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Abstract

A resolution study, employing a 3D nonlinear optimization technique, has been
undertaken to study the viability of magnetotelluric (MT) measurements to detect and
characterize buried facilities that make weapons of mass destruction. A significant
advantage of the MT method is that no active source is required because the method
employs passive field emissions. Thus measurements can be carried out covertly.
Findings indicate it is possible to image WMD facilities, including depth of burial and
lateral extent if a sufficient number of measurements are taken on the perimeter of the
facility. Moreover if a station measurement can be made directly over the facility then the
resolution is improved accordingly. In all cases it was not possible to image the base of
the facility with any confidence as well as provide any preclse inferences on the facxhty
electrical conductivity. This later finding, however, is really not that critical since
knowledge of facility geometry is far more important than knowledge of its conduct1v1ty

For the WMD problem it is recommended that MT measurements be made solely with
the magnetic field ratios. In this context it would then be possible to deploy with far
greater ease small coils about a suspected facility and would allow for the measurements
to be conducted in a more covert manner. Before testing such a measurement system in
the field, however, it would be necessary to carry out a similar resolution analysis as was
done with MT measurements based on electric and magnetic fields. This is necessary to
determine sensitivity of the proposed measurement to underground facilities along with
needed data coverage and quality. Such a study is indispensable in producing useful
reconstructions of underground facilities.



INTRODUCTION

Weapons of mass destruction (WMD) pose grave threats to the security of the
United States and the rest of the free world. Identifying and locating these facilities are
therefore of great importance. Because many facilities are buried at depths greater than
several 10°s of meters, remote sensing methods may be necessary for their detection.
Here we focus on very low frequency (VLF) electromagnetic fields (<10kHz) to detect,
locate and characterize WMD facilities. The use of VLF fields is required since the earth
is a high loss medium, and higher frequency fields such as synthetic aperture radar cannot
effectively penetrate to the required depths. While passive seismic monitoring methods
are currently under investigation for the WMD problem, the use of VLF fields are also
now receiving attention, as evidenced by this report.

Two types of VLF passive measurements are most promising for detecting WMD
facilities. The first, which this report address, uses natural VLF emissions or
magnetotelluric (MT) fields that arise from interaction of the solar wind with the earth’s
jonosphere. The second employs emissions from powerlines directly feeding the facility.

A major obstacle in employing passive VLF fields to image WMD facilities has
been the inability to interpret data. The observed VLF field depends on both the fa¢ility

and local geology. To accurately locate and characterize the facility we must also
characterize the geology. Unfortunately, the facility response is coupled to the geology in
a nonlinear fashion and the geology and topography, of WMD sites is often complex and
rugged. The minimal amount of data sufficient to reliably characterize and locate WMD
facilities is also unknown. Data sets with high spatial sampling are desirable, but not
practical to collect.

To resolve these questions we have carried out a resolution study, employing a
nonlinear inversion technique designed for MT fields. We define -inversion as. a
mathematical process to find the electrical conductivity model of the earth that fits the
measurements to within observational errors. The model yields estimates on facility
location and geometry as well as site geology. More importantly, the inversion process,
quantifies the uncertainties of these estimates in terms of the observational error levels
and data coverage at the site. While the inversion methodology is designed to analyze
field data, it is better first to determine the method’s potential through a resolution study,
before proceeding with the analysis of actual field measurements arising from suspected
WMD facilities.

A significant advantage of using MT data to characterize WMD facilities is that
no active source is required to generate the fields. Since the method employs passive field
emissions, measurements can be carried out covertly. An important obstacle that has
limited the applicability of the method to the WMD problem, however, has been the lack
of 3D inversion schemes capable of simultaneously resolving both the facility and
complex geology. Only in the last few years have full solutions to the 3D MT inverse
problem have started to emerge (cf Newman and Alumbaugh, 1998; Madden and
Mackie, 1993). In this report we will use the Newman and Alumbaugh (1998) scheme to
provide some critical experiment design information that would be needed to detect,
locate and characterize WMD facilities. Since the details of this scheme are not yet
available in the published literature (the work is currently submitted for publication) we
will first present its theoretical basis before proceeding with the resolution analysis of the



WMD problem. Also included in this report (Appendices C and D) is a new
preconditioning technique that we have developed to reduce computation time needed in
the 3D MT forward problem. The forward problem is needed to compute predicted
responses and functional gradients for the inverse problem. Because of time constraints
we could not full implement these procedures in this report.

