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ABSTRACT

The United States and the United Kingdom have been engaged in a joint research
program in which samples of higher actinides were irradiated in the 600-MW Dounreay
prototype fast reactor in Scotland. Three separate fuel pins (FPs) were prepared and
irradiated. The actinides in FP-1 and FP-2 were irradiated for 63 full power days (FPD). The
irradiation of FP-4 was carried out over a longer period (492 FPD) and should provide the
best estimate for cross-section and fission-yield measurements made to date. This report
presents the analytical results using mass spectrometry and radiometry for the actinides and
the primary activation products for the three FPs. This report also details the fission-product
yield measurements for samples of FP-4 by gamma-ray assay techniques with selected results
from similar measurements previously obtained for FP-1 and FP-2 samples.
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1. INTRODUCTION

The objective of the joint U.S.~U.K. program has been to investigate the neutronic
and irradiation behavior of higher actinides in fast reactors. This summary report details the
analytical methodologies used to quantify the actinides after irradiation and presents results
obtained for the reaction products for the three physics-specimen fuel pins (FPs). Each FP
contained dosimeter materials to aid in flux calculations; these results are also presented.

The irradiations were carried out over a period of six years. The total exposure was
295,000 MWd consisting of 38,000 MWd (July 82-Sept. 83), 57,000 MWd (Dec. 85-May 86),
81,000 MWd (Aug. 86-Feb. 87), and 119,000 MWd (Sept. 87-July 88). The total fluence was
~2x10Pn/cm?® A detailed reactor power history as it relates to the exposure of FP-4 will be
. described in a future report.

Isotopic and material concentration measurements of the target actinides and those
created by the irradiations were performed for FP-1 in late 1984, for FP-2 from late 1986 to
early 1987, and for FP-4 from mid 1990 to early 1992. (Additional cross checks and
remeasurements of FP-4 samples continued up to early 1994.) The procedure involved, first,
the cutting away of the outer pin cladding to free individual capsules, and next, the
identification and complete dissolution of each capsule separately. These measurements were
performed using mass spectrometry and/or radiometry (see Sect. 3 and Appendix A).
Appendixes B and C present the summary data sheets for FP-1, FP-2, and FP-4.

Earlier Oak Ridge National Laboratory (ORNL) reports published in this effort detail
the preparation of samples for irradiation,! characterization of the actinide and dosimeter
samples, the preanalysis calculations for FP-1,2 fission-product yield data,* and analyses of
samples in FP-1 and FP-2.}
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2. PHYSICS SPECIMEN MATERIALS AND DOSIMETERS IRRADIATED IN THE
US-UK. HIGHER ACTINIDE EXPERIMENT

Twenty-one actinide materials were selected for use as physics specimens for the
U.S.-U.K. actinide experiment. Table 1 shows the specimens and their enrichment before
irradiation along with their positioning in the three FPs. The vanadium-encapsulated materials
were loaded into each FP in five sections (see Fig. 1).

Table 1. Physics specimen materials selected for irradiation

Position in Isotope enrichment

Isotope Batch No. FP ' (wt %)
%3Cm 1117 4 92.15
25Cm CS9SHIP 56 66.53
ZNp 24HP 7 99.99
24Cm C57CM46 89 92.35
§Cm 1011 10 57.67

U Q1 11 99.955
23Am H1P1018 12, 13 99.987
21Am 79AMB4 14, 15 99.995
22py 290A 16 97.96
24py 297C 20 87.69
20py HIP1068 21,22 99.86
Z%py 453BO 23 99.10
Alpy 307A 24 96.77
B2Th 4151 25 _ 100.00
z5y 201DMR 26 88.96
ZU M9 27 99.764

U 264C 28 99.89
Blp, PaF1 29 100.00
Bipy 06HP014 30 99.38
Z0Th 256A 31 89.39
=y 240A 32 99.886

Dosimeter materials were selected to help determine neutron fluxes; three positions were
chosen to help determine axial fluctuations in flux level. Figure 1 shows the sample locations
for dosimeters in the FPs; Table 2 shows the materials and their enrichments. Additional
details are given in Refs. 1 and 2.
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3. METHODS USED FOR ACTINIDE ANALYSIS

3.1 INTRODUCTION

A combination of high-sensitivity mass spectrometry and radiometric methods was used
to analyze the various actinides and neutron reaction products. Milligram quantities or less
of materials made accurate analyses very difficult. The removal and identification of each
capsule without loss or damage were two of many very difficult operations, especially because
these tasks must be accomplished in a hot cell. Another very difficult and time-consuming
step was the dissolution of the materials in the hot cells after the materials were removed
from the FPs. The dissolution methodology for the various materials is discussed in Sect. 3.2.

32 DISSOLUTION OF ACTINIDE PHYSICS SPECIMENS AND DOSIMETER
MATERIALS

321 Arrangement of FP Assembly

For the U.S.~U.K. actinide experiment, FPs irradiated in the Dounreay prototype fast
reactor (PFR), were comprised of five separate stainless steel tubes (see Fig. 1) in which
various vanadium-encapsulated actinide materials were packaged as described in Ref. 1.
Three of the tubes contained dosimeter material (six samples per tube) for measurement of
the neutron flux to which the assembly was exposed. The remaining two tubes contained the
actinide physics specimens. These were packaged 13 samples per tube (see Fig. 1). The
tubes then were placed in a stainless steel jacket and arranged such that each physics
specimen tube was bracketed on each end by a dosimeter package. All the stainless steel
tubes were crimped at both ends to prevent movement of the individual specimens within
them.

