	0.86	23.18	9	1	12N	18W	0.86	23.34	10.00	Avg	
-108.71	35.2825	0.85	23.5	11	1	12N	18W	0.01	0.16	1.00	Std		
-108.7	35.5175	0.54	22.89	7.42	1	15N	18W						
-108.71	35.5467	0.91	23.87	5.21	0.9998	15N	18W						
-108.72	35.5256	0.5	24.2	4	1	15N	18W						
-108.72	35.5364			8.11	0.9999	15N	18W						
-108.73	35.4806	0.91	20.77	13.17	0.999	15N	18W						
-108.74	35.5006	0.6	23.18	6.98	0.999	15N	18W	0.69	22.32	9.30	Avg		
-108.75	35.5542	0.64	21.8	10	1	15N	18W	0.16	1.59	4.67	STD		
-108.75	35.5525	0.76	19.5	19.5	1	15N	18W	7	7	8	no.		
-108.82	35.4853	0.92	18.91	20.41	1	15N	19W	0.63	22.00	10.92	Avg		
-108.85	35.5278	0.42	23.67	5.99	0.999	15N	19W	0.21	2.19	6.71	Std		
-108.85	35.5278	0.56	23.43	6.37	0.999	15N	19W	3	3	3	no		
Avg		0.71	22.41	9.78									
Std		0.17	1.69	4.94									
no.		12	12	13									

Lbs Sulfur/
Averages

		Lbs Sulfur/		Mbtu		Mbtu/ton		% Ash	
		Mbtu		Mbtu		Mbtu/ton		% Ash	

		Lbs Sulfur/		Mbtu		Mbtu/ton		% Ash		Wtd Avg			
		Mbtu		Mbtu		Mbtu/ton		% Ash		Mbtu		Mbtu/ton	
CROWNP	GIBSON	35.5972	0.97	20.93	6.56	1	16N	10W					
-107.84	35.5736	0.91	20.9	10.57	1	16N	10W						
-107.9	35.5703	1.29	20.92	9	1.0001	16N	10W	1.49	20.46	9.62	Avg		
-107.9	35.6186	2.57	20.11	9.97	1	16N	10W	0.61	0.60	1.82	STD		
-107.92	35.5925	1.73	19.43	12.02	1	16N	10W	5	5	5	no.		
-107.97	35.6386	2.05	18.17	16.82	1	16N	11W						
-107.99	35.6567	1.39	21.49	7.99	1	17N	11W						
-108.01	35.6961	2.56	19.45	12.26	1	17N	11W						
-108.51	35.6778	0.54	20.21	9.76	1	17N	11W	1.43	18.92	15.05	Avg		
-108.59	35.6778	0.63	18.3	18.24	1	17N	11W	0.79	1.76	5.80	Std		
-108.61	35.6778	3.17	15.91	25.2	1	17N	11W	5	6	6	no.		
-108.18	35.7189	0.88	21.57	7.02	1	17N	13W						
-108.63	35.6908	0.65	21.66	10.5	1	17N	17W						
Avg		1.35	19.93	11.99									
Std		0.70	1.61	5.03									
no.		12	13	13									

Lbs Sulfur/
Lbs Sulfur/

		Lbs Sulfur/		Mbtu		Mbtu/ton		% Ash	
		Mbtu		Mbtu		Mbtu/ton		% Ash	

		Lbs Sulfur/		Mbtu		Mbtu/ton		% Ash		Wtd Avg			
		Mbtu		Mbtu		Mbtu/ton		% Ash		Mbtu		Mbtu/ton	
GALLUP	GIBSON	35.5411	0.42	21.47	7.97	0.9994	15N	18W					
-108.74	35.4903	0.81	19.19	6.36	1	15N	18W						
-108.77	35.5408	0.41	22.17	5.92	0.999	15N	18W						
-108.77	35.5408	0.55	22	5	1	15N	18W	0.53	21.52	7.15	Avg		
-108.78	35.4856	0.51	22.3	9.64	1	15N	18W	0.14	1.07	1.55	Std		
-108.79	35.4983	0.45	22	8	1	15N	18W	6	6	6	no		
-108.71	35.5831	0.99	21.35	8.59	0.9999	16N	18W						