OVERVIEW OF THE MT METHOD

To help ease the reader into the more difficult technical aspects of the report we
shall first give a brief review of the MT method. In the magnetotelluric method, the
quantities that are measured are horizontal electric and magnetic fields and sometimes the
vertical magnetic field, (Figure. 1). Because these fields are time series resulting from
pulsation of the earth’s magnetosphere, several pre-processing steps are necessary before
inferences can be made about the subsurface conductivity. The first is to Fourier
transform the time series into the frequency domain and form field ratios to eliminate the
unknown source characteristics. These ratios are often referred to impedances and are the
data type used in the analysis of MT fields. A good overview of the MT method can be
found in the monograph of Vozoff (1986) which contains numerous papers on different
aspects of method. More recent developments in the method can be found in the current
geophysical literature.

THE 3D MAGNETOTELLURIC FORWARD PROBLEM

An important consideration in solving the 3D MT inverse problem is that the
forward-modeling solution simulate responses arising from realistic 3D geology.
Hundreds of thousands of cells are required for these types of numerical simulations and
finite difference modeling techniques are very efficient for the task and will be employed
here.

Assuming a time harmonic dependence of &' where i=V-1, a vector equation for
the electric field is written as

Vxu/uVXE+iopu,c E=S. ¢))

In this expression the electrical conductivity and magnetic permeability are denoted by ©
and p respectively, where L, is the magnetic permeability of free space. Specification of
the source vector S, which includes the appropriate Dirichlet boundary conditions,
defines the source field polarization. To simulate natural fields, S is set to zero
everywhere, except at points where tangential electric-field boundary values are
specified. These boundary values arise from plane waves propagating in layered or 2D
geologic media assigned at the boundaries of the 3D problem.

When equation (1) is approximated with finite differences using a Yee (1966)
staggered grid (Figure 2) and symmetrically scaled (cf., Newman & Alumbaugh, 1995;
Alumbaugh et al., 1996), a linear system results where,

KE=§. ()



The matrix K is complex-symmetric and sparse with 13 non-zero entries per row and $’ is a
scaled representation of S. This system can be efficiently solved using the quasi minimum
residual (qmr) method, which belongs to the class of Krylov sub-space techniques that
are highly efficient in iteratively solving sparse linear systems. The reader is referred to
Newman & Alumbaugh (1995) and Alumbaugh et al. (1996) for. the details on how the
solver is implemented. Once the electric fields are determined, the magnetic fields can be
determined from Faraday’s law by numerically approximating the curl of the electric
field at various nodal points and interpolating either the electric or magnetic field nodal
values to the point of interest.

Even with the benefits of a staggered grid, which implicitly enforces the auxiliary
divergence condition on the on the fields, it is often necessary to explicitly enforce these
conditions, where t

V.cE=0 3
and |
V.E=0 (@)

in the earth and air respectively. This is accomplished in the numerical solution through a
static-divergence correction as frequencies approach the static limit. This correction,
developed by Smith (1996), can drastically reduce the time needed to solve equation 2).
It is implemented by adding a term to the electric field such that equations (3) and (4) are
identically satisfied, and is alternated with a series of qmr iterations in equation (2).

