SANDIA REPORT

SAND96-1620 « UC-706 ECEY B
Unlimited Release PR e
Printed July 1996 JUL 25 1853
OSTI
Discovering System Requirements

A. Terry Bahill, Bo Bentz, Frank F. Dean

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000

Approved for public releagg, ution is unlimited.

SF2900Q(8-81)

DISTRIRIMION. OF THIS DORIMENT 1© in mnED ICQ

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A04
Microfiche copy: AC1

SAND96-1620 Distribution
Unlimited Release Category UC-706
Printed July 1996

Discovering System Requirements

A. Terry Bahill
Bo Bentz
Systems and Industrial Engineering
University of Arizona
Tucson, AZ 85721

Frank F. Dean -
New Mexico Weapons Systems Engineering Center
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

Cost and schedule overruns are often caused by poor requirements that are
produced by people who do not understand the requirements process. This report
provides a high-level overview of the system requirements process, explaining
types, sources, and characteristics of good requirements. System requirements,
however, are seldom stated by the customer. Therefore, this report shows ways to
help you work with your customer to discover the system requirements. It also
explains terminology commonly used in the requirements development field, such
as verification, validation, technical performance measures, and the various design
reviews.

Acknowledgments

We thank Patty Guyer for technical editing and Ron Andreé for technical illustrations.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Contents

VOLUME 1
ACKNOWLEDGMENTSccvivireirierentenereesnnresnesesssssssessssssssessssssersessessssesessssessesessesssuossssssses i
1. INTRODUCGTIONcoceeitrinteeeseetienenisseesessassassessesesssssessessessssassessossessessensessssonsssonsesssssonsssuenten 1
2. STATING THE PROBLEM.....ccoteoitirinteserireieceseeseessessassssessssssesseessessessessessossesssensosssasseesens 3
2.1 Do Not Use the WOord Optimalcccceieeerreenenieinrenenersccretissestesisssrssessesessessessssaersessersens 3
2.2 Definition Of CUSIOMIETcvecciiierreiereereereerieesrersnrsssesssreseessessseesseessssessssseessessssesnessassssnens 4
2.3 Who IS the AUGIEINCETcceeectinririiseeieecectiereseseseestseassessessesasssessassesrsessersessesssessssnsensenss 4
3. WHAT ARE REQUIREMENTS? ... ieieerreneieneeeteceeeseesasssssssesssssssassssssssssessassnssssassasesnsensses 7
3.1. A Graphic-Editor Grid FaCilitycceccevireerieeerrcerierenireercreesresseenesseeenesessnssessssessnerasssses 7
3.2 An Improved Requirement for the Graphic-Editor Grid Facilitycccoeevveerveerenrerennenee. 7
4. THE REQUIREMENTS DISCOVERY PROCESS.......oco i cceecteeeeereererseeneeserssessseesesssseesnesses 9
4.1 Identify Customers and Stakeholders ... 9
4.2 Understand the Customer’s Needs......cccvvvervrerrceesseveesennennes eeereressteesrteessaeeraesnreestaesnasenes 10
4.3 Define and State the Problemccccveveieiciiiecireeeieeccrecseeerrentteeesseeeseeeasessasessssnseerssesenns 10
4.4 Write System REQUITEMENLScccvueeriveereerienrerieeseessesecreeseesesssesiesssassessassssasesssssassessssssassens 11
4.5 Consult With the CUSOMETccceereerreenierereenesrerenesssesrecesesesrssessssesscassseasarsssesscsssassnsesees 12
4.6 Define Performance and Cost Figures of Merit.......cccoieeeerceeneerecreeecnneesesscescesenvessessenes 12
4.7 Validate System REQUITEIMENLScccociivieirrnenrererirrenieecseistienesscostssessasecsesecsscesesssssesasans 12
4.8 Describe the Verification PrOCESS.......cceeievierieeerresriesiereencsseertisnersesssessesssessresesasssassasssases 12
4.9 Define Technical Performance IMEASUTIESccceecerereeerererersinnecsneecsersseessseessasesssneesness 13
4.10 RiSK MILIGALION «..ccveveenrnriiteirencreercnsinieeneetesesseseeseesaestsssssansssestssssssosesasssesassssssesnansenes 16
4.11 Review System REQUITEIMENLSccovveerierirrrereercnrereeerereeseesiesnresereeessneseessesasesesssesasennenses 16
5. CHARACTERISTICS OF A GOOD REQUIREMENTooccerieiriierrenerreenrenaeseesneescssescaesees 19
5.1 Describes What, NOT HOWcccvieeviieereiiiirerseneereeeestesesseessesssesessssesssasssnesssanessssessenessassnses 19
5.2 ALOIC.cc.ueurtieeiereerenieirsestesseeesanessessenesteesasssasssesssessessssassssnsessarssnssssessseessmansassassstesntasnaneseess 19
5.3 UBLQUE.ccueeetierecreeeeitisiceeseeesraeeaeesseeessseasnsasessessssesssasassessntesnsassssasesnsasansasesaasssnessnensssnasaces 19
5.4 Documented and ACCESSIDIEc.iiieiiieeiirrecrteecrnieerrceersee e s erseessneesorateesssesssentansssseeses 19
5.5 Identifies Its OWRET.......cccceeevvriiecteeerccreeeecveeee. eeeesteeeeeesseteeesssresetecessssmrtaesansrateeeeanaannnnses 19
5.6 APPIOVEG....c..neeeicierieeeirterseeertreseesrserteesteestessasesnessssesaae e sesesstasssaasseasstessnassesaseeestessassasnsess 19
5.7 TTACEADIE......eeiccieeecirerieecetreerteestecrnteestesessreesaseesstassassssssssarssnseassassssssessnsessenssnnessnstasssesssses 20
S B N ECESSATY ..eeeeeecirrieereiieseereertaeesisaeeessueteeasassasesssasssssessassessssseesrsssntesessesesasssesessntesssssannaessass 20
5.9 COMPIELE.......eeeeeirtieceetieescreeeete st es et s eseseesat s staesssenessassnessassssasesseastessessmsessnesasssonnan 20
5.10 One SemantiC DefINitIoN.....ccueceerrreereceresrerereresnresssressesssssessaessssesssmesssasssasssaasssssereanessses 20
5.11 ISNOt AIWAYS WITHEN ...ccvveerieeeieieieerieeerreecseeseeeraesseeaesssessasssesssesseessssensnessessssesssssnnssees 20
5.12 Quantitative and TeStabIecoeriiiieieiiierccceeeerceee ettt easesaes 20
5.13 Identifies APPlICAbIE SLALESccvceireereerrrirerieeneceenrereetensrieeseestessesestsssasssessesssessensenen 21

5.14 States ASSUITIPLIOISceetecucererierenerrecssenssessessnescsssesseesersesssesmesssessmssssssesssssessnssssasessesssens 22

il

5.15 Use of Shall, Should, and Will.........ccco.mciiniiieecteereceeneereetreeeteenent e s seaeaeeens 22

5.16 Does Not Use Certain WOTdS......cco.ecceuirieriereeireierieesteeieeeeeesenesssesessesssessssssssessessessens 22
5.17 Might Vary in Level 0f Detailc.ccvivinernicnninieeerteeceteteseseesesse st esuessassesseessens 22
5.18 ResSpects the Media......cccooiiiiiiecniieee ettt ettt et aesae st et ee s e aa s s s e aeeeaean 23
6. REQUIREMENTS CHARACTERIZATIONScooiriiiecierteeneeeeseeeraessnesetsessasesssessseneses 25
6.1 Types of Systems REQUITEMENTS ...ccccoviriieieerirrreeereeeteesreeraee e ssneereesseeeasseseessasansans veveeens 25
6.2 Sources of Systems REQUITEIMENTSccccoveereeieererieererieereesaeeseeseeseessessessasssseensessnersessnes 26
6.2.1 INPUL-OULPUL.....oeieeeeiie ettt es e sessassaesassunsssesasasessens 26
6.2.2 Technologycc.coveeveereeierececreeereerereeree e eseeeeseenanes eteteaerteesteree e et earaessannranseans 27

6.2.3 PEITOIMANCEeeveveeieneerticueierieeeeeteereeresressessesseeesae e sessnesasssansessesansessasssenssensenses 27
6.2.4 COSE cueniiireeeeeterteesee et e ree e s aesae s st e b e se e b es st e e e e er e e sena e et e s st e s e e en et et e e st aenseennean 27
6.2.5 Trade-0ffoovieiieeieeneeeeeec et e st e st e e ae s e e e e e et e et e e ae s s e nbaenbeeans 27
6.2.6 SYSIEIM TEST.eeuueirieeeiiniiecitrirrerreee et e st e et e te e e e s et s ees st esssssseesaeesosasssenanssasnsenn 27
6.2.7 COMPANY POLICY ..uvereeerernrrreinreeieeereeseressesessecseenessessssesssssessesessasasssessasnns ceereeeas 28

6.2.8 BUSINESS PraACLICES .. cecuereeeuerriraeereeereraaertesmeasesseasnesrssesssessasssessscoseessstanssssassssssanns 28
6.2.9 Systems ENGINEEring.......coccrermireeneeeireecirreeeneearaeeeesseesseseesstsseseesessassnesnseasnsens 28
6.2.10 Project Managementc.cccvverceerieeeerneererstesstienueenseeseesaseeseessessssesseessasessnsasssesnns 28
6.2.11 MATKEHNGcoeeieeeeeieiertenteiecretetee et s et e s e e e sse s e sae e e esesssesseessaerasasseesssanes 28
6.2.12 Manufacturing PTOCESSEScceruerrrereseressessesesessesssansassessssesssssssessassasassesesassess 29
6.2.13 DESIZN ENZINEELS ...cuviiieiieiieieecteeteeeeceseeteen e s saessaesseesaesssassaessesessasasssassssasssens 29
6.2.14 REIADIIILY ... coceeireeireerietieietec e e eieeesereet st essaessassesseesnsnsessassesssesenansssssansnsansas 29
6.2.15 SALELY ...creeieecieceetectrt ettt sttt aa et ae st e s e e e e be s ae e baeesansas 29
6.2.16 The ENVITONIMENTcocitieirriiireierrnieeeeteeeeetrestraeresessssessessessseessecsssrassnrsasssasseans 30
6.2.17 EHNICS. c.uieuieeireeeeieeenteecnreeieetrsteste s e et et et esee st entesnaesas st essesaessessaestesntensesssesssasnstases 30
6.2.18 INtANZIDIES...cceerrieeeaneererierieiireetestesieeeesteemeereeesetessarsessesaaenesassstesntrosarssassserssennnan 30
6.2.19 COMINON SEISE ..cvtrrverrerrirnianierrereriaetrseeeereseessesarsasssesseseseessessasesesssstarnssssssesssasss 30
6.2.20 Laws OF Standards........cccueveererreeieernireenircerenentreeesessesseesessessessssssessesssssonssnes 30
6.2.2] The CUSLOIMETcctieeiriieeiieterreesteeeterteeteereetasssseesaeessesseeesesmrassesentasssnaesnasessaane 31
6.2.22 Legacy REQUITEIMENLS.......cciiieeieereeerereeereeetereirsesssneesreassaasseresasessssaessasesesssssanes 31
6.2.23 Data ColleCtion ACHVILIES....cccuveecteerieiieeereereresteeesiaasraesstsesaessnsesenstasssnsaessseessnes 31
6.2.24 GOVEINIMENT AZENICIES......vvevereererrererrerereerereesesessssesessssesesesessesassesassessensessesassensens 31
6.2.25 Industry Standardsccoocieeeerireneeeeetee e seee et e et se e ee e e s e e e s snaaas 31
6.2.26 Other SOUICES ... oecereerereieiieieereeieeetestesseseetessaeesssersaessessssasesassessarssssnsssssrassnsenns 31

