

ANL/CHM/CP- 90448
CONF- 9608104- - 1

SUBMITTED TO:

XAFS IX CONFERENCE PROCEEDINGS
9TH INTERNATIONAL CONFERENCE ON XAFS
26-30 August 1996
ESRF - Grenoble, France

RECEIVED

JUL 18 1996

OSTI

OXIDATION STATES OF THE "UNUSUAL" RARE EARTHS (R=Ce, Pr AND Tb) IN
DOUBLE LAYER HIGH-T_c SUPERCONDUCTORS

U. Staub¹, L. Soderholm², S. Skanthakumar², Mark R. Antonio²

¹ Swiss Light Source Project, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

² Chemistry Division, Argonne National Laboratory, IL 60439 Argonne, USA

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

OXIDATION STATES OF THE "UNUSUAL" RARE EARTHS (R=Ce, Pr AND Tb) IN DOUBLE LAYER HIGH-T_c SUPERCONDUCTORS

U. Staub¹, L. Soderholm², S. Skanthakumar², Mark R. Antonio²

¹ Swiss Light Source Project, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

² Chemistry Division, Argonne National Laboratory, IL 60439 Argonne, USA

Abstract. X-ray absorption and magnetization experiments are used to describe the oxidation states of the rare earths R=Ce, Pr and Tb in the double layer high-T_c superconducting series $\text{RBa}_2\text{Cu}_3\text{O}_7$ and $\text{Pb}_2\text{Sr}_2\text{R}_{1-x}\text{Ca}_x\text{Cu}_3\text{O}_8$. We obtained the same oxidation states for the rare earths in these two classes of compounds, namely, R=Ce tetravalent and R=Pr and Tb trivalent.

1. INTRODUCTION

It is well known that the compounds $\text{RBa}_2\text{Cu}_3\text{O}_7$ (R=Y or rare earth) are superconducting below 92 K, except for the rare earth R=Ce, Pr or Tb. The reason for each exception is different. $\text{PrBa}_2\text{Cu}_3\text{O}_7$ forms as a "single phase" material but does not superconduct [1]. Neither Ce nor Tb form this phase. For small doping concentrations Ce suppresses superconductivity in a manner similar to Pr whereas Tb does not influence T_c at all [2]. It is interesting to note that all these three rare earths are redox active, and can be found in their trivalent and tetravalent oxidation states in nature. R=Ce has the lowest redox potential and therefore is expected to have the most stable tetravalent oxidation state. R=Pr and Tb have similar redox potentials and therefore may be expected to have the same oxidation state within a given structural series. However, the Pr 4f wave functions are far more extended than those of Tb and therefore both hybridization with higher shells and bonding effects are more likely for the Pr ions.

The double layer high-T_c superconductors $\text{Pb}_2\text{Sr}_2\text{R}_{1-x}\text{Ca}_x\text{Cu}_3\text{O}_8$ form single phase compounds for all the rare earths, including Ce and Tb. The Pr and Tb analogs are both superconducting, whereas the Ce analog is not [3,4]. In addition to its superconductivity, the R=Tb analog also exhibits unusual magnetic properties [5].

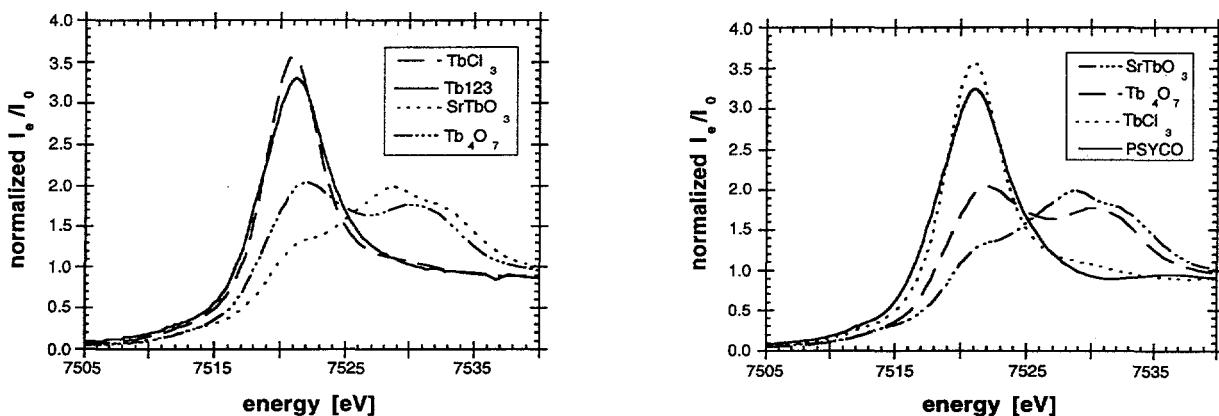
Here we present X-ray absorption and susceptibility results comparing the oxidation states of Ce, Pr and Tb in the $\text{RBa}_2\text{Cu}_3\text{O}_7$ and $\text{Pb}_2\text{Sr}_2\text{R}_{1-x}\text{Ca}_x\text{Cu}_3\text{O}_8$ series.