THE 3D MAGNETOTELLURIC INVERSE PROBLEM

Regularized least squares
All least squares solutions begin by minimizing the difference between observed
and predicted data, often subject to a constraint, which is employed to stabilize the

inversion process. In the problem considered here, the inverse solution is constrained by
Tikhonov regularization to remove its ill posed nature (Tikhonov & Arsenin, 1977).
Regularization imposes an additional constraint on the data fit: reconstructions are
required to be smoothed versions of the earth’s electrical conductivity, at the expense of
an increase in the error (the difference between the measured and predicted data). Let’s
divide the earth into M cells and assign to each cell an unknown conductivity value; the
magnetic permeability is assumed to be constant and set to its free space value from here
on. Further let m be a vector of length M that describes these values. We now form a cost
functional which combines the data error and model smoothness constraint in the
following fashion: ’

2N
o= El{ (Z-Z)en P +Am" WTW m, 5)



where T denotes the transpose operator. In equation (5), the terms that describe -the
observed and predicted data (magnetotelluric impedances), Z.>* and Z,, are split into

their real and imaginary parts. The summation is over the first N data points are for the
real parts of the impedance and the summation over the last N data points are for the
imaginary parts. The impedance can be any particular component of the impedance
tensor at any given measurement location, where the tensor is given by

. Zxx Zyy
Z - . (6)
Zye Zyy ~

Components of the tensor, which depend on the subsurface conductivity, relate the
measured electric and magnetic fields with each other. For example, Ey = Zy, Hy + Zyy Hy,
gives the contribution to the y-component of electric field arising from the x and y
components of magnetic field. We also weight the data misfit in equation (5) by €, so that
noisier data are given smaller weight when forming ¢.

The parameters that dictate model smoothness are the regularization matrix W,
which consists of a finite difference approximation to the Laplacian (V%) operator, and
the regularization parameter A, which is used to control the amount of smoothness to be
incorporated into the reconstruction. Care needs to be taken in selecting this parameter.
Large parameters will produce highly smooth models, however these models show poor
dependence on the data. Small parameters give superior data fits but the resulting models
can be too rough and non-physical. Our strategy is to run the inversion using several
fixed values of A and select the model that provides an acceptable match to the data
within observational errors and yet yields the smoothest reconstruction. Because we plan
to employ a nonlinear method to minimize the cost functional, A should not be varied
during the iteration procedure. To do so could result in a less efficient algorithm as the
minimum of the cost functional is approached since desirable convergence properties of
the method can no longer be assured. Note that this restriction on A is not necessary when
linearized update methods are applied to the problem, where A can be varied between
updates.

In small scale inverse problems it may be feasible to determine the minimum of
equation (5) with a brute force search in parameter space. For large scale problems, as
considered here, this is not an option. Instead, what is typically done is to set the gradient
of the cost functional, V¢, with respect to the model parameters to zero and find by some
economical means those model parameters that satisfy the critical point. To insure that
V=0 actually defines a minimum instead of a saddle point, second derivative tests are
also necessary to verify that the Hessian of the cost functional is symmetric positive
definite. Because the predicted impedances depend on the model, m, in a nonlinear
fashion, we are required to solve V=0 using an iterative method. From our prior
discussions, the nonlinear conjugate gradient method is ideal for this task.

Nonlinear conjugate gradients
The method of steepest descent is the easiest understood and simplest to
implement of the gradient methods. Unfortunately it usually converges very slowly in



practice. A better approach is the method of nonlinear conjugate gradients, first proposed
by Fletcher & Reeves (1964) for nonlinear optimization, and later improved by Polyak &
Ribiére (1969). The method is closely related to the linear CG method of Hestenes &
Stiefel (1952) and is in fact identical if the objective functional is quadratic and exact line
searches are made with the NLCG algorithm. Listed below is an outline of the Polyak &
Ribiére algorithm that will be used in the analysis:

(1) choose mgjy and select rgy = - Vo( mqy)

(2) set ugy= M(l)'l rg)

(3) find o(i) that minimizes @(mg) + o) ug))

(4) set mgspy = mg + oy ug and rgp=- Vo(mg+ 1)