6.3 EXpressions OF MOGAlITIEScccuerieririinieenieneeeteteetereeernenesees st ecseeeesseesssesassessessssssssaeensens 32
6.3,] PrOO YD oottt ettt eees e s se s s st s s e s naneenns 32
6.3.2 USers ManuUalcoouiioiiiieteeireerees et et e e et ce e e e e e e saessmee e anes s seaa e e s nmee e 32

6.4 Input and OULPUL TTAJECLOTIEScouevuirrirrirrieierteeteteereeree e teteeereseeessessessasstssnssesesennesneroneens 32
6.4.1 Behavioral SCENATIOScoceetrrieireeenrieerirecrteseeseessesseeseesteeersesnesncesassasesosessssases 33
6.4.2 Input-Output Relationships.........cccecveveererrieriencniireeeieeerenesseesne st eeeseeseveesanes 33

7. TOOLS FOR GATHERING REQUIREMENTS.....cccontitiiiritrcriescntecccoseesecssteneesaeneseesaacee 41
8. OTHER RELATED TERMS......ooitetiteireereererecertesteteoeeesestesntsssessansessasstssessnessseasessnsseneraseeses 43

v

8.1 Requirements Versus CONSIIAINLScocverererurrerrrcrsercrcrtenrssessceressosessosessessesarsessesessesesssenes
8.2 Requirements VErsus GOals.......ccovicucriirinrniescrrceeieecsinicecnieeseceetssessessessesssssessessessasnnns
8.3 External Versus INternal..........coovoruioroiiieieie ettt
8.4 Outcomes, Environments, and CONSIIAINES.........ccverreerreriereireeneeseerresseesssseesesessesssesssnenas
8.5 Requirement Definition Versus Specificationc.ceccveevceeccnenenierenernesrreesreeesseesenn

9. HEURISTIC EXAMPLES OF REQUIREMENTS.......oooreteiereeiteereeereree e esneeeeesvaesssesenrens
0.7 ANUCIEAr WATREAA ..o ettt eeeee et teeeseaae e et eaaesaeaeeasassasasasssnnnnnnnnsnssns

Figure 1 The system deSIZN PrOCESS ...cocevierirerrereeerrreneercieerreeeeesseeseentessnssssesesssesesseesanesses
Figure 2 The requirements diSCOVEIY PIOCESScceeererirerrcretecsuiesessncssnessressssessreeesscsesaseraes
Figure 3 A technical performance measurecoccceeervereemrsieenireceseeeeesieereeeeesaesseesnneenns
Figure 4 Timing of the MAaJOr TEVIEWS ..coeeiemiririieceirticeieieesereecrreecnreeeestesasesassseesassessansaees
Figure 5 A scoring function for the amount of RAMcccociiiviniininninininiciinccneennee.
Figure 6 AF&F range detonation mode........c.oeviinniiiirniiiiiinicinicncenccreeseseesessnsnes
Figure 7 AF&F contact detonation mode (backup only) ..cc.ccvecievcrniecreernernieesreecnnceenesenenes
Figure 8 AF&F time detonation mode...........cveeeeeirniieiiinienirienneenccnnirceneeee e eeeesenenenseseeens
Figure 9 N? Diagram for W88 AF&Fc.c.ccuvuevurerrecmneeeeeninessresesessesssscssssssssssssssssasssssseses
Figure 10 N? Diagram for W88 AF&Fcc.ouevoiurirerereriieerrrssessassseeresssstsssssssnsesssasnsssssocens

VOLUME I

APPENDIX A CUSTOMER REQUIREMENTS

APPENDIX B MILITARY CHARACTERISTICS (OUO)
APPENDIX C AF&F FUSE SPECIFICATIONS (OUO)
APPENDIX D STOCKPILE TO TARGET SEQUENCE (OUO)
APPENDIX E ATM BEHAVIOR SCENARIOS

Intentionally Left Blank

vi

Discovering System Requirements

1. Introduction

No two systems are ever exactly alike in their requirements. However, there is a uniform and
identifiable process for logically discovering the system requirements regardless of system
purpose, size, or complexity (Grady, 1993). The purpose of this report is to expose this process.

This report represents the philosophy and terminology used by the New Mexico Weapons
Systems Engineering Center (Directorate 2100) for discovering system requirements. Other
organizations may use other procedures and terminology. However, we think a consensus is
developing in the Systems Engineering community. It is hoped that this document is consistent
with that consensus. Like Systems Engineering in general, the statements in this document are
not dogmatic. Each statement has been rightfully violated many times (see for example Martin,
1995). However, these statements are generalizations of good engineering practices.

This report only explains a part of the systems requirements process. Large projects should
use a computer system to help write, decompose and maintain system requirements. Many such
computer systems are commercially available (NCOSE, 1995). Each project design team will
select a specific tool and provide training for it. Therefore, this report will not discuss such tools.
An important task in writing system requirements is modeling the proposed system. Dozens of
tools are available; two recently popular ones are object-oriented design and functional
decomposition (Bharathan, Poe, and Bahill, 1995). This report does not discuss tools for
modeling systems.

Intentionally Left Blank

2. Stating the Problem -

Stating the problem is one of the System Engineer’s most important tasks in developing
requirements. The problem must be stated in a clear, unambiguous manner.

State the problem in terms of what the world would be like if the problem did not exist, and
not in terms of preconceived solutions. Do not believe the first thing your customer says. Verify
the problem statement with the customer, and expect to iterate this procedure several times. For
an excellent (and enjoyable) reference on stating the problem, see Gause and Weinberg (1990).

It is good engineering practice to state the problem in terms of the top-level function that the
system must perform. However, it is better to state the problem in terms of the deficiency that
must be ameliorated. This stimulates consideration of more alternative designs.

Example 1
Top-level Design a system that will hold together 2 to 20 pieces of 8% by 11-inch,
function: 20 pound paper.
Alternatives: stapler, paper clip, fold the corner, put them in a folder.

Example 2

The deficiency: My reports are typically composed of 2 to 20 pieces of 8%z by 11-inch,
20 pound paper. The pages get out of order and get mixed up with pages
of other reports.

Alternatives: stapler, paper clip, fold the corner, put them in a folder, number the
pages, put them in an envelope, throw away the report, convert it to
electronic form, have it bound as a book, put it on audio tape, distribute
it electronically, put it on a floppy disk, put it on microfiche, transform
the written report into a videotape.

2.1 Do Not Use the Word Optimal

The word optimal should not appear in the statement of the problem, because there is no
single optimal solution to complex systems problems. Most system designs have several
performance and cost criteria. Systems Engineering creates a set of alternative designs that
satisfies these performance and cost criteria to varying degrees. Moving from one alternative to
another will usually improve at least one criterion and worsen at least one criterion (i.e., there
will be trade-offs). None of the feasible alternatives is likely to optimize all the criteria
(Szidarovszky, Gershon, and Duckstein, 1986). Therefore, we must settle for less than
optimality. Some subsystems may be considered optimal, but when they are interconnected, the
overall system will not be optimal; the best possible system is not that made up of optimal
subsystems. Furthermore, if the system requirements demanded an optimal system, data could

not be provided to prove that any resulting system was indeed optimal. In general, it can be
proven that a system is at a local optimum, but it cannot be proven that it is at a global optimum.

If it is required that optimization techniques be used, then they should be applied to

- subsystems. However, total system performance must be analyzed to decide if the cost of
optimizing a subsystem is worthwhile. Furthermore, total system performance should be
analyzed over the whole range of operating environments, because what is optimal in one
environment will not necessarily be optimal in another.

2.2 Definition of Customer

The term customer includes anyone who has a right to impose requirements on the system.
This includes end users, operators, bill payers, owners, regulatory agencies, victims, sponsors,
etc. Because Systems Engineering delivers both a product and a process for manufacturing it,
we must also consider the customer of the process.

Let us now illustrate some of these roles for a commercial airliner, such as the Boeing 777.
The users are the passengers that fly on the airplane. The operators are the crew that fly the plane
and the mechanics that maintain it. The bill payers are the airline companies, such as United,
TWA, etc. The owners are the stockholders of these companies. The Federal Aviation
Administration (FAA) writes the regulations and certifies the airplane. Among others, people
who live near the airport are victims of noise and air pollution. If the plane is tremendously
successful, McDonnell Douglas (the manufacturer of a competing airplane) would also be a
victim. The sponsor would be the corporate headquarters of, for example, Boeing.

The users and operators of the process would be the employees in the manufacturing plant.
The bill payer would be Boeing. The owner would be the stockholders of Boeing. Occupational
Safety and Health Administration (OSHA) would be among the regulators. Victims would
include physically injured workers and, according to Deming, workers stuck doing mindless,
repetitive tasks who have little control of the output but are reviewed for performance (Latzko
and Saunders, 1995).

2.3 Who Is the Audience?

Before writing a document you should consider who the audience is going to be. For a
requirements document, the audience is the client and the designers.

System requirements communicate the customer’s needs to the technical community that will
design and build the system, and therefore they must be understandable by both. One of the most
difficult tasks in creating a system is communicating with all subgroups within both groups
(IEEE 1233).

The client and the designers have different backgrounds and needs. Wymore (1993) suggests
two different documents for these two different groups: The Operational Need Document for the
client and the System Requirements Document for the design engineers.

The Operational Need Document is a detailed description of the
problem in plain language. It is intended for management, the
customer and systems engineering....The Systems Requirement
Document is a succinct mathematical description or model of
the...requirements as described in the Operational Need Document.
Its audience is systems engineering.

(Chapman, Bahill, and Wymore, 1992)

Sometimes these are referred to as customer requirements and technical requirements,
respectively.

Intentionally Left Blank

3. What Are Requirements?

Requirements are the necessary attributes defined for a system before design development.
The customer’s need is the ultimate system requirement from which all other requirements and
designs flow (Grady, 1993). In addition, requirements are statements that identify the essential
needs of a system in order for it to have value and utility. Requirements may be derived or based
upon interpretation of other stated requirements to assist in providing a common understanding
of the desired characteristics of a system. Finally, requirements should state what the system is
to do, but they should not specify how the system is to do it. Section 3.1 is an example of a
requirement.

3.1. A Graphic-Editor Grid Facility (Sommerville, 1989)

To assist in positioning items on a diagram, the user may turn on a grid in either centimeters
or inches, via an option on a control panel. Initially the grid is off. The grid may be turned on
and off at any time during an editing session and can be toggled between inches and centimeters
at any time. The grid option will also be provided on the reduce-to-fit view, but the number of
grid lines shown will be reduced to avoid filling the diagram with grid lines.

Good points about this requirement: It provides rationale for the items. It explains why
there should be a grid. It explains why the number of grid lines should be reduced for the
reduce-to-fit view. It provides initialization information: initially the grid is off.

