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LLNL Electro-Optical Mine Detection Program

Executive Summary

Under funding from the Advanced Research Projects Agency (ARPA) and the U.S.
Marine Corps (U.S.M.C.), Lawrence Livermore National Laboratory (LLNL) has di-
rected a program aimed at improving existing detection capabilities against buried
mines and munitions. This program was begun in December of 1991 to serve as a cen-
ter of effort for work in this area by ARPA and the services. Since that time the pro-
gram has provided a national test facility for buried mines in arid environments,
compiled and distributed an extensive data base of infrared (IR), ground penetrating
radar (GPR), and other measurements made at that site, served as a host for other
organizations wishing to make measurements, made considerable progress in the use
of ground penetrating radar for mine detection, and worked on the difficult problem
of sensor fusion as applied to buried mine detection. While the majority of our effort
has been concentrated on the buried mine problem, LL.NL has worked with the
U.S.M.C. on surface mine problems as well, providing data and analysis to support
the COBRA (Coastal Battlefield Reconnaissance and Analysis) program.

The original aim of the experimental aspect of the program was the utilization of
multiband infrared approaches for the detection of buried mines. It was generally ac-
knowledged that no single sensor would provide reliable capabilities over a broad.
range of conditions but it was considered possible to use multiple bandpasses to imo- .
prove detection and reduce false alarms. Later the work was extended to a multisen-
sor investigation, mcludmg sensors other than infrared imagers.

After an early series of measurements at a small site located at LLNL, it was de-
termined that further progress in technology development and verification would re-
quire a much larger test facility which would provide investigators with a large
sample of targets, preferably in a “natural” environment. The Buried Object Test Fa-
cility was constructed at the Nevada Test Site, north-west of Las Vegas, Nevada to
serve this function. It is currently the largest stable test site for mine detection tech-
nology development, with 500 mine targets, including 300 live (unfused) mines of U.S.
and overseas origin. In addition to being home to-a large set of targets, the site is well
documented, instrumented for both weather and ground temperature monitoring,
and well maintained.

A number of measurements have been conducted at the NTS Buried Object Detec-
tion Facility, with sensors spanning the electromagnetic spectrum from the near ul-
traviolet (UV) to radio frequencies. The majority of the measurements were made
with multispectral infrared, with-separate images taken at 3-5pm and 8-12pm. This
data was taken over the year from May 1993-June 1994. In addition color photo-
graphs and panchromatic images were taken of all sites. Hyperspectral visible data
covering the near UV to the near infrared (NIR) was taken as well, but because of the
enormous volumes of data produced by this method, it was only done for a subset of
the field. Extensive GPR measurements were made of all targets in the field under a
variety of conditions. The IR and GPR measurements have been carefully coregis-
tered with ground truth and are available as well documented data sets. These were




made available to interested parties, and several organizations have used these data
sets. In addition to measurements sponsored by this program, measurements have
been made by other investigators. MIT/Lincoln. Laboratory brought and made mea-
surements with a stepped CW GPR rail-SAR system. ERIM made measurements of
infrared spectra at the site. Neither of these data sets have been made available to us
at the time of this writing.

While the instrument and measurement technologies for infrared is quite mature,
the use of radar to detect or identify buried objects is not. Typically, radar systems are
dragged slowly across the ground to make what are analagous to sounding measure-
ments. Such a technique holds little promise for a practical wide area mine detection
system, even for mine clearing and proofing. Recent work in impulse radar has sug-
gested that airborne systems could be capable of detecting mines. Significant progress
was made in demonstrating the imaging of mines using synthetic aperture radars
(SAR) using impulse waveforms. While measurements were made from the ground,
they can be extrapolated to airborne applications. In addition, ground based radars
could be used for demining purposes. -

Initial analysis of the infrared data indicated that single band IR data does not
provide sufficient information to support a robust buried mine detection capability. In
earlier investigations, the thermal signatures of mines in pristine, clutter free envi-
ronments was sufficient for detection. While mine signatures were present in the sin-
gle band data taken in a natural environment, the level of thermal clutter resulted in
high rates of false alarms for any acceptable detection rate.

The use of two infrared bands (3-5pm and 8-12pum) improved the detectability of
buried targets, verifying the initial premise that this-two band data carried useful in-
formation on the mine signature. The results were, however, still not adequate for ro-
bust detection. The primary problem remains the inability to discriminate between -
mine signatures, when present, and the rather high level of natural clutter:

The ground penetrating radar system demonstrated a high probability of detec-
tion for buried metal mines even in this natural environment. It is clearly the most
effective stand-off sensor for such targets. Imaging of plastic mines was also demon-
strated, but, as in the infrared, the natural clutter resulted in an unacceptable false
alarm rate.

At least five possible paths for improvement have been identified:

1) improved spatial resolution, which may provide better ground texture discrim-
ination, ' '

2) an analysis which involves more complicated spatial queueing and. filtering,

3) additional IR bands, specifically using imaging spectroscopy,

4) the use of additional sensors other than IR imagers and the use of data fusion
techniques with multi-sensor data, and

5) the use of time dependent observables such as temperature.

While these improvements present great challenges when applied to wartime scenar-
ios, each of these paths are likely to be helpful in less constrained, post-hostility dem-
ining operations.




- I. Introduction

This report summarizes Electro-Optical Mine Detection program activities con-
ducted by Lawrence Livermore National Laboratory for FY92 through FY94. These
activities were funded by the Defense Advanced Projects Research Agency and the
U.S. Marine Corps as a part of a national effort to enhance the countermine capability
of the armed services to detect mine fields at “standoff” distances. To this end, this
effort focused on combining advances in multiple sensors, signal processing and sen-
sor fusion toward establishing a technically feasible and tactically plausible approach
to the countermine needs.

History

Since the 1970s, the mainstream countermine detection system developérs and us-
ers conducting research on standoff mine field detection have been: the Defense Ad-
vanced Research Projects Agency (DARPA), the U.S. Army Belvoir Research,
Development, and Engineering Center (BRDEC), the U.S. Army Eng'meermg Water-
ways Experiment Station (WES), the U.S. Marine Corps Research, Development and
Acquisition Command (MCRDAC), the U.S. Naval Coastal Systems Center (NCSC)
presently called the Coastal Systems Station (CSS) and various elements of the user
community. Their main efforts were focused on characterizing passive infrared (IR)

-and active laser (near-IR) signatures of surface mines.

In 1989 DARPA funded an LLNL program under the name of TEMPS (Tempera-

. ture Evaluated Mine Position Survey). The TEMPS dual-band IR method used ratios
of IR images (centered near 4.7 and 10.6 microns) to locate buried mine sites which
typically had thermal and emissivity-related signatures unlike those associated with
surface object clutter. In January 1991, TEMPS was successfully demonstrated using
helicopter fly-overs of a Byron California grass-covered field with buried surrogate
mines and clutter. This first successful proof-of-principle demonstration used sepa-
rate temperature and emissivity-ratio maps and rule-based detection algorithms to
verify all buried surrogate anti-tank mine site signatures and remove most of the
clutter.

Additional LLNL funds were used to accelerate the DARPA-sponsored work, in re- .

sponse to the newly appreciated threat posed by mines during and after the Guif War.
In March 1991, helicopter fly-overs of the Yuma Arizona Army Proving Grounds suc-
cessfully imaged the sites of all 36 live mines buried to a depth of 1 to 15 cm in dry -
sand. As part of an incipient coordinated countermine effort, LLNL received funding
- through DARPA for concept refinement of the dual-band infrared method for airborne
standoff minefield detection. The plan was to evaluate advances in relevant technol-
ogies (such as multiple sensor techniques, image processing and sensor fusion) which
would provide a more robust, all-weather system, with fewer false site detections, bet-
ter able to distinguish bm'led mine sites from clutter.

During the same period, efforts by the U.S. Army Corps of Engineers Waterways
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Experient Station (WES) in Vicksburg, Mississippi, the U.S. Navy NCSC in Panama
City, Florida, and the U.S. Army Engineering BRDEC at Fort Belvoir Virginia con-
tinued. Advanced Technology Transition Demonstrations demonstrated the reliabili-
ty of the military systems for detecting surface laid mine fields. Unfortunately, the
effectiveness of these systems against the more difficult problem of buried mines is
not yet considered satisfactory.

We also conducted a series of measurements with other investigators at a small
site located at LLNL. Multi-sensor data were taken in April, 1992, with supplemental
data taken at other times. The scenes imaged included a variety of mines at various
depths of burial. In addition, images of some surface objects were taken in order to
make initial evaluations of the potential for clutter rejection.The imagery was taken
with ultraviolet (UV), visible, near-infrared (NIR)[1], and dual-band infrared (DBIR)
passive cameras, an active IR camera, and a ground penetrating radar (GPR) sys-
tem[2] processed with synthetic aperture radar (SAR) algorithms.

After completing these measurements and initial analysis it was determined that
alarger test facility with actual mines was required to provide statistically significant
evaluations of the mu1t1ple sensors and ATR algorithms in a realistic environment.
This report summarizes program activities from October.1992 to October 1994 The
analysis of the initial data taken at LLNL in 1992 is also discussed. :

Objectives

The overall objective of the LLNL Electro-Optical Mine Defection program is to
identify methods for standoff minefield detection, with specific focus on buried and
surface scatterable mines.