2. EXPERIMENTS

Polycrystalline samples for both series were prepared by standard sintering techniques. The single phase character of the samples was checked by X-ray powder diffraction and/or by neutron powder diffraction. R L₃-edge X-ray absorption near edge structures (XANES) were collected at ambient temperature on beam line X-23A2 at the National Synchrotron Light Source (NSLS) and on the wiggler beam line 4-1 at the Stanford Synchrotron Radiation Laboratory (SSRL). X-23A2 at the NSLS is equipped with a Si<311> double-crystal monochromator ($\Delta E/E=2.9 \times 10^{-5}$) and the beam line 4-1 at SSRL is equipped with a Si <111> double-crystal monochromator that gives an energy resolution of 14.1×10^{-5} . The magnetic susceptibilities were obtained from a superconducting quantum interference device (SQUID) magnetometer over the temperature range 10 to 300K using an applied field of 500 Oe.

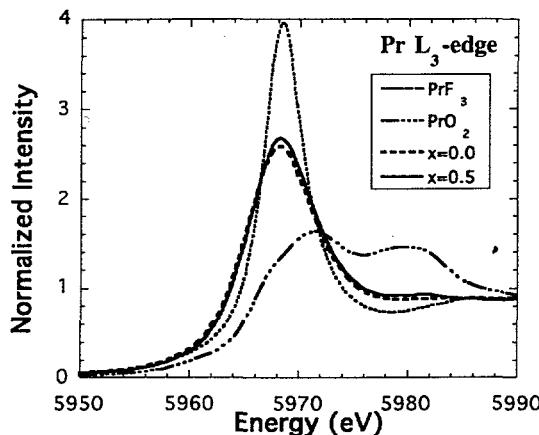
3. RESULTS AND DISCUSSION

3.1 Ce doped compounds


Figs. 1a and b show the measured L₃ X-ray absorption edges obtained from Ce in $\text{Ce}_{0.2}\text{Y}_{0.8}\text{Ba}_2\text{Cu}_3\text{O}_7$ (a) and $\text{Pb}_2\text{Sr}_2\text{Ce}_{0.5}\text{Ca}_{0.5}\text{Cu}_3\text{O}_8$ (b) compared with trivalent $\{\text{Ce}^{3+}\text{TiO}_3$ (a); Ce^{3+}F_3 (b) and a tetravalent $(\text{Ce}^{4+}\text{O}_2)$ standards. The L₃-edge for the tetravalent oxidized Ce is composed of at least three transitions, as can be seen from the tetravalent standard [6]. The fingerprint of a trivalent oxidation state of Ce would be a single line at lower energies. Hence, in contrast to the other rare earth incorporated in these double layer perovskites, Ce is in a tetravalent oxidation state in both $\text{RBa}_2\text{Cu}_3\text{O}_7$ and $\text{Pb}_2\text{Sr}_2\text{R}_{1-x}\text{Ca}_x\text{Cu}_3\text{O}_8$ series. This is also confirmed by susceptibility results (not shown), where no effective magnetic moment is observed except the contributions from the Cu spins indicating no unpaired 4f electrons in both compounds.

Figs. 1a and b: Ce L₃-edge XANES of $\text{Ce}_{0.2}\text{Y}_{0.8}\text{Ba}_2\text{Cu}_3\text{O}_7$ (Ce123), CeTiO_3 and CeO_2 (left) and $\text{Pb}_2\text{Sr}_2\text{Ce}_{1-x}\text{Ca}_x\text{Cu}_3\text{O}_8$ ($x=0$ and 0.5), CeF_3 and CeO_2 (right) obtained through electron-yield detection at ambient temperature.

3.2 Tb doped compounds


Figs. 2a and b show the measured L₃ x-ray absorption edges obtained from Tb in $\text{Tb}_{0.1}\text{Y}_{0.9}\text{Ba}_2\text{Cu}_3\text{O}_7$ (a) and $\text{Pb}_2\text{Sr}_2\text{TbCu}_3\text{O}_8$ (b) compared with trivalent Tb in $(\text{Tb}^{3+}\text{Cl}_3)$, a mixed valent standard ($\text{Tb}_4^{3.5+}\text{O}_7$) and a tetravalent standard ($\text{SrTb}^{4+}\text{O}_3$). The L₃-edge in the tetravalent oxidized Tb is composed again of at least three transitions, two strong ones in the mixed-valent compound as can be seen from the standards. The fingerprint of trivalent Tb is a single line at lower energies. Hence, Tb is in a trivalent oxidation state in both the $\text{RBa}_2\text{Cu}_3\text{O}_7$ and $\text{Pb}_2\text{Sr}_2\text{R}_{1-x}\text{Ca}_x\text{Cu}_3\text{O}_8$ compounds. This is also confirmed by the susceptibility results (not shown), where an effective magnetic moment of $9.7 \mu_B$ is observed, which is very close to the value expected for trivalent Tb.

