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Abstract

This report documents a collection of papers on a family of uniform strain

tetrahedral finite elements and their connection to different element types.
Also included in the report are two papers which address the general problem
of connecting dissimilar meshes in two and three dimensions. Much of the
work presented here was motivated by the development of the tetrahedral
element described in the report “A Suitable Low-Order, Eight-Node Tetra-
hedral Finite Element For Solids,” by S. W. Key et al., SAND98-0756, March
1998. Two basic issues addressed by the papers are: (1) the performance of
alternative tetrahedral elements with uniform strain and enhanced uniform
strain formulations, and (2) the proper connection of tetrahedral and other
element types when two meshes are “tied” together to represent a single
continuous domain.



Executive Summary

The unavailability of a robust, automated, all-hexahedral mesher moti-
vated recent investigations of a family of uniform strain tetrahedral elements
[1-2]. These elements were shown to posses the same convergence and an-
tilocking characteristics of the uniform strain hexahedron. A related study
of enhanced versions of these elements [3] was also carried out. It was shown
that significant improvements in accuracy are obtained for certain element
types by allowing more than a single state of uniform strain within each
element. ‘

An important advantage of the tetrahedron over the hexahedron is its
ability to more readily mesh complicated geometries. On the other hand,
more tetrahedral elements are generally required to mesh a volume for a
specified element edge length. Taking these factors into comsideration, a
transition element was developed for meshes containing both hexahedral and
tetrahedral elements [4]. This effort was motivated by the idea of meshing
a geometry primarily with hexahedral elements. For regions of the mesh
that cannot be completed with hexahedral elements, a direct transition to .
tetrahedral elements could be made to complete the mesh. In this way, the
advantages of both element types could be brought to bear on the meshing
problem. "

The development of the transition element in Ref. 4 lead naturally to a
general method for connecting dissimilar finite element meshes in two and
three dimension [5-6]. The method combines the concept of master and slave
surfaces with the uniform strain approach for finite elements. By modifying
the boundaries of elements on the slave surface, corrections are made to ele-
ment formulations such that first-order patch tests are passed. The method
can be used to connect meshes which use different element types. In addition,
master and slave surfaces can be designated independently of relative mesh
resolutions. It was shown that significant improvements in accuracy, espe-
cially at the shared boundary, are obtained using the new approach compared
with standard approaches used in existing finite element codes.

The purpose of this report is to provide a single document for the work
presented in Refs. 2-6. The first two papers deal specifically with the devel-
opment and performance of a family of uniform strain tetrahedral elements.
The third paper shows how to properly connect tetrahedral elements to the
faces of hexahedral elements. The final two papers identify and explore the



implementation of the definitive requirement which must be satisfied when
two separately meshed regions are tied together. For two meshes to be tied
together properly, the volume both initially and generated during subsequent
deformation must be computed exactly, added to the finite elements on one
side of the interface, and incorporated into the finite elements’ mean-stress
gradient/divergence operator.
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A Least Squares Approach for Uniform Strain Triangular and
Tetrahedral Finite Elements !

C. R. Dohrmann?

S. W. Key®
M. W. Heinstein?®
J. Jung®

Abstract. A least squares approach is presented for implementing uniform strain triangu-
lar and tetrahedral finite elements. The basis for the method is a weighted least squares
formulation in which a linear displacement field is fit to an element’s nodal displacements.
By including a greater number of nodes on the element boundary than is required to define
the linear displacement field, it is possible to eliminate volumetric locking common to fully-
integrated lower-order elements. Such results can also be obtained using selective or reduced
integration schemes. but the present approach is fundamentally different from those. The
method is computationally efficient and can be used to distribute surface loads on an element
edge or face in a continuously varying manner between vertex, mid-edge and mid-face nodes.
Example problems in two and three-dimensional linear elasticity are presented. Element
types considered in the examples include a six-node triangle, eight-node tetrahedron, and
ten-node tetrahedron.

Key Words. Finite elements, least squares, uniform strain, hourglass control.
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1. Introduction

.Constant strain finite elements such as the three-node triangle and the four-node tetra-
hedron are easily formulated, but their performance in applications is often unsatisfactory.
The poor performance of these elements is most notable for incompressible or nearly incom-
pressible materials. For such materials, the effects of volumetric locking render the elements
overly stiff. Similar characteristics are exhibited by fully-integrated lower-order jelements
such as the four-node quadrilateral and the eight-node hexahedron. |

Selective and reduced integration have been shown to be effective methods for reducing
the overly stiff behavior of lower-order elements. The basic idea with such approaches is to
integrate the strain energy of the element in an approximate sense. By doing so, the element
becomes more flexible. Such approaches typically require the calculation of shape function
gradients and are element specific. Moreover, special care must be taken to ensure that the
method of quadrature correctly assesses states of uniform stress and strain [1]-

The present approach departs from methods of selective or reduced integration in two
important respects. First, a linear displacement field is assumed within each element at the
outset. As a result, element strains are constant and the strain energy is integrated exactly.
Secondly, the equations used to calculate strains and hourglass deformations only depend on
the nodal coordinates and displacements. Information concerning the shape functions used
in the element formulation is not required.

The basis for the approach is a weighted least squares formulation in which a linear
displacement field is fit to an element’s nodal displacements. Tf the number of nodes equals
the minimum required to define the displacement field (three in 2D and four in 3D), then
the element simplifies to a traditional constant strain element. In this case, the fitted linear
displacement field evaluated at the nodal coordinates is equal to the nodal displacements.
For elements with nodes in excess of this number, the assumed linear displacement field
and nodal displacements need not be consistent. This feature of the element gives it the
flexibility required to overcome the shortcomings of traditional constant strain elements.

As the reader may have ascertained, the least squares approach does not explicitly make
use of conventional shape functions that interpolate the nodal displacements. Although
different in origin, the benefits gained by such an approach are the same as those for selective
or reduced integration. That is, the element stiffness is effectively reduced. In the limit as a
mesh is refined to greater and greater extent, the approximations introduced by the present
approach become insignificant because constant strain elements can adequately approximate
the exact solution. Convergence of the element types considered in this study follows from
the satisfaction of patch tests A through C given in Zienkiewicz [2]- ;

Because the approach is essentially an assumed strain method, certain conditions must



be satisfied in order for it to have a variational justification [3]. These conditions along with
an alternative mean quadrature approach are discussed in the Appendix. The conditions
under which the two approaches are equivalent along with a method for ignoring certain
mid-face or mid-edge nodes are also discussed. The ability to ignore certain nodes in the
element formulation may prove useful for applications involving contact and for meshes with
different element types, e.g., meshes with both uniform strain hexahedral and tetrahedral
elements.

An interesting feature of the triangular and tetrahedral elements developed here is their
ability to distribute surface loads on an element edge or face in a continuously varying manner
between vertex, mid-edge and mid-face nodes. To illustrate, consider a bar of constant cross
section modeled with ten-node tetrahedral elements. The ends of the bar are displaced to
result in a state of uniaxial stress. Depending on the weights chosen in the least squares
formulation, the distribution of reaction forces at the ends of the bar can vary from all at
the vertex nodes to all at the mid-edge nodes.

The primary advantages of the uniform strain elements considered here over their fully-
integrated quadratic counterparts are computational efficiency and flexibility in distributing
surface loads between vertex and mid-edge nodes. For example, a ten-node tetrahedral
element with quadratic interpolation distributes a uniform pressure load entirely at the mid-
edge nodes of a face. Such a distribution may not be desirable for applications involving
contact.

Details of the present approach are provided in the following section. Example problems
in 2D and 3D linear elasticity are given in Section 3. The uniform strain elements con-
sidered in the examples include a six-node triangle, eight-node tetrahedron, and ten-node
tetrahedron. The same element formulation is used for all the element types mentioned.

2. Element Formulation

Consider a generic finite element with nodal coordinates (@i, y5,2z:) fori=1,...,n. The
displacement of node ¢ in the X, Y and Z coordinate directions is denoted by u;, v; and
w;, respectively. Without loss of generality, the origin of the element coordinate system is
located at the weighted geometric center. That is,

n n n
Z'Lb,-x,- = 0, Z’u‘z,-yi = 0, zzbiz,- =0 (1)
i=1 i=1 i=1

where 1, ..., 0, are positive nodal weights. Let u(z,y, z), v(z,y, z) and w(z,y, z) denote
the displacements of a material point with coordinates (z,y,z). For purposes of calculating
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element strains, the following linear displacement field is assumed:

u(:z:, Y, z) = €T + Yoyl + Tz + Tzy¥ — Tzz2 | (2)
V(Z,Y,2) = €Y+ V22 + Tyt TyzZ — TryT ‘ (3)
W(T,Y,2) = €2+ Vol + T2+ T2 —Ty2y (4)

where the ¢’s and s are the constant normal and shear strains of the element and the r’s
are associated with rigid body translations and rotations.

The element formulation is based on a least squares fit of the linear dlsplacement field to
the nodal displacements. The least squares problem in 3D is formulated as follows:

minimize (Bq — d)TW (®q — d) )
where
7= [ €z € € Yoy Yoz Vex Tz Ty Tz Tay Tyz Taz ]T | ©
d=[u1 V] Wy U V2 W2 ... Up Vn wn]T 0
W = diag(1y, W, W, Wa, W, Wa, - - - Wy, W, W) (8)
and

[ T 0 0 mn 0 0 10 U 0 —z ]
0 0N 0 O 21 0 01 -1 p4) 0
0 0 0 0 z 001 0 -y =

oo

z. 0 0 v, 0 0 10 0 wn 0 ==z
0 v, 0 0 2z, 0 010 -2, 2 0
| 0 0 2, 0 0 z, 001 0 -y =n |

Notice that W is the welghtmg matrix used in the least squares fitting and @ spans the space
of linear displacements sampled at the nodes.
Differentiating the function to be minimized with respect to g, setting the result equal

to zero, and solving the resulting expression for ¢ yields

g=Sd (10)

where
= ("woe)eTw (11)

Although Eq. (11) implies an expensive inversion for 9, it is possible to obtain a closed-form
expression for S, which is given in the Appendix. This expression allows for the efficient
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implementation of the present approach in standard finite element codes. It can also be used
to efficiently calculate the shape functions for element free Galerkin (EFG) approaches [4].
To illustrate the efficiency, the Cholesky decomposition of ®TW® requires 123 /3 floating
point operations using a standard algorithm [5]. In contrast, the inversion of the same
matrix using the method in the Appendix only requires 42 flops once the moments given by
Egs. (66-67) are known.

Following the development in [1], the nodal force vector f, associated with the element
stresses is given by

f>=VB%s (12)
where V is the element volume, B is the first six rows of the matrix S .
B=2S5(1:86,:) (13)
and ¢ is a vector of Cauchy stresses defined as
ol = [ Ozz Oyy Ozz Ozy Oyz Ozz ]T (14)

So-called hourglass control is included in the element formulation to remove spurious
zero energy modes. In this study we only consider hourglass stiffness, but one could easily
include hourglass damping for problems in dynamics. Hourglass stiffness is designed to
provide restoring forces for any nodal displacements orthogonal to ®.

The nodal displacement vector d can be expressed as

d=®G+®.q, (15)

where ®T®; = 0 and the columns of ®, are assumed orthonormal. Premultiplying Eq. (15)
by ®T and solving for § yields

g = (®T®)'e7d (16)
Substituting Eq. (16) into Eq. (15) leads to
Oq =[I-3(®7®)07)d (17)

The strain energy associated with hourglass stiffness is formulated as
Uy = €V1/3th_{QJ_/2 (18)

where ¢ is a positive scalar and G}, is a material modulus. Substituting Eq. (17) into Eq. (18)
leads to
Up = eV3GLdT[I — 0(87®)"1@7|d/2 (19)
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Finally, the nodal force vector f; associated with hourglass stiffness is obtained by differen-
tiating Uj, with respect to d. The result is

fp = VIBGLI — 2(@T®)'@T]d | (20)

It follows from Eq. (20) that f; is orthogonal to ®g. In other words, hourglass stiffness
does not cause any restoring forces if the nodal displacements are consistent with a linear
displacement field, the desired result. We note that the hourglass control given by Eq. (20)
is also applicable to other uniform strain elements such as the eight-node hexahedron.

The development thus far has been focused solely on 3D elements. Corresponding results
for 2D elements are obtained simply by redefining ¢, d, W and @ as |

T
q= [ €z € Yoy Tz Ty rzy] ‘ (21)
T
d=['u,1 Vi Uy Vg ... Up 'un] (22)
W = diag(iy, W1, We, W2, - - -  Wn, Wp) (23)
and } -
lz 0 v11 1 0 u
0 1 0 01 —=
=] : : i i (24)

Zn 0 2 1 0 wn
LOy,,OOl-—:cn

In the finite element method, equivalent nodal forces for surface tractions are commonly
obtained by integrating the product of the shape functions and the tractions over the loaded
area. This procedure cannot be used with the least squares approach because shape functions
are never introduced.

Two alternative options are available for determining equivalent nodal loads. The first
involves subjecting a collection of elements to a constant state of stress. Equivalent nodal
forces can then be determined from the calculated reaction forces. A second method, pre-
sented in the Appendix, makes use of a mean quadrature formulation that is equivalent to
the least squares approach under certain conditions. ;

The six-node triangle is defined to have three vertex nodes and three mid-edge nodes as
shown in Figure 1a. The nodal weights for the element are chosen as

(wl,...,ws)=(1—a,1—a,1—a,4a,4a,4a) (25)



where a € [0,1] is a scalar weighting parameter. When o = 1/5, the weighting for each
node is identical. Consider a surface traction of constant value applied to the edge shared
by nodes 1, 2 and 4. The equivalent nodal forces are given by

h=0-0F2  fi=(1-o)F)2 (26)

fa=aF (27)

where F' is the net load on the edge. Notice for oo = 0 that the load is divided equally
between the vertex nodes. For a = 1, the load is transferred entirely to the mid-edge
node. For o = 1/5, the load on a vertex node is twice that on the mid-edge node. Similar
expressions hold for the other two edges.

The eight-node tetrahedron is defined to have four vertex nodes and four mid-face nodes
as shown in Figure 1b. The nodal weights for the element are chosen as

(.. .,d) = l1-al-al-a1-0,9%,9%,9,9%) (28)

When o = 1/10, the weighting for each node is identical. Consider a surface traction of
constant value applied to the face shared by nodes 1, 2, 3 and 8. The equivalent nodal forces
are given by

fi=(—a)F/3, fo=(1-a)F/3, fi=(1-a)F/3 (20)

fg = oF (30)

where F is the net load on the face. Again, for & = 0 the load is divided. equally between the
vertex nodes. For o = 1, the load is transferred entirely to the mid-face node. For o = 1 /10,
the load on a vertex node is three times that on the mid-face node. Similar expressions hold
for the other three faces.

The ten-node tetrahedron is defined to have four vertex nodes and six mid-edge nodes
as shown in Figure 1c. The nodal weights for the element are chosen as

(D1,...,010) =1 —a,1—a,1—0a,1—0,2a,2¢,2¢, 20, 20, 2a) (31)

When o = 1/3, the weighting is uniform. Consider a surface traction of constant value
applied to the face shared by nodes 1, 2, 3, 5, 6 and 7. The equivalent nodal forces are given
by

h=Q-aFf3, f=(Q1-a)F/3, fi=(1-a)F/3 (32)

f5=aF/37 f6=aF/31 f7=0!F/3 (33)
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Notice for o = 0 that the load is divided equally between the vertex nodes. For a = 1, the
load is shared equally by the mid-edge nodes. For o = 1/3, the load on a vertex node is
twice that on a mid-edge node. Similar expressions hold for the other three faces.

Remark: The case of & = 1 corresponds to mean quadrature of a standard ten-node tetra-
hedron with quadratic interpolation of the displacements. The implication for the standard
ten-node tetrahedron is that the mid-edge nodes are solely responsible for communicating the
mean behavior and the vertex nodes are related to non-constant strain behavior exclusively.

Patch tests of types A through C (see Ref. [2]) were performed for meshes of six-node
triangles, eight-node tetrahedra, and ten-node tetrahedra. In all cases, the patch tests were
passed provided the mid-edge and mid-face nodes were centered (see Appendix). Satisfaction
of the patch tests guarantees convergence as element sizes are reduced. ‘

3. Example Problems

Example problems in 2D and 3D linear elasticity are presented in this section. The
first example shows that elements generated using the present approach do not suffer from
volumetric locking. The second example examines the variation of element eigenvalues with

the weighting parameter ¢.

All the examples presented here assume small deformations of a linear, elastic, isotropic
material. As such, it is convenient to assemble the element stiffness matrices into the system
stiffness matrix. With reference to Eq. (12), an element stiffness matrix K. for 3D ‘problems

is given by '

K.=VBTHB ' (34)
where
F2G+A A A 00 0]
A 2G+X X 000
oA A 2G4+X 0 0 0
H=1 0 0 GO0 0 (35)
0 0 0 0 G O
0 0 0 0 0 G|
E
G = 2(1 +v) (36)
A = By (37)

(1+)(1—2v)

and E is Young’s modulus and v is Poisson’s ratio of the material. For 2D plane strain, the

7



matrix H is given by

2G+ A A 0
H= A 2G+X 0 (38)
0 0 G
and for 2D plane stress,
1 v 0
= E sl v 1 0 (39)
1I=*10 0 a-v)2

For 2D problems, the matrix B in Eq. (34) consists of the first three rows of (8TW &)~ 13T
Ezample 3.1: The first example makes use of the 2D and 3D meshes shown in Figure 2.
The tetrahedral meshes each consist of 320 elements (five element decomposition of each
cubic block).
For the 2D analysis, nodes on the boundaries of the square mesh of triangular elements
are subjected to the prescribed displacements

u(z,y,2) = a(y®—z®+ 2zy) (40)
v(z,9,2) = a(z® -y’ + 2yz) (41)
The plane strain assumption with unit element thickness is used.

For the 3D analysis, nodal displacements on the boundaries of the cubical mesh of tetra-
hedral elements are specified as

wW(z,y,2) = a(y®+ 2% — 227 + 2zy + 222 + byz) (42)
v(z,9,2) = a(2®+ 2% — 2% + 2yz + 2yz + 5zx) (43)
w(z,y,2) = a(@®+y® —22% + 22z + 22y + Szy) (44)

The elasticity solutions to the 2D and 3D boundary value problems are given by Egs. (40-44)
as well. The deviatoric strain energies for the two problems are given by

EZP = 32G4*(10)%/3 (45)
E3D = 144Ga*(10)° (46)
One can confirm that the elasticity solutions have no volumetric strain. That is,
ou Ov Ow
32 + ™ + 5 = 0 (47)

Consequently, the exact value of the volumetric strain energy E,, is zero.

8



Calculated values of the volumetric and deviatoric strain energies for the 2D problem are
shown in Table 1. Results are presented for meshes of three-node and six-node triangles for
a material with E = 107. Three different values of the hourglass stiffness parameter € were
_ considered and G, was set equal to G. The weighting parameter a was set equal to 1/5.
This value of a results in equal weighting of the vertex and mid-edge nodes (see Eg. 25).

Tt is evident in Table 1 that the constant strain three-node triangular element performs
poorly for values of v near 0.5. Values of E, are significantly lower for the six-node triangular
mesh for all the values of v and € shown. In contrast to the three-node triangular mesh,
the volumetric strain energy of the six-node triangular mesh decreases as Poisson’s ratio is
increased. ‘

A plot of Eg, and E,, versus o for the same material with v = 0.499 and € = 0.5 are
shown in Figure 3. It is noted that setting a = 0 (zero weight for mid-edge nodes) leads to
results which are identical to those for the three-node triangular mesh. Very small values of
volumetric strain energy are obtained for values of & ranging from 0.2 to 1.

Caleulated values of E,y and Eg for the 3D problem are shown in Table 2. Results
are presented for meshes of four-node, eight-node, and ten-node tetrahedra. Results for
the eight and ten-node tetrahedral meshes were obtained by setting all of the nodal weights
equal. This nodal weighting corresponds to o = 1/10 for the eight-node element and o = 1/3
for the ten-node element (see Eqs. 28 and 31). Values of € equal to 0.05 and 0.1 were used
for the eight-node and ten-node elements, respectively. In addition, Gy, was set equal to G.

Tt is evident in Table 2 that the constant strain four-node tetrahedral element performs
poorly for values of v near 0.5. Values of E,. are consistently lower for the eight and ten-
node tetrahedral meshes. The eight-node element performs much better than the ten-node
element for values of v near 1/2. Nevertheless, the performance of the ten-node element is
significantly better than that of the four-node element.

Plots of Ej., and E,q versus « for v = 0.499 are shown in Figures 4 and 5. Setting a =0
for the eight and ten-node tetrahedral elements leads to results which are identical to those
for the four-node element, since this limiting case for the least squares fitting results in using
the vertex nodes only.

Plots of the energy norm (see Ref. 2) for the eight-node tetrahedron with & = 1/10
and a uniform strain eight-node hexahedron are shown in Figure 6 for v = 0.499. The
hourglass control used for the two element types was specified by € = 0.05 and G, = G. The
convergence rate and accuracy of the eight-node tetrahedron compares favorably with the
uniform strain hexahedron. The slopes near unity of the two lines in the figure are consistent
with the convergence rate of linear elements.

Ezample 3.2: The second example examines the variation of element eigenvalues with
the weighting parameter .. To simplify the analysis, we consider element geometries of an

9



equilateral triangle and tetrahedron with unit edge length. Coordinates of the tetrahedron
vertices are given by (0,0,0), (1,0,0), (1/2,+/3/2,0), and (1/2,+/3/6,/6/3). The geometry
of the equilateral triangle is described by the first three vertices. The hourglass stiffness
parameter ¢ is set equal to zero for the results presented.