The initial goals of the pfoject. were:

1. to build and instrument a mine test site at the NTS to gather UV, visible, near
IR, dual-band thermal IR, and ultrawide band (200-2000 MHz) radar i images;

2. to collect preliminary multlsensor image data which allow direct comparisons
and co-registration of UV, visible, near IR, dual-band thermal IR and radar im-
ages.; and

3. to develop and apply the most appropriate automatic target recognition and
clutter reduction algorithms to classify mine sites, increase detection probabil-
ity and decrease false alarms for individual mines.

Program Activities

The principal activities of the LLNL Electro-Optical Mine Detection program have
been: 1) the construction and maintenance of test facilities 2) the collection and coreg-
istration of data taken with a set of sensors which represents a multi-spectral sensor
suite; 3) the development and application of tools for data analysis to develop and
evaluate new techniques for buried mine detection; and 4) preparations for follow on
studies.




II. Test Site Development

A small clutter free site was established during 1992 at LLNL in which mine sur-

rogates were buried in sand and clay plots with no covering vegetation. There were a

.total of 18 mine surrogates of different types and 9 holes with no mine surrogate. Care
was taken to avoid leaving obvious surface signatures.

In 1993 LLNL established the test facility shown in figure 1 at the DOE Nevada
Test Site (about 65 miles NW of Las Vegas, NV) to provide a permanent test facility

. I Security Fence A
h, k< A T SN G oA
A g RSN (R et ==
Future |
Buried
Objects Sensor Evaluation & Training Plot with unfused live mines
Plot
2000'
Access
Road
Blind Testing Plot
A/
- 2000’ >

Figure 1. NTS Buried Objects Test Facility

with a large number of targets which would will allow statistical evaluation of differ-
ent technologies and ATR algorithms. The facility covers 100 acres, of which 30 acres
are enclosed by a security fence with intrusion alarms to provide a controlled area
(figure 2) for buried high explosives. The area is typical of the high desert basins of
the western U.S. with modest to sparse natural vegetation and includes both cleared



and natural areas. The native soil is unconstituted alluvium; chieﬂir sand, silt, peb-

Figure 2. Aerial view of controlled area

bles and cobbles. The facility is in a low RFI area which provicles a benign environ-
ment for radar and microwave sensor testing.The site was approved in February of
1993, and the mines were deployed in May of 1993. Different types of mines and other
test objects were buried along the roads as shown in Figure 3 to allow either ground

or airborne data collections. Storage trailers, electrical power, and telephones are lo- -

cated at the facﬂlty

Data capture and data precessing equipment were located in motorhomes and the
sensors were mounted on a 60 foot platform lift with remote pan and tilt mount (Fig-
ure 4).
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Figure 4. Instrumentation motorhome and lift truck in the controlled area




The current buried mine inventory includes the following:

Table 1:

Type Description Number

M-15 Metal - Live 100
M-15 Metal-Surrogate 100
M-19 Large Plastic - Live 100
M-19 Large Plastic - Surrogate 20
Czech “Large Plastic - Surrogate 100
VS-1.6 Medium Plastic - Live 50
VS-2.2 Medium Plastic - Live . 50

PFigure 5a shows the M-19 and M 15 mines and the Czechoslovakian (PT-Mi-Ba-III)

plastic surrogate before being coyvered. The surrogatesfor the plastic mines were filled
with a grout mixture and provided a reasonable match to the thermal properties of

actual mines but did not simulate the correct index of refraction for the plastic mines.
Figure 5b shows the emplacement of the Italian VS-1.6 mines. The mines were buried
carefully, between 0.5" and 4" deep, so thatlittle or nosurface signature was apparent

to an observer (figure 5b and figure 6). Locations of the mines and fiducials for image .

registration have been accurately surveyed and are recorded-in a ground truth data-
base. The locations of the different mines in the controlled area are shown in figure 8.
Figure 7 shows the planned locations of the mines in a typical training/test plot. The
actual location of the mines in the plots were determined by the need to avoid bushes.
A number of mines were randomly buried in the search plots, (T,U, V in figure 3) at

- locations unknown to experimenters to provide true evaluations of detection capabil-
ities and false alarm rates. Background plots with no minesin them were also laid

. out with fiducials to allow registration of images of background plots. The target in- -

ventory also includes a few mines of different types placed on the surface. Other test
objects (e.g. drums, pipes and plates) have also been buried as shown in figures 8 and
8. '

The test site was instrumented with a meteorological station which measured the
air temperature, humidity, wind velocity, and net surface solar radiation flux. Tem-
perature probes were also located at several distances above and below the ground
surface. Several temperature sensors were also located on the surface above each type
of mine and on its surface. Radiometer measurements at 4 microns and 10 microns of
the ground surface temperature above instrumented mines and in background areas
were made over a one month period with instruments provided by WES.
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Figure 5a. Emplaced mines before covering
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III. Data collections

We conducted a series of measurements with other investigators [1,2] at the small
site located at LLNL. Multi-sensor data were taken in April, 1992, with supplemental
data taken at other times.

A large number of data collections with a variety of sensors have been made in
FY1994 at the NT'S Facility. Dual band IR measurements were made of all mines at
various times and times of year. LLNL and SRI[1, 31)] have made measurements
with several configurations of a ground penetrating impulse radar system. Both color
and monochrome daylight images were acquired. SATC[2] acquired hyperspectral
data sets and UV data sets on a sample of both buried and surface mines. These mea-
surements are available to interested investigators. Two other contractors have vis-
ited the site to make measurement of their own. MIT/Lincoln Laboratories brought a
stepped frequency-CW radar rail-SAR to the site and-made measurements on a few
of the mines. ERIM used a infra-red spectrometer to make measurements of reflected
spectra from the ground surface from the mines and background regions. We do not
have reports or data from either MIT or ERIM.

Thermal Infrared Sensors

Physical principles

Thermal IR images provide a measure of the apparent temperatures of the surfac-
es they image. These images are partly emitted surface radiation, which relates to the
surface temperature, and partly reflected sky radiation which relates to the cooler éky
temperature. Corrections must also be made for absorption and emissions of the air

‘between the ground surface and the sensor. The apparent surface temperature equals.
the true surface temperature when the surface emissivity is equal to one (i.e., there
is no reflected IR component) and the surface is referred to as an‘ideal blackbody sur-
-face. Most surfaces differ from a blackbody both by having non-zero reflectivity, and
in having a spectral dependence of this quantity.

A single broad-band spectral measurement is insufficient to separate image data
related to the surface material temperatures from image data related to the surface

emissivity or reflectance properties. Because of the differences in material properties, -

-the radiant emission measured in two or more wavelength bands provides informa-
tion that can help separate these two quantities. Use of these techniques may allow
one to distinguish between the native surface and superficial objects.

If the emissivity of the surfaces in a scene are uniform, the differences are due to
differences’in surface temperature. The thermal transport properties of a buried"
'mine, covered by disturbed surface materials, produce a surface temperature above
the mine which differs from the ambient value. Buried mine sites are typically warm-
er by day.and cooler by night than undisturbed soil sites. While buried mine sites may
have different surface reflectance properties (shortly after burial) than their sur-
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roundings, some or all of this difference usually disappears after weathering. Thus
the normal signature of buried mines is a result of a combination of thermal effects

and altered surface properties.

Instrumentation

The infrared (IR) thermal images were recorded using an Agema 880 Dual-Band
IR Camera System. This system had a short wavelength InSb detector with a filtered
wavelength interval of 3.3 to 5.0 mm and a long wavelength Flg-Cd-Te detector with
a filtered wavelength interval of 9.7 to 11.6 mm. The images were taken from a tower
or lift truck at heights from 18 m to 20 m. The 140 by 280 pixel field of view of the
cameras covered an area 5m -7m square, with ground resolutions between 2-6 cm.
The instruments are capable of resolving temperature differences equivalent to 0.1°C.
The Agema cameras (figure 9) and computer were located on a platform lift truck

Figure 9. Infrared and visible cameras

which moved along roads between the rows of mines. The video camera used for visi-
ble imaging is also shown. The IR cameras were part of the data collection and data
pre-processing system shown in figure 10. : ‘

This system was located in a motor home connected to the lift truck by an umbili-
cal cable bundle as it moved through the mine field. The Agema computer was used
for image acquisition and quick-look and the VAX 4000 Workstation was used for im-
age registration. A PC 486 clone was used for weather data acquisition'and surveyed
mine ground truth data acquisition, The Macintosh ITFX was used for visual image
acquisition, general purpose document preparations and spreadsheet operations. Fig-
ure 10 shows the layout of the system and the locations of its components, either in

14




the boom truck or in the motorhome.
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disk
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Figure 10. Schematic diagram of infrared and visible camera system
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The Agema CPU as well as its secondary storage device (either a magnetic or op-
tical hard disk) were in the boom truck along with the sensors. An “umbilical cord”
which consists of the Agema keyboard, mouse, and monitor cables, a thinwire Ether-
net cable, the video camera cable, and the pan & tilt control cable connected the boom
truck with the mobile home. Inside the mobile thinwire Ethernet connects the VAX,
Mac, PC, and Kinetics Fastpath chassis which is the network router. An Apple Laser-
Writer Printer was connected to the Fastpath router via PhoneNet.

File services between the Agema and the VAX were provided using Multinet soft-
ware running the NFS protocol. Sending files between VAX and Mac was done with
. “PathWorks for Mac” software running the Appletalk network protocol. VAX/PC
transfers use “PathWorks for DOS” software running the LAST protocol Terminal
emulation among machines was done with Telnet.