322 Removal and Identification of Specimens and Dosimeters

Prior to shipment to the hot-cell facility (where the isolation and dissolution of the
individual specimens were performed) the inner stainless steel jacket was removed from the
FP and cut into two sections to facilitate shipping. Individual specimens were approximately
1 cm in length; a unique dot code was imprinted on the side near the base of each capsule
(see Ref. 2). The physics specimens from the opened tube were removed by simply pouring
them out. The remaining four tubes were removed from the jacket by cutting portions of the
jacket away until the tubes were exposed; then the tubes were pulled out with pliers. The
individual specimens were removed from the stainless steel tubes by mechanically opening
both ends of the tube and then pushing the specimens through the opening with a rod. Some
difficulty was encountered at this stage because of swelling of the individual specimens.

An in-cell Kollmorgen periscope at 20X magnification was used to examine each
capsule and to identify the capsules by the dot codes imprinted on them. All 35 capsules
were recovered from the FP without visual damage. After each capsule had been visually
examined and identified, it was stored in a clean glass bottle.



323 Reagents and Glassware

Nitric acid, hydrofluoric acid, and hydrochloric acid used during the dissolution steps
were Ultrex-grade (equivalent to double distilled). Water used for dilutions was, obtained by
passing distilled water through an ion-exchange column filled with mixed anion and cation
resins and then by redistilling this product with a quartz still. New glassware (quartz for steps
involving hydrofluoric acid) was used for each dissolution. Prior to use, all glassware was
soaked overnight in 8 N nitric acid. Upon removal from the acid bath, the glassware was
rinsed first with distilled water and then a high-purity water and allowed to dry. Plastic
reagent bottles were rinsed with nitric acid, distilled water, high-purity water, and reagent-
grade ethanol and allowed to dry prior to. use.

324 Summary of Techniques Used for Dissolution of Physics Specimens

All dissolutions of the actinide specimens were performed in a radiochemical hot cell.
Dissolutions were performed in a 50-mL quartz beaker equipped with a quartz watchglass and
quartz boiling chips. Each capsule was rinsed with acetone before dissolution was started to
remove any external contamination. Dissolution of the individual capsules was begun by
adding 5 mL of 8 N nitric acid to dissolve the vanadium encapsulation material. No heat was
used during this step. Dissolution of the vanadium began immediately, as was evidenced by
the generation of gas bubbles, and was completed within 1 h. At this point, the solution was
blue, and the actinide material rested on the bottom of the beaker in a single rod-shaped
segment. :

After dissolution of the vanadium, the majority of the solution was transferred to
another beaker while the actinide material was undergoing dissolution. Heat was provided to
the solution by a hotplate and kept at a temperature at which vapor condensed on the
watchglass—but below the solution boiling point. Additional acid was added to the quartz
beaker during the dissolution, as needed, to maintain a solution volume of about 10 to 15 mL.
The time required to complete the dissolution of a sample varied from 2 h to 2 weeks.
‘Dissolution was termed complete if no solid material could be observed when the beaker was
placed on a white background and viewed with a telescope and mirror arrangement.

After the actinide material was dissolved, the vanadium-containing solution was
transferred back to the beaker containing the dissolved actinide, and the total volume was
reduced to about 10 to 15 mL. The solution was cooled, transferred quantitatively to a tared
25-mL volumetric flask, brought to 25 mL with 8 N nitric acid, and weighed. For long-term
storage, the solutions were transferred to acid-leached, glass, screw-capped bottles.

Dissolution of the uranium and curium specimens was relatively easy. It was
completed in a period ranging from several hours to several days. Only nitric acid and heat
were used to dissolve the material.

Dissolution of americium, plutonium, and thorium specimens was difficult, taking up
to 2 weeks to put some specimens in solution. Nitric acid, hydrofluoric acid, and heat were
used to dissolve the actinide material. Hydrochloric acid was added to several of the
plutonium and thorium dissolutions in an attempt to increase the speed of dissolution.
However, the addition of hydrofluoric acid produced no observable improvement in the
dissolution rate.

Dissolution of neptunium and protactinium specimens from FP-1 and FP-2 took
several days. To dissolve the FP-4 specimens in less time, they were subjected to a mixture
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of nitric acid and hydrofluoric acid on removal of the vanadium-containing solution. This
procedure resulted in complete dissolution of the samples with no problems.

325 Problems Causing Loss of Sample

Leaving the vanadium-containing solution in the original beaker presented problems
when the solution volume reached a level low enough such that a vanadium precipitate
formed. In the presence of this precipitate, the solution would "bump" vigorously, resulting
in the loss of a portion of the sample. Several samples were compromised because of this
phenomenon. A second problem with bumping occurred when the dissolution lasted more
than a few days. In these samples the sudden generation of a single, large air bubble would
occur when the samples became too hot. Even with quartz boiling chips present, the bumping
that occurred resulted in the loss of portions of at least four samples. The addition of fresh
boiling chips to the beaker did not alleviate the problem. The control of the amount of heat
provided to the solution was critical to the effectiveness of the dissolutions and required
constant monitoring by a technician. One sample was lost when the beaker in which it was
being dissolved was inadvertently overturned.

