[’The submitted manuscript has been suthored

by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royaity-free license t publish
or reproduce the published form of this
contribution, or aliow others to do so, for
U. S. Government purposes,

Cond-9909269- -9

ANL-HEP-CP-94-92

Lattice QCD calculation using VPP500

Sevong Kim®" and Shigemi Ohtab!
o o

2HEP Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA

Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan

A new vector parallel supercomputer, Fujitsu VPP500, was installed at RIKEN earlier this year. It consists of
30 vector computers, each with 1.6 GFLOPS peak speed and 256 MB memory, connected by a crossbar switch
with 400 MB/s peak data transfer rate each way between any pair of nodes. The authors developed a Fortran
lattice QCD simulation code for it. It runs at about 1.1 GFLOPS sustained per node for Metropolis pure-gauge
update, and about 0.8 GFLOPS sustained per node for conjugate gradient inversion of staggered fermion matrix.

1. INTRODUCTION

A new super-computing system was installed
at Institute of Physical and Chemical Research
(RIKEN) at the end of March, 1994. It serves
various researches in physics, chemistry and bi-
ology at RIKEN, and a significant amount of its
cpu time is allotted for numerical calculations in
lattice quantum chromodynamics (QCD).

2. HARDWARE

The core of this system is a new “vector paral-
lel” supercomputer, Fujitsu VPP500. Tt consists
of two main-frame cpu’s and 30 “processor ele-
ments (PE’s)”, all connected by a crossbar switch.
In addition, there are a 8 GB semiconductor disk,
40 GB magnetic disk to store the system and user
files, 60 GB RAID3 and 80 GB RAID?7 disks for
data storage, and 10 TB tape archive.

One of the main-frame cpu’s acts as a front-end
for the computer. The other, the “control proces-
sor (CP)”, controls I/O between the PE’s and the
front-end, disks, and other peripheral devices. It
has a 100 MHz scalar cpu with LIW architecture
and 128 MB memory. The cpu is made of GaAs
and ECL chips and the memory consists of 1 Mbit
SRAMs with 18 ns latency.

“S.K. is supported by the U.S. Department of Energy, Di-
vision of High Energy Physics, Contract W-31-109-ENG-
38. He also thanks RIKEN for its support in the early
stage of this work.

!Talk presented by S.0.

A single PE consists of the same 100 MHz
scalar cpu as the CP, a vector processor with
1.6 GFLOPS peak speed, and 256 MB memory.
The processors are again made of GaAs and ECL
chips. The scalar cpu has 32 32-bit general pur-
pose registers and 32 64-bit floating-point regis-
ters. The vector processor has 128 KB vector reg-
isters, 2 KB mask registers, and pipelines for mul-
tiplication, add/logic, division, mask, load and
store operations. All the floating point opera-
tions are done in IEEE 64-bit format. The mem-
ory consists of the same kind of SRAMs as in the
CP.

The crosshar switch is again a combination of
GaAs and ECL chips. It provides data communi-
cation at the rate of 400 MB/s each way between
any pair of PE’s. It also provides data transfer to
the outside through the 8 GB semiconductor disk
connected to the CP, at more than 50 MB/s to the
fastest RAID3 disk, about 20 MB/s to the 40 GB
system disk, about 10 MB/s to the 80 GB RAID7,
and a few MB/s to the tape archive which is con-
nected through another crossbar switch that con-
nects the entire super-computing system to the
local area network. ‘

3. SYSTEM SOFTWARE

The front-end is run by an Unix SVR4 sys-
tem. The CP and PE’s are run by modified Unix
systems with enhancement for communications
through the crossbar switch. This enhancement

OISTRIBUTION OF THIS DOCUMENT IS UNLIMITED J‘K




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




allows arbitrary partitioning of the PE’s. At the
moment the 30 PE’s are divided into 28-PE and
2-PE partitions during the night, and 16-PE, 8-
PE, 4-PE and 2-PE partitions during the day.

Users edit their application programs on the
front-end which is reachable from within the local
area network. Compilation of the programs and
production run are done only in the batch mode
handled by a modified NQS systems running in
cooperation on both the front-end and CP.

Three different programming languages, For-
tran, C, and assembler, are provided. Fortran is
based on the Fortran 77 standard with enhance-
ment of vector and parallel directives as comment
lines. C is based on its ANSI standard with vec-
tor and parallel directives as pragma statements.
A vectorized numerical processing library is avail-
able for both languages. C is also augmented by
P4 and PVM message passing libraries.

4. BENCHMARK TESTS

Procurement of this super-computing system
started in late April, 1993, and took until the
middle of December that year. Among the vari-
ous benchmark tests in the process, the following
are worthy to note: a) LINPACK speed, without
any restriction for the array sizes, exceeded 30
GFLOPS. b) A CR(1) conjugate residual solver
for staggered quarks of lattice QCD on a 32* lat-
tice runs at more than 30 GFLOPS with 28 PE’s.
c) A fast Fourier transformation program for one-
dimensional data of real numbers runs at about
20 GFLOPS for up to 2 GB of data.

5. INSTALLATION

The hardware installation was completed by
the end of March, 1994, and test operations
started immediately. By the end of April single-
PE operations stabilized. Unfortunately parallel
operations at first had some software problems,
especially for larger partitions, but finally stabi-
lized by the end of July. The system has been
running quite well since then.