UV, Visible and Near-Infrared and Hyperspectral Sensors

Physical principles

The UV, visible, and near IR cameras and Hyperspectral Imager all image the
light reflected from surfaces. Differences in the overall reflectance relate to image .
brightness, while differences in the spectral dependence.of reflectance relate to “col-
or”. The spectral reflectance is typically different for different objects. This feature
can be put to advantage for enhancing contrast between surface mines; the natural
background and other objects or vegetative cover. Daytime visible-and near-IR imag-
ery can help to find sites which represent surface disturbances or objects. When these

sites coincide with the positions of thermal clutter, detected independently and coreg- -
istered with images taken usmg a thermal IR camera, they provide a valuable aid in .

identifying, and removing images of objects that otherwise might be confused with a
buried mine site on thermal DBIR imagery.

Instrumentation

The UV/Visible/Near-Infrared Sensor Instrumentation data collections were made
by Science Applications International Corporation (SAIC) with their three camera
system which had previously been used for investigating the detection of surface
mines in the DARPA mine/Countermine Program and at the buried mine detection
test site at LLNL. For these measurements the 104mm lens on the UV camera was
replaced by a 50mm lens borrowed from CSS to accommodate a larger field of view.
This provided a field of view of 10 to 15 feet with a resolution of 1/4 inch with a camera
elevation of 40 feet. UV, Visible, and Near IR images were recorded for mine field
plots HLLJ,K, south and L,M,N, south, and T,U,V,(search plots) south. The images
were taken in NTSC standard video and recorded on video tape with individual im-

-ages for processing provided by a frame grabber. In addition to the buried mine data
imagery was obtained for mines placed on the ground surface. There was an apparent
advantage of the UV camera in detecting the surface mines at glancing angles and as
previously seen, the UV images also showed a reduced shadow. Details of the camera

-gystem, measurements and analysis done by SAIC are described in the enclosed SAIC
Report: UV Mine Detection Field Test Data.

16
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SAIC also made the hyperspectral data collections with their Hyperspectral Imag-
er (HSI). Data acquisition consisted of recording the spectral content of spatial 1 in-
formation averaged over a particular spectral interval and spatial dimension of the
object. The resulting data set consists of a spectrum for each pixel of the image. Be-
cause of its three dimensional character (two spatial and one spectral), such a data
set is often referred to as an image cube. For these measurements the spectral range
of 400nm to 930nm was divided into 64 spectral bins with a width of about 8nm. The
instrument and results are described in detail in the enclosed report SAIC: Hyper-
spectral Imaging of Emplaced Land Mines. Image cubes of background plots and bur-
ied and surface mines were recorded and are archived but because of the enormous
volumes of data produced by this method, it was only done for a small subset of the
minefield.

Both sets of the SAIC data are archived at LLNL and is available to interested in-
vestigators.

Ground Penetrating Radar Sensors

Physical principles

Data fusion of both dual band infrared (DBIR) and ground penetrating radar
(GPR) is anticipated to provide greater detection and discrimination probabilities. °

- GPR has the role of metallic mine detection primarily but may also aid in the detec-

tion of non-metallic, i.e. plastic, mines.

Radar systems generally rely on the reflection of long wavelength (> mm) electro-
magnetic waves by discontinuities in conductance and dielectric constant of the trans-
mitting medium. Although far less transmissive than air, the ground can be used as
a transmitting medium. Discontinuities in the ground, should, depending on their na-
ture, provide reflections detectable by a radar system. Such “ground penetrating ra-
dar” systems are often close coupled to the ground in order to avoid the problems and
losses which result from reflection at the air-ground interface. However, Seasat im-
ages showing subsurface structures demonstrated at least the possibility of using
above ground imaging radar systems to see subsurface objects.

Usually, mines represent near surface discontinuities. The: observability and de-
tectability of mines with radar depends both on the nature of the mine and the back-
ground of other non-mine inhomogeneities.

SRI GPR instrumentation

SRI International acquired GPR data for all 34 mine plots at vertical and horizon-
tal polarization with their ground-based ultrawideband (UWB) synthetic aperture ra-
dar (SAR). Data were also taken on other plots containing test objects and calibration
spheres. All of the metal mines were detected and easily identified. [32] The SRI GPR
system, data processing and results are described in the enclosed SRI report: Ground-
based Ultrawideband Synthetic Aperature Radar Measurements. The SRI data are
archived at LLNL and are available to interested investigators.
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LLNL GPR instrumentation
LLNL developed a wideband GPR system similar to the one used by SRI Interna-
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Figure 11. Block Diagram of LLNL GPR system

tional. Figure 11 shows a block diagram of the LLNL GPR system. The current LLNL
GPR system combines the transmitter, antennas, and data acquisiton and data pro-
cessing systems in a single van. A HP54720D digitizer is used for recording and a Sun
SPARC LX for SAR processing in the field.

A high voltage pulse generator is used for transmitter excitation and a high speed
digital data acquisition system for the receiver. Two separate antennas are used for
the transmit and receive functions. The transmit antenna is a commercial double-
ridged horn and the receive antenna is a custom-built monopole corner reflector that
uses a metallic folded triangle element. The receiver system is configured to acquire
the scattered energy in the 250MHz to 950MHz frequency range. The antenna config-
uration was positioned for vertically polarized transmit and receive electric field vec-
tors.The vehicle-mounted radar system was moved along a straight line parallel to
one boundary of the test area. The antenna system was mounted 14 ft to 30 ft above
the ground with a depression angle of 30 degrees to the center of the plot. Digitized
data from the acquisition unit is transferred to the computer for post-processing and
generation of the radar image. Image processing utilizes conventional SAR tech-
niques.

Metal mines buried at depths up to 2" were detected with a signal to clutter ratio
between 4:1 and 6:1 and large metal disks were detected at depths ranging from 5 cm
to 40cm. The LLNL GPR system, field measurements, and results are described in
more detail in the Appendix A.
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Other Data Collections

In addition to measurements sponsored by this program, measurements have
been made by other investigators. MIT/Lincoln Laboratory (sponsored by The Army
Research Laboratory) made measurements on a limited number of mine plots with
their stepped CW rail-SAR GPR system. ERIM made measurements of infrared spec-
tra from soil above buried mines and background regions with an infrared spectrom-
eter.

Neither of these data sets have been made available to us at the time of this writ-

ing. More information on these data can be obtained from Denis Blejer at MIT/LL
(617)-981-3455 and John Selden 313-994-1200 x 2361 at ERIM.
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IV. Data Processing

LLNL Data Acquisition and Pre-Processing

Computational data analysis is important to standoff mine detection efforts for
two reasons. First, in order to be effective, a mine detection system must be able to
cover a large swath of ground and quickly and reliably report on the presence of mine
fields. An automatic target recognition system is desirable because it will increase the
rate at which images can be tested, it does not suffer from fatigue or boredom, and it
does not rely on the subjectivity and training of a particular operator. Thus the mech-
anization of the process improves its efficiency. The second reason is that it is very -
difficult for humans.to visualize multisensor data quickly and effectively. Image pro-
cessing and multisensor fusion techniques allow for the efficient compression of a
number of distinct images of a scene into a “superimage” which provides much im-
proved signal to noise ratios for the desired targets than single sensor images, im-
proving the effectiveness of both computer and human operators. :

I mage Regzstratzon

The multiple images of the scenes do not, in general superimpose correctly, due
to fundamental sensor differences (scalings, ﬁelds of view, etc.) and sensor geometric
distortion (barrel distortion, etc.). We manually identify fiducial markers on the
ground to be used as control points for a perspective polynomial warping algorithm,
which performs translation, rotation, scaling and perspective corrections to the imag-
es. We obtain an ensemble of corrected images which can then be processed pixel-wise
with the assurance that pixels in the various images correspond very closely with
same point on the surface. The following section describes the flow of LLNL data for
the Dual Band Infrared (DBIR), visible, and Ground Penetrating Radar (GPR) mea-
surements

Dual Band Infrared:

Figure 12 shows the flow of DBIR and visible data from capture to registration.
The DBIR data are captured with the Agema infrared system. Short Wave Infrared
data (SWIR) of 3-5 microns and Long Wave Infrared (LWIR) of 8-12 microns are read
from a pair of cameras mounted 60 feet above the ground in the center of the roadway
about 25' from the center of the subplot. A single 18' by 18' subplot is viewed at a time.
The raw SWIR and LWIR images are then moved to a VAX workstation for registra-
tion where the dual band data are registered to “plan view”, that is, a view directly
overhead above the center of the subplot. A database of surveyed reference positions
for the given subplot are read. These reference positions, pointed at by the arrows in
the Raw images, are used with polynomial warping and/or perspective warping algo-
rithms to map the the raw image to the “plan view”. The registered images are then
prepared for distribution and archived. .
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Visible data:

The visible wavelength data are captured using either a video camera connected
to a Macintosh equipped with a frame grabber and custom acquisition and control
software or digitized photographic images. The captured images are then moved to
the VAX workstation and registered to plan view in a manner similar to the DBIR.
These images are also archived and networked to the ATR team.

GPR data:

Raw GPR images are acquired by a custom system built at LLNL. The images are
built as a series of voltage versus time radar echo return signals captured along suc-
cessive positions of a synthetic aperture. Figure 13 shows the flow of the GPR data
from acquisition to target recognition. The raw image (only a portion of which is
shown in the figure) is preconditioned using ground range correction, matched filter
integral, and/or time domam jitter correction. The preconditioried images are then “fo-
cussed”. .