The six-node triangular element has three rigid body modes, six zero-energy hourglass
modes, and three modes with nonzero eigenvalues. Of the three nonzero eigenvalues, two are
identical and are associated with shear deformation. The third eigenvalue is associated with
the state of strain ¢, = ¢, and ~,, = 0. For plane strain, one can verify that the eigenvalues
are given by

M o= 4G( —2a+ 52V (48)
A2 = 4(G+N)(1-2a+52)V (49)
and for plane stress,
A = 4G(1-2a+502)V (50)
Ao = %(1 — 2a+ 523V (51)

Notice that the eigenvalues are a quadratic function of o. The smallest eigenvalues are
obtained for oz = 1/5. This value of & corresponds to equal weighting of vertex and mid-
edge nodes. As expected, the eigenvalues for o = 0 are identical to those of a constant strain
three-node triangle.

The eight-node tetrahedral element has six rigid body modes, twelve zero-energy hour-
glass modes, and six modes with nonzero eigenvalues. Of the six nonzero eigenvalues, five
are identical and are associated with shear deformation. The sixth eigenvalue is associated
with a state of hydrostatic strain. Expressions for these eigenvalues are given by

A = 4G(1 —2a+ 102V (52)
2E 0

As with the six-node triangular element, the eigenvalues are a quadratic function of o.. The
eigenvalues are minimized for o = 1/10. This value of o corresponds to equal weighting
of vertex and mid-face nodes. Again, the eigenvalues for a = 0 are identical to those of a
constant strain four-node tetrahedron.

The ten-node tetrahedral element has six rigid body modes, eighteen zero-energy hour-
glass modes, and six modes with nonzero eigenvalues. Of the six nonzero eigenvalues, five

10
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are identical and are associated with shear deformation. The sixth eigenvalue is associated
with a state of hydrostatic strain. Expressions for these eigenvalues are given by

M = 4G(1-2a+30%)V (54)
_ 2F 5
do = 75-(1-20+307)V (55)

Notice that the eigenvalues are minimized for a = 1/3. This value of a corresponds to equal
weights for the vertex and mid-edge nodes. As with the eight-node element, the eigenvalues
for & = 0 are identical to those of a constant strain four-node tetrahedron.

4. Conclusions

A new method for deriving uniform strain triangular and tetrahedral finite elements
is presented. The method is computationally efficient and avoids the volumetric locking
problems common to fully-integrated lower-order elements. The weighted least squares for-
mulation permits surface loads to be distributed in a continuously varying manner between
vertex, mid-edge and mid-face nodes. This flexibility in the element formulation may prove
useful for applications involving contact where a uniform normal stiffness is desirable. El-
ements generated using the method pass a suite of patch tests provided the mid-edge and
mid-face nodes are centered.

An alternative formulation based on mean quadrature is also presented. Such a formula-
tion is identical to the least squares approach provided the mid-edge and mid-face nodes are
centered. The alternative formulation shares all the computational advantages of the least
squares approach and can use the same method of hourglass control. Moreover, satisfaction
of patch tests does not require centered placement of the mid-edge or mid-face nodes. Work
is currently underway to evaluate the performance of the elements for applications:involving
nonlinear (large) deformations.

5. Appendix

A closed-form expression for (®TW®)~1®TW is presented in this section. To begin,
define
&= Wi, U= Wi, &= Wi (56)

where there is no summation on i in Eq. (56). After a significant amount of algebra, one
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arrives at the following expression:

(@TW )1 TW =

where

— 2
Co = sz:z:syyszz + 23:ry3yzszx - s:z::csyz -

c1 = (SyySzz —

Q13

0 0 aio 0 0
az 0 0 ax O
0 aszy 0 0 azo
an 0 a2 a2 0
asa a9y 0 ass G22
0 a1 Q3o 0 a2
0 0 aop2 0 0
Qop1 0 0 aop2 0
0 aoy 0 0 aop2
—Qay 0 0 —a12 0
0 —Q9] 0 0 —Q92
0 0 —a39 0 0
n
ag = W / Z ’lf},'
i=1
a; = a; + cafi + ceZ;
Qi = Coff; + C52; + cufy
az; = C3Z; + ces + csY;

Q1n

Qon

a3n

QGon
0
0
0
0

—03n

2 2
Syyszx - sZzszy

SZZ)/CQ, Cy = (Syzsza: - s:z:yszz)/co

C = (Szzszz::z: - ng)/co, Cs = (Sz:cszy - syzsa::t)/co

Cs = (SzzSyy = §35)/C0, 6 = (SaySyz — SazSyy)/Co

and

n
Szz = inxi: Syy =
i=1

n n n
Szy = Z TilYi, Syz = Zyiziy S2z = Z 2iZ;
=1 i=1

i=1

n n
Zyi?:/ia Szz = Z 2Z;

i=1 i=1

Qon

Qi1n
Q3n

Qon
0
—Qin
0
0

—Qon

0

(57)

(58)

(59)
(60)
(61)
(62)
(63)
(64)
(65)

(66)

(67)

For 2D problems, the matrix (37W®)~'®TW is obtained by deleting every third column
and rows 3, 5, 6, 9, 11 and 12 of the matrix on the right hand side of Eq. (57). In addition,
one sets s;. =1, 8y, =0 and s,, = 0.
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An slternative formulation based on mean quadrature of a six-node triangle, eight-node
tetrahedron, and ten-node tetrahedron is presented here. The method combines ideas from
Section 2 and References [1] and [6] to obtain a family of conforming elements. The conditions
under which the least squares formulation is equivalent to the alternative formulation are
also presented. The eight-node tetrahedral element developed in this section with & = 1/3
is identical to an element developed previously in Reference 6.

To begin, let

Agr = [miy; — ye) +25(ue — v:) + 2y — 93] /2 (68)
Vim = (& — z:)(wz — wzw) + (2 — 2 (Y52 — yiz;) + (@ — 2:) (Y526 — Yezs)+
(zx — 75) (w2 — wiz) + (25 — ) (Wsze — Y2) + (20 — 76) (viz; — 95%)] /6 (69)

where A;j and Vijg denote the area and volume of a triangle and tetrahedron with vertices
(4,3,k) and (i,4,k,1), respectively. Consider a hexagon (six-node triangle), a polyhedron
with eight vertices (eight-node tetrahedron), and a polyhedron with ten vertices (ten-node
tetrahedron) with volumes given by

Ag = Aigs+20(Aoss + Aser + Aug2) (70)
Vs = Vigas+ 3a(Vasas + Vaass + Vazer + Viazs) (71)
Vio = (1 —40/3)Viass + 4a (Vists + Vszso + Vesrio + Vaoroa + Vaoset
Verose + Varose + Vaore + Vsrse + Vssse + Veiore + Vaioec) /3 | (72)
where
(T, Yer 20) = (5, Ys, 25) + (Ts, Yer Z6) + - - - + (T10, Y10, 210)] /6 (73)

In the present development, nodes 4, 5 and 6 of the hexagon remain associated with edges
12, 23, and 31 of triangle 123 (see Figure 1a), but are no longer constrained to the mid-
edge positions. Likewise, nodes 5, 6, 7 and 8 of the polyhedron with eight vertices remain
associated with faces 234, 143, 124, and 132 of tetrahedron 1234 (see Figure 1b), but are
no longer constrained to the mid-face positions. Similar flexibility is afforded to nodes 5
through 10 of the polyhedron with ten vertices.

One can show that a hexagon with edges 14, 42, 25, 53, 36, and 61 has area As where

(84,02) = 20(Ta,y) + (1 — 20)(z1 + T2, 51+ ¥2)/2 (74)
(Z5,85) = 20(zs,y5) + (1 —20) (22 + %3, Y2 + ¥s)/2 (75)
(Z6,%6) = 20(ws,ys) + (1 —20)(z3+ 21,93+ v1)/2 : (76)

13



Likewise, a polyhedron with triangular faces 235, 345, 425, 318, 148, 436, 127, 247, 417, 218,
138, and 328 has volume Vi where

(25,95, 25) = 3cws,ys,25) + (1 — 30)(z2 + 5 + T4, o + Ys +Ys, 22+ 23+ 24)/3 (77)
(%, 76, %) = 3o(s,Ys, 26) + (1 — 30) (w1 + 24 + T3, Y1 +Ys + Y3, 21 + 24+ 23)/3 (78

)
(&7,97,27) = 3a(ar,yr,2) + (1-3a)(m+ 22+ T, y1 + 9 +us, 21 + 2 + z1)/3 (79)
(5,78, 28) = 30x(ws, ys, 28) + (1 — 30:) (%1 + Zs + T2, U1 + Ys + Yo, 21 + 23 + z2)/3 (80)

AAAAA A

Finally, a polyhedron with triangular faces 158, 295, 489, 508, 3710, 187, 4108, 7810, 269,
3106, 4910, 1049, 256, 175, 367, and 576 has volume V;q where

(25,5, 25) = dod(ws,Y5,25)/3 + (1 — 4a/3)(T1 + T2, Y1 + Y2, 21 + 22) /2 (81)

(Z6: 96, 26) = 4x(z6,Ye: 26)/3 + (1~ 40/3) (%2 + 23, Y2 + Y3, 22 + 25) /2 (82)

(@7,97.27) = dolwr,yr, 21)/3+ (1 — 4oy/3)(m3 + 21,95 -+ 91, 25 + 21) /2 (83)

(2, Js, %) = do(zs, Ys, 2)/34 (1~ da/3) (@1 + T4, 91 + Ya, 21 + 24)/2 (84)

(Z9:90,20) = doa(wg,ys,20)/3+ (1 — 40t/3) (w2 + Ta, Yo + Ya, 22 + 24) /2. (85)

(£10,910, 210) = 40(%10, Y10, 210)/3 + (1 — 4t/3) (25 + T, s + ya, 23 + z)/2  (86)

It follows from the definition of the hexagon edges and polyhedral faces that meshes of
six-node triangles, eight-node tetrahedra or ten-node tetrahedra will be conforming. That
is, there is continuity between adjacent element edges and faces for the three element types.

Comparison of the least squares approach (see Egs. 11-13,57 ,09-61) and a generalization of
the approach presented in Reference [1] (see Eqs. 13,16,58) shows that the two are equivalent

provided that
10V 18V 10V

- 1_/;6271 92: = Vayz i = 7%
where V' denotes Ag for the six-node triangle, V3 for the eight-node tetrahedron, and Vi, for
the ten-node tetrahedron. One can show the above equalities hold if the coordinates of the
mid-edge and mid-face nodes are given by Egs. (74-86) with « set equal to zero. That is,
the mid-edge and mid-face nodes are geometrically centered.

To compare the two different approaches, one simply uses either Egs. (59-61) or Eq. (87)
to calculate ay;, ag; and as;. The same hourglass control control can be used for either
approach. Both approaches pass the patch test if the mid-edge and mid-face nodes are
centered, but only the alternative approach presented in this section passes the patch test if
the nodes are not centered. For small deformation problems, the difference is not important
provided the nodes are centered initially. For large deformation problems we suspect that
the alternative formulation may be better suited.

Q1;

(87)
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As with the least squares formulation, the alternative formulation can be implemented
efficiently. The derivatives in Eq. (87) can be calculated using |

WViju/0x: = [(yx — )z — 21) — (v — 1) (26 — 21)}/6 - (88)

Vi[O = (= — 21)(w; — 1) — (25 — 21)(zx — T)]/6 o (89)
OVign/0z = [(mr — =) (w5 — ) — (5 — =) (ys — w))/6 - (90$)

In addition, the alternative formulation allows one to ignore specified mid-edge or mid-face
nodes. For example, a seven-node tetrahedral element without mid-face node 8 is obtained
simply by neglecting the volume Vi3zs in Eq. (71). The least squares formulation can also
be modified to ignore certain nodes, but the approach is not as straightforward. The mid-
edge nodes of the six-node triangle and mid-face nodes of the eight-node tetrahedron can
be constrained to possess only a normal degree of freedom by simple modifications of the
expressions for area and volume in Eqgs. (68-69).

Finally, the equivalent nodal loads given in Egs. (26-27,29-30,32-33) can also be deter-
mined by calculating the virtual work done by a uniform distributed force on the edges or
faces of the triangular and tetrahedral elements. By making use of Egs. (74-86), one arrives
at the same expressions for the equivalent loads provided the mid-edge and mid-face nodes

are centered.
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Table 1: Strain energies for Example 3.1 (2D analysis, a =4 X 107°).

v three-node six-node exact |
e=0.1 e=05 e=1

Eev Eyol Edev Eyol Egev Enyol FEgev Evyol Eev

0.0 1852 0.020 | 827 | 3.8¢-3 | 8.45 | 4.9¢-3 | 8.49 1.0e-2 | 8.533
0.1 | 77510024 | 7.53 | 3.7e-3 | 7.68 | 5.2¢-3 | 7.72 | 1.1e-2 7.758
0.2 |7.10]0.028 | 6.90 | 3.5e-3 | 7.04 | 5.5e-3 | 7.08 1.2e-2 | 7.111
03 |6.560.036 | 6.38 | 3.0e-3 | 6.49 | 5.6e-3 | 6.53 1.3e-2 | 6.564
04 |6.10/0.056|5.93 | 2.1e-3 | 6.03 | 4.9¢-3 | 6.06 | 1.4e-2 6.095
0.499 | 5.74 | 4.17 | 5.55 | 3.2e-5 | 5.62 | 1.2e-4 5.66 | 6.6e-4 | 5.693

Table 2: Strain energies for Example 3.1 (3D analysis, a = 4 x 107°).

v four-node | eight-node ten-node | exact
Edev Evol Edev Evol Edev Evol Edev

0.0 11156 | 4.18 | 11421 0.383 | 1144 | 0.116 | 1152
0.1 {1051/ 5.17 | 1038 | 0.366 | 1040 | 0.133 | 1047
02 | 963 | 6.81 | 952 | 0.345 | 953 | 0.157 | 960.0
03 | 889 | 10.0 | 879 | 0.315 | 880 | 0.197 | 886.2
04 | 826 | 19.5 | 816 | 0.256 | 817 | 0.291 | 822.9
0.499 | 773 | 1903 | 762 | 0.007 | 763 | 18.5 | 768.5
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Figure 1: Element geometries for () six-node triangle, (b) eight-node tetrahedron, and (c) ten-node
tetrahedron. '
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Figure 2: Triangular and tetrahedral meshes used in Example 3.1.
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Figure 3: Volumetric (solid line) and deviatoric (dashed line) strain energies for the six-
node triangular mesh. The ideal result for volumetric strain energy is zero. For values of ¢,

around 0.3, the volumetric strain energy is six orders of magnitude lower than the
deviatoric strain energy.
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Energy

Figure 4: Volumetric (solid line) and deviatoric (dashed line) strain energies for the eight-node
tetrahedral mesh. For values of o greater than 0.1, the volumetric strain energy is five orders of
magnitude lower than the deviatoric strain energy. ‘
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Figure 5: Volumetric (solid line) and deviatoric (dashed line) strain energies for the ten-
node tetrahedral mesh. The minimum value of volumetric strain energy is for o equal to

unity. This weighting corresponds to mean quadrature of a ten-node tetrahedron with
quadratic interpolation of the displacements.
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Figure 6: Energy norms of the eight-node tetrahedron and eight-node uniform hexahedron

as functions of element divisions per edge N. The mesh shown in Figure 2 has N=4.The
slopes near unity of the two lines are characteristic of linear elements.
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Enhanced Uniform Strain Triangular and Tetrahedral Finite
Elements !
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Abstract. A family of enhanced uniform strain triangular and tetrahedral finite elements is
presented. Element types considered include a seven-node triangle, nine-node tetrahedron,
and eleven-node tetrahedron. Internal nodes are included in the element formulations to
permit decompositions of the triangle into three quadrilaterals and the tetrahedra into four
hexahedra. Element formulations are based on the standard uniform strain approach for the
quadrilateral and hexahedron in conjunction with a set of kinematic constraints. Specifi-
cation of the constraints allows surface loads to be varied in a continuous manner between
vertex and mid-edge nodes for the eleven-node tetrahedron. Comparisons with existing
uniform strain elements and elements from a commercial finite element code are included.

Key Words. Finite elements, uniform strain, hourglass control, contact.

!Sandia is 2 multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under Contract DE-AL04-94AT.8500.

2Structural Dynamics Department, Sandia National Laboratories, MS 0439, Albuquerque, New Mexico
87185-0439, email: crdohrm@sandia.gov, phone: (505) 844-8058, fax: (505) 844-9297.

3Engineering and Manufacturing Mechanics Department, Sandia National Laboratories, MS 0443, Albu-
querque, New Mexico 87185-0443.



1. Introduction

A family of uniform strain elements was recently introduced that includes a six-node
triangle, eight-node tetrahedron, and ten-node tetrahedron [1]. Although computétionally
efficient, each of these element types can only approximate a single uniform state of strain.
As a consequence, the elements have several zero energy hourglass modes that must be
controlled. The number of hourglass modes for the six-node triangle, eight-node tetx“ahedron

and ten-node tetrahedron is six, twelve and eighteen, respectively.

The purpose of this study is to investigate specific enhancements to improve the accuracy
of the uniform strain elements of Ref. 1 . By adding an internal “center” node to each element
type, it is possible to geometrically decompose the triangle into three quadrilaterals and the
tetrahedra into four hexahedra. Within each of the quadrilateral or hexahedral domains,
the element formulations are based on the standard uniform strain approach [2]. Element
formulations for the nine-node tetrahedron and eleven-node tetrahedron also include a set

of kinematic constraints. |

The present approach is motivated by the idea that the accuracy of uniform strain el-
ements may be improved by allowing more than a single state of uniform strain. Based
on this idea, clear improvements in element accuracy are demonstrated for the seven-node
triangle and eleven-node tetrahedron. In addition, allowing multiple states of unifojrm strain
leads to reduced numbers of hourglass modes. The number of hourglass modes for the seven-
node triangle, nine-node tetrahedron and eleven-node tetrahedron is two, three and three,
respectively. .

The enhanced elements can be viewed as the union of uniform strain elements with
certain nodes subject to kinematic constraints. Virtual nodes are introduced in the element
formulations for the tetrahedra to permit the geometric decompositions described above.
Movement of the virtual nodes is constrained to the vertex and mid-edge nodes of the parent
elements. For example, the eleven-node tetrahedron is the union of four hexahedra. Virtual
mid-face nodes of the tetrahedron serve as vertices of each of the four hexahedra. Motion of
these mid-face nodes is constrained to the adjacent mid-edge and vertex nodes.

The idea of decomposing a triangle into three quadrilaterals and a tetrahedron into four
hexahedra is not new. In addition, one can directly use these elementary decompositions
together with the element formulations for the uniform strain quadrilateral and hexahedron
to perform an analysis. That being the case, one may question the advantages of the present
approach. For the nine-node and eleven-node tetrahedron, there are fewer numbers of nodes
than there are for the union of four hexahedra. In addition, internal nodal displacements
of the triangle and two tetrahedra can be solved for in terms of the remaining nodal dis-
placements prior to assembly of the equations for static analysis. Another advantage is that
the computations required for hourglass control are reduced in comparison to those for three
quadrilaterals or four hexahedra. For example, the hourglass control forces for the eleven-
node tetrahedron can be calculated all at once rather than by accumulating the forces of
four separate hexahedra. |

The eleven-node tetrahedron also has a distinct advantage over the standard quadratic
ten-node tetrahedron for applications involving contact. For a uniform pressure distribution,

1



the ten-node quadratic tetrahedron distributes the load entirely at the mid-edge nodes.
With the present formulation, a uniform pressure can be distributed in a continuous manner
between vertex and mid-edge nodes. This flexibility in the element formulation may prove
useful for applications involving contact where a uniform normal stiffness is desirable.

Details of the approach are provided in the following section. Example problems in 2D
and 3D linear elasticity are given in Section 3. The example problems include comparisons
with the uniform strain elements of Ref. 1 and elements from a commercial finite element
code.

2. Element Formulations

Element formulations for the seven-node triangle, nine-node tetrahedron and eleven-node
tetrahedron are presented in this section. The formulations are based on the uniform strain
approach of Reference 2 in conjunction with a set of kinematic constraints. The coordinates
and displacements of node I in a Cartesian frame are denoted by z;r and u;z, respectively.
For 2D elements. the index i varies from 1 to 2. For 3D elements, ¢ varies from 1 to 3.

Elements of the B matrix of the quadrilateral shown in Figure la are defined as

Byt = 22 )

where A is the area of the quadrilateral. Following the development in Ref. 2, the nodal
forces associated with the element stresses are given by

2
Rt =Y"TyBRd . 2)
i=1

where T;, are elements of the Cauchy stress tensor (assumed constant throughout the ele-
ment).
Elements of the B matrix of the hexahedron shown in Figure 1b are defined as

oV
hex __
BiI - 8372'] (3)

where V is the volume of the hexahedron. Nodal forces associated with the element stresses
are given by

3
fif* = 21 T;Bjf 4)
=

Explicit expressions for the elements of the B matrices of the quadrilatera] and hexahedron
are provided in Ref. 2.
2.1 Seven-Node Triangle

A sketch of the enhanced uniform strain seven-node triangle (EUSTY) is shown in Fig-
ure 2a. The element consists of vertex nodes 1,2, 3, mid-edge nodes 4, 5,6 and center node

2
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7. The triangle is geometrically decomposed into three quadrilaterals specified by the nodal
4-tuples 1476, 2574 and 3675 (see Figure 2b).