Bad points: The first sentence has three different components: (1) it states that the system
should provide a grid, (2) it gives detailed information about grid units (centimeters and inches),
and (3) it tells how the user will activate the grid. It provides initialization information for some
but not all similar items: it specifies that initially the grid is off, but it does not specify the units
when it is turned on. Section 3.2 shows how the requirement might be improved.

3.2 AnImproved Requirement for the Graphic-Editor Grid Facility
(Sommerville, 1989)

3.2.1 The Grid

3.2.1.1 The graphic-editor grid facility shall produce a pattern of horizontal and vertical
lines forming squares of uniform size as a background to the editor window. The grid shall be
passive rather than active. This means that alignment is the responsibility of the user and the
system shall not automatically align items with grid lines.

Rationale: A grid helps the user to create a neat diagram with well spaced entries. Although
an active grid might be useful, it is best to let the user decide where the items should be
positioned.

3.2.1.2 When used in the “reduce-to-fit” mode the logical grid line spacing should be
increased.

Rationale: If the logical grid line spacing were not increased the background would become
cluttered with grid lines.

Specification: ECLIPSE/WORKSTATION/DEFS. Section x.y

This requirement definition references the requirement specification, which provides details
such as units of centimeters and inches and the initialization preferences.

4. The Requirements Discovery Process

Requirements discovery is one subprocess of the Systems Design Process shown in Figure 1.
Systems Engineering is a fractal process. It is applied at levels of greater and greater detail: It is
applied to the system, then to the subsystems, then to the components, etc. It is applied to the
system being designed and also to the enterprise in which the system will operate. This concept
is shown in a poster that is available at

http://www.sie.arizona.edu/sysengr or
http://www.sie.arizona.edu (click on systems engineering) and at

http://dpopenet.sandia.gov/syseng/index.html

Investigate
Customer State the Discover Algematlv:e Feasible Design
Request Problem Requirements Designs Using Solutien? Yes—»| Product
q Simulations &) & Process
Experiments
Write
— Behavioral
Scenarios
.—» Create Models —

Figure 1. The system design process.
4.1 Identify Customers and Stakeholders

The first step in developing requirements is to identify the customer. The term cusfomer
includes anyone who has a right to impose requirements on the system. This includes end users,
operators, bill payers, owners, regulatory agencies, victims, sponsors, etc. All facets of the
customer must be kept in mind during system design. For example, in evaluating the cost of a
system, the total life cycle cost and the cost to society should be considered. Frequently, the end
user does not fund the cost of development. This often leads to products that are expensive to
own, operate, and maintain over the entire life of the product, because the organization funding
development saves a few dollars in the development process. It is imperative that the Systems
Engineer understand this conflict and expose it. The sponsor and user can then help trade off the
development costs against the cost to use and maintain. Total life cycle costs are significantly
larger than initial costs. For example, in one of their advertisements, Compaq proclaimed “80%
of the lifetime cost of your company’s desktops comes after you purchase them.” In terms of the

personal computer, if total life cycle costs were $10,000, purchase cost would have been $2,000
and maintenance and operation $8,000.

4.2 Understand the Customer’s Needs

The system design must begin with a complete understanding of the customer’s needs. The
information necessary to begin a design usually comes from preliminary studies and specific
customer requests. Frequently the customer is not aware of the details of what is needed.
Systems Engineers must enter the customer’s environment, discover the details, and explain
them. Flexible designs and rapid prototyping facilitate identification of details that might have
been overlooked. Talking to the customer’s customer and the supplier’s supplier can also be
useful. This activity is frequently referred to as mission analysis.

It is the Systems Engineer’s responsibility to ensure that all information concerning the
customer’s needs is collected. The Systems Engineer must also ensure that the definitions and
terms used have the same meaning for everyone involved. Several direct interviews with the
customer are necessary to ensure that all of the customer’s needs are stated and that they are clear
and understandable. The customer might not understand the needs; he may be responding to
someone else’s requirements. Often, a customer will misstate his needs; for example, a person
might walk into a hardware store and say he needs a half-inch drill bit. But what he actually
needs is a half-inch /ole in a metal plate, and a chassis-punch might be more suitable.

If the organization does not have a Vision or Mission statement, then you should write one.
4.3 Define and State the Problem

What is the problem we are trying to solve? Answering this question is one of the Systems
Engineer’s most important and often overlooked task. An elegant solution to the wrong problem
is less than worthless.

Early in the process, the customer frequently fails to recognize the scope or magnitude of the
problem that is to be solved. The problem should not be described in terms of a perceived
solution. It is imperative that the Systems Engineer help the customer develop a problem
statement that is completely independent of solutions and specific technologies. Solutions and
technologies are, of course, important; however, there is a proper place for them later in the
Systems Engineering process. It is the Systems Engineer’s responsibility to work with the
customer, asking the questions necessary to develop a complete “picture” of the problem and its
scope. The Air Force customer did not know that they wanted a stealth airplane until after the
engineérs showed that they could do it.

Figure 2, based on Grady (1995), shows the requirements discovery process. This whole
diagram is the “Discover Requirements” box of the System Design Process shown in Figure 1.

Check for Rewrite
Completeness Requirements

[~ €———— No

Write Ask Why Each Define Validate gffg:‘;}%
System 1 Requirement »1 Figures | the Setof Valid? Requirements
Requirements is Needed of Merit Requirements e
from Active Poo!

Yes

Problem
Statement

Verification

Required N B
Yes-={ Design and Perform Tests L
] Design and
Determine
Yes > Dete No - Perform
Verification Method @ Analysis L

Use to
Mitigate
Risk?

Create Technical Performance
Yes ——>" Yes—>» Measures (TPMS) Track TPMs

Figure 2. The requirements discovery process.

Create Risk System
Mitigation Program Requirements

Yes Yes—»}

-
_—

4.4 Write System Requirements

The process of developing and specifying requirements is often referred to as Requirements
Analysis. The Systems Engineer must interact with the customer to develop the requirements.
The Systems Engineer must involve the customer in the process of defining, clarifying, and
prioritizing the requirements. It is prudent to involve users, bill payers, regulators,
manufacturers, maintainers, and other key players in the process.

Next Systems Engineering must discover the functions that the system must perform in order
to satisfy its purpose. The system functions form the basis for dividing the system into

subsystems. QFD is useful for identifying system functions (Bahill & Chapman, 1993; Bicknell
& Bicknell, 1994).

Although this makes it sound as if requirements are transformed into functions in a serial
manner, that is not the case. It is actually a parallel and iterative process. First we look at system
requirements, then at system functions. Then we re-examine the requirements and then re-
examine the functions. Then we re-assess the requirements and again the functions, etc.

4.5 Consult with the Customer

The Systems Engineer must consult with the customer to ensure that the requirements are
correct and complete. The Systems Engineer and the customer should identify which
requirements can be used as trade-off requirements. The customer should be satisfied that if
these requirements are met, then the system will do what it really needs to do. This should be
done in formal reviews with the results documented and distributed to appropriate parties. All
parties must agree to a way of measuring system performance to ensure that the system does
what the customer wants it to do.

At these reviews it is important to ask why each requirement is needed. This can help to
reduce the number of requirements.

Sometimes the customer is not available for consultation. In such unfortunate situations, a
surrogate customer will have to be used.

4.6 Define Performance and Cost Figures of Merit

Figures of merit are the criteria on which the different designs will be “judged.” Each figure
of merit must have a fully described unit of measurement. Units of power could be horsepower,
for example, and units of cost could be dollars (or inverse dollars if it is desirable to consistently
have “more is better” situations). Suppose a figure of merit were acceleration, then the unit of
measurement could be seconds taken to get from 0 to 60 mph. The units of measurement can be
anything, as long as they measure the appropriate criterion, are fully described, and are used
consistently for all designs. The value of a figure of merit describes how effectively a preference
requirement has been met. For example, a car went from 0 to 60 in 6.5 seconds. It is these
values that are often put into the scoring functions, (Section 6.1, Figure 5), to give the
requirements scores, which are in turn used to perform trade-off studies. Such measurements are
made throughout the development of the system.

4.7 Validate System Requirements

Validating requirements means ensuring that the requirements are consistent and that a real-
world solution can be built and tested to prove that it satisfies the requirements. Each
requirement should be technically feasible and fit within budget, schedule, and other constraints.
Requirements are often validated by reference to an existing system that meets most of the
requirements. The requirements that are not satisfied by the existing system are validated by
argument, modeling, or simulation.

4.8 Describe the Verification Process

A critical element of the requirements development process is describing the tests, analysis or
data that will be used to prove compliance of the final system with its requirements. Each test
must explicitly link to a specific requirement; this will help expose untestable requirements. The
specification of the testing process informs the producers of the systems how the system will be

tested. In other words, they know how they will be “graded.” This process frequently uncovers
overlooked requirements.

At this time it may be useful to examine the following definitions.

Validating a System: Building the right system; making sure that the system does what it is
supposed to do. It determines the correctness of an end product, compliance of the system with
the customer’s needs, and completeness of the system.

Validating Requirements: Ensuring that the set of requirements is consistent, that a real-
world solution can be built that satisfies the requirements, and that it can be proven that such a
system satisfies its requirements. If Systems Engineering discovers that the customer has
requested a perpetual-motion machine, the project should be stopped.

Verifying a System: Building the system right; ensuring that the system complies with its
requirements. It determines the conformance of the system to its design requirements. It also
guarantees the consistency of the product at the end of each phase, with itself and with the
previous prototypes. In other words, it guarantees the honest and smooth transition from model
to prototype to preproduction unit to production unit.

Verifying Requirements: Examination, analysis, test, or demonstration that proves whether
a requirement has been satisfied. This process is iterative. The requirements should be verified
with respect to the model, the prototype, the preproduction unit, and the production unit.

Verification and Validation: MIL-STD-1521B (and most Systems Engineers) and DoD-
STD-2167A (and most software engineers) use the words verification and validation in almost
the exact opposite fashion. For Systems Engineers, to validate a set of requirements is to prove
that it is possible to satisfy them. System verification, on the other hand, is a process of proving
that a system meets its requirements (Grady, 1994). To add further confusion, ISO-9000 tells
you to verify that a design meets the requirements and validate that the product meets
requirements. NASA has a different spin. It says that verification consists of proving that a
system (or a subsystem) complies with its requirements, whereas validation consists of proving
that the total system accomplishes its purpose. (Shishko, 1995). Thus it is necessary to agree on
the definitions of verification and validation as these terms pertain to your system.

4.9 Define Technical Performance Measures

Technical performance measures (TPMs), or metrics, are used to track the progress of the
design and manufacturing process. They are measurements that are made during the design and
manufacturing process to evaluate the likelihood of satisfying the system requirements. Not all
requirements have TPMs, just the most important ones. In the beginning of the design and
manufacturing process, the prototypes will not meet the TPM goals. Therefore the TPM values
are only required to be within a tolerance band. It is hoped that as the design and manufacturing
process progresses the TPM values of the prototypes and preproduction units will come closer
and closer to the goals.

As an example, let us consider the design and manufacture of solar ovens (Funk & Larson,
1994). In many societies, particularly in Africa, many women spend as much as 50% of their
time acquiring wood for their cooking fires. To ameliorate this sink of human resources, people
have been designing and building solar ovens. Let us now examine the solar oven design and
manufacturing process that we followed in a Freshman Engineering class at the University of
Arizona.