Objects echoing along the synthetic aperture report as hyperbolae in the raw im-
age. Given parameters such as transmitter/receiver positions with respect to the sub-
plot being viewed, synthetic aperture distances, and the frequency range of the
antenna, the focussmg operation mtegrates the hyperbolae to reconstruct the image
along the ground plane. The focussed images are then rescaled (magmﬁed) accordmg
to ground truth values, shifted, and rotated (i.e. registered) to plan view. The regis- -
tered GPR images are then ar.chive_d and processed further to detect and identify tar-
gets and fused with the DBIR images.
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Figure 12. Infrared and visible data flow from capture to ATR processing
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Automatic Target Recognition and Data Fusion

Past research has shown that it is extremely difficult to distinguish buried mines
from background clutter in images obtained from any single sensor. We believe that
data fusion applied to simultaneous observations with a variety of different sensors
may provide.a reliable signature for buried mines. This work focuses on the fusion of
images from two infrared sensors with different band passes.We use feature-level fu-
sion and supervised learning with the probabilistic neural network (PNN) to evaluate
detection performance. The novelty of the work lies in the application of advanced tar-
get recognition algorithms, the fusion of dual-band infrared images and evaluation of.
the techniques using two real data sets.

We use a supervised learning pattern recognition approach to detecting the metal
and plastic land mines buried in soil. The overall process consists of four main parts:
preprocessing, feature extraction, feature selection, and classification. These parts
are used in a two step process to classify a sub-image. The first step, referred to as
feature selection, determines the features of sub-images whicli result in the greatest
separability among the classes. The second step, image labeling and post-processing,
uses the selected features and the decisions from a pattern classifier to label the re-
gions in the image which are likely to correspond to buried mines. We process images
using a SUN Sparc 2 and the VISION software package written at LLNL (the primary
author is J.E.Hernandez). VISION is an object-oriented package, and it runs under

- Franz Allegro CL, which implements the Common Lisp Object System (CLOS) [12].
We have also implemented the algorithms in IDL, using functions written in C.

The preprocessing of images consists of operations on the image prior to feature
calculation. This includes registration of images so that corresponding spatial posi-
tion occur in corresponding image pixels, and calculation of pseudo-images from ex-
isting images in order to isolate specific physical processes into specific images.
Examples of pseudo-images are temperature and emissivity images calculated ftom.
IR intensity images.

Registration

The multiple images of the scenes do not, in general, superimpose correctly; due
to fundamental sensor differences (scalings, fields-of view, etc,) and sensor geometric
distortion (barrel distortion, etc.). We manually identify fiducial markers on the
ground to be used as control points for a perspective warping algorithm, which per-
forms translation, rotation, scaling and perspective corrections to the images [3,4].
We obtain an ensemble of corrected images which can then be processed pixel-wise
with the assurance that pixels in the various images correspond very closely with
same point on the surface.

_ A separate géometric mapping operation is performed on each image. For each im-
age to be mapped, we compute two mapping polynomials (one to map the X coordi-
nates of the control points to their target locations, and the other to map the Y
coordinates of the control points to their target locations). Because our images require
perspective corrections, we used a perspective mapping algorithm [24-27]. This algo-
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rithm performs translation, rotation, scaling and perspective correction. We used four
control points and their target locations in each image to determine the mapping.
Once the mapping polynomials have been computed, each image can be geometrically
mapped using its mapping polynomials. The mapping is performed by iterating
through the pixels in the corrected image. At each pixel location in the corrected im-
age, we compute the pixel coordinates of the corresponding pixel in the uncorrected
image using the inverse mapping functions. In general, these computed coordinates
fall between pixels in the uncorrected image, so we use bilinear interpolation among
the four nearest neighbors in the uncorrected image to compute the pixel value. A pix-
el of that value is inserted at that location in the corrected image. We then step to the
next pixel in the corrected image and repeat the process. The result is the geometri-
cally corrected image.

Calculation of Pseudo-images

If certain physical parameters which are more likely to contain signatures of targets
can be emphasized in an image by combining data from more than one sensor, then
this pseudo-image can be calculated and treated as an independent image. While so-
pbisticated classification algorithms may infer these relationships from the original
images, they may require a larger number of samples than are available to do so ac-
curately. Hence, we have calculated two such i images, called “ enuss1v1ty ratio” () and
“temperature ratio” (T): '

B = ()
T = m(a;;g )

where S is the short-wavelength intensity, s is the.average value of the pixelsin S, L
is the long-wavelength. intensity and 1 is the average value of the pixels in L. The
emissivity ratio should be insensitive to the differences in temperature of a single
substance, but should show emissivity contrasts among different substances. The
temperature ratio should isolate differences in temperature of a substance and be less
sensitive to differences of emissivity.

Feature Extraction

After the pre-processing has been performed, the sub-image samples (or tiles) in
the i image are selected. These sub-images are square regions (N x N) which have di-
mension (N) of approximately the diameter of a mine. This allows the majority of the
pixels to be contained within the mines. This value differed for the experiments pre-
sented in sections four and five. This was due to dlfferences in pixel resolution in both
cases.

Given these sub-images, we compute a vector of statistical features from the pixel

values in the sub-images. For the results in this paper, we use amplitude histogram
features and spatially-dependent features, including texture features [4, 5].
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Feature Selection

Human experts generally classify objects based on a very few of the most impor-
tant attributes in the image. The fundamental function of the feature selection pro-
cess is to select the most useful information from the representation vector and
present it in the form of a relatively low-dimensional pattern vector removing any re-
dundant and irrelevant information which may have a detrimental or irrelevant ef-
fect on the performance of the classifier. A useful by-product in the process is
knowledge about the discriminatory potential of the features and the associated high-
est achievable performance for a given set of features. Statistical decision theory tells
us that the probability of misclassification is.a decreasing function of the number of
features provided, if the sample size is very large. In practice however, only a small
number of training sets is available and estimation errors are no longer negligible.
Since the number of parameters and the associated estimation errors increase rapidly
with dimension, it may be advantageous to sacrifice some useful information in order
to keep the number of these parameters to a minimum.

An important goal in our work is to use feature selection techniques to choose the
subset of features that contribute most to correct classification. In order to accomplish
this, features must be extracted from known sub-image samples, providing a known
database. We gain two main benefits from feature selection. First, we wish to mini- _
mize the computational complexity of our processing algorithras, so they can eventu-
ally be implemented in “real time.” Second, we wish to determine which sensors are
the most important for classification. By rank ordering the features according to their
importance for classification, we are able to eliminate from consideration sensors
which do not contribute significantly. Feature selection is typically accomplished by
computing a distance measure which is the sum of probabilistic distances between all .
pair-wise combinations of classes [5,6]. Commonly used algorithms include Branch
and Bound, Sequential Forward Selection, and Sequential Backward Selection [5,6].

Classification

The pattern recognition problem is difficult because various sources of noise dis-
tort the patterns, and often there exists substantial variability among the patterns
belonging to the same class [13-22]. “Rules” based on situation specific empirical
knowledge can'be constructed providing a data-driven threshold for the purpose of
classification. Our initial work focused successfully on this method [9-11, 23]. Howev-
er, rules of this type are in effect modified parallelepiped classifiers that do not take
into account the covariance structure of the classes. The rule-based approach is valu-
able, particularly as preprocessing step, but we have found that the supervised learn-
ing approach is generally more robust to varying data scenarios. '

In our studies, we have used a variety of classifiers, including the nearest neighbor
classifier [6], and the probabilistic neural network [8, 16].

Supervised Learning Results for a Clutter-Free Environment

The data which was processed for these results was acquired at the LLNL site.
This site contained both clay and sand plots.We conducted controlled experiments at
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the LLNL site. The soil was prepared so the surface was cleared and free of vegeta-
tion, stones and other clutter sources. Additionally, the data were acquired in both the
daytime and nighttime..

In this experiment, we defined a two-class problem. The first class (called “Mines”)
corresponds to buried mines and filled holes. (A filled hole is one for which the soil was
removed and then replaced.) Filled holes were combined with the buried mines be-
cause some preliminary results indicated that it is very difficult to differentiate them
using thermal IR. Moreover, it is safe to assume, in a typical operational situation,
that wherever a filled hole exists, a mine may also exist. The second class (called “No

.Mines”) corresponds to background, clutter, and fiducial markers. Although these

plots visually appear clutter free, there was some thermal clutter. This class was de-
fined as regions in the image which were in the background but had thermal intensity .
values similar to those of mines [29-301.

The sub-images which were sampled from these images were of size 21. This size

. was selected because it was approximately the diameter of amine. For the results dis-
cussed below, only the amplitude features were generated.- These features consisted

of mean, standard deviation, skewness, kurtosis, energy and entropy. :

Because daytime and nighttime images have differing thermal characteristics,
they were evaluated separately. Additionally, the clay and the sand images had dif-
fering thermal characteristics, so they were also evaluated separately. In an attempt
to determine whether features which represent temperature and emissivity charac--
teristics resulted-in better detection probabilities than features which simply repre-
sent long and short wavelength intensity values, the four cases-given above were -
repeated ‘once for long and short wavelength features and once for temperature-and
emissivity features. Therefore, eight cases were studied: daytime, clay, short and-
long; nighttime, clay, long and short; daytime, sand, short and long; nighttime, sand,
long and short; daytime, clay, temperature and emissivity; nighttime, clay, tempera-
ture and emissivity; daytime, sand, temperature and emissivity; and nighttime, sand,
temperature and emissivity.