3.26 Dissolution of Dosimeters

The dissolution of the dosimeter specimens, especially from FP-4, presented a unique
problem. Within each vanadium capsule were two individual samples which, preferably, would
be separated prior to dissolution. Because of the small size of the vanadium pin, it was
necessary to remove the sample from the hot cell prior to cutting the sample open, because
the manipulator arms used in the hot cell do not provide the dexterity required for this
delicate operation. With the ends of the capsule removed, the two samples from FP-1 and
FP-2 were pushed out and separated. Dissolution was performed in a radiochemical hood
similar to that used on the physics specimens. However, the dosimeter specimens from FP-4
gave radiation readings (i.e., beta/gamma) above that allowed for glove-box operation. It is
for this requirement that the dosimeter pairs were dissolved together (see Appendix C).

33 DESCRIPTION OF MASS SPECTROMETER USED FOR ACTINIDES
ANALYSIS

The limited quantities of the samples for irradiation required that sensitive methods
be used for measurements. A combination of high-sensitivity mass spectrometry and radio-
metric methods generally met these requirements (see Appendix A).

The mass spectrometer used in this work is of the "KAPL" configuration consisting
of double deflection magnets. Described in a Knolls Atomic Power Laboratory paper,® it
possesses ion-counting capability for isotopic composition and isotope dilution measurements.
The ions are magnetically deflected through 90° on a 30-cm radius. Ions are detected with
an electron multiplier (currently using Hamamatsu Type R515), amplified, and stored on a
disk as pulses. The stored information is transferred to a Micro-VAX system for calculation
and data processing.” A slit midway between the magnets allows only a single mass to be
admitted to the second stage. This process results in a spectrum that at high mass is very
clean and free from scattered ions. The magnetic field is about 0.8 tesla across a gap of 14.5
mm. The accelerating voltage for this field and the mass region for the actinides is
approximately 8 kV. The vacuum system is all metal except for the glass that covers the
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source housing. The source region is evacuated using a cryogenic pump; the rest of the
system (isolated by a valve) is evacuated with ion pumps. Figures 2 and 3 show the mass
spectrometer and its associated electronics.

The preparation of samples for loading into the instrument is accomplished using the
resin-bead technique.*® For elements that adsorb on anion resin (e.g, Th, Pu, and U), a
solution of the element, adjusted to 8 M in HNO; is contacted with about ten resin beads.
These are washed with 8 M HNO,, and a single resin bead is isolated and transferred to the
single, zone-refined rhenium filament for isotopic analysis. Trivalent elements that do not
adsorb on anion resin under these conditions are purified by solvent extraction and loaded
from a weak acid solution onto cation beads (these include americium and curium). The
resin-bead loading technique has several advantages: (1) better control of radioactivity in the
mass spectrometer and sample introduction area; (2) improved ion optics from the point
source; and (3) greater ionization efficiency that allows for more stable ion signals and, hence,
better precision of measurement.

For any actinide, spectrum scanning and data recording consist of taking the
horizontal sweep voltage from a sweep controller and applying it in series with the
accelerating voltage. The sweep voltage is a stair-step function that successively gates the
memory channels of the sweep controller. The voltage is thus swept in synchronism with the
channel gating so that counts occurring at a given voltage are stored in the same channel
during each sweep across the mass spectrum. Any mass in the spectrum can be scanned a
predetermined number of times for each traversal of the entire mass range. This procedure
allows the scanning scheme to be optimized for the requirements of a given actinide.

For any particular analysis, the counting rate for the major isotope is kept, if possible,
at 2 x 10° to 3 x 10° counts/s to avoid a high "count loss" correction. A bias correction is also
required because the accelerating voltage is swept, and fractionation effects are inherent in
thermal ionization methods. The count loss or system dead-time correction and bias
correction are determined by measuring the composition of National Institute of Standards
and Technology SRM-U500 standard reference material (SRM). From the observed ratios
the bias correction required per mass unit and the system dead time are calculated. Because
the elements being measured do not differ drastically in mass from uranium, the corrections
are assumed to apply. After the corrections are established, analyses of standards are carried
out for quality control purposes.

The system is checked for instrument stability and calibration by running controls
using either uranium and/or plutonium certified isotopic standards. These controls are
analyzed under the same conditions as are samples. All are on resin beads. Isotopic results
given in Table 3 are typical for a mixture of SRM-947 and SRM-500 standards. These results
indicate that precisions of +0.5% (for minor isotopes) and +0.1% (for major isotopes) are
obtained in the 1% and 50 to 99% concentration ranges, respectively.
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Figure 2. Mass spectrometer for analysis of actinides
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Table 3. Mixed plutonium and uranium standards on resin beads®

SRM-947 plutonium
238/239 240/239 241/239 242239

NIST? 0.00370  0.24147 0.04309  0.01559
ORNL* 0.00371  0.24156 0.04281  0.01559
Std. dev. +0.00002 +0.00057  0.00025 +0.00008
SRM-500 uranium

234/235 235238 236/235
NIST 0.01042 099971  0.001519
ORNL 0.01034 099851  0.001522
Std. dev. +0.00005 0.00209  +0.000005

4 Nine analyses run over a 2-month period.
b National Institute of Standards and Technology.
¢ Oak Ridge National Laboratory.