First we defined a TPM for our design and manufacturing process. When a loaf of bread is
finished baking, its internal temperature should be 95°C (203°F). To reach this internal
temperature, commercial bakeries bake the loaf at 230°C (446°F). As initial values for our oven
temperature TPM, we chose a lower limit of 100°C, a goal of 230°C, and an upper limit of
270°C. The tolerance band shrinks with time as shown in Figure 3.

In the beginning of the design and manufacturing process, our day-by-day measurements of
this metric increased because of finding better insulators, finding better glazing materials (e.g.,
glass and mylar), sealing the box better, aiming at the sun better, etc.

At the time labeled “Design Change-1,” there was a jump in performance caused by adding a
second layer of glazing to the window in the top of the oven. This was followed by another
period of gradual improvement as we learned to stabilize the two pieces of glazing material.

At the time labeled “Design Change-2,” there was another jump in performance caused by a
design change that incorporated reflectors to reflect more sunlight onto the window in the oven
top. This was followed by another period of gradual improvement as we found better shapes and
positions for the reflectors.

But, in this case, it seemed that we might not attain our goal. Therefore we re-evaluated the
process and the requirements. Bread baking is a complex bio-chemical process that has been
studied extensively: Millions of loaves have been baked each day for the last four thousand
years. These experiments have revealed the following consequences of insufficient oven
temperature:

(1) Enzymes are not deactivated soon enough and excessive gas expansion causes coarse
grain and harsh texture.

(2) The crust is too thick, because of drying caused by the longer duration of baking.

(3) The bread becomes dry, because prolonged baking causes evaporation of moisture and
volatile substances.

(4) Low temperatures cannot produce carmelization and crust color lacks an appealing
bloom.

After consulting some bakers, our managers decided that 190°C (374°F) would be sufficient
to avoid the above problems. Therefore, the requirements were changed at the indicated spot and
our TPM was then able to meet our goal. Of course this change in requirements forced a review

14

"anseswr souewoyrad [eoluyoo) y ¢ a3y

SwiLL

jo9loud jo
uonsjdwod

%

SMOIADY pue SBUOISI|IN

%

sjuswaiinbay
uj abueys

\% \% Vv

Z - obueyn | - abuey)n
ubjsaQg ubiseq

!

9, ainjesadwia] UaAQ

Y

001

061

0ee

0L¢

15

of all other requirements and a change in many other facets of the design. For example the
duration weight tables had to be re-computed.

If sugar, eggs, butter and milk were added to the dough, we could get away with temperatures
as low as 175°C (347°F). But we decided to design our ovens to match the needs of our
customers, rather than try to change our customers to match our ovens.

4.10 Risk Mitigation

Identifying and mitigating program risk is the responsibility of management at all levels in
the company. Each item that poses a threat to the cost, schedule or performance of the project
must be identified and tracked. The following information should be recorded for each identified
risk: name, description, type, origin, probability, severity, identification number, identification
date, identification on the work breakdown structure, risk mitigation plan, responsible team,
needed resolution date, principal engineer, current status, date, signature of team leader. Forms
useful in identifying and mitigating risk are given in chapter 17 of Kerzner (1995), and Section
4.10 of Grady (1995) and chapter 3 of this handbook. For the solar oven project we identified
the following risks.

(1) Insufficient internal oven temperature was a performance risk. Its origin was the
Design project area. It had high probability and high severity. We mitigated it by
making it a technical performance measure, as shown in Figure 3.

(2) High cost of the oven was a cost risk. Its origin was the Design process. Its probability
was low, and its severity was medium. We mitigated it by computing the cost for every
design.

(3) Manufacturing the oven to be tested posed a schedule risk. Its origin was Design and
Manufacturing. Its probability was low, but its severity was very high. We mitigated
this risk by requiring final designs seven days before the scheduled test date and a
preproduction unit three days in advance.

4.11 Review System Requirements

The system requirements must be reviewed with the customer many times. At a minimum
they should be reviewed at the end of the modeling phase, after testing the prototypes, before
commencement of production, and after testing production units.

The objective of these reviews is to find missing requirements, ensure that the requirements
have been met, and verify that the system satisfies customer needs. Additional objectives include
assessing the maturity of the development effort, recommending whether to proceed to the next
phase of the project, and committing additional resources. These reviews should be formal. The
results and conclusions of the reviews should be documented. The Systems Engineer is
responsible for initiating and conducting these reviews.

16

The following definitions based on Sage (1992) and Shishko (1995) might be useful. They
are arranged in chronological order. Although these definitions are written with a singular noun,
they are often implemented with a collection of reviews. Each system, subsystem,
subsubsystem, etc. will be reviewed and the totality of these constitutes the indicated review.

Mission Concept Review: The Mission Concept Review and the Mission Definition
Review are the first formal reviews. They examine the mission objectives and the functional and
performance requirements.

System Requirements Review (SRR): Demonstrates that the product development team
understands the mission and the system requirements. It confirms that the system requirements
are sufficient to meet mission objectives. It ensures that the performance and cost figures of
merit are realistic, and that the verification plan is adequate.

System Definition Review: Examines the proposed system architecture, the proposed
system design, and the flow down of functions to the major subsystems. It also ensures that the
verification plan is complete. This is sometimes called the Conceptual Design Review

Preliminary Design Review (PDR): Demonstrates that the preliminary design meets all the
system requirements with acceptable risk. System development and verification tools are
identified, and the Work Breakdown Structure is examined. Full-scale engineering design begins
after this review.

Critical Design Review (CDR): Verifies that the design meets the requirements. The CDR
examines the system design in full detail, ensures that technical problems and design anomalies
have been resolved, checks the technical performance measures, and ensures that the design
maturity justifies the decision to commence manufacturing. Few requirements should be
changed after this review.

Production Readiness Review (PRR): For some systems there is a long phase when
prototypes are built and tested. At the end of this phase, and before production begins, there is a
production readiness review.

System Test: At the end of manufacturing and integration, the system is tested to verify that
it satisfies its requirements. Technical performance measures are compared to their goals. The
results of these tests are presented at the System Acceptance and Operational Readiness Reviews.

Figure 4 shows the timing of these major reviews.

SRR

Requirements Discovery
Concept PDR CDR
Development A A
System Test
Preliminary Design Detailed Design A
Requirements Validation Manufacturing

Figure 4. Timing of the major reviews.

5. Characteristics of a Good Requirement

5.1 Describes What, Not How

There are many characteristics of a good requirement. First and foremost, a good
requirement defines what a system is to do and to what extent, but does not specify how the
system is to do it. A statement of a requirement should not be a preconceived solution to the
problem that is to be solved. It would be a mistake to require a relational database for the
requirements. To avoid this trap, ask why the requirement is needed, then derive the real
requirements. For example, the following requirements state what is needed, not how to
accomplish it: provide the ability to store, provide the ability to sort, provide the ability to add
attributes.

It should be noted that because QFD is often used iteratively to define requirements, the Zows
in one QFD chart become the whats in the next, making the above statements confusing.

5.2 Atomic

A requirement should be “atomic,” not compound. That is, it should have a single purpose
(one idea per requirement). Furthermore, each requirement should be allocated to a single entity.

5.3 Unique

A requirement should have a unique label, a unique name, and unique contents. Avoid
repeating requirements.

5.4 Documented and Accessible

A requirement must be documented (writing, pictures, images, databases, etc.) and the
documentation must be accessible. In situations where confidentiality is important, each
requirement should clearly indicate classification status. Only those with appropriate clearance
and the need to know should have access to that requirement.

5.5 Identifies Its Owner

A good requirement will identify its owner and custodian, which could be one and the same
person. The requirement’s owner must approve of any change in the requirement.

5.6 Approved

After a requirement has been revised, reviewed, and rewritten, it must be approved by its
owner. Furthermore, each top-level requirement must be approved by the customer.

5.7 Traceable

A good requirement is traceable; it should be possible to trace each requirement back to its
source. A requirement should also identify related requirements (i.e., parents, children, siblings,
cousins).

5.8 Necessary

All requirements should be necessary. System Engineers should ask, “Is this requirement
really necessary? Will the system necessarily be better because of this requirement?” Avoid
over-specifying the system, writing pages and pages that no one will probably ever read. There
are two common types of over specification: gold plating and specifying unnecessary things.
For example, requiring that the outside of a CPU box be gold-plated is not a good requirement
because something far less expensive would probably be just as effective. Also, requiring that
the inside of the CPU box be painted pink is probably an unnecessary request. Over-
specification (of both types) is how $700 toilet seat covers and $25,000 coffee pots get created
(Hooks, 1994). The documentation should include a complete statement of the rationale behind
each requirement.

5.9 Complete
The documentation must be as clear, concise, and complete as possible.
5.10 One Semantic Definition

Avoid the use of synonyms (e.g., The software requires 8 Mbytes of RAM but 12 Mbytes of
memory are recommended) and homonyms (e.g., Summaries of disk X-rays should be stored on
disk). There should only be one semantic definition of each requirement.

5.11 Is Not Always Written

It must be noted that all systems will undoubtedly have many “common sense” requirements
that will not be written. This is acceptable as long as the requirements really are common sense.
An exhaustive list of requirements would take years upon years and use reams of paper, and even
then you would probably never finish.

5.12 Quantitative and Testable

Quantitative values must be given in requirements. A requirement states a necessary attribute
of a system to be designed. The designer cannot design the system if a magnitude is not given
for each attribute. Without quantification, system failure could occur because of: (1) exceeding
the minimum necessary cost due to over design, or (2) failing to account for a needed capability.
Quantitative values for attributes are also necessary in order to test the product to verify that it
satisfies its requirements (Grady, 1993).

A requirement must be verifiable by examination, analysis, test, or documentation and
therefore it must have well-defined technical performance measurements. Qualitative words like

20

low and high shall be (at least roughly) defined. What is low cost to a national laboratory and
what is low cost to a small company may be very different. Only requirements that are clear and
concise will be easily testable. Requirements with ambiguous qualifiers will probably have to be
refined before testing will be possible. Furthermore, the value given should be fully described
as, for example, an expected value, a median, a minimum, a maximum, etc. A requirement such
as “reliability shall be at least 0.999” is a good requirement because it is testable, quantified, and
the value is fully described as a minimum. Also the requirement “the car’s gas mileage should
be about 30 miles per gallon” is a good requirement as it establishes a performance measure and
an expected value.

Note that often the customer will state a requirement that is not quantified. For example:
“The system should be aesthetically pleasing.” It is then the engineer’s task to define a
requirement that is quantified, i.e., “The test for aesthetics will involve polling two hundred
potential users; at least 70% should find the system aesthetically pleasing.”

5.13 Identifies Applicable States

Some requirements only apply when the system is in certain states or modes. If the
requirement is only to be met sometimes, the requirement statement should reflect when. There
may be two requirements that are not intended to be satisfied simultaneously, but they could be
at great expense.

For example: The vehicle shall
(1) be able to tow a 2000-pound cargo trailer at highway speed (65 mph),
(2) accelerate from 0 to 60 mph in less than 9.5 seconds.

It would be expensive to build a car that satisfied both requirements simultaneously.