Consider a distributed load on edge 12 that varies linearly between nodes 1 and 2. As-
suming node 4 is centered between nodes 1 and 2, the equivalent nodal forces, obtained using

the principle of virtual work, are given by

fi=(5p1/28+p2/24)L  fo=(5p2/24+p/24)L  fa=(p1+P2)L/4 (5)

where p; and p, are the values of the distributed load at nodes 1 and 2 and L is the length
of edge 12. Similar expressions hold for the other two edges of the element. For p; = p2=p,
Eq. (5) simplifies to _

fi=pL/4  fa=pL/4  fa=pL/2 (6)
For purposes of comparison, the equivalent nodal forces for a triangle with quadratic inter-
polation are given by

fi=pL/6  fo=pL[6  fy=2pL/3 (7)

2.2 Nine-Node Tetrahedron

Consider the enhanced uniform strain nine-node tetrahedron (EUST9) shown in Fig- -

ure 3a. The element consists of vertex nodes 1,...,4, mid-face nodes 5,... ,8 and center
node 9. The element geometry is identical to that of the eight-node tetrahedron in Ref. 1
with the addition of the center node. The coordinates of virtual mid-edge nodes 5,..., 10

are constrained to those of the vertex nodes by the equations
T = (Tn+22)/2 Tp=(@2+Ta)/2 5= (Ts+za2)/2 (8)

oz = (Ta+7u)/2 Tp=@atz4)/2  Tgp = (Ts+T4)/2 (9)

The six virtual nodes are included simply to permit the decomposition of the tetrahedron
into four hexahedra. Constraints in the same form as Egs. (8-9) hold for the displacements
of nodes 5,...,10.

The tetrahedron is geometrically decomposed into four hexahedra specified by the nodal

8-tuples 15878796, 26850597, 378610695 and 410508607 (see Figure 3b). These hexahedra
are designated by 1, 2, 3 and 4, respectively. Using the chain rule for differentiation along

with Egs. (3), (8) and (9), the B matrices of the four hexahedra are given by
B1 = B]!Il B2 = BzIz Bg = B3I3 B4 = B4I4 (10)

where B, ..., B, are the B matrices of the four hexahedra calculated using Eq. (3). The

matrices Iy, ..., I take into account the constraints on nodes 5, ...,10 (see Appendix).
Consider a distributed load on face 124 that varies linearly between nodes 1, 2 and 4.

Assuming node 7 is centered between nodes 1, 2 and 4, the equivalent nodal forces are given



A= [31p: + 13(ps + ps)] 4/216 (11)
fo = [3lpy+13(ps +1p1)]A/216 (12)
fa = [3lpy+ 13(py +p2)]A/216 (13)
fr = 5(p1+p2+p4)A/T2 (14)

where p;, p» and p; are values of the distributed load at nodes 1, 2 and 4 and A is the
area of face 124. Similar expressions hold for the other three faces of the element. For

P1 = P2 = pg = p, Eqgs. (11-14) simplify to 4
fi=19pA/72 fo=19pA/72 fa=19pA/72  f;=5pA/24 (15)

2.3 Eleven-Node Tetrahedron
Consider the enhanced uniform strain eleven-node tetrahedron (EUST11) shown in Fig-

ure 4a. The element consists of vertex nodes 1,...,4, mid-edge nodes 5,...,10 and center
node 11. The element geometry is identical to that of a standard ten-node tetrahedron
with the addition of the center node. The coordinates of virtual mid-face nodes 9,...,8 are
constrained to those of the vertex and mid-edge nodes by the equations
Tz = (1 — a) (zi2 + T3 + x,-4)/3 + a(xis + z310 + .’Big)/?) (16)
Tig = (1 — a) (.’IJ,;?, + T + 1171'4)/3 + a(xn + T8 + .’Iiilo)/?) : (17)
Z5 = (1 - a) (.’Bil + T + $i4)/3 + a(x,-s + 2z + xis)/?) (18)
Tz = (1 — a) ((172'2 -+ Z;1 + (17-53)/3 -+ a(x,-s -+ Zi7 + xis)/3 (19)

where « is a scalar. Again, the four virtual nodes are included simply to permit the decom-
position of the tetrahedron into four hexahedra. Constraints in the same form as Egs. (16-19)
hold for the displacements of nodes 5, .. ., 8. _

"The tetrahedron is geometrically decomposed into four hexahedra specified by the nodal
8-tuples 158787116, 268595117, 3786106115 and 4105986117 (see Figure 4b). These hexa-
hedra are designated by 1, 2, 3 and 4, respectively. Elements of the B matrices of the four
hexahedra are given by Egs. (10) with definitions of the matrices I 1,---,14 provided in the
Appendix.

Consider a distributed load on face 124 that varies linearly between nodes 1, 2 and 4.
Assuming nodes 5, 8 and 9 are centered between the vertex nodes, the equivalent nodal
forces are given by

fi = [323p:1/3456 + 253(p; + p4) /6912 — 5cx(p; + pa + pa) /216] A (20)
fa = [323py/3456 + 253(ps + p1) /6912 — 5a(py + 2 + ps) /2164 (21)
fi = [323pa/3456 + 253(p; + p2) /6912 — 50(py + pa + p4) /216] A (22)
fs = [35pa/1728 +253(p + p2) /3456 + 50(py + pa + pa) /216 A (23)
fo = [35p1/1728 + 253(py + p4) /3456 + 5c:(py + pa + p4) /216] A (24)
fo = [35p2/1728 + 253(ps + p1)/3456 + 5(py + po + ps) /216] A (25)
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where p;, p» and py are values of the distributed load at nodes 1, 2 and 4 and A is the
area of face 124. Similar expressions hold for the other three faces of the element. For

p1 = P2 = pg = P, Egs. (20-25) simplify to
fi=(1/6—50/T2)pA  fo=(1/6—5c/T2)pA  fo=(1/6—5c/72)pA (26)
fs=(1/6+50/T2)pA  fo= (1/6+5a/72)pA  fs= (1/6 + 5a/72)pA (27)

In contrast, the equivalent nodal forces for a tetrahedron with quadratic interpolation are
given by

fi=0  fo=0  fu=0 (28)

fs=pA[3  fo=pA[3  fs=pA/[3 (29)

The present formulation permits a constant pressure to be distributed in a continuously

varying manner between the vertex and mid-edge nodes. This is accomplished simply by
varying the scalar a.

2.4 Hourglass Control

A general method of hourglass control is presented here that is applicable to all the
element types considered in the study. A similar method that is spatially isotropic is given
in Ref. 1. The purpose of hourglass control is to remove spurious zero energy modes from
an element. We presently only consider hourglass stiffness, but one could easilbr include
hourglass damping for problems in dynamics. ‘

Let u;; denote the nodal displacements of an element and define

T ' :
d,; = [ U;1 Uiz ... UiN ] (30)
where N is the number of nodes in the element. The vector d; can be expressed as
d; = ®q; + éﬁl (31)
where
1 Zun Za Za
1 z z z
L @
1 Ziny Zon Zan |
®Td=0 - (33)
and
1 N
Zip = Tir — N > iy (34)
J=1
Premultiplying Eq. (31) by ®7 and solving for ¢; yields
g = (7®) 1074 (35)
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Substituting Eq. (35) into Eq. (31) leads to
&g; = [I - (870) 874, - (36)

In order to obtain a method that includes the effects of spatial scaling, i.e. element
aspect ratios, it is useful to consider the square matrix S consisting of rows and columns two
through four of ®7'®. It follows from Eq. (32) that

S11 S12 831
S= 512 S Sm - (37)

S31 S23 833

where
N N N
su=) Tufiy, Sm=Y Tofay, 3= > TyZy (38)
I=1 I=1 I=1
N N N
S12=) Zufar, Sez =Y Tar¥ss, Sz = > EsiZu (39)
I=1 I=1 I=1
The eigen-decomposition of S can be expressed as
S =vovuT (40) .

where the columns of ¥ are orthonormal and © is a diagonal matrix of positive eigenvalues.
It is noted that ¥ and © can be calculated efficiently in closed-form.
Characteristic lengths I; are defined in terms of the eigenvalues of S as

l; = \/9_1 (41)

The strain energy associated with hourglass stiffness is formulated as
Uy = Gy, i Kidl d; /2 (42)
i=1
where € is a positive scalar, G}, is a material modulus, and
d; = 1:(861) + ¥os (D) + s (&4s) (43)

The selection of k; = V/3 in Ref. 1 results in a spatially isotropic form of hourglass control.
In the present study, we choose «; as

l2l3

ki = T max[mm(l, (ll/lg)4, (l1/l3)4), 10—6] (44)
Ky = % maxfmin(1, (lo/Is)*, (lo/1)*), 1075] (45)
ks = % maxfmin(1, (Is/1)*, (ls/la)"), 10~] (46)



et = o L o She o ot - e e die ot b g S

Notice that the leading terms on the right hand sides of Egs. (44-46) are proportional to the
axial stiffnesses of a rectangular parallelepiped with edge lengths 4, I and l3. The terms
raised to the fourth power are proportional to the ratios of bending to axial stiffnesses. The
10~ terms are included so that at least a small fraction of the axial stiffness is'used for
hourglass control. |

The nodal forces finr associated with hourglass stiffness are obtained by differentiating

Uy, with respect to d;:

Substituting Eqs. (36) and (42-43) into Eq. (47) leads to

finr N P11 Pz P31 ULy
forr | =€GrY_ars | P12 P2 Do | | Y2J (48)

fanr J=1 P31 D23 P33 Uy
where
1 ZyZy | TorZag | T3r%sg
ay = Or— <—+ + ) 49
17 = T \NT T & T 6, (49)
Fip = YuTi + YuTar +¥nTsr (50)
Dy = m¥aPi + kP + Ksbisdss (51)

and &5 is the Kronecker delta. |
Tt follows from Eqgs. (36,42-43,47) that the hourglass control forces are orthogonal to

dg;. In other words, hourglass stiffness does not cause any restoring forces if the nodal
displacements are consistent with a linear displacement field, the desired result. Meshes
of elements presented in Sections 2.1-2.3 that use this method of hourglass control pass

first-order patch tests exactly.
3. Example Problems

All the example problems in this section assume small and static deformations of a linear,
elastic, isotropic material with Young’s modulus E and Poisson’s ratio v. Equations for the
stiffness matrices of the nine-node tetrahedron and the eleven-node tetrahedron are presented
below. Recall that the seven-node triangle is simply the union of three quadrilaterals.

Let, ‘

T
d= [Un U U3 Uiz Uge U3z --- UIN U2N U3N] (52)

Corresponding to d are stiffness matrices associated with elastic strains and hourglass control.
With reference to Eq. (4), the stiffness matrix for elastic strains is given by |

4
K* =Y CTHC;/V; (53)
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where V; is the volume of hexahedron 5 and

[ 2G + )\ A A 0 0 O

A 2G + A\ A 0 0 O

o A 2G+A 0 0 0
E=1 0 0 G 0 0 (54)

0 0 0 0 G O

|0 0 0 0 0 G|
FE
G = 55
2(1+v) (59)
Ev
A= (1+v)(1-20) (56)
The nonzero elements of the matrices C; are given by

Ci13¢0-1)+1 = Bjir Cio3-1)+2 = Bjar Cissu-1+3 = Bjar (57)
Ciaaur-ve1 =Bjar  Cpsgu-1e2=Bjsr  Cisau—1+3 = Bjur (68)
Cisu-n+2=Bjur  Cissu-n+s=Bjr  Cieau—1)s1 = 31 (59)

With reference to Eq. (48), we see that the elements of the hourglass stiffness matrix K?9 in
rows 3( — 1) + 1 to 31 and columns 3(J — 1) + 1 to 3J are given by KP where

" Pu P12 Ps1
K7j=€eGhary | P12 P2 Do (60)

D31 D23 Ds3

The stiffness matrix of the element is the sum of K° and K®9. That is,
K=K + K" (61)

Element stiffness matrices are assembled as is done conventionally to form the stiffness matrix
of the entire model.

All the example problems are for a material with £ = 107 using hourglass control specified
by € =0.05 and G, = G. A value of a = 6/5 is used for the eleven-node tetrahedron. This
value of o causes a constant pressure on an element face to be distributed 1 /12 at each of
the vertex nodes and 1/4 at each of the mid-edge nodes (see Egs. 26-27). This value of «
is also suited for purposes of comparison with an element from a commercial finite element
code [4]. The values of & reported subséquently for the elements of Ref. 1 cause mid-edge
and mid-face nodes to lie on the element boundaries.

Comparisons are made in the example problems between triangular, quadrilateral, tetra-
hedral and hexahedral elements. For the 2D problems, a rectangular structure of unit thick-
ness bounded by z; = 0 and z; = h; for i = 1,2 is used. A cubic structure bounded by z; =0
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and z; = h; for i = 1,2,3 is used for the 3D problems. The meshes used in the problems can
be characterized by the number of elements n per edge of the boundary. Meshes with n =4
are shown in Figure 5. Each of the n® cubic blocks in the tetrahedral meshes is composed
of five tetrahedra. Thus, the mesh shown in Figure 5c has 320 elements. The mid-edge and
mid-face nodes of the triangular and tetrahedral elements are not shown in Figure'5.

Although the number of nodes per element is greater for the eleven-node tetrahedron
than the nine-node tetrahedron, there are generally fewer numbers of nodes for meshes of
eleven-node tetrahedra. For example, the meshes used for the 3D problems have a total of
1973 4-19n2+6n+ 1 nodes for the eleven-node tetrahedron compared with 16n° +9n?+3n+1
nodes for the nine-node tetrahedron. The reason for the difference is that a greater number
of elements can share mid-edge nodes than mid-face nodes. At most only two elements can
have the same mid-face node for meshes of nine-node tetrahedra.

3.1 Example 1

The first example deals with the classic problem of pure bending. The applied tractions
on the face defined by z; = h; are specified as

0'11((1,‘2,273) = E(h2/2 - $2)/R ‘ (62)

The displacement boundary conditions for the 2D problem are given by

11(0,z5) = O : (63)
4(0,0) = 0 (64)
and for the 3D problem
ul(O: T2, .'173) =0 (65)
u2(0,0,0) = 0 (66)
’I.Lz(O, 07 h3) =0 (68)
The solution for 2D plane stress has
ul(xl, 1L'2) = :El(hg/z - $2)/R ; (69)
1
up(21,%2) = gplat+vi(he/2~ 22)? — ha/4]] (70)

while the 3D elasticity solution is given by

’LL1($1,.’D2,$3) = $1(h2/2 -_ $2)/R (71)
up(21,22,%3) = %[ﬁ + V[(ha/2 — z2)? — (2] — hazs + B3 /4)]] (72)
us(1, To, T3) = V(@223 — haT2/2 — hazs /2)/R (73)



For purposes of comparison with the exact solutions, tip displacement ratios for the 2D and
3D problems are defined as

U= ’U,gE(hl, h2/2)/U2(h1, hz/?.) . (74)

and

7= udF(hy, ha/2, hs/2)ua(ha, ho/2, h3/2) (75)

where ufZ denotes the finite element solution.

Calculated values of @ for 2D plane stress are shown in Table 1 for meshes with 4 elements
per edge (n = 4). Results are shown for the three-node constant strain triangle (CST3), the
four-node uniform strain quadrilateral (USQ4), the six-node uniform strain triangle of Ref. 1
with & = 1/2 (UST6), and the seven-node enhanced uniform strain triangle of Section 2.1
(EUSTY). It is clear that none of the uniform strain elements suffer from volumetric locking
or parasitic shear for the applied boundary conditions. In contrast, the constant strain
triangle is much too stiff for all values of v.

Plots of the energy norm (see Ref. 3) for the different element types are shown in Fig-
ure 6 for v = 0.3. The results for the enhanced uniform strain triangle are clearly more
accurate than the others. Slopes near unity of the lines in the figure are consistent with the
convergence rate of linear displacement/constant stress elements. The slope less than unity
for CST4 indicates that the meshes used are too coarse for asymptotic convergence to occur.
As the mesh is refined further, the slope of the energy norm for CST4 approaches unity.

Calculated values of % for the 3D problem are shown in Table 2 for meshes with n = 4.
Results are shown for the four-node constant strain tetrahedron (CST4), the eight-node
uniform strain hexahedron (USHS), the eight-node uniform strain tetrahedron of Ref. 1 with
a = 1/3 (UST8), the ten-node uniform strain hexahedron of Ref. 1 with o = 3/4 (UST10),
the nine-node enhanced uniform strain tetrahedron of Section 2.2 (EUST?9), and the eleven-
node enhanced uniform strain tetrahedron of Section 2.3 (EUST11).

It is clear from Table 2 that eleven-node enhanced uniform strain tetrahedron EUST11
accurately predicts the tip displacement. In contrast, the enhanced uniform strain nine-node
tetrahedron EUST9 performs much more poorly than its uniform strain counterpart USTS.
Values of the tip displacement ratio % less much than unity for CST4 and EUST9 indicate
that the elements are too stiff.

Table 3 reports values of the total strain energy U,,; for the different 3D element types.
For purposes of comparison, the exact value of U,,; from the elasticity solution

Urot = hih3hsE/(24R?) (76)

is also reported. Notice that the values of U, for CST4 and EUSTO are consistently lower
than the exact value. This trend is in agreement with the observation these elements are t0o
stiff.

The stiff behavior of EUST9 can be explained by noting that six constraints restrict
the motion of virtual mid-edge nodes 5,...,10 (see Egs. 8-9). Along any edge, element
deformations are constrained to vary linearly between the two vertex nodes. It appears from
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this example that these constraints cause the element to be too stiff. It was found that a
reformulated EUST9 element which uses single point integration “mean quadrature” for the
deviatoric strain energy improves the element performance, but offers no clear advantage over
USTS. The enhanced uniform strain element EUST11 only has four constraints that restrict
the motion of virtual mid-face nodes 5,...,8 (see Egs. 16-19). In addition, defdrmations
may vary bilinearly along the element edges.

Plots of the energy norm for the different element types are shown in Figure 7 for v = 0.3.
The results for the eleven-node enhanced uniform strain element EUST11 are clearly more
accurate than the others. The slope much less than unity for CST4 indicates that the meshes
are not of sufficient refinement for asymptotic convergence to occur.

3.2 Example 2

The second example considers a problem in which the displacements of all nodes on the
boundary are specified. For the 2D problem, nodes on the boundaries z; = 0 and z; = h;
(i = 1,2) are subjected to the enforced displacements

w1 (21, T2, T3) = a(ﬂ’% - 27% + 22, 25) (77)
ug(%1, B2, T3) = a(:cf - x% + 27,%1) (78)

where a is a constant and the plane strain assumption is applied. The nodal dispjlacements
on the boundaries z, = 0 and z; = h; (i = 1,2, 3) for the 3D problem are specified as

uy(z1.72,23) = a(zl+23— 222 4+ 21,72 + 221%3 + 5T273) | (79)
us(T1, T2, T3) = a(zk + 235 — 272 + 27,73 + 22271 + 52371) } (80)
us(z1, 70, 23) = a(z? + 25 — 225 + 25371 + 273%2 + 5z1%2) g (81)

The elasticity solutions to the 2D and 3D boundary value problems are given by Egs. (77-81)
as well. The total strain energies for the 2D and 3D problems are given, respectively, by

Usor = 16hiho(R2 + h2)Ga?/3 (82)
and
Uot = 6h1hohs[5(h2 + kS + h3) + 3(hihe + hohs + hshy)]Ga® (83)
One can confirm that the elasticity solutions have no volumetric strain. That is,
Ou; Ouy Oug
=0 84
82:1 6372 6:1}3 ( )

Consequently, the exact value of the volumetric strain energy Uy, is zero.

Calculated values of Uy, for the 2D plane strain problem are shown in Table 4. In addition
to the 2D elements mentioned previously, Table 4 includes results for two triangular elements
from a commercial finite element code [4]. Element type CPE6 is a six-node plane strain
triangular element with quadratic interpolation. Element type CPE6M is described as a
modified six-node plane strain triangular element.
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"The only element type that appears to suffer from volumetric locking is the constant strain
triangle. Results for element type CPE6 are in perfect agreement with the exact solution

because the quadratic elements can approximate the elasticity solution exactly. Notice that
the results presented for element types EUST7 and CPE6M are identical. Plots of the energy
norm for several 2D element types are shown in Figure 8 for v = 0.499. Again, the plots
show that EUSTY is significantly more accurate than the other element types.

Calculated values of Us,; and U,y for the 3D problem are shown in Tables 5 and 6,
respectively. In addition to the 3D elements mentioned previously, Table 5 includes results
for two different tetrahedral elements described in Ref. 4. Flement type C3D10 is a ten-node
tetrahedron with quadratic interpolation. Element type C3D10M is described as a modified
ten-node tetrahedron.

It is evident from Table 6 that the constant strain tetrahedron suffers from volumetric
locking for the applied boundary conditions. Element types C3D10M, UST10 and EUST11
also display locking behavior, but to a much lesser extent. The results for element type
C3D10 are in perfect agreement with the exact solution because the quadratic elements can
approximate the elasticity solution exactly. Notice that the results presented for element
types EUST11 and C3D10M are identical.