34 DESCRIPTION OF RADIOMETRIC METHODS USED FOR ACTINIDE
ANALYSIS

34.1 Plutonium-238

Plutonium-238, with a half-life of 87 years, comprises a very small fraction of the
material in these samples and cannot usually be analyzed by mass spectrometry because of the
interference of 2%U. Aliquots of the solution from the dissolution described in Sect. 3.2.4 are
diluted to 1 M HNO,, and the plutonium valence is adjusted to the tetravalent state with
hydroxylamine hydrochloride and sodium nitrite. Residual fluoride is complexed with
aluminum. Pu** is extracted into 0.5 M thenoyltrifluoroacetone (TTA) in xylene. For
counting the alpha activity on a gas-flow proportional (2= geometry) counter, aliquots of the
organic phase are evaporated onto polished stainless steel planchets. The alpha pulse-height
distribution on these plates is measured on a surface barrier detector coupled with a
multichannel analyzer. Enough counts are collected to give at least 1000 counts in the
5.49-MeV peak of Z*Pu. The total alpha count, percent of 28py alpha, sample weight, and
dilution factor are used to calculate the Z*Pu concentration.

342 Americium and Curium

Aliquots of the solution from the dissolution (or of appropriate dilutions) are
evaporated onto stainless steel planchets, and the gross alpha activity is measured by gas-flow
g‘roportional counting. Alpha pulse-height counting gives the ratios of >*Am (5.27 MeV),

1Am (5.48 MeV), and #Cm (5.81 MeV). The amount of each nuclide can be calculated
from the gross alpha activity and their respective specific activities. Measurement of the 60-
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keV gamma from %! Am using a Ge(Li) detector coupled with a multichannel analyzer gives
a further check on the 24‘A‘m content. :

343 Neptunium-237

Aliquots of the dissolved sample are spiked with known amounts of Z°Np tracer and
are treated with K,Cr,0, to oxidize neptunium (and plutonium) to the hexavalent state. The
sample is adjusted to 2 M Al(NO,),, and the neptunium is extracted (along with plutonium
and uranium) into hexone. The neptunium and plutonium are stripped from the organic
phase into a reducing solution containing FeCl, in 1 M HCL. The reduced neptunium is then
extracted into 0.5 M TTA, while the Pu®* remains in the aqueous phase. Aliquots of the

‘organic phase are plated and counted for alpha activity as previously described. Alpha pulse-

height analysis is again used to determine the amount of 4.78-MeV Z'Np as well as any
plutonium carryover. To determine the efficiency of neptunium recovery, an aliquot of the
TTA phase is counted for Z’Np gamma. The alpha activity of Z'Np is corrected for the
recovery.

344 Protactinium-231

Samples for protactinium analysis must be kept in at least 4 M HCL solutions. An
aliquot of this solution is adjusted to 6 M HCI and contacted with di-isobutyl carbinol (DIBC)
to extract the protactinium. The organic phase is scrubbed with 6 M HCI, and aliquots of the
DIBC are evaporated onto tantalum planchets and counted for alpha activity. Purity of the
protactinium fraction (5.01 MeV) is checked by pulse-height analysis. Because the gamma
tracer, 2Pa, is not readily available, recovery estimates are based on analysis of protactinium
solutions of known concentration.

3.45 Uranium-232

, Uranium is separated from other radioelements by anion exchange. Uranium in 6 M
HCl is adsorbed on the resin and washed with HCI to remove Th, Am, Cm, Pu, and Np.
Elution with dilute (0.01 M) HCI gives a purified uranium solution for alpha pulse-height
analysis. The 5.32-MeV 22U and 4.82-MeV 2*U alpha peaks are integrated, and the ratio
of 22U to 22U is determined.
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4. RESULTS AND DISCUSSION OF ACTINIDE ANALYSIS

Appendixes B and C contain sample data for each target isotope material that is listed
at the top of each page. The information given for each target isotope is broken down into
three parts: (A) Part A contains the isotopic composition (in atoms %) of the element with
the highest available isotope enrichment of the target isotope as described in Refs. 1 and 2.
Isotopic analysis and dates of measurement are shown for FP-1, FP-2, and FP-4 after
irradiation under separate column headings. (B) Part B indicates the estimated weight of the
target isotope that was encapsulated in vanadium before its fabrication into pins. The
measured weight-of the target isotope after irradiation and the dates for measurement are
given under the appropriate headings for FP-1, FP-2, and FP-4 when reading from top to
bottom of the page. (C) Part C contains isotopic and concentration data for important
nuclear reaction products when present in sufficient quantity to be measured by currently
available techniques.