R Your Lights On?

However, as with everything, you can take this principle too far, as illustrated by the
following, which is probably a true story. We first saw it in Gause and Weinberg (1990).

Recently the highway department tested a new safety proposal. They asked motorists to turn
on their headlights as they drove through a tunnel. However, shortly after exiting the tunnel the
motorists encountered a scenic-view overlook. Many of them pulled off the road to look at the
beautiful hills and valleys that stretched as far as the eye could see. When they returned to their
cars, they found that their car batteries were dead because they had left their headlights on. So
the highway department decided to erect signs to get the drivers to turn off their headlights.

First they tried “Turn your lights off.” But someone said that not everyone would heed the
request to turn their headlights on. And it would be impossible for these drivers to turn their
headlights off.

So they tried “If your headlights are on, then turn them off.” But someone objected that
would be inappropriate if it were night time.

So they tried “If it is daytime and your headlights are on, then turn them off.” But someone
objected that would be inappropriate if it were overcast and visibility was greatly reduced.

So they tried “If your headlights are on and they are not required for visibility, then turn
them off.” But someone objected that many new cars are built so that their headlights are on
whenever the motor is running.

So they tried “If your headlights are on, and they are not required for visibility, and you can
turn them off, then turn them off.” But someone objected.

So they decided to stop trying to identify applicable states. They would just alert the drivers
and let them make the appropriate actions. Their final sign said “Are your lights on?”

5.14 States Assumptions

All assumptions should be stated. Unstated bad assumptions are one cause of bad
requirements. Frequently one assumes that weapons are submarine based, but this will not
necessarily always be true, even for the Navy.

5.15 Use of Shall, Should, and Will

A mandatory requirement should be expressed using the word skall (e.g., The system shall
conform to all state laws.). A preference requirement can be expressed using should or may (e.g.,
The total cost for the car’s accessories should be about 10% of the total cost of the car.). The
term will can be used to express a declaration of purpose on the part of a contracting agency, to
express simple future tense, and for statement of fact (e.g., The resistors will be supplied by an
outside manufacturer.) (Grady, 1993).

5.16 Does Not Use Certain Words

The words optimize, maximize, and minimize should not be used in stating requirements,
because we could never prove that we were there. Consider the following criteria: (1) we should
minimize human suffering, and (2) we should maximize the quality and quantity of human life.
A starving child should be fed, even if the child continues to live in misery. However, the
criteria of minimal suffering could lead to the conclusion that the child should die.

Requirements should not use the word simultaneous because it means different things to
different people. Simultaneous might well mean anything from within a few fempto seconds to a
millennium.

5.17 Might Vary in Level of Detail

The amount of detail in the requirements depends upon the intended supplier. For in-house
work or work to be done by a supplier with well-established systems engineering procedures, the

22

requirements can be written at a high level. However, for outside contractors with unknown
systems engineering capabilities, the requirements might be broken down to a very fine level of
detail.

5.18 Respects the Media

Newspaper journalists quote out of context, and headlines do not reflect the content of their
stories. It is important to write each requirement so that it cannot spark undue public criticism of
your project.

23

Intentionally Left Blank

24

6. Requirements Characterizations

There are many orthogonal characterizations of system requirements. Four of those are:
types, sources, expressions or modalities, and input-output trajectories. A thumbnail synopsis of
the characterizations follows.

6.1 Types of Systems Requirements

There are two types of system requirements: mandatory and preference.

Mandatory requirements:

(1) specify the necessary and sufficient conditions that a minimal system must have in
order to be acceptable and are usually expressed with shall and must,

(2) are passed or failed (must not use scoring functions), and
(3) must not be susceptible to trade-offs between requirements.

‘When mandatory requirements have been identified, Systems Engineers propose alternative
candidate designs, all of which satisfy the mandatory requirements. Preference requirements are
then evaluated to determine the “best” designs.

Preference requirements:

(1) state conditions that would make the customer happier and are often expressed with
should and want, :

(2) should use scoring functions (Chapman, Bahill, and Wymore, 1992) to produce figures
of merit, and

(3) should be evaluated with a multicriteria decision technique (Szidarovszky, Gershon,
and Duckstein, 1986) because none of the feasible alternatives is likely to optimize all
the criteria, and there will be trade-offs between these requirements.

Example: 1.3 Competing Characteristics Criteria. As a rule, priority of
consideration shall be given to nuclear safety, reliability and other operational
characteristics and restrictions, in that order. It is understood that technical
feasibility, schedule, and cost are to provide the basis for making trade-offs
among the desired competing characteristics.

Sometimes there is a relationship between mandatory and preference requirements in which a
mandatory requirement might be a lower threshold of a preference requirement. For example,
computer software where 8 Mbytes of RAM are required, but 12 Mbytes are preferred.

A scoring function is used to give a system a normalized score that reflects how the
requirement has been met for each criterion. The value of the figure of merit, using the example
of Mbytes of RAM (Figure 5), is put into the scoring function and a normalized score is returned.
The use of scoring functions allows different criteria to be compared and traded off against each
other. In other words, scoring functions allow apples to be compared to oranges and
nanoseconds to be compared to billions of dollars.

MBytes of RAM Scoring Function

08
06
0.4
02

Score

T

6 7 8 9 10 11 12 13

Random Access Memory (RAM MBytes)

Figure 5. A scoring function for the amount of RAM.
6.2 Sources of Systems Requirements

There are many sources of requirements. The following is by no means an exhaustive list;
however, Wymore (1993) says that only the first six categories are necessary: Input-Output,
Technology, Performance, Cost, Trade-off, and System Test. He says all of the other sources can
be put into one of these six. Grady (1993) says we should have only five categories: Functional,
Performance, Constraints, Verification, and Programmatic. He thinks that most of our sources
are constraints. The EIA/ANSI 632 Standard on Systems Engineering says there are only three:
Functional, Performance, and Constraints (Martin, personal communication). We leave it to the
reader to decide whether or not our list of sources can be condensed.

6.2.1 Input-Output

Wymore (1993) maintains that functional requirements are a subset of input-output
requirements. If an input-output requirement is very tight, then it describes a function. For
example, an input-output requirement for an electronic amplifier could be stated as “the ratio of

the output to the input at 10 kHz shall be 20 dB.” This input-output requirement describes the
function “Amplify the input signal.”

26

The functional requirement “The system shall fasten pieces of paper™ is covered by the input-
output requirement “The system shall accept 2 to 20 pieces of 8% by 11 inch, 20 pound paper
and fasten them together.”

6.2.2 Technology

The technology requirement specifies the set of components — hardware, software, and
bioware — that are available to build the system. The technology requirement is usually defined
in terms of types of components that cannot be used, that must be used, or both. For example, a
Sandia weapon component was required to use CMOS and MNOS integrated circuits with three -
four micron lines. Further, the Intel 80x86 microprocessor family was required and the Motorola
68xxx family was forbidden. Admiral Rickover required that submarine nuclear instrumentation
be done with magnetic amplifiers. Also, the Purchasing Department will often be a source of
technology constraints.

6.2.3 Performance

Performance attributes include quantity (how many, how much), quality (how well),
coverage (how much area, how far), timeliness (how responsive, how frequent), and readiness
(availability, MTBF). An example of performance could be that a car shall accelerate from 0 to
60 mph in 7 seconds or less. Performance is an attribute of products and processes. Its
requirements are initially defined through requirements analyses and trade studies using
customer need, objective, and/or requirements statements (MIL-STD-499B).

Example: 2.3 Performance. The system shall carry xx reentry systems to a
range of xyz nautical miles.

6.24 Cost

An example cost requirement would be that the purchase price cannot be more than $10,000
and the total life cycle cost cannot exceed $18,000.

6.2.5 Trade-off

Trade-off between performance and cost is defined as the different relative value assigned to
each factor. For example, the performance figures of merit may have a weight of 0.6 and the cost
figures of merit may be given a weight of 0.4.

6.2.6 System Test

The purpose of system test is to verify that the design and the system satisfy the
requirements. For example, in an electronics amplifier, a 3-mV, 10-kHz sinusoid will be applied
to the input, and the ratio of output to input will be calculated.

6.2.7 Company Policy

Company policy is another way of stating requirements. For example, Learjet, Inc., has
stated “We will make the airframe, but we will buy the jet engines and the electronic control
systems.”

6.2.8 Business Practices

Corporate business policies might require Work Breakdown Structures, PERT Charts,
Quality Manuals, ES&H Plans, or a certain return on investment.

6.2.9 Systems Engineering

Systems or Software Engineering might require that every transportable disk (e.g., floppy or
Bernoulli) have a Readme file that describes the author, date, contents, software program, and
version (e.g., Word 6.0 or Excel 4.0).

6.2.10 Project Management

Access to source code for all software might be a project management requirement. It takes
time and money to install new software. This investment would be squandered if the supplier
went bankrupt and the customer could no longer update and maintain the system. Therefore,
most customers would like to have the source code. However, few software houses are willing to
provide source code, because it might decrease their profits and complicate customer support.
When there is any possibility that the supplier might stop supporting a product, the source code
should be provided and placed in escrow. This source code remains untouched as long as the
supplier supports the product. But if the supplier ceases to support the product, the customer can
get the source code and maintain the product in house. Therefore, placing the source code in
escrow can be a requirement. Cost, schedule and performance requirements will also be
suggested by project management.

Example: 1.4 Development Schedule. The warhead development schedule
shall support the Missile System Initial Operational Capability (IOC) of January
1, 2001.

6.2.11 Marketing

The marketing department wants features that will delight the customer. Kano calls them
exciters. They are features that the customer did not know they wanted. In the 1970’s, IBM
queried customers to discover their needs. No one mentioned portability, so IBM did not make it
arequirement. Compaq made a portable PC and then a laptop, dominating those segments of the
market. In the 1950’s IBM could have bought the patents for Xerox’s photocopy machine. But
they did a market research study and concluded that no one would pay thousands of dollars for a
machine that would replace carbon paper. They did not realize that there was a need for a
machine that could provide dozens of copies in just minutes.

28

6.2.12 Manufacturing Processes

Sometimes we might require a certain manufacturing process or environment. We might
require our semiconductor manufacturer to have a Class 10 clean room. Someone might specify
that Quality Function Deployment (QFD) be used to help elicit customer desires (although this
would be in bad form because it states a how not a what).

6.2.13 Design Engineers

% 4

Design engineers impose requirements on the system. These are the “build to,” “code to,”
and “buy to” requirements for products and “how to execute” requirements for processes.

Example: 1.5 Design Philosophy. Attention must be directed toward a design
that offers high reliability in a device that will remain in the strategic arsenal
until 2050. Warhead design should be conservative and should not attempt to
extend performance beyond well-established regimes. More specifically, the
warhead design that is developed for this system should:

e Minimize the likelihood of deleterious changes during stockpile life.
o Enhance insensitivity to any changes that may occur.

L Optimize the capability to replicate the design should a warhead rebuild
program be required in the future.

e Allow for unforeseeable excursion beyond those nominal conditions
described in the Stockpile-to-Target Sequence.

6.2.14 Reliability
Reliability could be a performance requirement, or it could be broken out separately.
Example: 3.3 Reliability Considerations. Warhead reliability including the

AF&F shall be consistent with an overall reentry system reliability goal of
0.XxxXXX.