Feature Selection

Because the sample set was small, conventional feature selection techiniques, such
as the branch and bound and the sequential forward selection algorithms could not
be applied. Since the ultimate goal of this work was to detect mines, the probability
of detection was used as a means of defining class separability for features subsets.
This was computed by training a classifier, which in this case was the nearest neigh-
bor classifier, with all the feature vectors except for one feature vector held out for
testing. Following this the unknown vector was then classified. This was repeated for
all the training vectors, and probability of detection was computed. Since each feature
vector could consist of up to twelve features (six histogram features x two images),
there were 4095 (212-1) possible feature subsets tested for each case. The feature
subset which provided the highest probability of detection was selected-as the “opti-
mal” subset. The image labeling along with the post-processing are described in the
next section.
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Image Labeling and Post-Processing

After the feature selection had been performed, the “optimal” subset of features
was computed for every pixel in the testing images. These feature vectors were then
classified as belonging to either the class “Mine” or “No Mine” using a nearest neigh-
bor classifier. In an attempt to “clean up” this binary image, a morphological “open-
ing” operation was performed. Following this, a region growing algorithm was applied
to isolate “Mine” regions. Regions which were very small' (less than 1/4 the area of a
mine) were eliminated from further consideration. The centroids of the remaining re-
gions were labeled as estimated mine locations. If the estimated location was within
a mine radius of the actual location, the detection was considered a success. Other-
wise, the detection was considered a false alarm. The feature selection results and the
detection results for all eight cases are presented next.

Results

Results of using long and short wavelength features are given in Table 4.1, and
results of using temperature and emissivity features are given in Table 4.2. The
“probability of detection” is calculated as the ratio of the number of actual mine loca-
tions detected to the total number of actual mines. The “probability of false alarm” is
calculated as-the ratio of the estimated mine locations which do not lie within a mine
radius of an actual mine to the total number of estimated mine locations. These rat10s
are given below the probabilities in Tables 2.1 and 2.2.

" Several conclusions can be drawn based on the results of this work. First, in gen-
eral it is easier to detect “mines” buried in clay than it is to detect “mines” buried in
sand. Second, there does not appear to be any clear advantage to using nighttime im-
ages over daytime images when detecting mines. Lastly, there seems to be little dif-
ference between results acquired using amphtude features of the long and short .
wavelength i images and results acquired using amphtude features of the temperature
and emissivity images.
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Probability Probability
Time of Day, Terrain, "Optimal" of of
Image Pair Feature Subset Detection False Alarm
mean (long)
. standard deviation (long)
Daytime, skewness (long) 100.0 0.00
Clay, (18/18) 0/18)
Long & Short
Nighttime, mean (short) 88.89 0.00
Clay, (16/18) 0/16)
Long & Short
standard deviation (long)
. kurtosis (long) 83.33 47.06
Daytime, Sand, - -
Long & Short standard deviation (short) (10/12) @&nmn
skewness (short)
Nighttime, standard deviation (long) 75.00 23.08
Sand, mean (short) 0/12
Long & Short ©/12) ©/13)

length images

Table. 2.1. Feature selection and image detection results using only the-long and short wave-

P - a1e
Time of Day, Terrain, ~ - "Optimal" wt:f: ility Probs?xhty
Image Pair Feature Subset Detection False Alarm
mean (temp)
. kurtosis (temp)
Daglt:;e, skewness (emis) 83.33 0.00
Temp & Emis entropy (emis) (15/18) (015)
Nightti mean (temp)
'ggl a;ne i standard deviation (temp) 94.44 0.00
Temp & Emis (17/18) 0/17)
mean (temp)
Daytime, Sand, standard deviation (temp)
Temp & Emis mean (emis) - 66.67 42.86
standard deviation (emis) (8/12) (6/14)
* mean (temp)
s standard deviation (temp)
i i Skewness (tomp) 91.67 7.64
and, skewness (emis) . :
Temp & Emis kurtosis (emis) (11/12) (1/12)

Table. 2.2, Feature selection and image d

sivity images
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Supervised Learning Results for a Cluttered Environment

The data for this experiment were acquired from the NTS site. This site, which is
located in the Nevada desert, was uncleared and therefore contained a large amount
of clutter. Additionally, the mines were buried in a manner such that they were not
visually apparent and disturbance of the soil surface was minimized.

The clutter in these images, was due mainly to the presence of bushes. These areas
had pixel intensity values which were much greater than the background and the
mines areas. By using an automatic thresholding technique with the long wavelength
image; the pixel locations of the bushes could be determined, and eliminated from fur-
ther consideration as a mine by forming a mask. Since the ground truth of the fidu-
cials was known, these areas were also masked from further consideration. After
these steps, only mines, surrogates, and background areas were left unmasked in the
images. The background consisted of areas of ground similar to where mines were ac-
tually buried. The square sub-images which were sampled from these images were of
size 13. This size was selected since it was approximately the diameter of a mine. For
each sub-image, we computed nine amplitude features, nine texture features for a dis-
tance of one, and nine texture features for a distance of two. The amplitude features
consisted of the mean, standard deviation, skewness, kurtosis, energy, entropy, local
minimum, local maximum, and median. The texture features consisted of mean, stan-
dard deviation, contrast, angular second moment, correlation, entropy, local homoge-
neity, cluster shade for sum, and cluster prominence for sum. The feature vector for
each physical location consisted of 108 features, 27 features times 4 images (long,
short, temperature, and emissivity). It is important to note that these results were ac-
quired by using the long, short, temperature, and emissivity images together. This
differs from the experiment described in the previous section, which analyzed the long
and short wavelength images separately from the temperature and emissivity imag-
es. :

Only nighttime images which contained metal mines and surrogates have been
processed. These results are presented below.

Feature Selection

The feature selection was accomplished using 1480 background samples (sub-im-
ages), 60 mine samples, and 45 surrogate samples collected from the database of im-
ages taken over the test plot. Since preliminary results indicated that the mine and
surrogates had similar characteristics, they were combined into one class. The se-
quential forward selection algorithm was used to determine the optimal subset of fea-
tures. Preliminary results indicated that by using the best three features as
determined from the sequential forward selection algorithm, adequate separation be-
tween the two classes could be achieved. These three features in order of importance
are the contrast of the emissivity for a distance of two, the local minimum value of
emissivity, and the standard deviation of the emissivity for a distance one. The phys-
ical significance of these particular features seems to be related to the relative homo-
geneity of the soil surface where the holes were dug. Specifically, the soil surface is
more homogeneous where the holes were dug. The differences, however, were subtle,
as indicated by the estimated probability density functions of the three features
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shown in Fig. 14.1. The image labeling using these features is described in the next
section. |

Image Labeling

Feature vectors were generated for every unmasked pixel in the testing images.
These feature vectors were then classified by a probabilistic neural network (PNN)
[8]. The output was an image in which each pixel represents the probability of a mine
existing at that location. Next, this probability image could be thresholded to deter-
mine the most likely mine and surrogate pixels. The results of these operations are
shown in Fig.'s 14.2 to 14.4. Figure 14.2 displays the long wavelength, short wave-
length, temperature, and emissivity images for a plot. Figure 14.3 displays the prob-
ability image which results after the classification. The posterior probability of the
class "mine" is plotted at each pixel. The brighter areas.of this image indicate loca-
tions for which a high probability of a mine exists. Lastly, Fig. 14.4 displays the la-
beled image which results from thresholding the probability image. This figure
indicates the 500, 1000, 1500, and 2000 most likely mine pixels. In all these images,
the squares indicate actual mine/mine surrogate locations. :

Emissiyity : Centrast (Diztance = 2) (mines => red, surrojates => areen. bakkqround => blu2)
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Figure 14.1. Probability density function estimates (histograms) of the three "best" features. The
smoothest curves represent the background statistics. The others represent mine and mine

surrogate statistics.
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(a) Long wavelength image

(c) Emssivity image @ Temperature_ image

Figure 14.2. Long wavelength (a), short wa‘relength (b), temperature (c), and emissivity (d) images.
Locations of mines and mine surrogates are indicated by squares.

Figure 14.3. Image representing the probability of a mine or surrogate pixel. The black areas
were masked out as they were identified as vegetation.




The results for the cluttered environment at the NTS were much less favorable
than the results for the controlled experiments at LLNL (uncluttered). At the NTS,
the IR images of mines were relatively weak compared to clutter, so only limited re-
sults were obtained

Discussion

Using supervised learning pattern recognition techniques we found that we could
detect land mines buried in an uncluttered clay soil from fused dual-band IR images
with the use of simple amplitude features. While this exercise was instructive, the
data did not require such sophisticated methods to detect mines. In fact, it was not
clear that a two sensor IR system was necessary or even beneficial for the purpose.
We did determine that probabilistic neural nets provided performance superior to
nearest neighbor methods and even back propagation neural nets. Using PNN we
could distinguish between holes with and without mines. ‘

However, further work with cluttered fields provided considerable instruction as
to the utility of data fusion techniques. Current results indicate that the best perfor-
mance was achieved using texture features extracted from the pseudo-image “emis-
sivity”. We currently believe this to be physically related to the surface disturbance
resulting from the mine emplacement. It is clear that even with these results, addi-
tional sensors must be included for reasonable detection reliability to be achieved.