Results for concentration have been obtained using isotope dilution mass spectrometry
and radiochemical counting methods. Isotopic composition results are generally of high
quality and were shown to be very reproducible when replicates were analyzed. Although
agreement between measured and expected concentration values in the majority of results
appears good, the difference in some is much greater than would be expected and lies outside
the proven performance of the methods employed. The difference and large variance are
disturbing for some results and could be caused by errors resulting from conditions not easily
controlled (e.g., target loading and encapsulation, starting material stoichiometry, weighing,
dissolution, contamination in hot cells or glove boxes, and aliquoting). Error bars have not
been assigned to results because of the uncertainties. However, overall errors on
concentration values are estimated between 3% and 5% when optimum measurable quantities
could be taken. These would include isotopes of U, Pu, Am, and Th. Other more difficult
analyses (involving counting methods where isotopes of interest were minor contributors of
the total counts because of differing half-lives) could be performed only on a best-effort basis.
These may include isotopes of Am, Np, Cm, Pa, and Pu.

We have made a preliminary comparison of experimental results with calculations
using the most recently available cross-section data (ENDF/B-VI). A total of 26 samples for
21 actinides were present in FP-4 (see Table 1). Sample No. 8 (***Cm) was lost during
dissolution. We had direct evidence that substantial portions of samples No. 32 (33U), No. 11
(**U), and No. 23 (*°Pu) were lost during dissolution. For 18 of the remaining 22 samples
(14 actinides), the calculated concentrations of the principal actinides were within 15% of the
measured values. This comparison also showed that some sample loss probably occurred also
for samples No. 29 (®'Pa), No. 26 (®U), No. 30 (®**Pu), and No. 16 (*2Pu). These
uncertainties clearly outweigh all other uncertainties in the measurements.
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5. GAMMA-RAY ASSAY MEASUREMENTS OF FP-4 SAMPLES
FOR FISSION PRODUCT YIELDS

In this section we discuss the experimental details for FP-4; these are quite similar to
our previous reports for the samples in FP-1* and FP-2.}

Preparation of the actinide samples for the gamma-ray assay measurements followed
standard chemical procedures as described in Sect. 3.2, and an aliquot from each actinide
sample was extracted for sample preparation. For 12 of the actinide samples, the extracted
aliquot was dried on a flat surface of 0.02-mm-thick clear plastic affixed to a 0.9-mm-thick
aluminum plate having a 2.54-cm-diam centered hole. . The aliquot was dried and then
covered with a similar clear plastic to fix the sample material in the center hole. For these
samples, then, unlike the liquid samples of FP-1* and FP-2° corrections for gamma-ray

-attenuation by the liquid and bottle were eliminated. However, the aliquot size was

determined by the alpha activity of the aliquot, which, in turn, determined the aliquot
obtained for these measurements. For the remaining actinides, the alpha intensity was too
large for fabrication as a dried sample with a sufficient aliquot to do the gamma-ray assay
measurements. For these 13 samples, the aliquot amount was determined by requiring that
the dose for a given liquid sample be less than 40 mR/h. The bottles used were smaller than
those used for FP-1 and FP-2 samples, and the aliquot for each sample was diluted to a
volume of 0.5 cc. For these samples, a special sample holder was fabricated to hold the
sample upright and at a predetermined distance from the gamma-ray detector. The given
initial sample (isotopic) masses,? the present aliquots, and the sample configuration (dried
solid or liquid) are tabulated in Table 4.

In addition to the actinide samples, 11 samples containing aliquots of dosimeters were
obtained and counted. These included separated samples for the cobalt-co g;)er dosimeters
(six samples in all) assa 7yed for ®Co, three samples that combined the Z?'Np and Z°Pu
dosimeters assayed for 1*'Cs, and two gof the original three) samples that combined the Z°U
and 2*U dosimeters also assayed for !

The aliquots were counted usmg two germanium detector systems, one a 15%
efficiency Ge(Li) detector having a resolution full width at half maximum (FWHM) of ~2.1
keV for E, = 1.33 MeV. This one was used for measurement of gamma rays having energies
between 0.1 and 3 MeV, and the other, a small planar detector having a resolution FWHM
of ~0.5 keV for E, = 122 keV, was used for measurement of gamma rays having energies
between 10 and 400 keV. The latter detector also detected beta rays emanating from the
dried samples; thus some of the measurements with these samples included a 3.2-g/cc carbon
absorber placed between the sample and the detector. Gamma-ray attenuation by the carbon
absorber was corrected using the absorption tables of Storm and Israel.! For the liquid
samples, attenuation through the bottom of the glass bottle and by the liquid was also
computed.

For each of the actinide samples, at least one spectrum was obtained using each
detector. Measurements were initiated in March 1990 (about 600 days following the end of
the irradiation of the fuel pin) and essentially were completed in May 1990; two additional
spectra were obtained in 1992 to help clarify ambiguous results obtained during the 1990
measurements. Data reduction was accomplished using the documented code TPASS!-
combined with manual methods when required. Computed peak yields were corrected for
detector efficiency and (if needed) absorption; peak energies were then compared with

13
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Table 4. FP-4 principal actinide masses