(5) Stop when | rguy | is sufficiently small, otherwise go to step (6).
-1 -1 -1
(6) set Ban = (e M1y ren-reny Mg 1oV re’ Mg ro

-1
(7) set ugsy= M) v + B ug

(8) Go to step (3)

For now we define M(,) and M(,+1) as identity matrices for all i, with units of (S/m)?

given that the cost functional in equatlon (5) is dimensionless. We will redefine these
matrices later when preconditioning is discussed. To use the NLCG method sensibly
requires that we carefully implement two calculations of the procedure efficiently. These

are (1) calculate the gradient of the cost functional and (2) minimize ¢ along a specified
ray economically, that is, find the value of o that minimizes the expression ¢(m + o) for
specified model parameters m and a given conjugate search direction u.

Computation of the gradients
The gradient of the cost functional in equation (5) is formally written as

Vo =Voi+AVon, MO

where @4 , @m are functionals that relate to the data misfit and the model smoothness
constraint, respectively. Evaluation of V@r, leads immediately to

Vo =2W'Wm , @®

where T denotes the transpose operator.
To compute a specific element of V@4, we redefine the weighted impedance in
equation (5) to be a complex quantity, where



AZ, = cmplx{Re(Z,"" - Z )/Re(g o), IN(Zosn™ - Z nen)/Im(E 1)}, ®)

and for the ke, model parameter we have
N . .
Opq/0mg=-2 R?El (AZ,) 0Z./om, (10)

where * stands for complex conjugation.
Tn Appendix A, model sensitivity elements of the impedance are shown to be

s /0 = g e K K IOy - g7 K (0K O

iy /o = g 1, K @K IO - %7y K (0K 0m0ir)
an
8 /0 = gy K O o) - %7y K (0K IOmeEy)

Oy 0y, = -5 Ty K (0K OmeEr) 22y K (0K OmEs).

These sensitivities quantify small changes in the tensor elements at location j due to small

changes in the kth model parameter. Kl denotes the inverse of the finite difference
stiffness matrix employed in the solution of the forward problem in equation (2) and
depends implicitly on frequency. The electric fields, E; and E;, in equation (11), are also
determined from the forward problem; they provide the two source polarizations
necessary to define the impedance tensor at each frequency. The eight vectors (g jT,“ ,
2t gy 28 iy '8 " 8 ' '8 i'yy 8 i'yy )» specified in Appendix A, are linear
combinations of vectors that interpolate electric and magnetic fields for the two source
polarizations from the forward-modeling finite-difference grid to the receiver site at
location j.
Combining equations (10) and (11) we have
N

N
Bodom, =2 Re{T (0Z:)"g" K (KIomiEn) + = (A7) g K'(@KiomEy)} (12)

where the vectors, ‘g’ and g,  are determined by selecting from equation (11) the
component of the impedance that is being treated according to the summation index. For
. . . 1T _1,T 2, T_2,T

example, if we are treating Z,y;as the ny, data point, then ‘gn =’gj xy and “ga =7gj xy.

It is now possible to show that the number of forward solves needed to evaluate
the gradient in equation (12) is only four per frequency. Two solves are required to obtain
the electric fields E; and E, and two additional solves are needed to compute the fields
arising from the following source distributions



. |
'g" =2 X(AZ) ‘g’ 3)

and
' =2 T2 8 &
Thus if we set |
yT=1gT K (15)
and
2y T=2T K (16)

we then are required to solve the following two forward problems

Kiv=1g an
and

K?v=2g (18)

Here we utilized the fact that KT K In solving these forward problems we also employ
the static divergence correction to accelerate their solutions at the lower frequencies. Here
equatlon (3) is modified to read V o E +V.J=0, where J is the source current den51ty
and is given by either 'g or %g. Additional details on the modified static dlvergence

procedure can be found in Newman & Alumbaugh (1996) and Alumbaugh & Newman
(1996).