(b) most likely 1000 pixels

(c) most likely 1500 pixels (d) most likely 2000 pixels

Figure 14.4. Most likely mine pixels: most likely 500 pixels (a), 1000 (b) 1500 (c), and 2000 (d) pixels
are shown in white. Squares indicate mine positions.
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V. Summary of Results

In the course of data collection at NTS more than 500 Mb of IR, GPR, and other
electro-optic data were collected over a variety of conditions. A complete analysis of
all this data is beyond the scope of this project, and only part of the data (specifically
the IR data) were used as input for the complete automatic target recognition se-
quence. On the other hand, we have surveyed the data to provide a basis for general
conclusions. This section summarizes these general conclusions resulting from the
data collections and analysis of this project.

Visual inspection of data

For basic 2-D image analysis, visual inspection is still an extremely powerful tech-
nique. In spite of its drawbacks, it allows a rather high speed analysis of large vol-
umes of data with the fairly sophisticated pattern recognition and data fusion
capabilities of the human being.

The figures referenced below are marked to show the locations of mines and fidu-
cial markers. The labels carry information on the mine type.

Visible images |

A walking tour of the Mine Test Facility demonstrates that buried mine detection
is a difficult job, especially mines in a weathered environment. Even with the prior
knowledge of the approximate locations of the mines, it is quite unlikely that one will
locate more than a few. Figure [6] shows how little visible signature is present to the

eye. However, as'shown in Figure 15, there is evidence of subtle color changes due to

L

Figure 15. Visible image of sub-plot MS2
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surface disturbance by human activity in the area and the mine emplacement hole
which could be detected by hyperspectral sensors. Fusion of multiple sensors would
aid in reducing the false alarm rate.

While the initial investigations of DelGrande, et. al. [11] showed that buried mines
have detectable thermal signatures, these signatures are easily masked by the sizable
temperature variations due to natural clutter. Figures 16 and 17 show several views
of mine plots in the SWIR and the LWIR. These, images, taken at night, show that
bushes and vegetation, which tend to equilibrate to the air temperature, are signifi-
cantly warmer than the ground. The temperature variations in the image due to these
plants is significantly larger than the variations due to the mines.

The mine signatures, in fact, are generally slight depressions in the temperature.
These depressions are not always present, but they can be seen in several of the mines
marked in JS2 and JS3 images. What is clearly the.case is that mines will not be
found simply by setting thresholds on temperature. :

GPR

LLNL GPR results are described in detail in Appendix A. The GPR images typi-
cally show metal mines clearly. Large metal test objects were imaged with high sig-
nal-to noise (SNR) and signal-to-clutter ratio (SCR) to depths of at least 20". Large
plastic objects can be imaged with a lower-SNR and SCR. Medium plastic objects are
difficult to image. All of the metal mines buried to depths of 2" were easily detected
and easily identified. The reconstructed SAR image of plot I South in Figure 18a
shows that metal mines and surrogates are clearly detected. This result is important
as it is the first case where standoff radar systems have been shown to detect mines
in a natural, cluttered environment. Results from Project Ostrich [31] showed mines

.+ clearly only when they were on the surface. Also rising above the background are the

metal fiducials, which were chosen to be visible to the radai system.

Images with plastic mines show that detection using reconstruction based only on

‘reflected power will be difficult. Although some plastic mines or surrogates are visible

in Figure 18b showing the reconstructed SAR image of plot K Morth, the signal to clut-
ter ratiois low.

SRI International GPR results[82, Enclosure 3] were similar to those above. All of
the metal mines and mine surrogates were detected with high signal-to-noise and sig-
nal to clutter ratios. All of the plastic surrogates and some of the large plastic mines
were also detected. SRI also acquired data for two different sizes of de calibration
spheres suspended in the air. This allowed processed SAR images to be calibrated in
absolute radar cross section (RCS) in dBsm. X
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Summary of ATR results

The ATR analysis for the controlled experiments at the LLNL site gave excellent
detection results with good false alarm rates. However the detection and false alarm
results from the natural NTS environment were not adequate for robust detection.
The second IR band improved detection performance but the primary problem re-
mains the inmability to discriminate between relatively weak mine signatures, when
present, and the rather high level of natural clutter. As discussed below the ATR
analysis for COBRA data was more successful

The ATR analysis discussed in the previous section supports the conclusion that
adding a second sensor channel improves detection performance. In that case, the
sensor channel was an additional broad band IR channel. The addition of more sensor
channels, either by using multi-spectral or hyper-spectral sensors is one possible av-
enue for improvement. The fusion of IR data and data from the multiband COBRA
sensors discussed below could demonstrate the benefits of this approach.

The addition of detector channels other than IR is also a worthwhile approach,
and, as data to support such investigations is available from this program, it may also
be a workable one. The fusion of GPR and IR images is a particularly interesting op-
tion which should be pursued in the future.

COBRA data

We have applied our methods to data other than that gathered-at NTS. In support
of the COBRA program, we have analyzed the six band visible-near IR imagery of bur-
ied and surface mines which existed as of June, 1994. While this data is not of partic-
ularly high quality, we have found reasonable detection probabilities are achievable
because signatures of the surface mines were sufficantly stong. Improved data should
be forthcoming. A more detailed description of the COBRA analysis is in the report
included as Appendix B.
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’ , Appendix A

Ground-penetrating radar for buried mine detection
Paul D. Sargis, F. Dean Lee, E. Stephen Fulkerson, Billy J. McKinley, William D. Aimonetti
Lawrence Livermore National Laboratory, P.O. Box 808, M/S L-54, Livermore, CA 94551

ABSTRACT

LLNL is developing an ultra-wideband, side-looking, ground-penetrating impulse radar system that can be mounted on an
airborne platform for the purpose of locating buried mines. The radar system is presently mounted on an 18-meter boom. We
have successfully imaged a minefield located at the Nevada Test Site. The minefield consists of real and surrogate mines of
various materials and sizes placed in natural vegetation. Some areas have been cleared for non-cluttered studies. A technical
description of the system will be presented, describing the wideband antennas, the video pulser, the receiver hardware, and the
data acquisition system. The receiver and data acquisition hardware are off-the-shelf-components. The data was processed using
LLNL- developed image reconstruction software, and has been registered against the ground truth data. Images showing clearly
visible mines, surface reference markers, and ground clutter will be presented.

2. INTRODUCTION

Various types of synthetic-aperture radar (SAR) systems can be applied to the problem cf locating buried mines and minefields.
High-altitude airborne SAR systems have the advantage of being able to search large aress quickly, but they require high-power
transmitters to couple adequate energy into the ground. Ground-coupled systems can penetrate deeply into the soil, but they
réquire travel over the surface of the site being surveyed and only provide data over a narrow swath. Our “standoff” ground-
penetrating radar (GPR) system is mounted on an elevated mobile boom, simulating a slow, low-flying airborne platform. We
can examine areas up to ten meters wide with a penetration depth that is between that of airborne and ground-coupled systems,

Instead of using a pulse-modulated swept-frequency technique, we c'hosé to implement an impulse approach, because of its
relative simplicity and because of our expertise in impulse generation, transient digital recording, and SAR processing. Our
" approach is based on some of the techniques developed by SRI International.1:2- : -

Our system presently requires a cémvan of two vehicles. Transmit and receive antennas are mounted on 2 boom truck-having an
altitude capability of 18 meters. The boom truck is followed by a motorhome which houses the instrumentation. As pictured
in Figure 1, the two vehicles are joined by a bundle of cables. A simple block diagram of our GPR system is presented in

Figure 1. Hlustration of GPR vehicle caravan




Figure 2. The trigger source for the system is a shaft encoder mounted on a bicycle wheel which follows the boom truck. A
trigger pulse is issued whenever the wheel turns a selected fraction of a revolution. When prompted by the shaft encoder, the
trigger generator distributes triggers to the pulse transmitter, a pulse counter, and a transient digitizer with appropriate delays to
compensate for cable lengths. -

transmit
anterna

3.5-kV pulse
» transmitter

. receive
Y antenna
shaft trigger |, | Pulse

encoder generator counter i_*

f——=| transient digitizer

data acquistion data processing
computer computer

Figure 2. Block diagram of GPR system

The pulse transmitter is a LLNL-designed unit which uses avalanche transistor technology to genérate the high-voltage video™ °
. pulse shown in Figuze 3. We used pulse-shaping techniques to optimize the spectral coitent of the transmitter over the ’
passband of interest. (See Figure 4.) Optimum power transfer occurs when the spectral content of the transmitter matches the
" response of the transmit antenna. If the transmitter generates significant energy outside: the passband of the antenna, it will
" reflect back toward the transmitter. This energy may then reflect a second time from the transmitter output, causing interfering
pulses to be transmitted from the antenna. ) : ‘ o
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Figure 3. Pulse transmitter output waveform
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Figure 4. Spectrum of pulse transmitter ouiput

The transmit antenna, pictured in Figure 5, is a commercial double-ridged horn antenna and is designed to operate from 200
MFiz to 2000 MHz. Although the 3-dB antenna beamwidth varies with frequency, it is on the order of 45 degrees in both the

E-plane and the H-plane.