Principal  Sample  Total isotopic y-ray assay  Sample

isotope No. mass (mg)” aliquot (%)  status
Z0Th 31 2.883 1.00 Solid
Z2Th 25 18.880 1.00 Solid
Blpy 29 2.512 0.10 Solid
3y 32 7.652 0.30 Solid
By 27 3.500 1.00 Solid
35y 28 8373 0.40 Solid
BsU 26 7.962 1.00 Solid
33y 11 9.810 2.00 Solid
BNp 7 12.216 1.00 Solid
B3py 30 2.889 2.00 Liquid
B9%py 23 8.470 0.30 Liquid
%0py 21 10.839 0.60 Liquid
#0py 22 10.816 0.80 Liquid
Zipy 24 4.136° 0.40 Liquid
%2py 16 2.046 2.00 Solid
Hpy 20 2.108 2.00 Solid
Z1Am 14 9422 0.20 Liquid
MAm 15 9.525 0.40 Liquid
2Am 12 9.831 0.20 Liquid
XAm 13 9.801 0.40 Liquid
#Cm 10 0.373° 010 . Liquid
2Cm 9 7.940 0.60 Liquid
245Cm 5 6.691 0.20 Liquid
%5Cm 6 6.797 1.00 Liquid
%Cm 4 1.765 1.00 Solid

?From Table 5 of Ref, 2
b Recomputed as of July 17, 1982.

nuclear data for specific radionuclides to determine the number of atoms in the aliquot as of
the end of the irradiation (EOI), which was taken to be July 7, 1988. The nuclear data'>!
for the fission products studied in this analysis are given in Table 5. Uncertainties associated
with half-lives were not propagated in the computations; however, uncertainties in branching
ratios were included in the final uncertainty determinations. Particular interest was centered
on the production of the "shielded" radionuclides 1'%"Ag, *Cs, *2Eu, and **Eu. Other
longer-lived fission product yields were also determined. Results for '¥'Cs are given in
Table 6; these results are compared with similar data deduced for the measurements of FP-2.
To zero-order, the ratios of the ¥7Cs yields for the actinides of FP-4 to those for FP-2 ought

14



to be ~B based on the ratio of total irradiation of the FP-4 in the PFR with respect to the
FP-2. The observed variations give some indication of the effects of the long irradiation (e.g.,
the "growing in" of #*U in the ®?Th sample by capture, which increases the *’Cs production
because ?*U has a much larger fission cross section than does 22Th). Yields for four other
longer-lived fission products are given in Table 7, and yields for the "shielded" radionuclides
are presented in Table 8.

In addition, the data were studied to obtain yields of long-lived actinides in the
samples. Of particular interest, based on the FP-1 experience, were the yields of principal
actinides that could be deduced directly from gamma-ray assay. These are presented in
Table 9 in the fourth column. For comparison, values estimated from the radiometric results
of Sect. 3.4 are given in the final column. These were deduced from data given in Appendix
B as follows: in the table for 2*Pu, capsule position 30, in the last column for (FP-4) the

-concentration after irradiation is reported as 0.65 mg as of March 26, 1990. The y-ray assay

aliquot for this sample was 2.0%. Therefore, the radiometric Z%Pu concentration to be
compared with the y-ray assay concentration should be 2% of 0.65 mg, or 13 pg. Similar
values for the other six samples in Table 9 were also deduced. A 5% uncertainty to these
masses was assigned based on the discussion in Sect. 4. The y-ray assay measurements tend
to be smaller than the radiometric estimates by ~12% on the average. Two potential sources
of error in the gamma-ray assay are (a) the exact determination of the masses of the small
aliquots and (b) the exact determination of the detection efficiencies including photon
attenuations by the glass bottles. The relative actinide mass yields are excellent, and an
uncertainty of 10% assigned to these data would be reasonable.

Actinides produced by means of neutron capture by the principal actinides, or else the
beta-decay products of the radionuclides produced by capture, are given in Table 10. Finally,
in Table 11 are given yields of other actinides observed and delineated in the various spectra.
Some of these actinides (e.g., 2*Th) were likely present in some of the samples before the
irradiation started, while others were created by neutron interactions with nonprincipal (or
minor) actinides in the samples. Lastly, the results of the dosimeter studies are given in Table
12.

15
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Table 5. Nuclear data for fission products

Gamma ray
Radionuclide Half-life Energy Branching (%)
(keV)
105Rh* 3669 d 621.8 9.95 1+ 0.75
1050.1 1.45 + 0.10
10mp o 252.d 884.2 72.6 + 0.3
‘ 937.4 342 1+ 03
13839 243 + 0.2
12gh 2.758 y 427.89° 29.44 1 0.99
600.56 17.78 £ 0.95
635.90 11.32 1 0.68
463.38 10.45 £ 0.57
Bics 2.066 y 604.74 98.6 + 0.3
795.80 87.8 + 1.4
BICs 30.14y 661.64° 86.0 + 0.6%
ce 284.7d 133.53 11.09 £ 0.20
144pye 284.7d -~ 696.48 1.34 + 0.02
2185.78 0.74 + 0.03
B2Ey 136y 1407.92 20.7 + 0.7
gy 875y 1274.8 336 + 0.7
10048 - 17.6 £ 0.4
B5Ey 496y 86.55 309 + 2.8
105.31 20.7 + 2.0

@ Listed half-life is that of the parent 1™Ru.

b The peak corresponding to detection of the E_ = 657.7-keV gamma ray from
decay of this isotope is masked by the very much larger peak at 661.6 keV
corresponding to decay of *'Cs.

¢ Nearly degenerate with E, = 428.4 keV due to decay of 105Rh.