8. LATTICE QCD CALCULATION

We use Fortran for lattice QCD coding because
it is more efficient than C at the moment. In
Fortran, parallel directives are given by comment
lines starting with “!xocl”.

PE configuration: the parallel directive allows
from one-dimensional to seven-dimensional con-
figuration of the available PE’s,

!xocl processor PE(N1)
Ixocl processor PE(N1,N2)

where N1, N2, ..., denote the number of PE’s in
each dimension. The first example shows how to
allocate ¥1 PE’s configured on a one-dimensional
line segment, while the second shows N1 x N2
PE’s configured on a rectangle, etc. Since we have
only 30 PE’s at most, we are practically limited
to one-, two-, three- or four-dimensional configu-
ration. We use the one-dimensional for simplicity.

Arrays: we define how to distribute array data
by the following directives and definitions,

!xocl index partition%

txocl IP=(PE,index=0:NP-1,part=band)
complex ,
*ul(0:TXY2-1,0:3,3,3,0:NP-1)

1xocl local wl(:,:,:,:,/IP)
complex
*ug(0:TXYZ-1,0:3,3,3,0:8P-1)

txocl global ug(:,:,:,:,/IP)
equivalence (ul,ug)
common/work/ug

An “index partition”, IP, defines that any ar-
ray index running from O through NP-1 is dis-
tributed over the NP PE’s configured in one di-
mension. The symbol “&” means the !xocl direc-
tive is continued to the next line. Here a TXYZ x
4 x 9 byte contiguous partition of a “Local” par-
titioned array ul is stored on each PE. A local
partitioned array is very quickly accessed by the
local processors, but cannot be .accessed from
nonlocal ones. A “global” partitioned array can
be accessed by either local or nonlocal processors,
but less quickly. As a result of the equivalence
statement, the local partitioned array ul and
the global one ug share the same memory area
on each PE. We use local partitioned arrays for



most of the calculations and global ones for only
inter-PE communications. The common statement
is used for sub-procedure interface because a par-
titioned array name cannot appear as an argu-
ment of sub-procedures.

Data structure: again we tried from one-
through four-dimensional mapping of the lat-
tice. One-dimensional mapping gives too heavy
load for data communication. Three- and four-
dimensional ones are not flexible enough in chang-
ing the lattice size. We use two-dimensional map-
ping. Since we use one-dimensional PE configura-
tion, we explicitly calculate the two-dimensional
PE coordinates, say n1 and n2, from the one-
dimensional PE identification number n0, ¢ < n0
< BP-1, like n0 = n1 + NZ * n2.

Data transfer: we move around some data from
one PE to another using a combination of parallel
directives “spread do” and “spread move”,

txocl spread do /IP
do n=0,NP-1
!xocl spread move
do i=0,TXYZ-1

------

txocl end spread(TAG)
enddo
!xocl end spread

------

txocl movewait (TAG)

Here nn defines a PE to which the data are sent
from the PE n, while ii defines a nonlocal ar-
ray coordinate as a function of the local coordi-
nate i. The “end spread(TAG)” directive means
the data have been sent out of the local PE, but
may not have reached the destination yet. The
other directive “movewait (TAG)” tells the PE to
wait until the sent-out data have been completely
stored in the memory of the destination PE. In
between these two directives each PE is free to do
other tasks such as those do not affect or are not
affected by the data being transferred. This way
we can hide the cost of data transfer behind nu-
merical calculations. Actual data transfer speed

reaches about 330 MB/s sustained per PE one
way, out of 400 MB/s peak, if we transfer more
than a couple of MB at a time which is common
for lattice QCD.

Numerical calculations are distributed to the
PE’s easily by the “spread do” directive:

!xocl spread do /IP
do n=0,NP-1
do i=0,TXYZ-1
s1l(i,:,:,:,n)

* =tl(i,:,:,:,n)

* #0l(i,s,:,:,n)
enddo

enddo

'xocl end spread

By using suitable buffer arrays, most of the calcu-
lations are done using only local partitioned ar-
ray. Such calculations for SU(3) matrix and vec-
tor operations can easily reach a speed of more
than 1.3 GFLOPS sustained per PE out of the
1.6 GFLOPS peak. This is achieved by the For-
tran compiler alone and does not require any
assembler-level optimization by hand.

Unfortunately, the inter-PE data transfer and
local calculations interfere with each other in ac-
cessing the memory. This interference often re-
duces the overall efficiency to about 1.0 GF per
PE. The interference decreases if we use higher
dimensional mapping of the lattice than the cur-
rent two-dimensional one.

Our test runs on the 8-PE partition of the ma-
chine for a 64 x 162 lattice achieved the speed of
about 6 us per Metropolis link update per PE
and 25 ms per CG iteration for the entire lattice.
These numbers should translate into about 1.1
and 0.8 GFLOPS sustained respectively. We are
preparing for production runs on larger lattices
using partitions with up to 28 PE’s [1]. It should
be faster by up to 20 %. We do not see any prob-
lem in moving up to still larger partitions, like
the ones with 64 PE’s or more planned at KEK, -
since the crossbar switch has been proved to work
for as many as 128 PE’s.

REFERENCES

1. S. Kim and S. Ohta, in preparation.