Figure 5. Double-ridged hom transmit antenna
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Our receive antenna, shown in Figure 6, is a unique design. The monopole corner reflector uses a folded triangle element to
permit operation from 400 MHz to 1500 MHz. This design has several advantages over a conventional resistive dipole corner
reflector. It has considerably more gain than a resistive dipole, it is half the size, and it takes a simple coaxial feed with an
autotransformer matching network. Its geometiy minimizes crosstalk from the adjacent horn antenna. Like the hom antenna,
the 3-dB beamwidth for this-antenna varies with frequency. It is on the order of 40 degrees in both the E-plane and the H-plane.
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Figure 6. Monopole cormer reflector receive antenna

The ﬁtqueflcy response of the pair of antennas is plotted in Figure 7. They are capable of efficiently transmitting a pulse
having spectral content between 400 MHz and 1500 MHz. Because the monopole corner reflector has a narrower bandwidth
than the horn, we use:it on the receiver rather than on the transmitter because it rejects local VHF two-way radio signals,
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Figure 7. Normalized frequency response of antenna pair




The combined response of the transmitter, antennas, and coaxial cables is well behaved. (See Figure 8.) A frequency-domain
representation of this response, shown in Figure 9, reveals that our GPR system performs well between 400 MHz and 1000
MHz. The narrower bandwidth of the monopole corner reflector acts as a filter for the hom antenna to produce this clean
response. In our experience, the use of identical antennas for transmission and reception yields a response that rings.
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Figure 9. Normalized frequency-domain response of GPR system

Our receiver is a Hewlett-Packard 54720D 4 gigasample per second transient digitizer. We use the digitizer’s internal amplifier
to take advantage of its full eight-bit resolution. When triggered, the 54720D captures a 256-point waveform. Bach waveform
is transferred to an Apple Macintosh Ifx and stored in RAM until the data run is complete. (The dataacquisitionand -
instrument control software is written in National Instruments LabVIEW, a high-level object-oriented softiware package.)
Finally, the data is transferred to a Sun or HP workstation for SAR processing.




The antennas are mounted on a remotely-contmlled pan-and-tilt mechanism, permitting adjustment of the antenna look angle.
The transmitted pulse is optimally refracted into the ground when the antenna tilt angle matches the Brewster angle, as )
determined by the soil dielectric constant at the center of the spectrum. This is illustrated in Figure 10. Maximum penetration

depth varies, depending on the conductivity of the soil.

antenna

transmitted
I \pulse

surface
refracted retumn scattered
from object energy
' surfacq, W. 6
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Figure 10. Hlustration of if energy propagation for buried object detection

4. THE NTS MINE DETECTION FACILITY

LLNL operates the Buried Object and Mine Detection Facility at the Nevada Test Site (NTS), which is located in the high
desert, approximately 100 km northwest of Las Vegas. This facility appears in the foreground of the photograph in Figure 11. -
Actual mines (without detonators) and surrogate mines, both metal.and plastic, have bezn buried in natural vegetation. The soil -
in this area is made up of alluvium, consisting of Paleozoic fragments and tuff. Soil conductivity is on the order of five to

eight millisiemens. The exact location of buried mines has been carefully documented. Figure 12 shows how the facility is
laid.out. An area has been cleared of vegetation and smoothed to permit evaluation of our GPR system with a minimum of

ground clutter,

Figure 13 illustrates the typical layout of a minefield plot. Items marked “fid” are 10-cm square galvanized steel plates that we
use as surface markers. The fids are attached to the ground by means of short metal skewers. At each end of a minefield, three
1-cm diameter rebars are driven approximately 30 cm into the ground, leaving 60 cm above ground. Mines and surrogates are
" buried with between one and ten centimeters of soil overburden. The actual location of objects varies from the square grid when
bushes are present. Vegetation and burrows were left intact to maintain realistic conditions, )

-3, EXPERIMENTAL RESULTS

We set up our GPR system at the Nevada Test Site in the configuration discussed in section 3, and positioned our antennas at
an elevation of five meters. Both antennas were mounted for vertical polarization, and the antenna look angle was 34 degrees

. below horizontal to center the main antenna lobe over the middle row of objects. The angle from the antennas to the back row
of objects was around 26 degrees. For an estimated dielectric constant of 4 at the center of the spectrum, the angle to the back
row approximates the Brewster angle. Thus, Brewster’s law favors the back row of objects, the antenna pattern favors the
middle row, and close range favors the front row.
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Figure 12. Layout of NTS Mine Detection Facility
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Figure 13. Typical layout of an NTS minefield plot

We collected data every five cm along the road.adjacent to the minefield designated, “I-south.” This minefield contains real
metal mines and surrogates, all of which are approximately 30 cm in diameter. Figure 14 is a 796x256 composite image of
data from subplot IS-4 with the average background subtracted. Itis a side-by-side representation of the 796 time-domain data
records, The three rows of objects clearly stand out above the clutter. Each object is defined by an arc. Prior to SAR
processing, the image is preprocessed using average subtraction, range compensation, and pulse compression. Average
subtraction takes the difference between the raw image and the mean of the raw image. Range compensation corrects for power
losses due to the distance from the antennas to the objects. Pulse compression deconvolves the antenna-to-antenna system

pulse response (Figure 8) from the result to reduce ringing and improve résolution.

~uff—— back row

~aff——ee. middle row

~ugf— front row

Figure 14. Composite image of minefield IS-4 subplot

Figure 15 is the reconstructed SAR image of minefield I-south, subplot-4. Object positions in this image correspond to arc
positions in Figure 14 . With the addition of the exact location of objects in Figure 16, we find good correlation between the
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ground-truth registration and the GPR result. The three-dimensional representation of this data in Figure 17 shows that most of
the clutter is well below the buried objects and surface markers. By making a visual analysis of the minefield, we were able to
determine that the stronger returns from clutter were due to bushes and animal burrows. Overall, the signal-to-clutter ratio in
this image is between 4:1 and 6:1.

processed result shown in Figure 18. All five of the objects are clearly visible. The three-dimensional representation of this
‘data is shown in Figure 19, The disk with 10 cm of soil overburden produced a stronger return than the one buried 5 cm deep
It could be that the Iatter object is tilted back slightly, resulting in a smaller radar cross-section. The signal-to-clutter ratio for
these five objects ranges between 4:1 and 6:1, depending on depth of burial.

6._SUMMARY

We have demonstrated the capability of our standoff, wideband, side-looking GPR System to locate buried metal mines with a
signal-to-clutter ratio of up to 6:1 at the Mine Detection Facility at the Nevada Test Site, Reconstructed two-dimensional
images of the test area compare favorably with the ground truth data, and validate the capabilities of our system. We have also
demonstrated that our system can detect metal objects buried as deep as 40 cm.

The performance and functionality of our GPR System can be improved in a number of ways. We can increase the penetration
depth by reducing the lower cutoff frequency of our antenna system, and by increasing the output power from our pulse
transmitter, We can improve our signal-to-nojse 1atio by averaging multiple waveforms in each position. Modifications to our
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Figure 19. Three-dimensional SAR image of buried metal disks

data acquisition hardware will make it possible to
goal is to climinate the need for a boom truck by
drive our GPR system to any test site.

place our system on a slow, low-flying airborne platform. Our intermediate
mounting our antennas on top of a motorhome. We will then be able to
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Appendix B

Preliminary Results of LLNL Analysis of CSS Cobra Flight Test
Data for Mine Detgction

Lawrence Livermore National Laboratory

Introduction

The goal of this work is to evaluate the feasibility of using
Lawrence Livermore National Laboratory's (LLNL's) automatic target
recognition algorithms to detect mines in images provided by the
Coastal Systems Station (CSS). The data consists of nineteen scenes,
each scene consisting of six images in the wavelength bands of 400, .
500, 600, 700, 800, and 900'nm, The ideal system should have a high
probability of correct mine detection (Pp), and a low probability of false
alarms, (Ppa), that is the probability of classifying an object as being a
mine when it is not. Processing results show that the algorithms per-
form well with this.data set. We expect, however, that even better per-
formance is possible if a larger and improved data set can be obtained.

Data.description and comments

The raw data images provided were 720x480 pixels in six bands
from 400 to 900 nm. The active area available to us for automatic de-
tection, however, was limited due to camera time stamps on the images.
These time stamps obscured some of the mines and made it necessary
for us to crop the images. The cropped image used columns 21 to 695
and rows 110 to 398 to assure that we did not get any of the text in our
field of view for detection. This limited the number of targets we could
use in our training set for the classifer to 133 out of a total of 209 pos-
sible objects listed in the ground truth table. The time stamps elimi-
nated 36% of the possible targets. '

The data also contained a spatial trend in the background. Back-
ground values across the image differed by up to a factor of two from
one side to the other (figl). As a result of this the signal-to-noise ratio
(SNR) varied across the image and, in some cases, was quite poor. Vary-
ing SNR’s cause the training sets to become less reliable and, of course,
where the ratio is low, causes a decrease in contrast between mines and
backgrounds. This apparently is a problem with the camera and should
be calibrated out of the data. We ran a high-pass filter over the data
sets to reduce this trend. This procedure is discussed below in the
“Technique" section.
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Figure 1. Row lineouts showing trend in data set

One more limitation we.encountered with the data was that the
resolution of the camera system was often insufficient to distinguish
between circles and squares. This limits.the [application of shape fil-

. ters.] ability to use features based on shape for object detection. Higher
resolution would allow the use of powerful techniques that distinguish

shapes. .
Technique
A. Preprocessing’

The raw image (720x480x6 pixels) was cropped to avoid time
stamps and filtering information at the top and bottom, and registra- -
tion corrections on the left and right sides of the image for all bands.
The range of X={21:695} and Y={110:398} was the spatial area pro-
cessed. The-cropped raw image contained 674x298x6 pixels. -
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B. Feature Extraction

The mine detection technique works by using supervised
learning to train a classifier to classify each pixel in the image as be-
longing to one of two classes; mine or background. We create a training -
set for mines by cutting out 5x5x6 subimages (or “stack of tiles) con-
taining examples of mine regions over all six bands. The spatial loca-
tions of the mine tiles are given by the ground truth provided by CSS.
The background training set is obtained by cutting tiles of the same size
as the mine tiles. The locations chosen for cutting background tiles,
however, are randomly chosen from among the possible background
areas in the scene. .