4 Gamma ray due to decay of daughter "*’Ba isomer; branching corrected to be
applicable to decay of *'Cs.

¢ Listed half-life is that of the parent *Ce.
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Table 6. Absolute experimental yields (in the aliquots) of the fission product
B31Cs as of the end of the PFR irradiation®

Principal Sample Yields (atoms) Ratio
isot No. :FP-
isotope o FP-4 Fp2b FP-4:FP-2
ZoTh 31 (851 £ 0.07) x 10  1.98 x 10 43.0
B2Th 25 (7.96 + 0.44) x 10" 1.11 x 101 718
Bipg : 29 (4.78 £ 0.27) x 10® 1.49 x 10" 320
By 32 (1.77 £ 0.05) x 10®  1.602 x 10" 11.1
By 27 (583 + 0.33) x 104 3.00 x 10" 19.5
By 28 (9.21 + 0.26) x 10" 1.64 x 10* 5.6
B35y 26 (6.74 + 0.38) x 10" 633 x 10* 10.6
By 11 (2.31 + 0.06) x 10" 297 x 108 7.8
2INp 7 (1.77 £ 0.10) x 10" 6.94 x 10¥ 25.5
Bipy 30 (740 £ 0.48) x 10"  6.84 x 10* 108
B9py 23 (1.12 £ 0.07) x 10" 1.39 x 10" 8.0
U0py 21 (1.14 £ 0.07) x 10 8.10 x 10" 14.1
%0py 22 (1.49 £ 0.10) x 10% 1.08 x 10 13.8
Alpy 24 (8.30 + 0.54) x 10" 9.45 x 10" 8.8
%2py 16 (1.44 + 0.04) x 10" 2.53 x 10" 5.7
Mpy 20 (495 £ 0.28) x 10"  3.53 x 10" 14.0
Z1Am 14 (2.61 + 0.29) x 10" 1.80 x 10" 145
#1Am 15 (523 + 0.34) x 10" 3.60 x 10° 145
#3Am 12 (1.48 1 0.05) x 10" 1.26 x 10V 11.7
#Am 13 (293 + 0.08) x 10" 241 x 10® 122
#Cm 10 (413 £ 0.11) x 10  5.80 x 10%? 7.1
24Cm 9 (8.52 £ 0.55) x 10" 8.01 x 10" 10.6
2%5Cm 5 (1.76 + 0.11) x 10" 2.26 x 10 7.8
%5Cm 6 (8.81 £ 0.57) x 10" 1.15 x 10" 7.7
%Cm 4 (1.64 £ 0.05) x 10" 1.78 x 108 9.2

“ Sept. 1, 1983 for FP-2; July 7, 1988 for FP-4.

> Renormalized from data in Table 10 of Ref. 5 to the same computed masses
used in the present experiment.

¢ Datum from FP-1 (Ref. 4).
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Table 9. FP-4: comparison of post-irradiation actinide sample masses
measured by two methods. The listed values are for the aliquots.

Principal ~ Sample Aliquot® Mass (pg)
isotope No. (%) Gamma-ray Radiometric
assay
Z%pu 30 20 11.7 £ 0.5 13:1
#ipy 24 0.4 7.5 £ 0.5 7.8 + 0.4
#Am 14 0.2 111 £ 05 124 £ 0.6
#Am 15 0.4 217 + 1.1 254 £ 13
Am 12 0.2 11.7 + 04 13.6 + 0.7
*Am 13 0.4 232+ 0.8 264 + 1.3
*Cm 10 0.1 0.190 + 0.010 0.22 + 0.01
“From Table 4.

® At the end of irradiation (July 7, 1988).

¢From tabular value in Appendix B, row B "After irradiation,” final
column multiplied by the y-ray aliquot at date given in the next row.
Uncertainty assumed to be 5%.

Table 10. FP-4: actinides produced in neutron capture by principal isotopes
deduced by gamma-ray assay. The listed values are for the aliquots.

Principal  Sample  Aliquot® Capture ' Yield> (atoms)
isotope No. (%) product :

Bipg 29 0.1 y 1.50 x 10%

Py 21 0.6 HAm 2.24 x 10" at EOI + 651 d
%opy 22 0.8 HAm 2.71 x 10" at EOI + 664 d
#py 16 2.0 »Am 2.81 x 10Y

#Ppu 20 2.0 *Cm 4.33 x 10"

#Am 14 0.2 %2 Am? 4.70 x 10®

#Am 15 0.4 ¥mAm? 1.00 x 10%

#Cm 9 0.6 *Cm 8.07 x 10¥

#Cm 4 1.0 »Ct 1.70 x 10¥

“From Table 4.