6.2.15 Safety

Some requirements may come from safety considerations. These may state how the item
should behave under both normal and abnormal conditions.

Example: 3.4.6 In the absence of arming and firing signals, the probability of
nuclear detonation for normal and hostile environments specified in the
Stockpile to Target Sequence (STS) shall not exceed:

3.4.6.1 One in 10° per warhead lifetime in the absence of warhead enabling
stimuli.

3.4.6.2 One in 10° per occurrence after application of initial enabling stimuli
and in the absence of final enabling stimuli.

3.4.8 HE Safety. The following are design objectives:

3.4.8.1 The warhead HE shall not ignite or detonate as a result of a free fall of
the assembled reentry system from a distance specified in the STS.

3.4.8.2 The warhead HE shall not detonate when the reentry system is subjected
to the fire environments described in the STS.

3.4.8.3 The warhead HE shall not ignite or detonate as a result of stress caused
by other credible abnormal environments.

6.2.16 The Environment

Concern for the environment will produce requirements, such as forbidding the use of
chlorofluorocarbons (CFCs) or tetraethylchloride (TEC).

6.2.17 Ethics

Ethics could require physicians to obtain informed consent before experimenting on human
subjects.

6.2.18 Intangibles

Sometimes the desires of the customer will be hard to quantify, such as for intangible items
such as beauty, aesthetics, national or company prestige (e.g., putting a man on the moon in the
Apollo project), or ulterior motives such as trying to get a foot in the door using a new
technology (e.g., the stealth airplanes) or starting business in a new country (e.g., China).

6.2.19 Common Sense

Many requirements will not be stated because they are believed to be common sense. For
example, characteristics of the end user are seldom stated. If we are designing a computer
terminal, it would not be stated that the end user would be a human with two hands and ten
fingers. Common sense also dictates that computers not be damaged if they are stored at
temperatures as high as 140°F. Furthermore, we do not write that there can be no exposed high
voltage conductors on a personal computer, but it certainly is a requirement. Many of these
requirements can be found in de facto standards.

6.2.20 Laws or Standards

Requirements could specify compliance with certain laws or standards, such as the National
Electrical Code, City/County Building codes, or the IEEE 1220 Standard for Systems
Engineering.

30

6.2.21 The Customer

Some requirements are said to have come from the customer, such as statements of fact and
assumptions that define the expectations of the system in terms of mission or objectives,
environment, constraints, and measures of effectiveness. These requirements are defined from a
validated needs statement (Customer’s Mission Statement), from acquisition and program
decision documentation, and from mission analyses.

6.2.22 Legacy Requirements

Sometimes the customer has definite specific requirements that are not stated, for example,
“Your last system was robust enough to survive a long trip on a dirt road, so we expect your new
system to do the same.”

6.2.23 Data Collection Activities

If an existing system is similar to the proposed new system, then existing data collection
activities can be used to help discover system requirements because each piece of data that is
collected should be traceable to a specific system requirement. Often it is difficult to make a
measurement to verify a requirement. It might be impossible to meet the stated accuracy. Trying
to make a measurement to verify a requirement might reveal more system requirements.

6.2.24 Government Agencies

Government Agencies are often the source of additional and sometimes obscure
requirements. Sandia projects typically encounter requirements from the Department of Energy
(DOE), the Department of Defense (DoD), the Environmental Protection Agency (EPA), and the
Nuclear Regulatory Commission (NRC). DOE requirements are frequently derived from DOE
Orders and Policies, Engineering Procedures (EPs), Field Office Directives such as the
“Development and Production” Manual, and requirements such as QC-1. Additional DoD
requirements are frequency derived from the DoD Orders and Policies as well as the Military
Standards.

6.2.25 Industry Standards

Projects may be required to comply with certain Industrial or Commercial Standards.
Typical standards that may be the source of requirements include those issues by ANSI, IEEE,
EIA, and SAE.

6.2.26 Other Sources

There are many other sources of system requirements: human factors, the environment (e.g.
temperature, humidity, vibration, etc.), the end user, the operator, victims, management,
company Vvision, future expansion, logistics, the US Congress, and compatibility.

31

6.3 Expressions or Modalities

For some purposes, the best expression of the requirements will be a narrative where words
are organized into sentences and paragraphs. Such documents are often called operation
concepts or operational needs. But all descriptions in English will have ambiguities, both
because of the language itself and the context in which the reader interprets the words.
Therefore, for some purposes the best description of a system will be a list or string of shall and
should statements. Such a list would be useful for acquisition or acceptance testing. However, it
is still very difficult to write with perfect clarity so that all readers have the same understanding
of what is written.

Other modalities that can be used instead of written descriptions include:

. Wymorian Notation (Wymore, 1993)

. Finite State Machines (Katz, 1994)

. Algorithmic State Machine Notation (Katz, 1994)

. Hardware

. Object-Oriented Models (Booch, 1994; Rumbaugh et al., 1991; Jacobson et al., 1995)
. Special purpose, requirements management, computer programs

The big advantage of these modalities over the English language is that they can be rigorous
and executable by computer. This greatly helps to point out contradictions and omissions. It
also allows you to perform a sensitivity analysis of the set of requirements to learn which
requirements are the real cost drivers (Karnavas et al., 1993).

6.3.1 Prototype

A publicly assessable prototype can express the system requirements as they are currently
understood. Of course many functions will not be implemented; instead there will only be a
statement of what the functions are intended to do. Such a system is easy to update and it helps
everyone understand what the requirements are.

6.3.2 Users Manual

The Users Manual should be written by future users early in the system design process
(Shand, 1994). This helps get the system requirements stated correctly and increases user “buy
in.”

6.4 Input and Output Trajectories

Input and output trajectories are descriptions of input and output values as functions of time.

32

6.4.1 Behavioral Scenarios

A powerful technique for describing the functional behavior of a system and for discovering
requirements is describing typical sequences of events that the proposed system will go through.
Such descriptions of behavior as a function of time are called trajectories, behavioral scenarios,
use cases, threads, operational scenarios, logistics, or interaction diagrams.

The basis of these diagrams is to list the system’s objects (or components) along the top of
the diagram. Then, with time running from top to bottom, list the messages that are exchanged
between the objects. Alternatively, the arrows could be labeled with data that is exchanged
between the components. Examples of behavioral scenarios for an AF&F are given in Figures 6
through 8. These examples were derived using object-oriented modeling. This technique relies
on collecting a large number of behavioral scenarios. This collection then describes the desired
system behavior. Additional scenarios can be incrementally added to the collection. Behavioral
scenarios are easy for people to describe and discuss, and it is easy to transform them into a
system design. (See also Appendix E of Volume II for an example of an automated teller
machine (ATM) behavioral scenario.)

6.4.2 [Input-Output Relationships
Wymore (1993) shows the following six techniques for writing input-output relationships.
These techniques have different degrees of precision, comprehensibility, and compactness.

(1) For each input value, produce an output value. For example, multiply the input by 3:

output(t+1) =3 * input(t)
(2) For each input string, produce an output value. For example, compute the average of
the last three inputs:
output(t+1) = (input(t-2) + input(t-1) + input(t))/3
(3) For each input string, produce an output string. For example, collect inputs and label
them with their time of arrival:
For an input string of 1, 1, 2, 3, 5, 8, 13, 21, the output string shall be (1,1),
(2,1), (3,2), (4,3), (5,5), (6,8), (7,13), (8,21). All strings are finite in length.
(4) For each input trajectory, produce an output trajectory. For example, collect inputs and

label them with their time of arrival.

For an input trajectory of 1, 1, 2, 3, 5, 8, 13, 21, . . . the output trajectory would be
(1,1, (2,1), (3,2), (4,3), (5,5), (6,8), (7,13), (8, 21) . . . A trajectory may be infinite in
length.

(5) For each state and input, produce a next state and next output. For example, design a
Boolean system where the output is asserted whenever the input bit stream has an odd
number of 1s. This Odd Parity Detector can be described as:

Z1=(SZ1,1Z1,0Z1,NZ1, RZ1), where

SZ1 = {Even, Odd}, /* The 2 states are named Even and Odd. */
IZ1={0,1}, /* AOoral can be received on this input port. */
0Z1 = {0, 1}, /* The output will be 0 or 1. */

NZ1 = {((Even, 0), Even), /* If the present state is Even and the input is 0,
then the next state will be Even. */ ((Even, 1), Odd), ((Odd, 0), Odd), ((Odd,
1), Even)},

RZ1 = {(Even, 0), (Odd, 1)} /* If the state is Even the output is 0, if the state
is Odd the output is 1. */

(6) Qualitative descriptions, which includes words, sentences, paragraphs, blueprints,
pictures, and schematics. Most of this document has focused on this technique.

The following is a behavioral scenario for an AF&F device in range detonation mode.

Note: Time runs from the top to the bottom of the page.

captain fire control missile programmer range accelerometer strong link fire set HE
monitor
| | 1: Codelntent R | |] | [
| ! 2 Prles ot I | [I] |
l z ; > | | | l |
l [3 RangeD(etonation] { I | ‘ l
[| 1 ™ | I | [I
| | 4: Range | J ! | | |
| l | | ! ! | | !
] L 5: Confimnation | i I | I I
| | l | | | | | |
L% 1 1 | | : | |
I ! 7 Launch J [| | I | |
H | | > s s | | |
! | ! ! 8: Laimched ’ | ' ’
! | l e f — , ! !
' I [I 19: Codelntent) N [i i
[| | | 10: CodeProfile | " |] |
1 | | I | I g | l
| | lll:Safe-to -arm \ [| | |
] | — | l h2: Enable [
! ! ! ! 13: FBIA : l ! !
| ! | (i f — i | I
| | f | 14:Range | f | l |
-—
| | { | | i | | I
l ! | z ! 15; Fuze |) !
| | | | | | | berme
| | { | | | ! | |
| [J | J ! I | |

Figure 6. AF&F Range Detonation Mode

The following is a behavior scenario for an AF&F device in contact detonation mode.

Note: Time runs from the top to the bottom of the page.

missile programmer contact accelerometer strong link fire set

! 7: CodeIntent
[
8: CodeProfile

Figure 7. AF&F Contact Detonation Mode (Backup Only)

The following is a behavioral scenario for an AF&F device in time detonation mode.

Note: Time runs from the top to the bottom of the page.

HE

fire set

strong link

accelerometer

programmer clock range monitor

captain fire control missile

10: CodeProfile
i
I
I

v

o T T S i n]ll.lm.l

8 3 g >
gl #| §| &| % &
g{ ¢+ 8+ S —-E|———+ — — — - Lo
EEIDIE =
M ~ E fist)
- =

s 7] 07 m
- 1 v .n

_ — = - = - =] - e

Figure 8. AF&F Time Detonation Mode

37

Another way to show the interaction between components is with an N-squared (N?) diagram
as shown in this figure. An x indicates an interaction between the components in that column

and row.
Captain X
X C:rilrt?ol X
Missile X X
X XX
X | vonior
X o
| x
s | X
HE

Figure 9. N° diagram for W88 AF&F.

However, we prefer to implement the N-squared (N?) diagram with an arrow instead of an x,
as shown in this diagram. The arrows show the direction of data or information flow.