The locking of element types CST4, UST10 and EUST11 is caused by overly stringent
displacement boundary conditions. For example, all the nodal displacements of UST10
elements at the corners of the cube are specified. As a consequence, volume changes in the
corner elements are unavoidable. For v = 0.49999, over 99.9999 percent of the volumetric
strain energy for the UST10 and EUST11 elements is contained in elements that have a face
on the boundary. Of this percentage, approximately one half is contained in the eight corner
nodes. Element types UST8 and EUST9 do not lock because there are unconstrained mid-
face nodes to accommodate zero volume change. For the all-hexahedral mesh, the volumetric
strain energy is identically zero for all values of v. This remarkable result only holds if none

of the hexahedral elements are skewed.
3.3 Example 3

Rather than prescribing the displacement of all nodes on the boundary, alternative bound-
ary conditions are considered in which surface tractions corresponding to the 3D elasticity
solution (see Egs. 79-81) are applied to the six sides of the cube. Rigid body motion is
restricted by the displacement boundary conditions

u1(0,0,0)=0  u5(0,0,00)=0  u(0,0,0) =0 (85)

41(0,10,0) =100a  u»(0,0,10) = 100a u3(10,0,0) = 100a - (86)

Calculated values of Uy,; and U, are shown in Tables 7 and 8. Notice from the results that
none of the elements suffer from volumetric locking.

Plots of the energy norm for the different element types are shown in Figure 9 for v =

0.499. Again, the eleven-node enhanced uniform strain element is significantly more accurate

than the other element types. The slope much less than unity of the energy norm for CST4
indicates that the meshes used are too coarse for asymptotic convergence.
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4. Conclusions

A family of enhanced uniform strain triangular and tetrahedral finite elements is pre-
sented. FElement types considered in the study include a seven-node triangle, nine-node
tetrahedron, and eleven-node tetrahedron. By allowing more than a single state of uniform
strain within each element, significant improvements in accuracy are obtained for the seven-
node triangle and the eleven-node tetrahedron over their uniform strain counterparts. In
addition, the number of hourglass modes for the enhanced elements is reduced sigdiﬁcantly.

The formulation for the eleven-node tetrahedron allows a uniform pressure to be dis-
tributed in a continuously varying manner between vertex and mid-edge nodes. In contrast,
the standard quadratic tetrahedron distributes a uniform pressure entirely at the vertex
nodes. This flexibility in the element formulation may prove useful for applications involv-
ing contact where a uniform normal stiffness is desirable.

The performance of the nine-node tetrahedron is much worse than its uniform strain
counterpart, the eight-node tetrahedron. Improvements in the element performance can be
obtained by using only single point integration “mean quadrature” for the deviatoric portion
of the strain energy, but the reformulated element has no clear advantage over the eight-node
tetrahedron.

The disappointing performance of the nine-node tetrahedron is caused by the presence
of six constraints that restrict the motion of the virtual mid-edge nodes of the element.
Element deformations are constrained to vary linearly between the two vertex nodes defining
an edge. These constraints result in an element that is too stiff when greater than single
point integration is used for the shear energy. In contrast, there are no constraints on the
mid-edge nodes of the seven-node triangle and the eleven-node tetrahedron. -

Results presented for the seven-node triangle of Section 2.1 are identical to those of a
modified six-node triangle available in a commercial finite element code. Identical results
are also presented for a special case (o = 6/5) of the eleven-node tetrahedron of Section 2.3
and the modified ten-node tetrahedron of Ref. 4.

5. Appendix

Based on Egs. (8-9), the constraint matrices for the nine-node tetrahedron are given by

1 0 0 0 0000 0]
1212 0 0 000 00O
0O 0 0 0 00010 |
12 0 1/2 0 000 0 O
L= 152 0 (/) /200000 (87)
0 0 0 0 00100
0 0 -0 0 00001
0 0 0 0 01000]
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Table 1: Tip displacement ratios for Example 3.1 (2D plane stress analysis, h; = 10,
ho=1, R=1x 10%).

v | CST3 | USQ4 | UST6 | EUST7
0.0 | 0.096 | 1.058 | 1.035 | 0.998
0.1 | 0.104 | 1.059 | 1.033 | 0.998
02 | 0.113 | 1.059 | 1.032 | 0.998
0.3 | 0.121 | 1.059 | 1.030 | 0.998
0.4 | 0.129 | 1.060 | 1.029 | 0.998

0.499 | 0.137 | 1.060 | 1.027 | 0.998

Table 2: Tip displacement ratios for Example 3.1 (3D analysis, hy =10, hp =1, h3 = 0.1,
R=1x10%.

v CST4 | USH8 | USTS | EUST9 | UST10 | EUST11
0.0 |0.0031{ 1.050 | 1.020 { 0.190 | 1.021 0.992
0.1 |0.0034( 1.051 | 1.020 | 0.205 | 1.021 0.993
0.2 |0.0038 | 1.052 | 1.020 | 0.219 | 1.022 0.994
0.3 |0.0041 | 1.053 | 1.021 | 0.232 | 1.023 0.994
04 |0.0044 | 1.054 | 1.022 | 0.242 | 1.024 0.995

0.499 | 0.0047 | 1.054 | 1.022 | 0.158 | 1.024 0.995

Table 3: Total strain energy Us,; % 10 for Example 3.1 (3D analysis, h; =10, ho =1,
hs =0.1, R=1 x 10%).

y | CST4 | USHS | UST8 | EUST9 | UST10 | EUST11 | exact
00 | 001 | 432 | 421 | 0.86 | 421 409 | 417
0.1 | 002 | 433 | 422 | 092 | 422 410 | 417
0.2 | 0.02 | 434 | 423 | 098 | 423 410 | 417
03 | 002 | 435 | 423 | 103 | 423 411 | 417
04 | 0.02 | 436 | 424 | 106 | 424 411 | 417
0499 | 0.02 | 436 | 424 | 070 | 4.24 412 | 417
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Table 4: Total strain energy U, for Example 3.2 (2D plane strain analysis, h; = 10,
hy =10, a =4 x 107).

v CST3 | USQ4 | UST6 | EUST7 | CPE6 | CPE6M | exact
0.0 854 | 840 | 817 | 8.500 | 8.533 | 8.500 | 8.533
0.1 7T | 764 | 745 | 7.728 | 7758 | 7.728 | 7.758
0.2 713 | 700 | 6.86 | 7.084 | 7.111 | 7.084 |7.111
0.3 6.60 | 646 | 6.35 | 6.539 | 6.564 6.539 | 6.564
04 6.16 | 6.00 | 592 | 6.072 | 6.095 | 6.072 | 6.095

0499 | 991 | 560 | 555 | 5.671 | 5.693 | 5671 |5.693
04999 | 474 | 560 | 555 | 5667 | 5.689 | 5.667 | 5.689
0.49999 | 422 | 5.60 | 5.55 | 5.667 | 5.689 | 5.667 | 5.689

Table 5: Total strain energy Uy, for Example 3.2 (3D analysis, hy = 10, hy = 10, hg = 10,

a=4x107%).

v CST4 | USH8 | UST8 | EUSTY | UST10 | EUST11 | C3D10 | C3D10M exact
0.0 1160 | 1141 | 1139 1150 1141 1150 1152 1150 1152
0.1 1056 | 1037 | 1036 1046 1038 1046 1047 1046 | 1047
0.2 970 951 950 959 952 958.5 960.0 958.5 960.0
0.3 899 878 878 885 879 884.8 886.2 884.8 886.2
0.4 846 815 816 823 817 821.6 822.9 821.6 822.9

0.499 2676 761 762 770 766 770.0 768.5 770.0 768.5
0.4999 2e4 761 762 769 789 793.0 768.1 793.0 768.1
0.49999 | 2e5 761 762 769 1023 1027 768.0 1027 768.0

Table 6: Volumetric strain energy U,,; for Example 3.2 (3D analysis, h; = 10, hy = 10,
hs =10, a =4 x 1079).

v CST4 | USHS8 | UST8 | EUSTO [ UST10 | EUSTI11 | exact
0.0 4.18 0 ' 1.35 0.61 1.05 0.02 0
0.1 5.17 0 1.19 0.68 0.95 0.02 0
0.2 6.81 0 0.99 0.77 0.82 0.03 0
0.3 10.0 0 0.75 0.87 0.64 0.04 0
04 19.5 0 0.44 0.92 0.41 0.05 0

0.499 2e3 0 6e-3 0.04 2.61 2.61 0
0.4999 | 2e4 0 Ge-4 4e-3 26.0 26.0 0
0.49999 | 2e5 0 6e-5 de-4 260 260 0
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Table 7: Total strain energy Uy, for Example 3.3 (3D analysis, by = 10, he =10, hg = 10,
a=4x107%).

1 CST4 | USHS | UST8 | EUSTY | UST10 | EUST11 | exact
0.0 1139 | 1156 | 1159 | 1149 1160 1151 1182 |
0.1 1035 | 1051 | 10563 | 1044 1054 1047 1047
0.2 947 963 965 957 966 960 960
0.3 871 889 891 883 891 886 886
0.4 803 826 827 819 827 822 823

0.4999 | 696 771 772 764 772 768 768

Table 8: Volumetric strain energy Uyq for Example 3.3 (3D analysis, hy = 10, ha = 10,
hs =10, a = 4 x 107°).

v CST4 [ USH8 | UST8 | EUSTY | UST10 | EUST11 | exact |
0.0 320 | 019 | 1.53 0.53 1.56 8e-4
0.1 3.81 | 0.14 | 1.18 0.56 1.34 8e-4
0.2 4.74 | 0.09 | 0.86 0.58 1.10 Te-4
0.3 6.32 | 0.06 | 0.57 0.58 0.81 Ge-4
04 9.76 | 0.03 | 0.28 0.50 0.46 Se-4
0.4999 | 0.32 | 2e-5 | 3e4 le-3 Se-4 8e-7

DO OO0 OO
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Figure 1: Geometry and node numbering of uniform strain quadrilateral and hexahedron.
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Figure 2: Seven-node enhanced uniform strain triangle (EUST7).
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Figure 3: Nine-node enhanced uniform strain tetrahedron (EUST9).
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Figure 4: Eleven-node enhanced uniform strain tetrahedron (EUST11).
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Figure 5: Triangular (a), quadrilateral (b), tetrahedral (c), and hexahedral (d) meshes used in the example
problems for n = 4.
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Figure 6: Energy norms of 2D plane stress elements for Example 3.1 withh; =10,hy =1,
R = 10% and v = 0.3. The slopes near unity of the lines are characteristic of linear
displacement/constant stress elements.
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Figure 7: Energy norms of 3D elements for Example 3.1 withh; = 10,hy =1, h3 = 6.1 and
R=10%andv=0.3.
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Figure 8: Energy norms of 2D plane strain elements for Example 3.2 with h; =10, h, = 10,
a=4x 10 and v =0.499.
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Abstract. A transition element is presented for meshes containing uniform strain hexahe-
dral and tetrahedral finite elements. It is shown that the volume of the standard uniform
strain hexahedron is identical to that of a polyhedron with fourteen vertices and twenty four
triangular faces. Based on this equivalence, a transition element is developed as a simple
modification of the uniform strain hexahedron. The transition element makes use of a gen-
eral method for hourglass control and satisfies first-order patch tests. Example problems in
linear elasticity are included to demonstrate the application of the element. '
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1. Introduction

The uniform strain hexahedron [1] is a standard element used in several commercial and
research-based finite element codes. Much of the popularity of this element can be attributed
“to its inherent simplicity and computational efficiency. While the element is well suited to a
variety of problems in explicit transient dynamics and statics, its practical use depends on
the ability to generate high-quality, all-hexahedral meshes in reasonable amounts of time.
This capability exists for many problems, but for others the mesh generation process may
be very difficult and require unreasonable amounts of time.

The unavailability of a robust, automated, all-hexahedral mesher motivated recent in-
vestigations of a family of uniform strain tetrahedral elements [2-3]. These elements were
shown to possess the same convergence and anti-locking characteristics of the uniform strain
hexahedron. An important advantage of the tetrahedron over the hexahedron is its ability
to more readily mesh complicated geometries. On the other hand, more tetrahedral elements
are generally required to mesh a volume for a specified element edge length.

The purpose of this study is to investigate a transition element for meshes containing
both uniform strain hexahedral and tetrahedral elements. This effort is motivated by the
idea of meshing a geometry primarily with hexahedral elements. For regions of the mesh that
cannot be completed with hexahedral elements, a direct transition to tetrahedral elements
could be made to complete the mesh. In this way, the advantages of both element types
could be brought to bear on the meshing problem.

One approach to connect hexahedral and tetrahedral elements involves the use of pyramid
elements [4]. Given a face of a hexahedron adjacent to two tetrahedra, methods are available
for inserting a pyramid element between the two element types. The pyramid provides a
conforming transition, but its insertion may degrade the quality of surrounding elements.
The present approach does not require the use of pyramid elements.

The basis for the transition element is the equivalence of the volume of the uniform strain
hexahedron and a polyhedron with fourteen vertices and twenty four triangular faces. Eight
of the vertices are the nodes of the hexahedron. The remaining six vertices are located at the
geometric centers of the six faces of the hexahedron. Based on this equivalence, a transition
element is obtained as a simple modification of the uniform strain hexahedron.

The element formulations for the uniform strain hexahedron, transition element, and
uniform strain tetrahedron are presented in the following section. A method for hourglass
control that is applicable to all three element types is also presented. The third section
includes example problems in linear elasticity. The final section discusses applications to
higher-order elements and connecting dissimilar finite element meshes at a shared boundary.

2. Element Formulations

Element formulations for the uniform strain hexahedron, transition element, and the
uniform strain tetrahedron are presented in this section. These formulations are based on

the uniform strain approach of Reference 1. A general method for hourglass control is also
presented.



Given a uniform strain element with volume V, the so-called B matrix is defined as

oV

By = o (1)
where z;; (i = 1,2,3 and I = 1,...,N ) are the coordinates of node I. Folldwing the
development in Ref. 1, the nodal forces associated with the element stresses are given by

3 —
fir=)_ TyBj (2)
=1

where Tj; are elements of the Cauchy stress tensor (assumed constant throughout the ele-

ment).
All the elements discussed in this section use the same formulation. The only differences
are the volume expressions and the number of nodes per element. The uniform strain hex-

ahedron and the transition element each have eight nodes. The uniform strain tetrahedron
has four vertex nodes and from one to four mid-face nodes.

2.1 Uniform Strain Hexahedron

Consider a hexahedral element with nodal coordinates (z1s,%2r,%sr) for I = 1,...,8.
Spatial coordinates coordinates z1, %2, and z3 are related to isoparametric coordmates M,
ne and 73 by the equations

8 .
(M, 2Ms) = Y Tirdr(M, 72, 73) (3)
where
br=1—=-m)A—m)A—-m)/8 $2=1+m)1—n)(1—17s)/8 (4)
ds=(1+n) 1 +m)1—n:)/8  da=1—m)(1+m)(l—ms)/8 (5)
¢s=(1—m)1—m)1+ns)/8  ¢6=(1+m)(1—n)(1+7s)/8 (6)
=1 +m)A+m)1+n)/8  ¢s=(1—m)(1+n2)(1+ms)/8 (7

The Jacobian determinant J of the element is given by

9z1 Oz2 9Oz3 .
R
8z) 0Ozz Oz3

on3 3773 31)3

The volume of the hexahedron can be expressed in terms of J by

"= [, i o



The B matrix of the hexahedron is defined as
QY hez

Bf* = 10
il axﬂ ( )
Equations for Bf¥* are provided in Reference 1. In addition, one has
8 8 8
Vhez = E:I:HB{‘;I = ngngfz = Zx;;IBg'fx (11)

2.2 Transition Element

Consider a polyhedron with fourteen vertices and twenty four triangular faces. Eight
of the vertices are the nodes of the hexahedron. The remaining vertices are located at the

geometric centers of the six faces of the hexahedron. The coordinates of these vertices are
given by

T = (Ti1 + Tig + Ti6 + 235) /4 Tip = (Tis + Taa + Tig + Ti7) /4 (12)
Tie = (Tis + Tis + Tir + Tig) /4 Tig = (Tio + Tix + Tsg + 233) /4 (13)
Tie = (Tig + Ty +Tis + Tig) /4 Tif = (Tio + Tz + Ty + Tis) /4 (14)

The triangular faces of the polyhedron are given by the following twenty four nodal 3-tuples:
12a, 26a. 65a. 5la. 34b, 48b, 87b, 73b, 56¢, 67¢c, T8¢, 85¢, 21d, 14d, 43d, 32d, 41e, 15e, 58e,
8de, 23f. 37f. 76f. and 62f. Twelve of the triangular faces are shown in Figure 1.

The volume of the polyhedron can be calculated by decomposing it into a collection of
twenty four tetrahedra:

VP = Viioa + Vozea + Viesa + Vasia + Viaar + Vgase + Vars + Vyrap +
Visoe + Voste + Virse + Vygse + Voara + Vigraa + Voasa + Vyzoa +

Vaare + Vgise + Vsse + Vasae + Voass + Voars + Vires + Vasar (15)
where 8
£L'ig = Zmi1/8 (16)
I=1

is a “center” node and

Viikr = [(IE1J - xu) (xzx-’BsL — $2L$3K) + ($1I - $1K)($2J-’173L - $2L$3J)+
(Taz — 1) (F20%3x — Tax®3g) + (T1x — T17) (TarTsr — Topzar)+
(T17 — 210) (Tarsx — Tax®sr) + (T1r — T1x ) (TorTsy — 225237)] /6 (17)

With the aid of symbolic mathematical software [5], one can show that the expressions for
Vhe= and V? are identical (see Egs. 9 and 15). Consequently, for purposes of calculating
the B matrix, one can consider the element boundary of the hexahedron to be that of the
polyhedron described above.



For the moment, assume that all of the faces of the transition element are attached to
uniform strain hexahedral elements except for face 2143. To this face are attached two uni-
form strain tetrahedral elements. The triangular faces of the attached tetrahedral elements
are 143 and 321 (see Figure 2).

In order for the transition element to conform to the two trlangular faces of the tetrahedral
elements, its connecting face must be modified. The connecting face of the transmon element
originally has the four triangular faces 21d, 14d, 43d and 32d. The modified connecting face
is defined to have triangular faces 210, 140, 430 and 320 where

Zio = (Ta1 + zi3)/2 (18)

Notice that faces 140 and 430 combine to form face 143 and faces 210 and 320 combine to

form face 321. Accordingly, the volume of the transition element is given by
ye = yhes _§ (19)

where the volume mismatch V between the standard hexahedron and the polyhedron with
the modified connecting face is given by the following sum of four tetrahedral subvolumes:

V' = Visoa + Vazoa + Vazod + Varod (20)
The elements of the B matrix of the transition element are defined as
avtel
tel
B il = 61171:] (21)

Substituting Eqs. (19-20) and (10) into Eq. (21) and using the chain rule for differentiation
(see Egs. 13b,18), one obtains

v 16V 18V

tel hex - = —
Bil o le 6.’13,‘1 4 6xid 2 Ba:,-o (22)
v 18V
Btel — B _ = 23
2 63:,-2 4 3:1:,-,; ( )
oV 1oV 16V
tel . hex __ R —_ =
Bi3 - B1'3 6:1:,-3 4 B:cid 2 8xi0 (24)
ov 1V |
Btel = B A, . 25
“ 31:54 4034 ' ( )
B¥ = B for I=5,...,8 (26)
The derivatives appearing in Egs. (22-25) can be calculated using the equations
OViskr )0z = [(®2r — Tor)(Tsg — TaL) — (@27 — Tar)(T3x — T31.)}/6 (27)
OViskr/0xar = [(T3x — z3r)(z1y — Z1z) — (37 — zaL)(T1x — 712)]/6 (28)
Visxr/0zsr = [(®1x — T1n)(Tas — Tar) — (T1s — T1)(Tox — %21)]/6 (29)
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A similar procedure for calculating B’ can be used for all other possible connections
to tetrahedral elements. In addition, the corrections given by Egs. (22-25) can be repeated
for all faces of the hexahedral transition element connected to tetrahedral elements. The
programming for this process simply loops over all the faces in the transition element that
are connected to tetrahedral elements.

Although not investigated in the present study, an alternative transition element can
be derived by removing the constraint in Eq. (18b). The connecting face of the transition
element would remain defined by the four triangular faces 21d, 14d, 43d and 32d, but node
d would no longer be dependent on the other four nodes of the face. Thus, the face of
the alternative transition element would be connected to four rather than two tetrahedral
elements.

2.3 Uniform Strain Tetrahedron

Consider the uniform strain tetrahedron [2] shown in Figure 3. The element shown has
four mid-face nodes, but we consider a family of elements with from one to four mid-face
nodes. For the purposes here, a face of a tetrahedral element connected to a transition
element does not have a mid-face node.

The uniform strain tetrahedron used in this study corresponds to the element with o =
1/3 in Reference 2. The volume of the tetrahedral element is given by

Ve = Vigas + BsVases + BsVaase + BrVizar + BsVasas (30)

where §; = 1 if mid-face node j exists and B; = 0 if mid-face node j is not present. The
elements of the B matrix for the tetrahedral element are given by

avtet

Bist —
Ozir

.

(31)

2.4 Hourglass Control

A general method for hourglass control is presented here. The method was developed
previously in Reference 2 and is applicable to all the element types considered in this study.
Hourglass control is included to remove spurious zero energy modes from an element. We
presently only consider hourglass stiffness, but one could easily include hourglass damping
for problems in dynamics.