® At end of irradiation (July 7, 1988), except as noted.
¢ Uncertainty is +5%.
4From assay of 16-h *?Am daughter.
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Table 11. FP-4: yields of actinides other than principal and capture nuclides

as deduced by gamma-ray assay .
Principal Sample  Measured Yield Cooling time*
isotope No. actinide (atoms) (days)
2oTp 31 . (741 £ 037) x 10° 609
2oTh 31 2y (1.42 + 0.04) x 10" 609
Z2Th 25 2Th (1.22 £ 0.07) x 10% : 621
Bipy - 29 PTh (106 + 0.06) x 101 632
By 32 2Th (1.15 + 0.07) x 10" 618
2y 27 2%Th (1.20 £ 0.07) x 10" 629
ZNp 7 2Th (94 £20) x10° 609
Zpy 23 HAm (2.93 + 0.29) x 10 659
%ipy 24 HAm (1.51 = 0.05) x 10% 666
%ipy 16 #Am (271 £ 0.24) x 10% 679
%py 20 #Am (3.56 + 0.18) x 10" 677
Hipy 20 %Am (8.88 £ 0.36) x 10" 1355
" %Am 14 %Am (1.89 + 0.09) x 10" 1351
HAm 14 %Cm (2.45 + 0.08) x 10" 1351
#Cm 10 %Am (4.10 £ 0.20) x 10% 650
#Cm 9 HAm (3.57 £ 0.16) x 10" 638
%Cm 5 #Am (244 + 0.24) x 10 649
#Cm 5 %Cm (1.86 + 0.36) x 10” 649
#Cm 5 (e (206 + 0.12) x 10 - 649
#Cm 6 %Cm (3.6 + 1.3) x 104 665
#Cm 6 wcE (9.60 + 0.39) x 10% 665
%Cm 4 HAm (7.8 £ 1.2) x 102 684

4 After end of irradiation.
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Table 12. FP-4: dosimeter yields deduced by gamma-ray assay

Dosimeter  Position  Mass Gamma-ray Yield (atoms);’

(mg) aliquot (%) 110 9Co
By 1A 1.174 } 14
28 B 1.180 1.0 (5.54 £ 0.17) x 10
Py 2A 1.196 } 15
Np 2B 1044 120 (7.76 £ 0.29) x 10
Co 3A 0.00150 20 (4.45 £ 0.11) x 10%
Cu 3B 1.353 2.0 (990 = 0.24) x 10"
By 17A 1.106 } 14
28y 178 0.982 0.4 (222 + 0.07) x 10
ZE‘; oA T } 12.0 (8.16  0.34) x 10°
Co 19A 0.00157 20 (5.61 = 0.14) x 10"
Cu 19B 1.406 20 (1.63 + 0.04) x 10"
g o S o } 120 (1.14 £ 0.05) x 10%
Co 35A 0.00143 20 (491 £ 0.12) x 10%
Cu 35B 1.433 20 (1.01 £ 0.03) x 10"

¢ As of July 7, 1988.
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6. CONCLUSIONS

Summarized are the analytical methodologies used to measure the isotopic
compositions and concentrations of actinides and their reaction products for FP-1, FP-2, and
FP-4 irradiated in the Dounreay prototype fast reactor. These measurements have been
made using the best laboratory practices possible under the difficult constraints of the use of
highly radioactive materials and the small quantities usually selected or produced in
bombardment or fission. Some data from FP-1 and FP-2 are suspect. However, the lessons

-learned from these were of great value in improving the analytical techniques for the more
crucial FP-4.

Similarly, experience gained from the study of gamma-ray assay of the samples from
FP-1 and FP-2 was invaluable for measurements involving the samples of FP-4. The much
more extensive burnup of FP-4 enhanced the production of "second-order" radionuclides as
exemplified by observed yields of shielded fission products as well as the wide variations in
observed yields of the radionuclide *Cs resulting from different fissioning rates between the
principal actinide in a sample and "grown-in" actinides.

These data should provide a substantial basis for future analytical analyses of fuel-rod
radionuclide composition during and following use of the material in a fast reactor.
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APPENDIX A
METHODS USED TO ANALYZE ACTINIDE MATERIALS

The symbols MS and RCA denote mass spectrometry (isotope dilution) and radlocheml-
cal analysis (alpha and gamma spectro-scopy), respectively.

Method Used
Concentration  Concentration
Position in FP Material Isotopic by MS by MS by RCA
1 Dos (U-235) X X
. Dos (U-238) X X
2 Dos (Pu-239) X X
Dos (Np-237) X
3 Dos (Cu) X
Dos (Co) X
4 Cm-248 X X
5 Cm-246 X X
6 Cm-246 X X
7 Np-237 X X
8 Cm-244 X X
9 Cm-244 X X
10 Cm-243 X X
11 U-238 X X
12 Am-243 X X
13 Am-243 X X
14 Am-241 X X
15 Am-241 X X
16 Pu-242 X X
17 Dos (U-235) X | X
Dos (U-238) X X
18 Dos (Pu-239) X b
Dos (Np-237) X
19 Dos (Cu) ~ X
Dos (Co) X

A-2



Appendix A (continued)

Method Used
' Concentration  Concentration
Position in FP Material Isotopic by MS by MS by RCA

20 Pu-244 X X
21 Pu-240 X X
22 . Pu240 x x
23 Pu-239 X X
24 Pu-241 X X
25 Th-232 X X
26 U-236 X X
27 U-234 X X
28 U-235 : X X
29 Pa-231 X
30 Pu-238 x x
31 Th-230 X X
32 U-233 ' X
33 Dos (U-235) x x

Dos (U-238) X X
34 Dos (Pu-239) x x

Dos (Np-237) X
35 Dos (Co) X

Dos (Co) X

A3

A
v




Appendix B

ANALYTICAL DATA FOR IRRADIATED
ACTINIDE PHYSICS SPECIMENS

(See also Ref. 5 for FP-1 and FP-2 Data)
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