Captain -
A
Fire -
Control -
A Y
Missile —>:
Y
Program- >@
mer

Range
Monitor

Accelero-
meter
Y
Strong]
Link -

Fire
Set

HE

Figure 10. N? diagram for W88 AF&F.

39

Intentionally Left Blank

40

7. Tools for Gathering Requirements

The following tools are used to help discover and write requirements. See Appendix D for a
comparison of these tools.

. Affinity diagrams
. Force-field analysis

. Ishikawa fishbone (cause-and-effect) diagrams

. Pugh charts
. Quality Function Deployment (QFD)

. Wymorian T3SD

. RDD-100
. CORE
. Slate

Grady (1995A and B) discusses many more tools that Systems Engineers can use to gain
insight into the system and to derive appropriate requirements.

Intentionally Left Blank

42

8. Other Related Terms

8.1 Requirements Versus Constraints

The terms requirements and constraints are sometimes used interchangeably. However, a
design constraint can be defined as a boundary condition within which the designer must remain
while satisfying the performance requirements (Grady, 1993). With this definition, almost all of
the requirements mentioned in this document (except for performance and system test) could
alternatively be called constraints.

8.2 Requirements Versus Goals

The term goal is often used for a requirement that cannot be tested. Grady (personal
communication) calls them requirements and desirements. For example, a requirement may be
that “The hole shall be 5 mm in diameter, plus or minus 0.5 mm.” According to Taguchi, a goal
would say, “The hole shall be 5 mm in diameter and the standard deviation should be as small as
feasible.” Some DoD customers use “goal” as a specific value for a preference requirement.

8.3 External Versus Internal

Some engineers characterize requirements as external and internal. External requirements are
driven by customer need. Internal requirements are driven by company practices and resources.
For example, a company might use certain processes or technologies.

8.4 Outcomes, Environments, and Constraints

Some engineers also characterize requirements as outcomes, environments, and constraints.
Outcomes are customer related and are often given in Military Characteristics Documents as
shown in Appendix B. Environmental requirements are given, for example, in the Stockpile-to-
Target Sequence. These requirements change as the system design progresses. Finally,
constraints, such as laws that have to be obeyed or standards that have to be followed, are often
left unstated for the sake of brevity.

8.5 Requirement Definition Versus Specification

A requirements definition set, which we usually call the requirements, describes the functions
the systems should provide, the constraints under which it must operate, and the rationale for the
requirements. It should be written in plain language. It is intended to describe the proposed
system to both the customer and the designers. It should be broad so that many alternative
designs fit into its feasibility space.

The requirements specification, which we usually call the specification, provides a precise
description of the system that is to be built. It should have a formal format and might be written
in a specialized language. It is intended to serve as the basis of a contract between Purchasing
and Manufacturing. It should narrow the feasibility space to a single point that is the system to
be manufactured.

The set of requirements determines the boundaries of the solution space. The specifications
define one and only one solution within that space. The requirements say what, the
specifications say how.

These definitions came out of the software engineering literature (Sommerville, 1989). The
systems engineering literature is seldom as clear. Often the best we get is “A specification is a
big document that contains a lot of requirements.” (Jim Martin and Ivy Hooks, personal
communications, 1995.) Because of the variable usage in the literature, if customers use the term
specification, you should ask them what they mean by the term.

Why do so many people write the requirements after the system has been built? Perhaps they
(1) write the requirements up front, (2) develop the requirements into specifications, and (3)
build the system, continually updating the specifications but not the requirements. Consequently
when they deliver the system and the customer asks for the requirements, they must go back and

write them.

44

9. Heuristic Examples of Requirements

9.1 A Nuclear Warhead
Assumption: It is assumed that this warhead will be on a submarine based missile.
2.1 Destructive Capability
The warhead shall have at least a 90% kill probability against a certain target.
2.1.1 Yield

The warhead shall provide a nominal yield of xxx kilotons of TNT equivalent. (Note: Itis
probably inappropriate to specify yield in a requirement, because this restricts consideration of
alternative designs.)

This requirement cross references 1.1 (below), The System Mission.

1.1 System Mission

The system shall carry yz reentry systems Vto a range of xxxx nautical miles with a circular
error probable of yy meters.

Note: This mission statement violates our singleness of purpose rule of thumb.
9.2 An Automatic Teller Machine (ATM) Example

LaPlue, Garcia, and Rhodes (1995) say that a requirement should contain (1) specification of
the system output, (2) conditions under which the requirement must be met, (3) external inputs
associated with the requirement, and (4) all characteristics that determine if the system output is
correct. They have organized this into a standard template:

The system name shall produce <output>
for use by <nodes>,
if <conditions>,
using <inputs>,
where <quality factor>.

They offer the following example.

plomssed

93 JO NB1p feUL) JO SPUODIS 7 UIYIM PInSS] S1 2FeSSaul Ay} 212YyM pue
81°2'¢ uonoss ‘uoneolyroadg

90vJIoU] YURg [R1US)) SY} UL POLJIoads se ST JBULIO) PUB JUSIUOD oY) dIoym

plomssed paisjus-1asn pue paed yueq ay) Jursn
apoo 2[qepEal B SUIRIUOD pIed Jueq 3u) JI pue
pIomssed B parsIud sey Josn NIV Y} Ji

jueg] [enua)) ay1 £q 9sn 1o

93esSoA] JUN020Y AJLIDA 9y sonpoad [[eys WLV ayL

93eSSaA] JUNOSOY AJII0A

Jued [enusd oYy, 7't

sofussopy Joug sonpold H1°E

['€ uomnoss ‘suoneoydedg
preD yuegq ur payoads se ST uonepiea pue Suipeos spod oyj ISYM o
pieo yueq oY) Suisn o
2PO0O PIjeA B UIBIUOD JOU S0P PIEd Jueq 2y} JI pue .
PJeo Jueq © paLasUl SBY JOSh LY Y J1
19SN LV 29U} £q asn Joj
paeo yueq oy sonpoad [jeys WLV YL
spieo ojqepearun 199fy 7'C'1°€E

1'ce

1sanbay] sjeuIULIA],
2y Jo 1d1a9a1 oY) JO SPUOISS T UIYNM Pa3oafa ST pae)) yueg oyl JI0YM
1sanbay sjeuIwIa], oY) pue pre)) yueq oY) Suisn .
UOISS3S JO UONBUIULIS] Pjsanbal sey 1asn ALY Y1 JI pue .
PIed queq B pajIosul SeY 1osn ALY oY1 JI »
JaSn ALY oY1 £G 3sn J0J
pIed jueq oy 2onpoad Jjeys INLV YL

UOISS3S JO PUD 18 pIBd jueq 103l 1'€'1°¢€

prey 0alg £1°¢

“yueq [eNUS) Y WOoIJ 9TLSSIIA] UOHEPIEA [EMBIPRIM Y3 JO
1d15931 5Y) JO SPU0DIS (7 UIIIM Pasuadsip St yses oY) 210ym pue

paisenbas unowe ay) sjenba paonpoid yses Jo Junouie oY) d1YM
JIasn oy} wioyy jsanbas [emerpynm oy pue
jueg [esua)) oy} WolJ 93eSSOJA UOHIBIIJIIOA JUN0IOY dTf) puw
jyueg [enus) oY) Woay 3Fessoj UOHEPHEA [eMBIPYIIA Y3 Juisn
parsanbai yseo ay} spasoxa puey Uo ysesd WLV 2yl Ji pue
JUNoWe [eMEIPYIM S} SajepI[eA jueg] [enjud)) sy) Ji pue
plomssed pue Junodoe oY) SOIJLIOA ueg [enud)) Y} JI pue
Temespyiim © pajsenbal Josn WLV oy JI
19sn LV 91 Aq 9sn Jof

yseo sonpoad j[eys NIV YL
ysed 2alp TTE

1d1a0ay 2onpoid

I're

1081 WLV 4L

sjuowaxnbay uonoesuely, (¢

aulyoey Jo]|9 1 pajewo}ny ue Joj syuawaldinbay

I't

46

This example shows many of the features of good requirements that were mentioned in this
chapter. The numbering scheme manifests the tree structure of this set of requirements: parent,
child and sibling relationships are clear. References are made to the specifications. In each
requirement the customer is identified: e.g., the ATM user, the central bank. Many behavioral
scenarios were used to elicit these requirements. Performance figures of merit are given, they are
specified as maximum values, units are given, and they are testable: e.g., cash must be dispensed
within 10 seconds. The requirements state what, not how: e.g., The ATM shall produce cash.
The requirements identify applicable states with the conjunctive if clauses. The word choice is
correct.

Intentionally Left Blank

48

10. Glossary

Behavioral Scenarios: A common technique for describing the functional behavior of a
system and discovering requirements is to describe typical event sequences expected of the
proposed system. Such descriptions of behavior as a function of time are called trajectories,
behavioral scenarios, use cases, threads, operational scenarios, or interaction diagrams.

Critical Design Review (CDR): This review verifies that the system design meets its
requirements. It examines the system design in full detail, ensures that technical problems and
design anomalies have been resolved, and ensures that the design maturity justifies the decision
to commence manufacturing. Few requirements should be changed after this review.

Customer: Anyone who has a right to impose requirements on the system. This includes
end users, operators, bill payers, owners, regulatory agencies, victims, etc.

Customer Needs: The customer may not be aware of the details of what is needed. Systems
Engineers must enter the customer’s environment, discover the details, and explain them.
Flexible designs and rapid prototyping facilitate identifying details that might have been
overlooked. Talking to the customer’s customer and the supplier’s supplier is also useful.

Mission Concept Review: The Mission Concept Review and the Mission Definition
Review are the first formal reviews. They examine the mission objectives and the functional and
performance requirements.

Preliminary Design Review (PDR): This review demonstrates that the preliminary design
meets all the system requirements with acceptable risk. System development and verification
tools are identified, and the Work Breakdown Structure is examined. Full-scale engineering
design begins after this review.

Production Readiness Review (PRR): For some systems there is a long phase when
prototypes are built and tested. At the end of this phase, and before production begins, there is a
production readiness review.

Requirement Analysis: Requirements analysis establishes what the system must be capable
of accomplishing: how well system products must perform in quantitative, measurable terms;
the environments in which system products must operate; and constraints that will affect design
solutions. The requirements are derived from customer expectations, project constraints, external
constraints, and higher level system requirements. These are documented in a requirements
baseline. (IEEE P1220)

Requirement Analysis: Determining system characteristics based on analysis of customer
needs, requirements, and objectives: missions, projected utilization environments for people,
products and processes; and measures of effectiveness. Requirements analysis helps the
customers refine their functional and performance requirements. It is a key link in establishing
achievable requirements that satisfy needs. (Martin, 1996)

Requirements: Requirements are statements that identify the essential needs for a system in
order for it to have value and utility. Requirements may be derived or based upon interpretation
of stated requirements to assist in providing a common understanding of the desired operational
characteristics of a system.

Specification: A document that contains the mission statement, technical requirements,
verification criteria, functional decomposition, and interface definitions. When invoked by a
contract, it is legally enforceable and contractually binding.

System Definition Review: This review examines the technical requirements, the proposed
system architecture, the proposed system design, and the flowdown of functions to the major
subsystems. It also ensures that the verification program is described.