Let u;; denote the nodal displacements of an element and define

T
d,' = [ Uip U ... UpnN ] (32)
The vector d; can be expressed as

di=Pq+ P19, (33)



where
1 Zyn Za Za:

1 Zip T a2

@ = . M . . (34)
1 Ziv Ton Zan
3T, =0 (35)
and
i1 = Ti1 — Tig (36)

The term z;, is given by Eq. (16) with the number 8 replaced by V. Premultiplying Eq. (33)
by ®7 and solving for g yields
q = (87®)"187d; (37)

Substituting Eq. (37) into Eq. (33) leads to
®,q, = [[ - 2(®72)@7]d; - (38)
The strain energy associated with hourglass stiffness is formulated as
Up = eV/3Gr(®1g1) (®101)/2 (39)

where € is a positive scalar and G}, is a material modulus. Substituting Eq. (38) into Eq. (39)

leads to
Uy = VYRGLAT [T — o(@T®) @7 |d;/2 _ (40)

Finally, the nodal force vector fi, associated with hourglass stiffness is obtained by differen-
tiating U, with respect to d;. The result is

fin = eVIBG[I — @(@T®)18T)d; (41)

It follows from Eq. (41) that fi, is orthogonal to ®q. In other words, hourglass stifiness
does not cause any restoring forces if the nodal displacements are consistent with a linear

displacement field, the desired result.
Carrying out the mathematical operations in Eq. (41), the elements of fin can be ex-
pressed on a nodal basis as

1 N _ N _ N _ N
finr = V3G, [uiI N > —F1r . aartr — Tor ) Gartis — Tar >oasrug| . (42)

=1 =1 =1 =1
where
ayy = CiZi1 + CaTar + CTar (43)
agr = CoZor + CsTar + CaZar (44)
az; = C3Tar + CeTir + Cs5Zor (45)
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2 2 2
CO = SeaSyySzz + 2S2ySyzSar — SzxSyy — SyySay — 82253y (46)

c = (syyszz - Szz)/Co, Cy = (syzszz - S:cyszz)/co . (47)
C2 = (22822 = 55,)/C0,  C5 = (SzoSay — Syz82z)/Co (48)
C3 = (sxzsyy - Szzcy)/ G, Cg= (szysyz ~ Sz28yy)/Co (49)
and N N N
Spx = z a—:lja_}l], Syy = Z 5213_:2I, Szz = Z 3_;3153]' (50)
I=1 I=1 I=1
N N N
szy = Z a—:lfa_:ZI: Syz = z .'.32[57317 Szz = 253151] (51)
I=1 I=1 I=1

The same method of hourglass control can be used for all three element types. Meshes
containing the elements presented in Sections 2.1-2.3 pass first-order patch tests exactly.

3. Example Problems
All the example problems in this section assume small deformations of a linear, elastic,
isotropic material with Young’s modulus F and Poisson’s ratio v. Let,

T
d= [ Uil Ugr Uz Uiz Uge Uzy ... UIN Usy UsN] (62) -

Corresponding to d are stiffness matrices associated with elastic strains and hourglass control.
With reference to Eq. (2), the stiffness matrix for elastic strains is expressed as

K*=BTHB/V (53)
where
[2G+ ) A A0 0 0]
A 2G+X A 0 0 O
3 A A 2G4+A 0 0 0
E=1 4 0 0 GO0 0 (54)
0 0 0 0 G 0
0 0 0 00 G|
E
¢ = 2(1+v) (55)
A = By (56)

(1+v)(1-2v)

The nonzero elements of the matrix B are given by

Biag—1+1 = B By 31-1y12 = Bor Bs31-1)+3 = Bsr (57)
B4,3(I-—1)+1 = By 35,3(1—1)+2 = Bsr BG,3(I—1)+3 = By (58)

7



By s-1y+2 = Bur Bs s1-1y43 = Bor Bs3z-1y+1 = Bar : (59)

With reference to Eq. (42), the nonzero elements of the stiffness matrix for hourglass control
are given by

K3 _ysisg—nyes = VY°Gh(81y — /N — Zrjary — Torans — T31035) (60)

where 6, is the Kronecker delta. The stiffness matrix of the element is the sum of K and
K", That is,
K =K® + K" (61)

Element stiffness matrices are assembled as is done conventionally to form the stiffness
matrix of the entire model. All the example problems are for a material with E = 107 using
hourglass control specified by € = 0.05 and G, = G.

Consider a cube that is meshed uniformly with n® hexahedral elements Where n is the
number of elements per edge. In this study, attention is restricted to values of n that are
multiples of three. Mixed-element meshes are obtained by replacing the (n/ 3)® hexahedral
elements in the center of the mesh with (n/3)2 blocks of tetrahedral elements. Each of these
blocks is made up of five tetrahedral elements. The mixed-element meshes and all-hexahedral
meshes are designated by nm and nh, respectively. A view of mesh 6m with severa.l of the
hexahedral and transition elements removed is shown in Figure 4. The mesh contains a
combination of hexahedral, tetrahedral and transition elements. The outer boundanes of
the meshes are defined by z; =0 and z; =10 for ¢ = 1,2, 3.

3.1 Example 1

The first example deals with the classic problem of pure bending. The applied tractions
on the face defined by z; = 10 are given by

o11(@2,75) = E(5 — 23)/R ()

The displacement boundary conditions for the problem are specified as

’U,]_(O,.'Eg, 1133) = 0 (63)
12(0,0,0) = 0 (64)
u3(0,0,0) = 0 (65)
15(0,0,10) = 0 (66)

The elasticity solution to the boundary value problem is given by
uy (1, T2, 23) = 1(5 —x2)/R ‘ (67)

1

Ug(T1,29,73) = ﬁ[xf +[(5 = 22)* — (5 — z3)7]] | (68)
ug(T1, T2, T3) = v(T2Z3 — 52 —_5:1:3) /R ; (69)



The deviatoric and volumetric strain energies for the problem are given by

25000E(1 + v)
By =
d 9R? (70)
_ 12500E(1 — 2v)
Evol = OR2 (71)

All the results presented for this example are for R = 10%.

Calculated values of the volumetric and deviatoric strain energies for meshes 3m, 6m,
9m and 9h are shown in Table 1. Meshes 3m, 6m and 9m contain a combination of uniform
strain hexahedral, tetrahedral, and transition elements. Notice that the results for meshes
9m and 9h are nearly identical. In addition, none of the meshes suffer from volumetric
locking for values of v near 0.5.

Plots of the energy norm of the error (see Ref. 6) for the the mixed-element and all-
hexahedral meshes are shown in Figure 5 for » = 0.3. The same information is presented
in Figure 6 for v = 0.4999. Notice that there is very little difference in the accuracy and
convergence characteristics of the two mesh types. The slopes near unity of the lines in
the figures are consistent with the convergence rate of linear displacement/constant stress
elements.

3.2 Example 2

The first part of this example considers the problem of specifying the displacements of
all nodes on the boundaries z; = 0 and z; = 10 (¢ = 1,2, 3) as follows:

(21, %2, T3) = a(z2 + x2 — 222 + 2217 + 27173 + 5z273) . (72)
up(T1,22,3) = a(x3 + 2% — 223 + 23973 + 22921 + 5752;) (73)
us(T1,%2,%3) = (T} + 22 — 222 + 22371 + 22375 + 5z1Z2) (74)

The elasticity solution to the associated boundary value problem is also given by Egs. (72-74).
The deviatoric strain energy is given by

Fiv = 144Ga*(10)° (75)
One can confirm that the elasticity solution has no volumetric strain. That is,
0 0 0
Uq U Us =0 (76)
0ry, Ory Ox

Consequently, the exact value of the volumetric strain energy E,, is zero. All the results
presented for this example are for a = 4 x 1075.

Calculated values of the volumetric and deviatoric strain energies for meshes 3m, 6m,
9m and 9h are shown in Table 2. Notice that the results for meshes 9m and 9% are nearly
identical. The volumetric strain energies are nearly zero for all meshes except 3m. For the
all-hexahedral mesh 9%, the volumetric strain energy is identically zero for all values of v.
This remarkable result only holds if none of the hexahedral elements are skewed.

9



The primary reason for the volumetric locking of mesh 3m for values of v near 0.5 is a
shortage of unconstrained nodes to accommodate zero volume change of all the elements. In
the first example, no volumetric locking occurred for mesh 3m because a much smaller num-
ber of displacement boundary conditions were imposed. This fact shows that the volumetric
locking of a mesh can be caused by the boundary conditions and may not be a characteristic
of the mesh itself. The all-hexahedral mesh does not suffer from volumetric locking only
because of the regular arrangement of nodes on a grid.

Plots of the energy norm of the error are shown are shown in Figure 7 for » = 0.3. The
same information is presented in Figure 8 for v = 0.4999. Notice that there is very little
difference in the asymptotic accuracy and convergence of the two mesh types. 'The only

distinct difference is for mesh 3m with v = 0.4999.

Rather than prescribing the displacements of all nodes on the boundary, alternative
boundary conditions are considered in which the stresses corresponding to the: elasticity
solution (see Eqs. 72-74) are applied to the outer boundary of the mesh. Rigid body motion
is restricted by the displacement boundary conditions

u1(0,0,0) =0  u(0,0,0)=0  u3(0,0,0)=0 (77)

11(0, 10,0) = 100a 12(0,0,10) = 100a  u3(10,0,0) = 100a (78)

The energy norm of the error is plotted in Figure 9 for v = 0.4999. Notice from ithe figure
that the differences in results for the mixed-element meshes and all-hexahedral meshes are
negligible. |

3.3 Example 3

The final example is used to show that volumetric locking can also occur for all-hexahedral

meshes if the boundary conditions are overly stringent. To illustrate this point, consider
meshes 3m and 3h with the following modifications. The coordinates of eight internal nodes

are modified as follows:

(61, C, Cl) (Cl + 05. C -+ 05, C]_)
(c2,€1,¢1) (c2+0.2,¢1 4+ 0.6,¢1)
(ca, C2,01) (c2—0.3,c2—0.3,c1)

(c1,62,¢1) . (c; —0.4,c2—0.6,c1)

(a1, c1,¢2) (e1 +0.7,¢1,¢2) (79)
(2, €1,C2) (c2 +0.3,¢1,¢2)
(2, c2,¢2) (c2+0.5,¢c2,¢2)
(Cl, Ca, C2) (cl - 031 Ca, 02)

where ¢; = 3+ 1/3 and ¢, = 642/3. The locations of the mid-face nodes of the tetrahedral
elements in mesh 3m are based on the eight modified nodal coordinates.
Values of B, and E,; for the two meshes are shown in Table 3 for the same displacement

boundary conditions used in Example 2. As a result of moving the internal nodes, the all-
hexahedral mesh actually suffers more from volumetric locking than the mixed-element mesh

10



for values of v near 0.5. The extent of locking for either mesh depends entirely on the modified
nodal coordinates. Both meshes clearly lock as v approaches 0.5. The point of the example
is simply to show that all-hexahedral meshes can also suffer from volumetric locking for
problems with overly stringent boundary conditions. :

Although the example problems here are restricted to linear elasticity, we expect the
performance of mixed meshes of uniform strain hexahedra and tetrahedra to be similar
to that of all-hexahedra or all-tetrahedra meshes for problems with geometric or material
nonlinearities (see Ref. 3). For such problems, the method of hourglass control presented in
Section 2.4 can be expressed in rate form and remains applicable to all three element types.
Since finite deformations lead to self similar geometric configurations, the constructions
introduced here for properly matching hexahedral to tetrahedral elements remain the same.
Of course, for each new mesh distortion, a reevaluation of the correction terms is required.

4. Other Applications

What has been demonstrated here is a method for mixing hexahedral and tetrahedral

elements in a single mesh that are based on the uniform strain concepts of Reference 1.
That is, interface terms have been derived that allow a mixed mesh of particular hexahedral
and tetrahedral finite elements to satisfy first-order Irons patch tests and to converge for
second-order Irons patch tests under mesh refinement.

Given that the underlying shape functions can reproduce exactly a linear displacement
field, the uniform strain approach not only preserves linear consistency in the constant-stress
gradient/divergence operator B;; used here, but it explicitly provides (describes) the linear-
consistency kernel that any gradient/divergence operator designed to capture more complex
element behavior must contain.

Since a first-order Irons patch test is a test of the ability of an arbitrary collection of
finite elements to reproduce a constant strain field, it is a test for linear consistency, and,
therefore, a test for the presence of a linearly consistent constant-stress kernel in the finite
element’s construction.

One may conclude that hexahedra and tetrahedra of any order may be used together
in a mixed mesh provided (1) the interface volume (plus or minus) between the respective
element types can be explicitly constructed and (2) corrections to the gradient/divergence
operator of one class or the other of the bounding elements are constructed using uniform
strain concepts as was done in Equations 22-26.

The approach here does not, however, serve to ensure quadratic displacement (linear
strain) continuity. Thus, in the presence of linear strain gradients, one can expect no more
than linear strain convergence at the interface between quadratic or higher displacement
elements matched together by the approach here.

"The transition element was derived by replacing a face of a hexahedron with the triangular
faces of two adjacent tetrahedra. In other words, part of the boundary definition of the
hexahedron was replaced by the boundary definition of adjacent elements. The same basic
idea has been used successfully to connect dissimilar finite element meshes at a shared
boundary [7]. The connected meshes pass first-order patch tests and yield superior results
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to those obtained using existing methods based on master-slave concepts for connecting two
meshes.

5. Conclusions

A transition element for meshes containing uniform strain hexahedral and tetrahedral
elements is presented. Meshes containing the transition element satisfy first-order patch
tests and converge for second-order patch tests under mesh refinement. Comparisons with all-
hexahedral meshes show that mixed-element meshes do not cause any significant degradation
in accuracy, convergence rates or locking behavior for a variety of problems. Guidelines are
established for extending the present approach to higher-order elements and for connecting
dissimilar finite element meshes at a shared boundary.
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Table 1: Example 1 strain energies for meshes 3m, 6m, 9m and 9.

v 3m 6m Im 9h exact
Edev Evol Edev Evol Edev Evol Ede‘u E‘vol Edev Evol
0.0 302 150 283 142 280 140 280 140 278 139
0.1 332 121 312 113 308 112 308 112 306 111
0.2 362 | 909 | 340 | 8.2 [ 336 | 842 |33 | 842 | 333 | 83.3
0.3 393 60.9 369 56.9 364 56.1 364 56.1 361 55.6
04 423 30.6 397 28.5 393 28.1 393 28.1 389 27.8
0499 | 454 | 0.308 | 425 | 0.285 | 420 | 0.281 | 420 | 0.281 | 416 0.27
0.4999 | 454 | 3.07e-2 | 426 | 2.85e-2 | 421 | 2.81e-2 | 421 | 2.81e-2 | 417 | 2.78¢-2
0.49999 | 454 | 3.07e-3 | 426 | 2.85e-3 | 421 | 2.81e-3 | 421 | 2.81e-3 | 417 | 2.78¢-3
Table 2: Example 2 strain energies for meshes 3m, 6m, 9m and 9A.
v 3m 6m 9m 9h exact
Edev Evol Edev Evol Edev Evol Edev E‘uol Edev
0.0 1132 | 0.09 | 1147 [ 0.02 | 1150 | 0.01 | 1150 © 1152
0.1 1029 | 0.09 | 1043 | 0.02 | 1045 | 0.01 [ 1045]| © 1047
0.2 944 | 0.09 | 956 | 0.02 | 958 | 0.01 | 958 0 960
0.3 871 |1 0.11 | 882 | 0.02| 884 | 0.01 | 884 | 0 | 886
04 809 | 0.17 | 819 | 0.01 | 821 | 0.003 |-821 0 823
0.499 755 14 765 | 0.04 | 767 | 0.02 |. 767 0 769
0.4999 | 755 | 1.4e2| 765 | 0.18 | 767 | 0.06 | 767 0 768
0.49099 | 755 | 1.4e3 | 765 | 0.10 | 767 | 0.03 | 767 0 768

Table 3: Example 3 strain energies for meshes 3m and 3h.

v 3m 3h
Edev Evol Edev Evol
0.0 11321 0.0835 | 1132 | 0.0174
0.1 1029 | 0.0908 | 1029 | 0.0208
0.2 944 | 0.105 | 943 | 0.0262
0.3 871 | 0.136 | 871 | 0.0359
04 809 | 0.232 | 809 | 0.0621
0.499 760 | 4.62 | 756 | 3.28
0.4999 | 769 | 1.83 | 759 | 214
049999 | 772 | 2.13 | 794 | 117
0.499999 | 773 | 16.2 | 863 854
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Figure 1: Sketch of polyhedron showing 12 of the 24 triangular faces.
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Figure 2: Connecting face of transition element.
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Figure 3: Element geometry of uniform strain tetrabedron.
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Figure 4: Mesh 6m with 12 transition elements and 92 hexahedral elements removed.

17



log(energy norm)

o b e v A o R e T Y

x———=  mixed—element meshes
z=——=a all-hexahedral meshes

1.8

1 1 1] 1 )

-2.2 -2 -1.8 -1.6 -1.4 -1.2 -
log(1/n)

Figure 5: Energy norm of the error for Example 1 (v = 0.3).
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Figure 6: Energy norm of the error for Example 1 (v = 0.4999).
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Figure 7: Energy norm of the error for Example 2 (v =0.3).
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Figure 8: Energy norm of the error for Example 2 (v = 0.4999).
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conditions (v = 0.4999).
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Abstract. A method is presented for connecting dissimilar finite element meshes in two
dimensions. The method combines the concept of master and slave boundaries with the uni-
form strain approach for finite elements. By modifying the definition of the slave boundary,
corrections can be made to element formulations such that first-order patch tests are passed.
The method can be used to connect meshes which use different element types. In addition,
master and slave boundaries can be designated independently of relative mesh resolutions.
Example problems in two-dimensional linear elasticity are presented.
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1. Introduction

In order to perform a finite element analysis, one may be required to connect two meshes
at a shared boundary. Such requirements are common in the assembly of system models
- from separate subsystem models. One approach to connecting the meshes is to ensure that
both meshes have the same number of nodes, the same nodal coordinates, and the same
interpolation functions at the shared boundary. If these requirements are met, then the two
meshes can be connected simply by equating the degrees of freedom of correspondmg nodes
at the shared boundary. As might be expected, ensuring conformity between meshes in this
manner often requires a significant amount of time and effort in mesh generation.,

An alternative to such an approach is to use the concept of master and slave boundaries to
connect the meshes. With this concept, one of the connecting mesh boundaries is designated
as the master boundary and the other as the slave boundary. For problems in solid mechanics,
the meshes are connected by constraining the nodes on the slave boundary to lie on the master
boundary. Although this approach is appealing because of its simplicity, overlaps and gaps
may develop between the two meshes. For example, a node on the master boundary may
either penetrate or pull away from the slave boundary even though the slave node constraints
are all satisfied (see Figure 6). As a result, displacement continuity may not hold at all
locations on the master-slave interface.

Several different methods have been proposed to connect finite elements or meshes of
elements. Mesh grading approaches allow two or more finer elements to abut the edge of a
neighboring coarser element [1]. Although these approaches generate conforming boundaries,
they are not applicable to the general problem of connecting two dissimilar meshes. Other
approaches for connecting meshes [2] also exist, but they generally result in nonconforming
boundaries. Finite element approaches developed specifically for contact problems can also
be used to connect meshes. These methods [3] include: (i) Lagrange multiplier methods; (ii)
penalty methods; and (iii) mixed (or hybrid) methods. Many of these methods are based in
part on the master-slave concept.

Regardless of which method is used, it is important to consider the issues associated
with continuity at the mesh boundaries. One such issue is the first-order patch test [4]. In
general, meshes that are connected using constraint equations or penalty functions alone
fail the patch test. The present method differs fundamentally from others by modifying the
definition of the slave boundary to ensure satisfaction of the patch test. The basic idea is
to replace the geometric definition of the slave boundary with that of the master boundary.
The same idea was used recently at the element level to develop a transition element [5].

Enforcement of continuity across mesh boundaries presents several challenges For ex-
ample, consider a problem in which the master and slave boundaries initially conform to
each another prior to any deformations. Displacements are interpolated quadratically over
each element edge on the master boundary. On the slave boundary, d1splacements are in-
terpolated linearly over each element edge. One is immediately faced with the fact that
the two meshes will remain conforming only if the nodal displacements are consistent with
a linear displacement field. Similar problems may arise even if the elements on the mesh
boundaries use the same orders of interpolation. This fact is demonstrated w1th a simple
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example problem in Section 3.

The present method combines the master-slave concept with the uniform strain approach
for finite elements [6]. For element edges on the slave boundary, nodes at the ends of the
edges are constrained to the master boundary. Intermediate nodes along these edges may also
be constrained to the master boundary, but such constraints are not required. By properly
modifying the formulations of elements on the slave boundary, one can ensure that first-order
patch tests are passed. Consequently, results obtained using the method will converge with
mesh refinement.

A useful feature of the method is the freedom to designate the master and slave boundaries
independently of the resolutions of the two meshes. Standard practice commonly requires
the master boundary to have fewer numbers of nodes than the slave boundary. The present
method allows one to specify either of the mesh boundaries as master while still satisfying
the patch test. It is shown in Section 3 that improved accuracy can be achieved in certain
instances by allowing the master boundary to have a greater number of nodes. Thus, there
may a preferred choice for the master boundary in certain cases. Methods of mesh refinement
based on subdivision of existing elements may also benefit from the method. For example,
kinematic constraints on improper nodes could be removed while preserving displacement
continuity between adjacent elements.

Details of the method are presented in the following section. The presentation includes
a discussion of the uniform strain approach and the geometric concepts upon which the
method is based. Example problems in two-dimensional linear elasticity are presented in
Section 3. These examples highlight the various capabilities and performance of the method.
Comparisons are made with the standard master-slave approach to demonstrate the superior
convergence rates of the method. :

2. Formulation

Consider a generic finite element in two dimensions with nodal coordinates z;; and nodal
displacements u;; for i = 1,2 and I =1,..., N. The spatial coordinates and displacements
of a point in the global coordinate direction X; are denoted by z; and u;, respectively. For
isoparametric elements, the same interpolation functions are used for the coordinates and
displacements. That is,

T; = $iI¢I(771a772) (1)
u = Uirdr(ni,m2) _ (2)

where ¢; is the shape function of node I and (7;,m;) are isoparametric coordinates. A
summation over all possible values of repeated indices in Egs. (1-2) and elsewhere is implied
unless noted otherwise.