Figs. 2a and b: Tb L₃-edge XANES of $\text{Tb}_{0.1}\text{Y}_{0.9}\text{Ba}_2\text{Cu}_3\text{O}_7$, TbCl_3 , Tb_4O_7 and SrTbO_3 (left), $\text{Pb}_2\text{Sr}_2\text{TbCu}_3\text{O}_8$, TbCl_3 , Tb_4O_7 and SrTbO_3 (right) obtained through electron-yield detection at ambient temperature.

3.3 Pr doped compounds

Fig. 3 shows the measured L_3 X-ray absorption edges obtained from Pr in $Pb_2Sr_2Pr_{1-x}Ca_xCu_3O_8$ compared with a trivalent Pr in $(Pr^{3+}F_3)$ and a tetravalent Pr standard $(Pr^{4+}O_2)$. The L_3 edge in the tetravalent oxidized Pr is composed of at least two transitions as can be seen from Fig. 3. The fingerprint of a trivalent oxidation state of Pr is a single line at lower energies. Hence, Pr is in a trivalent oxidation state in the $Pb_2Sr_2R_{1-x}Ca_xCu_3O_8$ structure. Here, we did not show any results on $PrBa_2Cu_3O_7$, because these XANES results are published in the literature [7, 8]. The susceptibility results (not shown), are consistent with an observed effective magnetic moment of $2.7 \mu_B$, intermediate between the free-ion expectation values for trivalent and tetravalent Pr. However, this intermediate moment is well understood in terms of the crystalline electric field interaction, which splits the 3H_4 ground-state of the trivalent Pr ions [9].

Fig. 3: Pr L_3 -edge XANES of $Pb_2Sr_2Pr_{1-x}Ca_xCu_3O_8$, ($x=0, 0.5$) PrF_3 and PrO_2 obtained through electron-yield detection at ambient temperature.

4. CONCLUSIONS

We present XANES and susceptibility results on the "exceptions" Pr, Ce and Tb in the two superconducting series $RBa_2Cu_3O_7$ and $Pb_2Sr_2Pr_{1-x}Ca_xCu_3O_8$. These results strongly indicate that Ce is tetravalent in both series whereas Pr and Tb are both trivalent. The tetravalent oxidation state of Ce explains why superconductivity is suppressed upon Ce doping (reduction of the carrier concentration) and also explains why $CeBa_2Cu_3O_7$ does not form. The trivalent oxidation state of Tb is in accordance with the fact that T_c is not suppressed upon Tb doping. The reason why $TbBa_2Cu_3O_7$ does not form lies in the chemical stability of the $TbBaO_3$, which is formed during the normal solid state reaction [10]. For Pr, which is also in the trivalent oxidation state, the much more extended 4f wave functions (compared to Tb) allow hybridization with the CuO_2 bands, which effectively suppresses superconductivity.

ACKNOWLEDGMENT

This research is supported by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, under contract W-31-109-ENG-38. The SSRL is operated by the Department of Energy, office of BES and the NSLS is supported by the U.S. Department of Energy, Divisions of Materials Sciences and Divisions of Chemical Sciences.

- 1 L. Soderholm, K. Zhang, D. G. Hinks, M. A. Beno, J. D. Jorgenson, C. U. Segre, and I. K. Schuller, *Nature* **328**, 604 (1987).
- 2 C. R. Fincher, Jr., and G. B. Blanchet, *Phys. Rev. Lett.* **67**, 2902 (1991).
- 3 U. Staub, L. Soderholm, S. Skanthakumar, and M. R. Antonio, *Phys. Rev. B* **52**, 9736 (1995).
- 4 S. Skanthakumar and L. Soderholm, *Phys. Rev. B* **53**, 920 (1996).
- 5 U. Staub, L. Soderholm, S. Skanthakumar, S. Rosenkranz, C. Ritter, and W. Kaguny, *Europhys. Lett.* **34**, 447 (1996).
- 6 M. Gasgnier, G. Schiffmacher, L. Albert, P. E. Caro, H. Dexpert, J. M. Esteva, C. Blancard, and R. C. Karnatak, *J. Less-Common Met.* **156**, 59 (1989).
- 7 F. W. Lytle, G. v. d. Laan, and R. B. Greegor, *Phys. Rev. B* **41**, 8955 (1990).
- 8 E. E. Alp, L. Soderholm, G. K. Shenoy, D. G. Hinks, B. W. Veal, and P. A. Montano, *Physica B* **150**, 74 (1988).
- 9 U. Staub, S. Skanthakumar, L. Soderholm, and R. Osborn, *J. Alloys Compds.* (to be published).
- 10 U. Staub, M. R. Antonio, L. Soderholm, M. Guillaume, W. Hengeler, and A. Furrer, *Phys. Rev. B* **50**, 7085 (1994).