The line search

Because a line search is needed to minimize @(m + o), this will require additional
forward solutions. There are number of strategies to carry out the line search, where the
number of forward modeling applications varies. An economical approach, employed
here and presented in detail in Appendix B, is to find o such that ¢(m + au) is
sufficiently decreased along the search direction u. Quadratic curve fitting is also
employed in an attempt to refine o so that an even greater reduction in ¢ is possible.
Here, we use functional and derivative information at one point and functional
information at another, and then fit a quadratic through these pomts to estimate the step to
the minimum. Since cost functional and gradient information is already available at the



descent point, m, from the prior NLCG iteration, we only need to evaluate ¢ at the
second point along the direction of descent. Thus the cost of the quadratic line search is
two additional forward modeling applications per frequency. If the functional increases at
the estimated minimum point, a backtracking strategy is invoked from this point until a
sufficient decrease in the functional is observed. Backtracking can be done because u is a

descent direction, since u * V¢ <0 at ¢(m). We have found in practice that backtracking
is typically not required in our scheme. While it may seem preferable to use higher order
polynomial interpolation such as a cubic to refine the line search, this can be expensive
since it incurs additional functional and possible gradient evaluations (cf., Acton, 1990).
In fact a good preconditioner, without recourse to additional forward modeling, can help
compensate for the approximate line search procedure employed here and is discussed
below.

Preconditioning

The findings of Rodi & Mackie (1998) show that convergence rates for the 2D
MT inverse problem using nonlinear conjugate gradients can be significantly improved
with preconditioning. Nevertheless as Nocedal (1996) points out, the use of a
preconditioner with a NLCG scheme can result in conjugate search direction no longer
being a descent direction and requires reinitializing using the steepest descent direction,
which severely impairs the algorithm’s efficiency. In spite of these dangers, an effective
and robust preconditioner is well worth pursuing, since it would have a tremendous
impact in reducing solution run times for the 3D problem.

The convergence of the NLCG method can be accelerated by choosing a

preconditioner M(l) that approximates the Hessian of the cost functional, where M(l)
requires minimal storage and M(l) . r is easy to compute. M(l) can be fixed or updated

at each iteration of the procedure. We prefer to update Nl(i), since the Hessian is not

constant, except for points near the minimum of the cost functional. When the Hessian is
constant the cost functional can be represented by a quadratic functional in the model

parameters.

While it is too expensive to compute or approx1mate the full Hessian, it is
possible to compute its diagonal for use as a preconditioner. This information is
accessible from computations involved in the NLCG iteration. Using a Quasi-Newton
formula, known as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (cf., Dennis &
Schnabel, 1996) we can recur the diagonal of the Hessian even if its off-diagonal
components are unknown, where

T

T T T
=M +vV o~
_+Vo (m@) Vo (mﬁ)) /Veo (m@) BRI / Y %o (19)

(+1) ®

with yﬁ) = Vo (m (+1)) Vo (m ) The use of this update as a diagonal preconditioner in

the NLCG inversion scheme i 1s Justlﬁed because in the quadratic case with exact line
searches, identical search directions are generated by the BFGS and NLCG algorithms
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(Gill et al., 1981). Additional justification that equation (19) should be an effective
preconditioner comes from the optimization literature, where the Newton search

... -1 . . . . . :
direction, s = M(i) r , if practical to compute, is the optimum choice for functional
minimization. Since full evaluation of M(i) is not realistic, its evaluation using only

diagonal entries is an obvious choice. Thus the effect of the preconditioner on the NLCG
scheme is to attempt to make it behave more like Newton’s method.