The Jacobian determinant J of the element is defined as

0x1/0m  0z2/0m

J = det 3171/37]2 &vz/@nz (3)



The area A of the element can be expressed in terms of J by

A= [ JdA (4)
Ap
where A, is the area of integration of the element in the isoparametric coordinate system.
It is assumed that A is a homogeneous function of the nodal coordinates. It is also
assumed that a linear displacement field can be expressed exactly in terms of the shape
functions. Under these conditions, the uniform strain approach of Ref. 6 states that the
nodal forces f,; associated with element stresses are given by

fir = hoi; Bj1 ‘ (5)

where h is the element thickness, o;; are components of the Cauchy stress tensor :(assumed
constant throughout the element), and

O0A
By = ——
71 aij (6)
In addition. one has ‘
A= .’EjijI for _’] = 1, 2 (7)

where there is no summation over the index j in Eq. (7). Closed-form expressions for

B;; are presented in Ref. 6 for the four-node quadrilateral. For purposes of completeness,

similar expressions are included in the Appendix for a variety of triangular and quadrilateral

elements. |
Following the development in Ref. 6, one can show that

d¢1 3
A %—j-dA = B;s | (8)
where Q is the domain of the element in the global coordinate system. Based on Eq. (8),
the uniform strain €* of the element is expressed in terms of nodal displacements as

e =Cu ‘ (9)

where u

€11
€= [ €32 } (10)

T2

1 By 0 B 0 --- By 0
C==| 0 By 0 By --- 0 B | (11)
Byy By B By -+ Bony Bin |
and T

U= [ U3 Ug1 Uiz Uz - UIN UN ] (12)
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Elements based on the uniform strain approach have the appealing feature that they pass
first-order patch tests.

Boundaries of two-dimensional elements are defined either by straight or curved lines.
Elements with interpolation functions that vary linearly along the edges, e.g. the three-node
triangle and four-node quadrilateral, have straight boundaries. In contrast, elements with
quadratic or higher-order interpolation functions, e.g. the six-node triangle and eight-node
serendipity quadrilateral, generally have curved boundaries. That being the case, it may not
be obvious how to connect two meshes which use different orders of interpolation along their
boundaries.

Difficulties can arise using the standard master-slave concept even if the boundaries of
both meshes are defined by straight lines. As was mentioned previously, there may not be
any constraints to keep a node on the master boundary from penetrating or pulling away
from the slave boundary. Such problems are addressed with the present method by requiring
the edges of elements on the slave boundary to always conform to the master boundary. In
order to explain how this is done, some preliminary geometric concepts are introduced first.

Notice from Egs. (6), (9) and (11) that the relationship between strain and displacement
for a uniform strain element is defined completely by its area. Consequently, the uniform
strain characteristics of two elements are identical if the expressions for their areas are the
same. This fact is important because it allows one to consider alternative interpolation
functions for elements with edges on the master and slave boundaries. By doing so, one can
interpret the present method as an approach for generating conforming finite elements at
the shared boundary.

Consider the eight-node serendipity quadrilateral shown in Figure la. Each point on
an edge of the element is associated with a specific value of an isoparametric coordinate.
Both the spatial coordinates and displacements of the point are linear functions of the
coordinates and displacements of the three nodes defining the edge. The specific forms of
these relationships are obtained by setting either 7; or 7, equal to one of its bounding values
in Egs. (1-2).

The dashed lines in Figures 1b show an alternative geometric description of the element.
Each vertex of the sixteen-sided polygon intersects the curved edges of the original eight-
node quadrilateral. Although the precise location of center node ¢ is not important, its
coordinates may be expressed in terms of the others as

Tie = (Tis + Tis + Tir + Tig) /2 — (T + Tiz + Tis + T34) /4 (13)

"The domain of the polygon in Figure 1b is divided into sixteen triangular regions. Within
each of these regions the interpolation functions are linear. In other words, the displacement
of a point in a triangular region is determined by its location and the displacements of
the three nodes defining the triangle. One may approximate the boundary of the original
quadrilateral to any level of accuracy by increasing the number vertices of the polygon. As
the number of vertices approaches infinity, the element boundaries in Figures la and 1b
become identical.

Although the two elements in Figure 1 are significantly different, their uniform strain
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characteristics are approximately the same. In the limit as the number of boundary vertices
in Figure 1b approaches infinity, the uniform strain characteristics are identical. By viewing
all the element edges on the master and slave boundaries as connected straight-line segments,
one can develop a systematic method for connecting the two meshes that passes first-order
patch tests. We note that the alternative element description shown in Figure 1b satisfies the
basic assumptions of the uniform strain approach. That is, the element area is a homogeneous
function of the nodal coordinates and a linear displacement field can be expressed exactly
in terms of the interpolation functions.

We are now in a position to present the method for modifying the formulations of elements
with edges on the slave boundary. Changes to elements with edges on the master boundary
are not required. The concept of alternative piecewise-linear interpolation functions was
introduced in the previous paragraphs to facilitate interpretation of the present method as an
approach for generating conforming elements at the master-slave interface. These alternative
interpolation functions are never used explicitly to modify the element formulations.

Figure 2 shows a typical element with an edge E; on the slave boundary. Nodes 1 and
Q on E; are constrained to the master boundary. Any intermediate nodes along E; may
or may not be constrained to the master boundary; the choice is up to the analyst. Nodes
on the master boundary are also shown in Figure 2. The segment of the master boundary
bounded by points 1* and Q* is designated as E,,. Node 1 is constrained to point 1* and
node @ is constrained to point Q*.

Based on their initial proximity to the master boundary, the coordinates of nodes on the
slave boundary can be expressed as ‘

TiM = GMKTiK | (14)

for M =1,...,Q. If node M is constrained to the master boundary, then the index K in
Eq. (14) ranges over all the nodes defining E,,. If node M is not constrained to the master
boundary, then aprx = dpx where § is the Kronecker delta.

The basic idea of the following development is to replace E; with E,. By doing so, one

can ensure that no overlaps or gaps develop between the two meshes. Using Green’s theorem,
element area can be expressed in terms of line integrals along the edges as

N.
A= d: 15
g::lekxl Ty | (15)

where N, is the number of element edges and Ej denotes edge k. Let A denote the area of
a uniform strain element obtained by replacing E; with E,. It follows from Eq. (15) that

A=A- [31 z1dz2 + /Em z1dzo | (16)
The analog to Eq. (6) for the uniform strain element is given by
R dA
B.j=— (17)
w0z
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The index [ is used instead of I in Eqg. (17) to remind the reader that A depends on the
coordinates of the original element nodes as well as the nodes defining E,,. To be specific,
the index I takes on all values of I for the original element except the numbers of nodes

constrained to the master boundary. In addition, / takes on the numbers of all nodes defining
E,,..

Substituting Egs. (14) and (16) into Eq. (17) and using the chain rule for differentiation,
one obtains

. o
Byj = Byr+ By = 5, / ndes 5 /E 21z (18)

where the index M takes on the numbers of nodes constrained to the master boundary.
Notice that B,; = 0 if I refers to a node on the master boundary. In addition, Gy 1S zero

if T refers to node numbers of the original element.

The line integrals on the right hand side Eq. (18) can be evaluated using either closed-
form expressions or by numerical integration. For example, if an edge on the slave boundary
has two nodes. i.e. Q =2, then

r (To2 — 21)/2 j=1 and [=1
F) (T20 — 21)/2 j=1 and I=2
oz : /El z1dT2 = - —(z11 + 712)/2 j=2 and {= 1 (19)
(%11 + 712)/2 j=2 and =2
{ 0 otherwise
and for Q = 3.
[ —251/2 + 2%92/3 — z93/6 j=1 and I=1
2(z23 — z21)/3 j=1 and =2
P $21/6—2$22/3+$23/2 ]=1 and j:=3
BT /1-: T1dT2 = § —11/2 — 2215/3 + 215/6 j=2 and [=1 (20)
r== 2(z11 — 213)/3 j=2 and [=2
—11/6 + 2212/3 + z13/2 j=2 and [=3
{ 0 otherwise

Similar expressions can be derived for element edges with four or more nodes.

In general, E;, is composed of one or more element edge segments on the master boundary.
The coordinates of points along any one of these segments can be expressed in terms of the
shape functions 9k for the edge as

T; = TP () (21)

where the index K ranges over the numbers of nodes defining the element edge. It follows
from Eq. (21) that

0 _ | I mex; (8¢ /On)dn j=1
Oz /Lﬂ ez = { Zz T1x YK (O%;/0n)dn j=2 (22)
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where L, denotes the integration domain of the edge segment and 7; and 7, define its ends.
The second integral in Eq. (18) can be evaluated by summing the contributions of all such
edge segments defining E,,. '

If the slave boundary consists entirely of uniform strain elements, then all the necessary
corrections are contained in BJ ;- By using Eq. (18) to calculate B] for elements on the
slave boundary, one can perform analyses of connected meshes for both linear and nonlinear
problems. A general method of hourglass control [7] can also be used to stabilize any elements
on the boundary with spurious zero energy deformation modes.

The remainder of this section is concerned with extending the method to accommodate
more commonly used finite elements on the slave boundary. Although we believe the method
can be extended easily to nonlinear problems, attention is restricted presently to the linear
case. Needless to say, many problems of practical interest are in this category. |

Prior to any modifications, the stiffness matrix K of an element on the slave boundary
can be expressed as

K=K,+ K, (23)
where K, denotes the uniform strain portion of K and K. is the remainder. The matrix K,
is defined as

K, = ACTDC | (24)

where D is a material matrix that is assumed constant throughout the element. Recall that -
A is the element area and C is given by Eq. (11). Substituting Eq. (24) into Eq. (23) and
solving for K, yields

K, =K — ACTDC (25)
Let 4! denote the vector u (see Eq. 12) obtained by sampling a linear displacement field at
the nodes. The nodal forces f* associated with u* are given by

ft=Kd (26)
For a properly formulated element, one has

Kut=f , (27)
and

Kl =0 (28)

If Eq. (27) does not hold, then K,u! # f! and elements based on the uniform strain approach
would fail a first-order patch test. Equation (28) implies that K, does not contnbute to the
nodal forces for linear displacement fields.

The basic idea of the following development is to alter the uniform strain portion of the
stiffness matrix while leaving K, unchanged. Let & denote the displacement vector for nodes
associated with the index I (see discussion following Eq. 17). Based on the constraints in
Eq. (14), one may express u in terms of 4 as

e (29)
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where G is a transformation matrix. The modified stiffness matrix K of the element is
defined as o )

K = ACTDC + G*K,G (30)
- where C denotes the matrix C (see Eq. 11) associated with B] .7 (see Eq. 18). The stiffness
matrix K,; obtained using the standard master-slave approach is given by

Kms = GTKG (31)
Comparing K with K5, one finds that
K — Kps = ACTDC — GT(ACTDC)G (32)

The right hand side of Eq. (32) is simply the difference between the uniform strain portions
of K and K. If continuity at the master-slave interface holds by satisfying Eq. (29) alone,
then the two integrals in Eq. (18) cancel each other and K = K,,,. Thus, under such
conditions, the present method and the standard master-slave approach are equivalent.
Prior to element modlﬁcatlons the strain € in an element on the slave boundary can be
expressed as ‘
e=Cu+ Hu (33)

where Cu is the uniform strain (see Eq. 9) and Hu is the remainder. The modified element
strain € is defined as

é=Ci+ Hu (34)

Equation (34) is used to calculate the strains in elements with edges on the slave boundary.

One might also consider developing a modified stiffness matrix K: based on Eq. (34).
The result is

K.= ACTDC + /Q 6 DHG + GTHTDC + GTHTDHG) dA (35)

where () denotes the domain of the element with edge E, replaced by E,,. The difficulties
with using K for an element formulation are twofold. First, it may not be simple to eval-
uate the integral in Eq. (35) because the domain 2 could be irregular. Second, and more
importantly, such an element formulation does not pass the patch test. To explain this fact,
let @' denote the vector @ obtained by sampling a linear displacement field. In general, one
has K4 # K:4! since the product G is not necessarily zero.

The basic idea of modifying the definition of the slave boundary can also be used to con-
nect dissimilar finite element meshes in three dimensions. The extensions are fairly straight-
forward and have been applied successfully to problems in three-dimensional elasticity. These
extensions along with results for a variety of problems are the topic of a forthcoming paper.

3. Example Problems

All the example problems in this section assume small deformations of a linear, elastic,
isotropic material with Young’s modulus E = 107 and Poisson’s ratio v = 0.3. In this case,
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the material matrix D for plane stress can be expressed as

E

— VU

D=

1 v 0
v 1 0 (36)
0 0 (1—-v)/2 }

Six different element types shown in Figure 3 are considered in the example problems.
These include the four-node quadrilateral (Q4), eight-node quadrilateral (@8), twelve-node
quadrilateral (Q12), three-node triangle (T'3), six-node triangle (T'6), and ten-node triangle
(T'10). Stiffness matrices of the various elements are calculated using numerical integration.
The quadrilateral elements use 2 by 2, 3 by 3, and 4 by 4 Gaussian quadrature for Q4, Q8
and @12, respectively. Numerical integration formulae for triangles (see Ref. 4) with 1, 3
and 7 points are used for 7'3, 76 and T'10, respectively.

Two meshes connected at a shared boundary are used in all the example problems
Mesh 1 is initially bounded by the the four sides z; = 0, 71 = hy, T2 = 0 and 3 = hy while
Mesh 2 is initially bounded by the four sides z; = h;i, ; = 2h;, 2 = 0 and 22 = hy. The
two meshes consist of either quadrilateral or triangular elements as shown in Figure 4. The
number of element edges in direction i for mesh m is designated as n;n,. Thus, all the meshes
in Figure 4 have ny; = ng; = 2 and ny5 = nge = 3. Mesh configurations are designated by
the element type for Mesh 1 followed by the element type for Mesh 2 (see Figure 4).

Calculated values of the energy norm of the error are presented in the example problems
for purposes of comparison and for the investigation of convergence rates. The energy norm
of the error is a measure of the accuracy of a finite element approximation and is defined as

1/2
e = Z (efe _ Eea:act)Tl)(efe _ Ee:z:act)dA . . (37)
kez /St

|

where €, is the domain of element k and €/ and €% denote the finite element ’and exact
strains, respectively. The symbol Z denotes the set of all element numbers for the two
meshes. Calculation of energy norms for the quadrilateral and triangular element$ is based
on the integration schemes for element types 12 and T°10, respectively.

Results are also presented for an energy norm density e, of the error defined as

1/2 ‘
ep = f (efe eza,ct)TD(efe e:z:act)dA] (38)

['Ab keZy

where A, denotes the sum of the areas of all elements with edges on the master-slave interface.
The symbol Z, denotes the set of all element numbers associated with As.

Example 3.1

The first example focuses on a uniaxial tension patch test and highlights some of the
differences between the standard master-slave and present approaches. The boundary con-
ditions for the problem are given by

u(0,32) = 0 | (39)
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u2(0,0) = 0 (40)

and '
0'11(2h1,$2) =1 (41)
The exact solution is given by
Uy (.’L']_, :1:2) = $1/E (42)
Uz(wl, III2) = —sz/E (43)

All the meshes used in the example have h; = 5, hy = 10, ny; = ny; = n and Ny = Ny =
3n/2 where n is a positive even integer.

Several analyses with n = 2 were performed to evaluate the method. Using all six element
types for Mesh 1 and Mesh 2 resulted in 36 different mesh configurations. Nodes internal
to the meshes and along the master-slave interface were moved randomly so that all the
elements were initially distorted. Following the initial movement of nodes, nodes on the
slave boundary were repositioned to lie on the master boundary. Intermediate nodes on
the slave boundary for quadratic and cubic elements were either constrained to the master
boundary or left unconstrained. In addition, the two meshes were alternately designated as
master and slave. In all cases the patch test was passed. That is, the calculated element
stresses and nodal displacements were in agreement with the exact solution. '

The meshes shown in Figure 4 do not satisfy first-order patch tests if the standard master-
slave approach is used. To help explain why this is the case, consider the meshes shown in
Figure 5. The boundary conditions given by Egs. (39-41) should result in a state of uniaxial
stress in the X direction equal to unity. According to the state of stress in element number 4,
the force at node 9 in the X; direction equals he/4. Based on the stresses in elements 11
and 8, the nodal forces in the negative X; direction at nodes 22 and 18 equal hy/6 and hs/3,
respectively. Constraining node 18 on the slave boundary to the master boundary implies
that the displacement of node 18 equals to two thirds the displacement of node 6 plus one
third the displacement of node 9. Thus, the equivalent nodal force at node 9 due to elements
11 and 8 equals hy/6+ (1/3)h2/3 = 5hy/18. An imbalance in forces at node 9 clearly exists.
An exaggerated plot of the displaced geometry is shown in Figure 6. Notice that a gap
develops between the two meshes even though the slave node constraints are all satisfied.

The remaining discussion for this example concerns results obtained using the standard
master-slave approach with Mesh 1 designated as master. The stress component o;; at
centroids of elements on the slave boundary is plotted versus z, in Figure 7 for mesh config-
uration Q4@Q4. Notice that oy; alternates from below to above its exact value as z, is varied.
It is clear from the figure that refinement of both meshes does not improve the accuracy
of the solution at the shared boundary. Similar results for mesh configuration Q8Q8 are
shown in Figure 8. Comparison of Figures 7 and 8 shows that the errors in stress at the
slave boundary are greater for mesh configuration Q8@8 than for Q4Q4.

Plots of the energy norm of the error for mesh configurations Q4Q4 and Q8Q8 are shown
in Figure 9. It is clear that the energy norms decrease with mesh refinement, but the

10



convergence rates are significantly lower than those for elements in a single unconnected
mesh. The slopes of lines connecting the first and last data points are approximately 0.51
and 0.50 for Q4Q4 and Q8Q8, respectively. In contrast, the energy norms of the error for
a single mesh of Q4 or undistorted Q8 elements have slopes of 1 and 2, respectively, in the
absence of singularities. The fact that displacement continuity is not satisfied at the shared
boundary severely degrades the convergence characteristics of the connected meshes.

Example 3.2

The second example investigates the convergence rates for the method. The specific
problem considered is pure bending. The problem description is identical to Example 3.1
with the exception that the boundary condition at z; = 2h; is replaced by

011(2h1,T3) = he/2 — z, ‘ (44)
The exact solution for stresses is given by

011(Z1,22) = hg/2— 1z, ; (45)

022(21,22) = 0 | (46)

o12(z1,72) = 0 (47)

In all cases Mesh 1 was designated as master. Results presented for mesh configuration
(8Q8 were obtained by constraining all mid-edge nodes on the slave boundary to the master
boundary.

Plots of the energy norm of the error are shown in Figure 10 for mesh configurations Q4Q4
and Q8Q8. The slopes of lines connecting the first and last data points are approximately
1.00 and 1.56 for Q4Q4 and Q8Q8, respectively. Notice that the convergence rate of unity
for Q4 elements is achieved by mesh configuration @4@4. Although the convergence rate is
greater for mesh configuration Q8@Q8, the optimal rate of 2 is not achieved. One should not
expect to obtain a convergence rate of 2 with the present method since corrections are only
made to satisfy first-order patch tests. Nevertheless, mesh configuration Q8Q8 exhibits a
convergence rate greater than unity.

Example 3.3

The final example demonstrates the freedom to designate master and slave boundaries |
independently of the resolutions of the two meshes. The specific problem considered is
bending of a beam by a uniform load [8] for mesh configuration Q4Q4. The boundary
conditions are given by

u1(2hy, hy) = 0O - (48)
us(z1,0) = 0 (49)
and ‘
o11(0,z2) = —1 o (50)
on(z1,hs) = (223/3 — 2h2x,/5)/(21) (51)
o12(z1,ha) = —(h}—a)zs/(2]) - (52)

11



where

I=2h}/3 (53)
The exact solution for stresses is given by
on = —(a3/3— hiz; +2h3/3)/(2I) (54)
on = [(h3— a3z + (223/3 — 2hiz1/5)] /(2) (55)
o = —(hf—af)zs/(21) (56)

All the meshes used in the example have h; = 1, hy = 10, nyy = ny2 = n, Ny = 5n and
ng9o = 10n. Thus, Meshes 1 and 2 have the same resolution in the X; direction while the
resolution of Mesh 2 is twice that of Mesh 1 in the X, direction. Two different cases are
considered. For Case 1, Mesh 1 is designated as master. For Case 2, Mesh 2 is designated as
master. Results for Case 1 are identical to those obtained using the standard master-slave
approach since the meshes are conforming in this case.

Plots of the energy norm of the error are shown in Figure 11 for the two cases. Notice
that Case 2 is consistently more accurate for all the mesh resolutions considered. In order
to investigate the cause of the differences, the energy norm density of the error (see Eq. 38)
was calculated at the mesh interface. Results of these calculations are shown in Figure 12.
Notice that the energy norm densities for the two cases both have slopes near unity, but
Case 2 is more accurate than Case 1. It is thought that Case 2 is more accurate than Case 1
because fewer degrees of freedom are constrained at the shared boundary. This example
shows that there is a preferred choice for the master boundary in certain instances.

Differences between the two cases are also illustrated in Figures 13 and 14. These figures
show the variation of normalized shear stress at centroids of elements on the slave boundary.
The normalized shear stress &2 is defined as

G12 = 0ds /o12(ha/(2n), ha) (57)

where a{«f denotes the shear stress from the finite element solution and o5 is given by
Eq. (56). Notice in Figure 13 the abrupt changes in &2 between adjacent elements for
Case 1. It is thought that these changes are caused by constraining the higher resolution
slave boundary to the coarser master boundary. These changes become more pronounced
as the integer ratio ngp/mg; or the ratio ng;/my; is increased. In contrast, the shear stresses
for Case 2 vary smoothly and are in much better agreement with the exact solution. The
differences between Cases 1 and 2 are reduced significantly for mesh configuration Q8()8.