Weighted Avg's for Crevasse Canyon Fm
Averages by Township

								Lbs Sulfur/ Mbtu	Mbtu/ton	% Ash	
-108.72	35.5783	0.58	22.28	4.4	0.9995	16N	18W				
-108.73	35.5719	0.32	15.97	4.78	0.99974	16N	18W				
-108.74	35.5803	0.67	21.06	10.87	0.9999	16N	18W	0.56	21.01	7.30	Avg
-108.75	35.5683	0.42	22.04	6.77	0.9992	16N	18W	0.20	2.11	2.07	Std
-108.75	35.5678	0.46	21.79	7.83	0.9999	16N	18W	7	7	7	no
-108.76	35.5728	0.47	22.59	7.89	1.001	16N	18W				
-108.82	35.5683	0.47	20.49	14.77	1.0001	16N	19W	0.39	21.61	9.12	Avg
-108.86	35.5842	0.4	21.63	7.96	0.9999	16N	19W	0.07	0.90	4.22	STD
-108.9	35.5956	0.29	22.7	4.62	1	16N	19W	3	3	3	no
-108.92	35.6203	0.37	22.38	7.43	0.9999	16N	20W				
-108.93	35.6019	0.5	20.81	11.58	0.99999	16N	20W				
-108.94	35.5836	0.42	20.99	9.35	1	16N	20W				
-108.94	35.6019	0.61	19.67	15.75	1	16N	20W	0.46	21.22	10.30	Avg
-108.95	35.5936	0.49	20.35	12.69	1	16N	20W	0.09	1.18	3.52	STD
-108.96	35.6169	0.35	23.14	5	1	16N	20W	6	6	6	no.
-108.9	35.6756	0.36	21.45	5.7	0.99992	17N	19W				
-108.9	35.6767	0.46	21.08	7.56	1	17N	20W				
-108.91	35.6842	0.43	22.03	6.36	1.001	17N	20W				
-108.92	35.6561	0.77	15.89	25.48	1	17N	20W				
-108.92	35.7006	0.6	17.64	12.58	1	17N	20W				
-108.92	35.7094	0.63	20.4	7.57	1	17N	20W				
-108.92	35.6628	0.4	22.31	5.84	1	17N	20W				
-108.93	35.6764	0.5	20.01	16.4	1	17N	20W				
-108.93	35.6731	0.39	21.97	7.48	0.99999	17N	20W	0.53	20.20	11.73	Avg
-108.94	35.7022	0.57	21.84	8.4	1	17N	20W	0.11	2.04	6.33	Std
-108.95	35.6575	0.53	18.83	19.6	1	17N	20W	10	10	10	no.
	Avg	0.50	20.96	9.28							
	STD	0.15	1.74	4.63							
	no.	33	33	33							

S. MT. TAYLOR GIBSON

-107.67	35.1769	0.5	21.26	7.1	1	11N	8W
-107.73	35.1681	0.59	23.67	13.6	1	11N	9W

COMBINED GIBSON Lb_sulfur/

& DILCO		Mbtu	Mbtu/ton	% Ash	Wtd Avg			
-108.7	35.5175	0.54	22.89	7.42	1	15N	18W	
-108.71	35.5467	0.91	23.87	5.21	0.9998	15N	18W	
-108.72	35.5256	0.5	24.2	4	1	15N	18W	
-108.72	35.5364			8.11	0.9999	15N	18W	
-108.73	35.4806	0.91	20.77	13.17	0.999	15N	18W	
-108.74	35.5006	0.6	23.18	6.98	0.999	15N	18W	
-108.75	35.5542	0.64	21.8	10	1	15N	18W	
-108.75	35.5525	0.76	19.5	19.5	1	15N	18W	
-108.74	35.5411	0.42	21.47	7.97	0.9994	15N	18W	
-108.75	35.4903	0.81	19.19	6.36	1	15N	18W	
-108.77	35.5408	0.41	22.17	5.92	0.999	15N	18W	
-108.77	35.5408	0.55	22	5	1	15N	18W	0.62
-108.78	35.4856	0.51	22.3	9.64	1	15N	18W	0.17
-108.79	35.4983	0.45	22	8	1	15N	18W	13
								13
								14
								no.