Scene features are calculated from the pixels contained in the-
mine and background tiles. Many types of features are available, but
we started with the very simple amplitude features [3,7-12, 22,23]. _
Amplitude features are statistical moments of the probability density
function (pdf) for the pixel intensity values-within the tiles. Sample
moments are used to estimate the features. The features are assembled
to form a feature vector, which is used as input to the-classifier.

-. For this data, the size of the training set for mines varied from
about 100 tiles (samples) for the case in which we included all types of
targets, to about 50 samples for-the case in which we included only
metal mines as targets. The training set for the background class con-
tained about twice as many samples as the mine class in-all cases.

, . For this study, we used the Probabilistic Neural Network (PNN) as

the classifier for this problem [6]. Because the number of available.
training samples is small, the classifier was trained using the “hold-
one-out” technique [21]. -

C. Training Set

Several training sets were generated to be appropriate for the
intended targets to be detected. These sets contained various types of -
targets: All targets, all targets without resolution panels, plastic and
metal mines only, metal mines only, and plastic mines only. We
searched a space of 54 features (nine features for each band) for three
features selected by a Sequential Forward Selection algorithm [21,22].
Selected features differed for each type of training table. The Probabi-
listic Neural Net (PNN) was tuned for optimal probability of correct
classification by adjusting the smoothing parameter, sigma [23]. The
smoothing parameter defines the width of the Parzen window used in -
the PNN. The table below summarizes the type of training table, the se-
lected features, and the optimal sigma that was obtained in each case.
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training table: band/features: sigma:

- - e o - - - o o ——— e

1. All targets 400nm Max, 400nm Energy, 400nm Entropy 0.09
2. All targets, no Res panels 400nm Max, 400nm Mean, 400nm Kurtosis  0.15
3. Plastic and Metal mines 400nm Max, 900nm Mean, 500nm Max 0.80
4, Metal mines only 400nm Max,500nm.Kurtosis, 700nm Energy 0.40
5. Plastic mines only 500nm Mean, 400nm Dev, 500nm Kurtosis 0.03

D. Labeling

Once the classifier is trained, it is used to analyze an image not
included in the training sets. An analysis window of the same size as -
.the training tiles is raster-scanned over the image. At each pixel in the

-image, features are calculated for the pixels in the analysis window,

- and the PNN classifies the center pixel in the window as belong to either
the class “mine” or the class “background.” The resulting binary image
(containing only ones representing mine pixels and zeros representing
background pixels) is called the “labeled image.” This labeled image
provides us with an indication of the locations of probable mine pixels.
The labelled image often contains “false alarm” pixels where the PNN
classified the pixel as a mine pixel, when it was in fact a background
pixel. When a large number of false alarms occur, their number can be
greatly reduced by postprocessing the labelled image as deseribed’
next. . :

E. Post-processing

After the trained neural net has labeled the image we apply a
morphological operator to the labeled image. We use a.3x3 pixel struc-
turing element to successively erode the labeled image,
then dilate the eroded image. This operation serves to eliminate many
of the small false alarms from the labeled image. The operation of ero-
sion followed by dilation is called an ‘opening.” The opening sieves out
objects that are smaller than the structuring element, but avoids a gen-
eral shrinking of the image [30, 34].

Since we know the physical size of our targets, we can apply size
constraints to eliminate from the opened image objects that are too - -
large or too small. First we perform a connected components analysis
on the opened image [30, 34]. This operation assigns all adjacent pixels
that form a region a unique number (index). We then eliminate detect--
ed object regions that are too large or too small according to prior
knowledge we have about the mine size from ground truth. Given the
true mine size, we discard detected regions that are smaller than 66%
of the size the region is supposed to be, according to ground truth for a
mine. The number “66%” was chosen based upon knowledge that the
labeling process tends to erode the size of the region detected, and by
some experimentation with the data set. This number can be better




tuned to the data with more work, or more sophisticated algorithms can
be employed.  The important thing to note is that the use of size con-
straints is a very useful tool for eliminating small false alarms and for

using prior knowledge in the analysis.
- Results and discussion

Figs. 2a - d show the resulting labeled and post-processed images
of data set t1cfl08. This data set was chosen for an example because it
contains a good sampling of metal and plastic mines. ‘

We calculate the Probability of Detection (number of mine regions
correctly identified / Total number of mine regions in the scene) and the
Probability of False Alarm (number of background pixels identified as
targets / Total number of background pixels in the scene) to assess the
performance of our analysis. We consider a target correctly identified if
the location of the centroid of the region is within a circular neighbor- |
hood the size of the radius of the target'according to ground truth.
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Figure 2b. TICFLO8 post processed: Trained without Resolution Panels; PD=1.00, PFA=0.036
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Figure 2e. TICFLO08 post processed: Trained with Metal; PD=0.77, PFA=0.0034
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Figure 3: TICFL08 Filtered

The cropped raw data sets.were operated-on with a simple highpass -
filter. For each pixel, the raw value was replaced by the difference of
the raw value and the average of a 30 by 30 area surrounding the pixel:
This differencing of a "boxcar” smoothed area greatly reduced the
background trend in the raw image (fig 1).
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For the case in which all objects in the ground truth were used to train
the PNN (fig. 2a) we successfully detected all of the mines so that out
of the objects labeled we have a probability of detection, Pp=1. The
probability of a false alarm (Pga), however, was quite high at.0586.

Training on all objects except the resolution panels (fig. 2b) gave
similar results with Pp=1and Pgas = .036. Training on just metal and
plastic mines (fig 2c) gave Pp=1and Pgpa = .017. Finally training on plas-.
tic mines only gave poor results (a low Pp), with Pp=.11 and Pgs = .0034
(fig. 2d).

& The best results occurred when we used only metal mines in the
training tables (fig2e). While Ppin this example dropped to .77, Pga
showed a dramatic improvement at .0034. Examples of other data sets
(fig 3) show that this trend in performance is consistent throughout the
data sets. Data set TICFLO11 has Pp=1 and Pga = .0013. T1CFL14 shows
excellent results in the labeled image only (fig3b) with Pp=1and Pga =
.0028. However, size constraints applied to this image produced a deg-
radation in the results (fig 3c), with Pp= .41 .and Pgs =.00089.- Clearly,
more investigation needs to be done to find the optimal size constraint
that will allow the procedure to be robust with respect to all the data
sets. ‘

Figure 3a. T1CFL11 post processed. PD=1.0, PFA=0.0030
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Size constraints applied. PD=0.41, PEA=0.00089

Figure 3¢ TICFL14: Metal only;

The apparent success of the mines-only training set is most likely
due to the higher contrast between metal mines and background.
When training sets are used containing plastic mines the performance
is diminished by the fact that in many of the bands in the data sets the
plastic mines have characteristics much like the background. This is
evident in fig. 2d. :

Future Work

The results of the processing are very encouraging. The probabjl-
ities of detection and false alarm achieved during training and testing
were sufficient for locating minefields from a qualitative visual inspec-
tion of the labeled and postprocessed images. They are very good, given
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the constraints on the analysis. The current limitations, or barriers to
progress, are due primarily to the following factors: (1) The data con-
tain a relatively small number of mine training samples for the indi-
vidual mine types. Of course, the priniciples of supervised learning rely
on the assumption that the training set is sufficiently large and suffi-
ciently representative of the test set to allow for good detection. This
data set is smaller than it should be for good training. (2) The images
contain a spatial trend in intensity values that is caused by problems
with the camera. We removed the trend with image processing meth-
ods, but it should, ideally, be removed from the hardware. CSS is aware
of this problem and corrective action is being taken. (3) More sophisti-
cated methods that make use of shape information could be used if the
camera resolution were greater. If the resolution is fixed for all possible
scenarios, this issue may be moot. (4) Only a very simple analysis was
attempted, due to funding and time constraints. Further work involving
use of more powerful algorithms promises to provide improved results.

Performance improvements are expected if we address these '
current limitations as follows: (1) Increasing the number of training
samples by conducting new experiments. (2) Solving the problems as-
sociated -with the camera, (spatial trend and-resolution limitations), (3)
Conducting a more thorough study of the features and of which ones
add the most value to the analysis. To date, we have used only ampli-
tude features and a suboptimal but fast and efficient feature selection
algorithm. A better study can be done using our optimal algorithm. We
- can also apply more physical knowledge and human judgment to-the
feature selection process to provide a more thorough analysis. (4) Tun--
ing the tile size for optimum performance, (5) Using shape-based fea-
tures on higher-resolution images. (6) .

Conclusion

The algorithms developed at LLNL for buried land mine detection
have been applied to the CSS flight test data-containing surface land
mines. The algorithm performance is good and quite encouraging. Prob-
ability of detection is very high (often close or equal to one). The prob-
- ability of false alarm is low enough to allow qualitative detection of a
minefield from visual inspection of the labeled and postprocessed im-
ages. The main issue of concern is that some labeled images are cor-
rupted by small false alarm regions. Many of these are eliminated by
applying size constraints, and we expect that many more could be elim-
inated by shape constraints. The current barriers to progress are small
sample size, relatively low camera resolution, spatial trends in camera
intensity, and fiscal constraints. We expect that the performance can be
improved significantly by addressing these current limitations in fu-
ture work.
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