4. Conclusions

A straightforward method is presented for connecting dissimilar finite element meshes in
two dimensions. By modifying the definition of the slave boundary, corrections can be made
to element formulations such that first-order patch tests are passed. The method is used
successfully to connect meshes with different element types. In addition, master and slave
boundaries can be designated independently of the resolutions of the two meshes.

12



A simple unijaxial stress example demonstrated several of the advantages of the present
method over the standard master-slave approach. Although the energy norm of the error
decreased with mesh refinement for the master-slave approach, the convergence rates were
significantly lower than those for elements in a single unconnected mesh. Calculated stresses
at the shared boundary had errors up to 6.5 and 12.1 percent for connected meshes of four-
node and eight-node quadrilaterals, respectively. Moreover, these errors could not be reduced
significantly with mesh refinement.

A convergence rate of unity for the energy norm of the error was achieved for a pure bend-
ing example using connected meshes of four-node quadrilateral elements. This convergence
rate is consistent with that for a single mesh of four-node quadrilaterals. A convergence rate
of approximately 1.56 was achieved for connected meshes of eight-node quadrilaterals. The
optimal convergence rate of two was not achieved in this case because element corrections
are made only to satisfy first-order patch tests. Nevertheless, a convergence rate greater
than unity was obtained.

The final example showed that improved accuracy can be achieved in certain instances
by allowing the master boundary to have a greater number of nodes than the slave boundary.
Standard practice commonly requires the master boundary to have fewer numbers of nodes.

By relaxing this constraint, improved results were obtained as measured by the energy norm
of the error and stresses along the shared boundary. '

5. Appendix

Equations for Bj; (see Eq. 6) of the elements shown in Figure 3 are provided here for
completeness. One may obtain specific equations not shown by permuting the subscripts on
the right hand sides of the equations and the subscript I as described below. For notational
convenience we adopt the conventions z;; = z; and zo; = yy.

Three-node triangle:
By = (y2—us3)/2 i . (58)
Bz,]_ = (11}3 — :1:2)/2 (59)
Permutations: 1 -2 — 3 — 1.
Four-node quadrilateral:
Bip = (y2—v)/2 (60)
B2,1 = ($4 e 1272)/2 (61)

Permutations: 1 -2 —3—4—1.
Six-node triangle:

Bii = (ys—92)/6+2(ys — ¥5)/3 (
Bg 1 = (.’122 — $3)/6 + 2(235 - .'174)/3 (63)
Bis = 2(y2—1)/3 (
By = 2(z1—x2)/3 (

13



Permutations: 1 =2—=3—1and4—5—6 — 4.
Eight-node quadrilateral:

By = (ya—92)/6+2(ys —s)/3 .
, (T2 — 74)/6 + 2(zs — z5)/3
) 2(y2 —11)/3

B5 9 = 2(.’1?1 - 1122)/3

& ¥
T

Permutations: 1 -2 —-3—4—1and5—-6—-7—8 — 5.
Nine-node triangle:

Bia
Bs 4
Bss
B

T(y2 — y3)/80 + 57(ys — 0) /80 + 3(ys — y5)/10
T(z3 — 22)/80 + 57(z9 — z4)/80 + 3(z5s — 5) /10
(81ys — 57y1)/80 — 3y2/10

(571121 — 81.’1)5)/80 + 3.’1,‘2/10

(57y> — 81y4)/80 + 3y1 /10
(81z4 — 57z2)/80 — 3z, /10

Permutations: 1-—>2.—>3—>1,4—->6—>8-—>4and5—>7—>9—>5.
Twelve-node quadrilateral:

By
B2
Bs,
Bso
Bs1
Bs2

Permutations: 1 -2 —538—-4—1,5—-7—-9—-11—>5and 6 -8 - 10— 12— 6.

T(y2 — ¥2)/80 + 3(y11 — ¥s)/10 + 57(ys — 312)/80
(x4 — 2)/80 + 3(zs — 211)/10 + 57(z12 — 5)/80
(81ys — 5711)/80 — 3y/10

(57z; — 81zg)/80 + 322/10

(57y= — 81ys)/80 + 3y1/10

(8lzs — 57z2)/80 — 3z, /10

(66)
(67)
(68)
(69)

(70)
(71)
(72)
(73)
(74)
(75)

(76)
(77)
(78)
(79)
(80)
(81)

We note that that Egs. (58-81) are also applicable to elements with nodes internal to the

element boundary such as the nine-node and sixteen-node Lagrange quadrilaterals. This is
true because the coordinates of internal nodes do not affect element area.
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Figure 1: (a) Eight-node serendipity quadrilateral and (b) alternative geometric description of the element.
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Figure 2: Sketch of meshes near element with an edge on the slave boundary.
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Al

Figure 3: Element types considered in study: (a) four-node quadrilateral, (b) three-node triangle, (c) eight-
node quadrilateral, (d) six-node triangle, (€) twelve-node quadrilateral and (£) ten-node triangle.
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Figure 4: Mesh configurations (2) Q4Q4, (b) Q4T3, (c) T3Q4 and (d) T3T3 all with ny =ny; =2 and

niz=ngy=3.
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Figure 5: Mesh configuration Q4Q4 showing element and node numbers.
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Figure 6: Example 3.1 displaced geometry (exaggerated) for mesh configuration Q4Q4 obtained using the
standard master-slave approach.
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Figure 7: Axial stress ¢, at centroids of elements with edges on the slave boundary. Results are presented for
mesh configuration Q4Q4 using the standard master-slave approach.
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Figure 9: Energy norms of the error for Example 3.1 obtained using the standard master-slave approach.
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Figure 10: Energy norms of the error for Example 3.2 obtained using the present method.
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Figure 11: Energy norms of the error for Example 3.3 obtained using the present method for mesh configura-
tion Q4Q4. Case k refers to the problem with Mesh k designated as master.
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Figure 12: Energy norm densities of the error for Example 3.3 obtained using the present method for mesh
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Figure 13: Normalized shear stress 65 at centroids of elements with edges on the slave boundary for mesh
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Abstract. A method is presented for connecting dissimilar finite element meshes in three
dimensions. The method combines the concept of master and slave surfaces with the uniform
strain approach for finite elements. By modifying the boundaries of elements on the slave
surface, corrections are made to element formulations such that first-order patch tests are
passed. The method can be used to connect meshes which use different element types.
In addition, master and slave surfaces can be designated independently of relative mesh
resolutions. Example problems in three-dimensional linear elasticity are presented.
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1. Introduction

In order to perform a finite element analysis, one may be required to connect two meshes

at a shared boundary. Such requirements are common when assembling system models
from separate subsystem models. One approach to connecting the meshes requires that
both meshes have the same number of nodes, the same nodal coordinates, and the same
interpolation functions at the shared boundary. If these requirements are met, then the two
meshes can be connected simply by equating the degrees of freedom of corresponding nodes
at the shared boundary. As might be expected, connecting meshes in this manner often
requires a significant amount of time and effort in mesh generation.

An alternative to such an approach is to use the concept of “tied contact” to connect the
meshes. With this concept, one of the connecting mesh surfaces is designated as the master
surface and the other as the slave surface. For problems in solid mechanics, the meshes are
connected by constraining nodes on the slave surface to specific points on the master surface
at all times. Although this approach is appealing because of its simplicity, overlaps and gaps
may develop between the two meshes either because of non-planar initial geometry or non-
uniform displacements. For example, a node on the master surface may either penetrate or
pull away from the slave surface during deformation even though the slave node constraints
are all satisfied. As a result, displacement continuity may not hold at all locations on the
master-slave interface.

Several methods currently exist for connecting finite elements or meshes of elements.
Mesh grading approaches allow two or more finer elements to abut the edge of a nelghbor-
ing coarser element [1]. Although such approaches generate conforming element boundaries,
they are not applicable to the general problem of connecting two dissimilar meshes. Other
methods [2-3] for connecting meshes based on constraint equations or Lagrange multiplier

approaches are applicable to a much broader class of problems, but they generally do not
ensure that mesh boundaries conform during deformation. Finite element approaches devel-
oped specifically for contact problems can also be used to connect meshes. These [4] include:
(i) Lagrange multiplier methods; (ii) penalty methods; and (iii) mixed methods. Many of
these methods are based in part on the master-slave concept.

Regardless of the method used to connect two meshes, it is important to address the
issues related to continuity at the mesh boundaries. One such issue is the first-order patch
test [5]. In general, meshes that are connected using existing methods based on constraint
equations or penalty functions alone fail the patch test. A general method for connecting
finite element meshes in two dimensions that passes the patch test was developed recently
by the authors [6]. This study investigates an extension of that method to three dimensions.
The basic idea is to redefine the boundaries of elements on the slave surface to achieve
a conforming connection with the master surface. The same idea was used recently at the

element level to obtain a conforming transition between hexahedral and tetrahedrél elements

[7]. |

The present method combines the master-slave concept with the uniform strain approach
for finite elements [8]. As with the standard master-slave approach, nodes on the slave
surface are constrained to the master surface. In addition, the boundaries and formulations



of elements on the slave surface are modified to ensure that first-order patch tests are passed.
Consequently, results obtained using the method converge with mesh refinement.

A useful feature of the method is the freedom to designate the master and slave surfaces
independently of the resolutions of the two meshes. Standard practice commonly requires
the surface designated as the master to have fewer numbers of nodes than the slave surface.
The present method allows one to specify either of the mesh boundaries as master while still
satisfying the patch test. It is shown in Section 3 that improved accuracy can be achieved
in certain instances by allowing the master surface to have the greater number of nodes.
Thus, there may be a preferred choice for the master surface in certain cases. Methods of
mesh refinement based on adaptive subdivision of existing elements may also benefit from
the method. For example, kinematic constraints on improper nodes could be removed while
preserving displacement continuity between adjacent elements.

Details of the method are presented in the following section. The presentation includes
a discussion of the uniform strain approach and the geometric concepts upon which the
method is based. Example problems in three-dimensional linear elasticity are presented in
Section 3. These examples highlight the various capabilities of the method. Comparisons
made with the standard master-slave approach demonstrate the superior performance of the
method.

2. Formulation

Consider a generic finite element in three dimensions with nodal coordinates z;; and nodal
displacements u;; fori =1,2,3and I = 1,..., N. The spatial coordinates and displacements
of a point in the global coordinate direction e; are denoted by z; and u;, respectively. For
isoparametric elements, the same interpolation functions are used for the coordinates and
displacements. That is,

T = Tirdr(n1,m2,M3) (1)
u = Urdr(m,n2,7s) (2)

where ¢; is the shape function of node I and (7:,m2,73) are isoparametric coordinates. A
summation over all possible values of repeated indices in Egs. (1-2) and elsewhere is implied
unless noted otherwise.

The Jacobian determinant J of the element is defined as

611:1 /87]1 6(1,‘2/6771 8223/8771
J=det | Ox,/0ny Ox2/0ny Ox3/0m2 (3)
8x1/8773 6x2/8173 6x3/8773

The volume V' of the element can be expressed in terms of J by
V= /V JdV (4)

where V;, is the volume of integration of the element in the isoparametric coordinate system.
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It is assumed that V is a homogeneous function of the nodal coordinates. IIt is also
assumed that a linear displacement field can be expressed exactly in terms of the shape
functions. Under these conditions, the uniform strain approach of Ref. 8 states that the
nodal forces f;; associated with element stresses are given by

fir = 043 Bj1 (5)

where o;; are components of the Cauchy stress tensor (assumed constant throughout the
element), and

ov
Bj = 551- (6)
In addition, one has
V =z;Bj; for j=1,2,3 (7)

where there is no summation over the index j in Eq. (7).

Closed-form expressions for B; are presented in Ref. 8 for the 8-node hexahedron. Similar
expressions can be derived for other element types, but they are quite lengthy for higher-
order elements. As an alternative to deriving closed-form expressions for specific element
types, one can use Gauss quadrature to determine Bjr for any isoparametric element in a
systematic manner. ‘ )

By substituting Eqgs. (1), (3) and (4) into Eq. (6), one finds that the functions g;; used
by the quadrature rule to evaluate Bj; are given by

gur = br1(T22T33 — T32%23) + 12(T2,3%s,1 — T33%T2,1) + $r,3(T21%3,2 — T31%22) (8)

gar = 11232713 — T1,2%33) + Pr2(TasT11 — T1,3%31) + B13(%31%12 — T11%52)  (9)

gsr = G11(T1aTas — T2aT13) + dr2(T13T21 — T23%11) + Pra(@11%22 — T21%1,2) (10)
where

¢1,; = O¢1/0n; (11)

i = 0z;/n; = z:1(0¢1/0n;) (12)

and g;s is evaluated at each of the quadrature points. Exact values of Bj; can be obtained
using 2-point Gauss quadrature in three dimensions (8 quadrature points total) for the 8-
node hexahedron. For the 20-node serendipity or 27-node Lagrange hexahedron, 3-point
Gauss quadrature in three dimensions (27 quadrature points total) is required. Exact values
of Bjr for the 4node linear tetrahedron can be obtained using a 1-point quadrature rule for
tetrahedral domains whiile the 10-node quadratic tetrahedron requires a 5-point quadrature
rule. Quadrature rules for integration over tetrahedral domains are available in Ref. 5.
Following the development in Ref. 8, one can show that

o1 .. |
[ Fd = By )



where {2 is the domain of the element in the global coordinate system. Based on Eq. (13),
the uniform strain €* of the element is expressed in terms of nodal displacements as

€ =Cu (14)
where
=l & & 1 % W (15)
[ By 0 0 By O 0 --- By 0 0 7
0 By 0 0 Bp 0 -+ 0 Bay O
c 1|0 0 By 0 0 By - 0 0 B (16
V|Ba Bi 0 Byp Bz 0 --- Boy Biy 0
0 B3z Byy 0 By By -+ 0 Bsy Boy
| B 0 By B 0 By --- Bsy 0 By |
and
- T
U= | U Us Uz U2 Uz Uz -°° UIN UsN usN] (17)

Elements based on the uniform strain approach -have the appealing feature that they pass
first-order patch tests.

Boundaries of three-dimensional elements are defined either by planar or curved faces.
Elements with interpolation functions that vary linearly, e.g. the 4-node tetrahedron, have
planar faces. In contrast, elements with higher-order interpolation functions, e.g. the 8-node
hexahedron and 10-node tetrahedron, generally have curved faces. That being the case, it
may not be obvious how to connect two meshes of elements which use different orders of
interpolation along their boundaries.

Difficulties can arise using the standard master-slave approach even if the boundaries of
both meshes are defined by planar faces. As was mentioned previously, even though the
slave nodes stay attached to the master surface, there may not be any constraints to keep
a node on the master boundary from penetrating or pulling away from the slave boundary.
Such problems are addressed with the present method by requiring the faces of elements on
the slave boundary to always conform to the master boundary. In order to explain how this
is done, some preliminary geometric concepts are introduced first.

Notice from Egs. (6), (14) and (16) that the relationship between strain and displacement
for a uniform strain element is defined completely by its volume. Consequently, the uniform
strain characteristics of two elements are identical if the expressions for their volumes are
the same. This fact is important because it allows one to consider alternative interpolation
functions for elements with faces on the master and slave surfaces. By doing so, one can
interpret the present method as an approach for generating “conforming” finite elements at
the shared boundary by carefully accounting for the volume (positive or negative) that exists
due to an imperfect match between the two meshes both initially and during deformation.

Consider an 8-node hexahedral element whose six faces are not necessarily planar. Each
point on a face of the element is associated with specific values of two isoparametric coor-
dinates. Both the spatial coordinates and displacements of the point are linear functions of
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the coordinates and displacements of the four nodes defining the face. The specific forms of
these relationships are obtained by setting either 71, 72 or 73 equal to one of its bounding
values in Egs. (1-2). |
Consider now an alternative element in which each face of the original 8-node hexahedron
is triangulated with n, facets. Each vertex of a triangular facet intersects one of the curved
faces of the hexahedron. A center node ¢ is introduced in the interior of the element.
Although the precise location of ¢ is not important, its coordinates can be expressed in

terms of those of the hexahedron as

8

Liec = Z .’IIiI/S (18)

I=1

The center node along with the three vertices of each triangular facet form the vertices
of a 4-node tetrahedron. Thus, the domain of the hexahedron can be divided into 6n.
tetrahedral regions. Within each of these regions the interpolation functions arelinear. In
other words, the displacement of a point in a tetrahedral region is determined by its location
and the displacements of the four nodes defining the tetrahedron. One may approximate the
boundary of the original hexahedron to any level of accuracy by increasing the number of
triangular facets. |

Although the two elements described in the previous paragraphs are significantly dif-
ferent, their uniform strain characteristics are approximately the same. In the limit as n;
approaches infinity, the uniform strain characteristics of the two elements are identical. By
viewing all the element faces on the master and slave surfaces as connected triangular facets,
one can develop a systematic method for connecting the two meshes that passes first-order
patch tests. We note that the alternative element satisfies the basic assumptions of the
uniform strain approach. That is, the element volume is a homogeneous function of the
nodal coordinates and a linear displacement field can be expressed exactly in terms of the
interpolation functions.

We are now in a position to present the method for modifying elements with faces on the
slave boundary. Changes to elements with faces on the master boundary are not required.
The concept of alternative piecewise-linear interpolation functions was introduced in the
previous paragraphs to facilitate interpretation of the method as a means for generating
conforming elements at the master-slave interface. These alternative interpolation functions
are never used explicitly to modify the element formulations. |

Figure 1 depicts the projection of an element face F; of the slave surface onto the master
surface. The larger filled circles designate nodes on the slave surface constrained to the
master surface. Smaller filled circles designate nodes on the master surface. Circles that are
not filled designate the projections of slave element edges onto master element edges.

Although there are several options for projecting slave element entities onto the master
surface, we opted for the following in this study. Nodes on the slave surface that are initially
off the master surface are repositioned to specific points on the master surface based on a
minimum distance criterion. That is, a node on the slave surface is moved and constrained
to the nearest point on the master surface. For each element face of the slave surface, one
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can define a normal direction at the center of the face. If an element edge of the slave surface
is shared by two elements, the normal direction for the edge is defined as the average of the
two elements sharing the edge. Otherwise, the normal direction is chosen as that of the
single element containing the edge. A plane is constructed which contains two nodes of the
slave element edge and has a normal in the direction of the cross product of the element
edge and the element edge normal. The projection of the slave element edge onto a master
element edge is simply the intersection of this plane with the master element edge.

Let P denote the element face of the master surface onto which a node S of the slave
surface is projected. The projection of S onto P can be characterized by two isoparametric
coordinate values 7,5 and 735. As a result of constraining S to P, the spatial coordinates of
S are expressed as

Zis = TiKQKS (19)

where K ranges over all the nodes defining P. The coefficient axs in Eq. (19) can be
expressed in terms of 7,5 and 755 by the equation

axs = ¢k (ms, Mas) (20)

where ¢f; is the shape function of node K on face P.

The basic idea of the following development is to replace F; with a new boundary which
prevents the possibility for overlaps or gaps between the two meshes. The new boundary is
composed of two parts. The first part is denoted by F;, and consists of the projection of F;
onto the master surface (see Figure 1). The second part is denoted by F, and consists of
ruled surfaces between the edges of F; and their projections onto the master surface. These
two parts of the new boundary are discussed in greater detail subsequently.

Using the divergence theorem, element volume can be expressed in terms of surface
integrals over the faces of the element as

Ny
V=Y [ amntds for j=1,23 (21)
k=1 Fy
where Ny is the number of element faces, Fj, denotes face k, and n* = nke; is the unit

outward normal to Fy. Let V denote the volume of a uniform strain element obtained by
replacing F; with the new boundary. It follows from Eq. (21) that

=V — ntdS — ™ T i =
V=v /lejnjds /Fmazjn]ds+/ﬂxjnjds for j=1,2,3 (22)

where n™ = nl"e; is the unit outward normal to F, and n" = nf 7€; is the unit outward
normal to F;.. Notice that a negative sign is assigned to the third term on the right hand
side of Eq. (22) because n™ points into the slave element. The analog to Eq. (6) for the
uniform strain element is given by

Y17

Bjj = ij (23)
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The index [ is used instead of I in Eq. (23) to remind the reader that V depends on the
coordinates of the original element nodes as well as the nodes defining F;,. To be specific,
the index I takes on all values of I for the original element except the numbers of nodes
constrained to the master boundary. In addition, I takes on the numbers of all nodes defining
Fo.- 3
Substituting Eqs. (19) and (22) into Eq. (23), one obtains

~ a ,
B;; = Bjj+ajs [Bjs + _—&cjs ( / . z;n5dS — /F 1 xjn}ds)}
—a T m .
+3xjj </;?r z;n5dS — /Fm Tin; dS) for 7=1,2,3 (24)

where the index S takes on the numbers of nodes constrained to the master boundary. Notice
that B;; = 0 if I refers to a node on the master boundary. In addition, a;g is zero if I refers
to node numbers of the original element. The terms involving surface integrals on the right

hand side Eq. (24) can be calculated using numerical integration as described in the following
paragraphs.
The coordinates of points on Fj can be expressed as

z; = Zisds (M, M2) (25)

where ¢g is the shape function of node S on Fi. Using Eq. (25) and a fundamental result
for surface integrals, one obtains ‘

0

axjs

/ a:jnjl-d.5'= / Ps€ikmTr1Tma2dA for 7=1,2,3 (26)
P Am ‘

where €;xm is the permutation symbol and Ay is the area of integration for Fj in the n;-m2
coordinate system. Exact values of the integral on the right hand side of Eq. (26) can be
obtained using 2-point Gauss quadrature in two dimensions (4 quadrature points total) for
the 8-node hexahedron. For the 20-node and 27-node hexahedron, 3-point Gauss quadrature
in two dimensions (9 quadrature points total) is required. Exact values for the 4-node
tetrahedron can be obtained using a 1-point quadrature rule for triangular domains while
the 10-node tetrahedron requires a 7-point quadrature rule. Quadrature rules for integration
over triangular domains are available in Refs. 5 and 9.