System Life Cycle: The system life cycle has seven phases: (1) requirements development,
(2) concept exploration, (3) full-scale engineering design and development, (4) manufacturing,
(5) system integration and test, (6) operation, maintenance and modification, and (7) retirement,
disposal, and replacement. However, the system life cycle is different for different industries,
products, and customer. (Chapman, Bahill, and Wymore, 1992; Wymore, 1993; Kerzner, 1995)

System Requirements: System Requirements provide a description of desired capabilities,
constraints, and other details that pertain to the product’s functional, performance, and physical
characteristics. These descriptions provide the stimulus for investigating product alternatives,
and for making trade-offs among requirement sets. These requirements should establish the
capabilities, physical characteristics, and customer quality attributes that define a quality product
offering within the marketplace.

- System Requirements Review (SRR): This review demonstrates that the product
development team understands the mission and the system requirements. It confirms that the
system requirements are sufficient to meet mission objectives. It ensures that the performance
and cost figures of merit are realistic. It ensures that the verification plan is adequate.

System Test: At the end of manufacturing and integration, the system is tested to verify that
the system satisfies its requirements. The results of these tests are presented at the System
Acceptance and Operational Readiness Reviews.

Validating a System: Building the right system: making sure that the system does what it is
supposed to do. It determines the correctness of an end product, compliance of the system with
the customer’s needs, and completeness of the system.

Validating Requirements: Ensuring that the set of requirements is consistent, that a real-
world solution can be built that satisfies the requirements, and that it can be proven that such a
system satisfies its requirements. If Systems Engineering discovers that the customer has
requested a perpetual-motion machine, the project should be stopped.

Verifying a System: Building the system right; ensuring that the system complies with its
requirements. It determines the conformance of the system to its design requirements. It also

50

guarantees the consistency of the product at the end of each phase, with itself and with the
previous prototypes. In other words, it guarantees the honest and smooth transition from model
to prototype to preproduction unit to production unit.

Verifying Requirements: Examination, analysis, test, or demonstration that proves whether
a requirement has been satisfied. This process is iterative. The requirements should be verified
with respect to the model, the prototype, the preproduction unit, and the production unit.

Verification and Validation: MIL-STD-1521B (and most Systems Engineers) and DoD-
STD-2167A (and most software engineers) use the words verification and validation in almost
the exact opposite fashion. For Systems Engineers, to validate a set of requirements is to prove
that it is possible to satisfy them. System verification, on the other hand, is a process of proving
that a system meets its requirements (Grady, 1994). To add further confusion, ISO-9000 tells
you to verify that a design meets the requirements and validate that the product meets
requirements. NASA has a different spin. They say verification consists of proving that a
system (or a subsystem) complies with its requirements whereas validation consists of proving
that the total system accomplishes its purpose. (Shishko, 1995)

Work Breakdown Structure: A product-oriented tree of hardware, software, data,
facilities, and services. It displays and defines the products to be developed and relates the
elements of work to be accomplished to each other and to the end product. It provides structure
for guiding team assignments and cost and tracking control. (Martin, 1995)

Intentionally Left Blank

52

11. References

Bahill, A.T. and Chapman, W.L., “A tutorial on quality function deployment,” Engr
Management J, 5(3):24-35, 1993.

Bharathan, K., Poe, G.L. and Bahill, A.T., “Object-Oriented Systems Engineering,” Systems
Engineering in the Global Market Place, proceedings of the Fifth Annual Symposium of
the National Council on Systems Engineering, July 22-26, 1995, St. Louis.

Bicknell, K.D. and Bicknell, B.A., The Road Map to Repeatable Success: Using QFD to
Implement Changes, CRC Press, Boca Raton, 1994.

Booch, G., Object-Oriented Analysis and Design, Benjamin Cummings, 1994.
Chapman, W.L., Bahill, A.T. and Wymore, W., Engineering Modeling and Design, 1992.

Funk, P.A. and Larson, D.L., “Design features influencing thermal performance of solar box
cookers,” presented at the 1994 International Winter Meeting, paper No. 94-6546,
American Society of Agricultural Engineers.

Gause, D.C. and Weinberg, G.M., Are Your Lights On? How to Figure Out What the Problem
Really Is, Dorset House Publishing, NY, 1990.

Grady, 1.0., System Requirements Analysis, McGraw Hill Inc., 1993.
Grady, J.0., System Integration, CRC Press, Boca Raton, 1994.

Grady, J.O., System Engineering Planning and Enterprise Identity, CRC Press, Boca Raton,
1995A.

Grady, J.0., System Requirements Analysis Student Manual, JOG System Engineering, San
Diego, 1995B.

Hooks, 1., Writing Good Requirements, Proceedings NCOSE, pp. 197-203, 1994.
IEEE P1220 Standard for Systems Engineering, IEEE Standards Dept., NY, 1994.

IEEE P1233 Guide For Developing System Requirements Specifications, IEEE Standards Dept.,
NY, 1993.

Jacobson, 1., Ericsson, M. and Jacobson, A., The Object Advantage: Business Process
Reengineering with Object Technology, Addison-Wesley, New York, 1995.

Karnavas, W.J., Sanchez, P. and Bahill, A.T., “Sensitivity analyses of continuous and discrete
systems in the time and frequency domains,” JEEE Transactions on Systems, Man and
Cybernetics, SMC-23: 488-501, 1993.

Katz, R., Contemporary Logic Design, Benjamin Cummings, 1994.

Kerzner, H., Project Management: a Systems Approach to Planning, Scheduling, and
Controlling, Van Nostrand Reinhold, New York, 1995.

LaPlue, L., Garcia, R.A., and Rhodes, R., “A rigorous method for formal requirements
definition,” Systems Engineering in the Global Market Place, Proceeding of the Fifth
Annual Symposium of the National Council on Systems Engineering, July 22-26, 1995,
St. Louis, pp. 401-406.

Latzko, W.J. and Saunders, D.M., Four Days with Dr. Deming, Addison-Wesley, Reading,
Mass., 1995.

Lawton, R., Creating a Customer-Centered Culture, ASQC, Milwaukee, W1, 1993.

Martin, J. “Requirements methodology: Shattering myths about requirements and the
management thereof,” Systems Engineering in the Global Market Place, Proceeding of
the Fifth Annual Symposium of the National Council on Systems Engineering, July 22-
26, 1995, St. Louis, pp. 473-480.

Martin, J., Systems Engineering Guidelines, CRC Press, Boca Raton, 1996.

MIL-STD-499B, Draft Military Standard for Systems Engineering, AFSC/EN, 1993.
(Note: This standard was not signed by the Department of Defense. They
said that government should not be in the business of writing standards and
that they will adopt standards written by professional societies.)

MIL-STD-1521B (referenced on pages 19 and 34), “Technical Reviews and Audits for Systems,”

NCOSE, Systems Engineering in the Global Market Place, Proceedings of the Fifth Annual
Symposium of the National Council on Systems Engineering, July 22-26, 1995, St.
Louis.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W., Object Oriented Modeling
and Design, Prentice Hall, 1991.

Sage, A.P., Systems Engineering, John Wiley, 1992.

Shand, R.M., “User Manuals as Project Management Tools,” IEEE Transactions on Professional
Communications, 37, 123-142, 1994.

Shishko, R., NASA Systems Engineering Handbook, SP-6105, 1995.
Sommerville, 1., Sofiware Engineering, Addison-Wesley, Reading, Mass., 1989.

Szidarovszky, F., Gershon, M. and Duckstein, L., Techniques for Multiobjective Decision
Making in Systems Management, Elsevier Science Publishers, Amsterdam, 1986.

Wymore, W., Model-Based Systems Engineering, CRC Press, Boca Raton, 1993.

55

Intentionally Left Blank

Distribution

L. Coffman

1000 Independence Avenue SW
Room 1J054

Washington, DC 20585

MS 0769 Dennis S. Miyoshi, 5800
0461 L. Paul Page, 14702
0461 Susan L. Harris, 14700
0863 Carol A. Murry, 14004
0458 Stephen J. Rottler, 09003
0429 Ronald D. Andreas, 2100
9005 J.B. Wright, 2200
0509 W.D. Williams, 2300
0301 D.J. Rigali, 2400
0842 C.M. Hart, 2500
0985 J.H. Stichman, 2600
0481 T.M. Skaggs, 2167
0481 E.D. Ayers, 2167
0483 J.G. Lewis, 2165
0479 E.J. Barkocy, 2151
0487 G.J. Bloom, 2121
0487 T.D. Geiwitz, 2121
0447 A L. Hillhouse, 2111
0435 K.R. Eklund, 2102
0435 J.C. Dalton, 2102
0965 T.G. Taylor, 5711

(50) 0435 F.F. Dean, 2102

(42) 0435 A.T. Bahill, 2102
0435 A.L. Bentz, 2102
0435 AR. Busse, 2102
0435 M.H. Chapel, 2102
0435 D.A. Geene, 2102
0445 T.Hendrickson, 2166
0435 G.A. Hultine, 2102
0435 I.M. Jensen, 2102
0435 V. Koonce, 2102
0435 B.A. Lagree, 2102
0435 T. Martinez, 2102
0435 C.T. Naranjo, 2102
0435 S.E. Ohrt, 2102
0435 K. Ortiz, 2102
0435 D.L. Poole, 2102
0435 G.M. Pullen, 2102
0435 R.C. Rentzsch, 2102
0435 I.O. Rivera, 2102
0435 M.E. Senglaub, 2102
0435 F. Vigil, 2102

Dist-1

(1)
(5)
)

0631
0435
0435
0435
0435
0435
0427
0427
0453
0475
0427
0447
0487
0469
0486
0436
0479
0482
0483
0445
0445
9035
9006
9005
9013
9032
9015
9036
9032
9003
9034
9035
9013
9014
9038
9039
0479
0461
0458
0472
0632
0458
0985
9018
0899
0619

W.C. Nickell, 12300
M.M. Witkowski, 2102
JK.H. Yip, 2102
EM. Young, 2102
P.G. Guyer, 2102
D.R. Apodaca, 2102
T.D. Hernandez, 2101
W.R. Reynolds, 2103
D.L. McCoy, 2104
R.C. Hartwig, 2105
P.A. Longmire, 2106
J.D. Harrison, 2111
J.D. Mangum, 2121
D. Chadwick, 15102
M.E. Bleck, 2123
G.L. Maxam, 2147
P.A. Sena, 2151

A.B. Cox, 2161

R.L. Alvis, 2165
D.D. Tipton, 2166
M.A. Rosenthal, 2167
S.M. Ehle, 2201

D.J. Bohrer, 2203
W.G. Wilson, 2204
R.B. Nevin, 2266
M.A. Dremalas, 2211
C.A. Pura, 2221

D.R. Hensen, 2254
C.T. Oien, 2261
C.L. Knapp, 2262

- D.J. Beyer, 2263

R.D. Monson, 2265
R.G. Miller, 2266
T.R. Harrison, 2271
R.W. Finn, 2281
V.E. ByField, 2282
M.G. Orrell, 2151
C.A. Yarnall, 14700
J.R. Asay, 5132
D.J. Allen, 5131
J.C. Hogan, 14707
L.R. Gilliom, 5133
M.W. Callahan, 5202

Central Technical Files, 8523-2

Technical Library, 4414

Review & Approval Desk, 12630

For DOE/OSTI