The projection of F; onto an element face of the master surface is shown in Figure 2. For
each such master element face, the boundary of the projection is defined by a closed polygon
consisting of straight-line segments in the isoparametric coordinate system of the master
element face. This polygon is decomposed into triangular regions (again in the isoparametric
coordinate system of the master element face) as shown to facilitate the calculation of surface
integrals.

The coordinates of points on the element face can be expressed as

z; = Ti e (11, M2) (27)
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where ¢y is the shape function for node M on the element face. From Eq. (27) one obtains

3}
6‘ij

/F ., z_,,-n;dS = [4 N OMEjkmTE1TmadA for §=1,2,3 (28)

where F1¢ denotes the projection of F; onto the element face and A,y is the area of integration
of the element face in the #;-7, coordinate system. The integral on the right hand side
of Eq. (28) is determined by adding the contributions from each triangular region. The
surface integrals can be calculated exactly for each triangular region by using the following
quadrature rules for triangular domains: 1-point for 4-node tetrahedron, 4-point for 8-node
hexahedron, 7-point for 10-node tetrahedron, 13-point for 20-node hexahedron, and 19-point
for 27-node hexahedron. Surface integrals in Eq. (24) over the domain F,, are obtained from
Eq. (28) by summing the contributions from all involved element faces on the master surface.

Recall that the second part of the boundary to replace F; consists of ruled surfaces
between the edges of F; and their projections onto the master surface. These surfaces must
be considered only if the edges of F; do not lie entirely on the master surface. By including
these surfaces, the “new boundary” of the slave element is ensured to be closed.

An edge of F7 and its projection onto the master surface is shown in Figure 3. The spatial
coordinates of points along the edge can be expressed as

Tie = TisPse(&2) (29)

where ¢s. is the shape function of node S on the edge of interest.

The projection of the edge onto a participating element face of the master surface appears
as one or more connected straight-line segments in the coordinate system of the element face.
For each such segment, the isoparametric coordinates of points along the segment can be
expressed as

m = a+hé (30)
N2 = az+b> (31)

where the coefficients @ and b appearing in Egs. (30-31) are determined from the projections
of nodes and edges of F; described previously. Thus, the spatial coordinates of points along
the segment can be expressed as

Tig = Tipdrr(a1 + 1€z, ag + be&o) (32)

where ¢y is the shape function of node M on the element face.
The ruled surface between the segment and the edge is denoted by Fg.. Spatial coordi-
nates of points on this surface are given by

z; = (1 = &)xig + &12; (33)



where 0 < & < 1. The bounding values of §; which define F are determined from the
projections described previously. It follows from Eqgs. (29-33) that

0 . o .

8221 o zmidS = /;Er OrMEjrmTr1Ema(l — E1)dA for 7=1,2,3 (34)
a ~ ~ .

dys Jr,. zin;dS = /A . Ose€ikmTh, 1 Tma61dA for j=1,2,3 (35)

where Ag, is the area of integration for Fy. in the £;-&2 coordinate system, and

Fi1 = TisPse — TimPum(ar + bia, az + b26o) (36)
Fio = Tin[(Obar/Om)br + (Oar/Ome)ba)(1 — &1) + Tis(Opse/OE2)6n (37)

The integrals on the right hand sides of Egs. (34-35) can be calculated exactly using a 2-point
Gauss quadrature rule in the ¢, direction. For edges on the slave surface with three or fewer
nodes, the following quadrature rules for the & direction are sufficient: 3-point for a 4-node
tetrahedron or 8-node hexahedron with a face on the master surface, 4-point for a 6-node

tetrahedron or a 20-node hexahedron, and 6-point for a 27-node hexahedron. The surface
integrals in Eq. (24) over the domain F, are obtained from Eqgs. (34-35) by summing the
contributions from all involved segments on the master surface.

If the slave surface consists entirely of uniform strain elements, then all the necessary
corrections are contained in B By using Egs. (24) to calculate B for elements with
faces on the slave surface, one can perform analyses of connected meshes for both linear and
nonlinear problems. A general method of hourglass control [10] can also be used to stabilize
any elements on the boundary with spurious zero energy deformation modes.

The remainder of this section is concerned with extending the method to accommodate
more commonly used finite elements on the slave surface. Although we believe the method
can be extended easily to nonlinear problems, attention is restricted presently to the linear
case. Needless to say, many problems of practical interest are in this category.

Prior to any modifications, the stiffness matrix K of an element with a face on the slave
surface can be expressed as

K=K,+K, (38)

where K, denotes the uniform strain portion of K and K, is the remainder. The ’matrix K,
is defined as
K,=VCTDC (39)

where D is a material matrix that is assumed constant throughout the element. Recall that
V is the element volume and C is given by Eq. (16). Substituting Eq. (39) into Eq. (38) and
solving for K, yields

K,=K-VCTDC | (40)

Let ! denote the vector u (see Eq. 17) obtained by sampling a linear displacement field at
the nodes. The nodal forces f* associated with u! are given by

! = Ku' (41)
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For a properly formulated element, one has
Kl = f - (42)

and
Kaul=0 (43)

I Eq. (42) does not hold, then K,u! # f* and elements based on the uniform strain approach
would fail a first-order patch test. Equation (43) implies that K, does not contribute to the
nodal forces for linear displacement fields.

The basic idea of the following development is to alter the uniform strain portion of the
stiffness matrix while leaving K, unchanged. Let @ denote the displacement vector for nodes
assomated with the index I (see discussion following Eq. 23). Based on the constraints in

Eq. (19), one may express « in terms of 4 as

u=Gq (44)

where G is a transformation matrix. The modified stiffness matrix K of the element is
defined as L

K=VCTDC +GTK,.G (45)
where C denotes the matrix C (see Eq. 16) associated with B B;; (see Eq. 24). The stiffness -
matrix Kp,; obtained using the standard master-slave approach is given by

Kms = GFKG (46)
Comparing K with Ks, one finds that
K —Kns=VCTDC - GT(VCTDC)G (47)

The right hand side of Eq. (47) is simply the dlﬁ'erence between the uniform strain portions
of K and K. If continuity at the master-slave interface holds by satisfying Eq. (44)
alone, then the surfaces integrals in Eq. (24) sum to zero and K = K,,,. Thus, under such
conditions, the present method and the standard master-slave approach are equivalent.
Prior to element modifications, the strain € in an element on the slave surface can be
expressed as
e=Cu+ Hu (48)

where Cu is the uniform strain (see Eq. 14) and Hu is the remainder. The modified element
strain € is defined as A

€=Cu+ Hu (49)
Equation (49) is used to calculate the strains in elements with faces on the slave surface.

One might erroneously consider developing a modified stiffness matrix K: based on
Eq. (49). The result is

R:=VCTDC + /Q [C"DHG + GTHTDC + GTHTDHG] dv (50)
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where ) denotes the domain of the element with face Fj replaced by the new boundary. The
difficulties with using K: for an element formulation are twofold. First, it may not be simple
to evaluate the integral in Eq. (50) because the domain Q) could be irregular. Second and
more importantly, such an element formulation does not pass the patch test. To explam this
fact, let 4 denote the vector 4 obtained by sampling a linear displacement field. In general,
one has K#! # K:4! since the product Ca' is not necessarily zero. ‘

In summary, the present method alters the formulations of elements on the slave surface
by accounting correctly for the volume between the two meshes that is present either initially
or during deformation. A method that does not require changes to element formulations
for elements on the master or slave surfaces may be preferable in certain instances. We
are currently investigating such a method based on constraint equations and the volume
accounting principles explored in this study.

3. Example Problems

All the example problems in this section assume small deformations of a linear, elastic,
isotropic material with Young’s modulus E = 107 and Poisson’s ratio » = 0.3. In'this case,

the material matrix D can be expressed as

- 2G + A A A 0 0 O
A 2G + A A 0 0 O
oA A 2G+XA 0 0 0
D= 0 0 0 G 0 0 (51)
0 0 0 0 G O
| 0 0 0 0 0 G|
where B
G= 2(1 + v) (52)
and ‘
A= By (53)

(1+2)(1-2)

Five different element types are considered in the example problems. These include
the 4-node tetrahedron (T'4), eight-node hexahedron (H8), ten-node tetrahedron (7°10), 20-
node hexahedron (H20), and 27-node hexahedron (H2T7). Stiffness matrices of the various
elements are calculated using numerical integration. The following quadrature rules in three
dimensions are used for the hexahedral elements: 2-point for &node hexahedron 3-point
for 20-node hexahedron, and 3-point for 27-node hexahedron. Single-point and 5-point
quadrature rules for tetrahedral domains are used for element types T4 and 710, respectlvely

Two meshes connected at a shared boundary are used in all the example problems.
Mesh 1 is initially bounded by the the six sides ; =0, 21 = h1, 22 =0, 22 = ha, z3 =10
and z3 = hs while Mesh 2 is initially bounded by z; = hy, z3 = 2hy, T2 =0, 22 = ho, 23 =0
and 3 = hs (see Figure 4). Each mesh consists of one of the element types described in the
previous paragraph. The number of element edges in direction % for mesh m is designated
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by nim. Thus, all the meshes in Figure 4 have nyj; = ng; = na; = 2 and nyg = ngg = nge = 3.
Specific mesh configurations are designated by the element type for Mesh 1 followed by the
element type for Mesh 2.

Calculated values of the energy norm of the error are presented for purposes of comparison
and for the investigation of convergence rates. The energy norm of the error is a measure of
the accuracy of a finite element approximation and is defined as

1/2
. o= Z/ (Efe _ 6<»,:¢:act)T‘D(ﬁfe — eea:act)dv (54)
kez /<%

where €. is the domain of element k and ¢ and €#*%¢* denote the finite element and exact
strains, respectively. The symbol Z denotes the set of all element numbers for the two
meshes. Calculation of energy norms for hexahedral and tetrahedral elements is based on
the quadrature rules for element types H20 and T'10, respectively.

Example 3.1

The first example is concerned with a uniaxial tension patch test and highlights some of
the differences between the standard master-slave approach and the present method. The
boundary conditions for the problem are given by

ul(O,xz,xg) = 0 (55)
u2(0,0,0) = 0 (56)
u3(0,0,0) = 0 (57)
U3(O, hz, O) = 0 (58)
and

011(2h1, Z2,23) = 1 (59)

The exact solution for the displacement is given by
w(21,%2,23) = 1/F (60)
U2($1,£L'2,$3) = —VIL'z/E (61)
us(Z1,Z2,23) = —vz3/E (62)

The exact solution for stresses has all components equal to zero except for 3; which equals
unity. All the meshes used in the example have h; =5, hg = 10, h3 = 10,711 =ng1 =Nz =N
and n;2 = N9y = N3z = 3n/2 where n is a positive even integer. '
Several analyses with n = 2 were performed to evaluate the method. Using all five
element types for Mesh 1 and Mesh 2 resulted in 25 different mesh configurations. Nodes
internal to the meshes and along the master-slave interface were moved randomly so that all
the elements were initially distorted. Following the initial movement of nodes, nodes on the
slave boundary were repositioned to lie on the master boundary. It is noted that gaps and
overlaps still remained between the two meshes after repositioning the slave surface nodes
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(see Figure 5). The two meshes were alternately designated as master and slave. In all cases
the patch test was passed. That is, the calculated element stresses and nodal displacements
were in agreement with the exact solution to machine precision.

The remaining discussion for this example deals with results obtained using the standard
master-slave approach with Mesh 1 designated as master. The minimum and maximum

values of o; at centroids of elements with faces on the slave surface are shown in Table 1 for
mesh configurations H8HS, H20H20, T'4T4 and T10T10 for a variety of mesh resolutions.
It is clear from the table that refinement of the meshes does not improve the accuracy of
the solution at the shared boundary. In addition, the errors in stress at the interface are
greater for mesh configuration H20H20 than for H8H8. Figure 6 shows the values of oy
for mesh configuration H8HS with n = 4. The same information is shown in Figure 7 for
mesh configuration H20H20.

Plots of the energy norm of the error for mesh configurations H8H8 and H 20H20 are
shown in Figure 8. It is clear that the energy norms decrease with mesh refinement, but the
convergence rates are significantly lower than those expected for elements in a single uncon-
nected mesh. The slopes of lines connecting the first two data points are approximately 0.51

and 0.50 for H8H8 and H20H?20, respectively. In contrast, the energy norms of the error for
a single mesh of H8 or undistorted H20 elements have slopes which asymptotically approach
1 and 2, respectively, in the absence of singularities. The fact that displacement continuity
is not satisfied at the shared boundary severely degrades the convergence characteristics of
the connected meshes.

We note that the results presented in Table 1 and Figures 6-8 are for the “best case”
scenario of connecting two regular meshes that conform initially. In general, two dissimilar
meshes will not conform initially at all locations if the shared boundary is curved. Use of
the standard master-slave approach in such cases may result in even greater errors.

Example 3.2

The second example investigates convergence rates for the present method. The specific
problem considered is pure bending. The problem description is identical to Example 3.1
with the exception that the boundary condition at z; = 2h; is replaced by

a1 (2h1, Zo, $3) = h2/2 — Ty ‘ (63)

The exact solution has all of the stress components equal to zero except for o1; which is
given by
o11(%1, T2, %3) = ha/2 — T2 (64)

In all cases Mesh 1 was designated as master. ‘

Plots of the energy norm of the error are shown in Figure 9 for mesh configurations H 8H8
and H20H20. The slopes of lines connecting the first two data points are apprommately 1.00
and 1.76 for H8HS8 and H20H?20, respectively. Notice that a convergence rate of unity is
achieved by mesh configuration H8H8. Although the slopes of line segments are greater for
mesh configuration H20H20, the optimal slope of 2 is not achieved. One should not expect
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to obtain a convergence rate of 2 with the present method since corrections are made only
to satisfy first-order patch tests. Nevertheless, the results for mesh configuration H20H20
are more accurate than those for H8HS8. Although the asymptotic rate of convergence for
H?20H20 is not clear from the figure, it is bounded below by unity.

Example 3.3

The final example demonstrates the freedom to designate master and slave boundaries
independently of the resolutions of the two meshes. We consider again a problem of pure
bending for mesh configuration H8H8 with Mesh 1 designated as master. The boundary
conditions are given by

uz(21,0,23) = 0 (65)
43(0,0,0) = 0 (66)
%1(0,0,0) = 0 (67)
u1(0,0,h3) = O (68)
and
092(21, ho, T3) = hy — 3 (69)

The exact solution has all of the stress components equal to zero except for oy, which is
given by '

O22(%1,%2,%3) = b1 — 71 (70)

All the meshes used in the example have h; = 1, hy = 10, hg = 1, n;; = nys = n and
n31 = ngz = n. 'Two different cases are considered for the mesh resolutions in the 2-direction.
For Case 1, ng; = 5n and ng, = 10n. For Case 2, ny; = 10n and ngy = 5n. Thus, for Case 1
the mesh resolution in the 2-direction of the slave surface is twice that of the master surface.
In contrast, the mesh resolution in the 2-direction of the master surface is twice that of the
slave surface for Case 2. Mesh resolutions in the 1 and 3 directions for Meshes 1 and 2 are the
same for both cases. Results for Case 1 are identical to those obtained using the standard
master-slave approach since the meshes are conforming in this case.

Plots of the energy norm of the error are shown in Figure 10 for Case 1 and Case 2. Notice
that Case 2 is consistently more accurate for all the mesh resolutions considered. In order
to investigate the cause of these differences, the shear stress component o2 was calculated
at the centroids of elements with faces on the slave surface. Results of these calculations are
presented in Figures 11 and 12 for n = 2. The exact value of oy, for this example is zero
over the entire domain of both meshes. Notice that the magnitudes of 7y, are significantly
smaller for Case 2 than Case 1. It is thought that results for Case 2 are more accurate than
those for Case 1 because fewer degrees of freedom are constrained at the shared boundary.
This example shows that there may be a preferred choice for the master boundary in certain
instances.

4. Conclusions
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A systematic and straightforward method is presented for connecting dissimilar finite
element meshes in three dimensions.. By modifying the boundaries of elements with faces on
the slave surface, corrections can be made to element formulations such that first-order patch
 tests are passed. The method can be used to connect meshes with different element types.
In addition, master and slave surfaces can be designated independently of the resolutions of
the two meshes.

A simple uniaxial stress example demonstrated several of the advantages of the present
method over the standard master-slave approach. Although the energy norm of|the error
decreased with mesh refinement for the master-slave approach, the convergence rates were
significantly lower than those for elements in a single unconnected mesh. Calculated stresses
in elements with faces on the shared boundary had errors up to 13 and 24 percent for
connected meshes of 8-node and 20-node hexahedral elements, respectively. For 4-node and
10-node tetrahedral elements, the errors were'in excess of 21 percent. Moreover, these errors
could not be reduced with mesh refinement.

A convergence rate of unity for the energy norm of the error was achieved for a pure
bending example using connected meshes of 8-node hexahedral elements. This convergence
rate is consistent with that of a single mesh of 8-node hexahedral elements. More accurate
results were obtained for connected meshes of 90-node hexahedral elements, butia conver-
gence rate of two was not achieved. The optimal convergence rate of two was not achieved
in this case because element corrections are made only to satisfy first-order patch tests.

The final example showed that improved accuracy can be achieved in certain instances
by allowing the master surface to have a greater number of nodes than the slave surface.
Standard practice commonly requires the master surface to have fewer numbers of nodes.
By relaxing this constraint, improved results were obtained as measured by the energy norm
of the error and stresses along the shared boundary. :
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Table 1: Minimum and maximum values of o1; at centroids of elements with faces on the slave
surface for Example 3.1. The results presented were obtained using the standard master-
slave approach for different resolutions of mesh configurations H 8HS8, H20H20, T4T4 and
T10T'10. The exact value of 071 is unity.

n H8HS8 H20H20 TAT4 710710
min max min max min max min max
0.9406 | 1.1196 | 0.7697 1.1009 | 0.7872 | 1.1350 | 0.7898 | 1.1082
0.9313 | 1.1298 | 0.7644 | 1.1064 | 0.7689 | 1.1649 | 0.7858 | 1.1209
0.9305 | 1.1294 | 0.7642 | 1.1061 | 0.7651 | 1.1687 | 0.7854 | 1.1208
0.9304 | 1.1202 | 0.7642 | 1.1061 | 0.7639 | 1.1694 - -

o O >N
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slave node

\

/ master node

Figure 1: Projection of an element face F; of the slave surface onto the master surface. Larger filled circles
designate nodes on the slave surface constrained to the master surface. Smaller filled circles designate nodes
on the master surface. Circles that are not filled designate the projections of slave element edges onto master
element edges.
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Figure 2: Projection of F; onto an element face of the master surface (see top left corner of Figure 1). In the

coordinate system of the element face, the triangular regions have straight edges and lie in a single plane. The
domain of the projection of F; onto the element face is divided into triangular regions for the purpose of cal-
culating surface integrals over F,. |
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Figure 3: An edge of F (solid line) and its projection onto the master surface (dashed line) viewed from a
direction nearly orthogonal to F;. The edge shown spans three different element faces on the master surface.
The projection of the edge onto the master surface is a piecewise continuous line with possible discontinui-
ties in slope at edges on the master surface. The solid and dashed lines appear as straight lines in the coordi-
nate systems of element faces on the slave and master surfaces, respectively.
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Figure 4: (a) Mesh configuration H8T4 with ny; =ny; =ns; =2 and nj; =nyy =n3 = 3, (b) opened view of
meshes revealing shared boundary. ‘
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Figure 5: Opened view of mesh configuration H8T4 with distorted elements. Although the slave nodes are
repositioned to lie on the master surface, gaps and overlaps still remain between the two meshes because of
the distorted element faces. Patch tests for this mesh configuration and others were passed in all cases using
the present method.
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Figure 6: Stress component 61 at centroids of elements with faces on the slave surface for Example 3.1.

Results presented are for mesh configuration H8H8 using the standard master-slave approach.
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Figure 7: Stress component G} at centroids of elements with faces on the slave surface for Example 3.1.
Results presented are for mesh configuration H20H20 using the standard master-slave approach.
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Figure 8: Energy norms of the error for Example 3.1 obtained using the standard master-slave approach.
Slopes of lines connecting the data points are shown above the line segments.

25



-5
-6 |
~~

8 -7 -

=]

3]

Gt

o

g —e—  H8H8

S -sf —=—  H20H20 .

Py

o

[

f=i

L,

g -ofF .
-10+ o
_11 1 1 ] 1 1 i 1

2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

log(1/n)

Figure 9: Energy norms of the error for Example 3.2 obtained using the present method. Slopes of lines
connecting the data points are shown above the line-segments.
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Figure 10: Energy norms of the error for Example 3.3 obtained using the present method.
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Figure 11: Stress component &

Example 3.3.
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12 at centroids of elements with faces on the slave surface for Case 1 of
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Figure 12: Stress component Gy, at centroids of elements with faces on the slave surface for Case 2 of
Example 3.3. ‘
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