Logarithmic parameters

Inverting for log parameters is very desirable since it restricts the parameters to be
positive quantities, which is a physical requirement for the electrical conductivity.
Reformulation of the inverse problem for log parameters with lower bounds requires that
elements of m be redefined as m’x = In{(my - Ibx)/m, }in equations (5) and (8), where my
> Iby, with Ibx > 0 (Newman & Alumbaugh, 1997) and m, equals 1 S/m. The gradient in
equation (10) is also modified to read |

|

N
0p 4 /0 'y = -2 ReZ (mx.- Ib)/mo (AZ;)" Z/omy. (20)

A corresponding modification applies as well to equation (12). Once m’y is updated in the
NLCG iteration, the parameter components that are of interest follow from the expression

my =m, "5+ Iby, 1)

PARALLEL IMPLEMENTATION

In spite of the aforementioned efficiencies of the NLCG method in limiting the
number of forward modeling applications at each iteration of the procedure, 3D fofward
modeling continues to be a bottleneck in achieving acceptable run times. The expensive
components in the procedure, functional gradients and cost functional evaluations, are
traced to the time required to solve the 3D forward problem. This is also compounded
because multiple inversion runs are needed to determine the optimal tradeoff parameter
and sometimes the correct data weighting. Therefore, any reduction in forward modeling
run times would have a corresponding impact in reducing solution times for the
inversion. Another difficulty with forward modeling is that to realistically model a full
3D MT survey over all frequencies and spatial locations may in some instances require a
forward model parameterization of over a million cells, which is impractical on serial
workstations. |

To alleviate these difficulties we have implemented the inversion scheme to run
on parallel computing platforms. These platforms allow for tens to thousands of
processors to operate on the problem simultaneously and significantly reduce solution run
times and greatly increase the complexity and realism of the geological models.; Such
platforms allow for an entire 3D MT -data set to be analyzed concurrently, instead of
partially. In using these machines the idea is to assign a given number of processors in



each coordinate direction (7x in x, ny in y and nz in z) of the model, where the total
number of processors employed is equal to 7x X ny X nz. Because each processor needs
only to make calculations for a subset of the forward and inverse problems, and because
the processors are making their calculations in parallel, the solution time is reduced by a
factor approximately equal to the number of processors employed.

The papers of Newman & Alumbaugh (1997) and Alumbaugh et al. (1996) show
how to implement inverse and forward problems on parallel platforms for controlled
source applications. Generalization to the MT problem is a straightforward extension and
the interested reader is referred to these papers for the additional details. Curently the MT
inversion scheme has been implemented on the 9000-processor Tera-flop machine
available at Sandia National Laboratories. Preliminary analysis of a large field data set
shows the advantages of a parallel version of the scheme, where 28,224 model
parameters were estimated using approximately 13,000 data points. A speed up of a
factor of 42 was observed when 512 Pentium II processors were applied to the problem
compared to a single processor IBM RS-6000 590 workstation (one inversion iteration
required nearly 16 hours on the IBM). If 1,000 processors are employed the speed up
approaches two orders of magnitude. Note that the processor speed on the IBM
workstation is roughly comparable to eight Pentium II processors.

SYNTHETIC EXAMPLES

Two synthetic tests will be presented to demonstrate the benefits of
preconditioning and to examine the solution by inverting a data set produced by the
integral equation modeling code of Xiong (1992). This latter test is very important
because it provides an independent check on the solution. Data simulated with an integral
equation code are susceptible to different types of numerical errors compared to the finite
difference technique, which is employed within the inverse solution.

Consider the 3D model in Figure 3, which represents a 0.1 S/m block embedded
in a 0.01 S/m half-space. The horizontal and vertical dimensions of the body are 200 m
on a side. Its depth of burial is 100 m. The mesh used in both the forward and inverse
computations has been designed to increase with depth, approximately on a log scale,
reflecting the loss of resolution with depth, which is an inherent limitation of the MT
method. One hundred and twenty one MT soundings were simulated using the finite
difference technique at 16 frequencies, from 4,000 Hz to 4 Hz, giving the total number of
data points (real and imaginary) to be 15,488. Each sounding provides all four elements
of the impedance tensor. For the data weights, we simply used one percent of the
impedance of a 0.01 S/m half-space. To more clearly show the benefits of
preconditioning at the later iterations, we did not to add random noise to the data in this
particular example. While preconditioning is also effective when random noise is present,
its benefits can be more dramatically demonstrated without it. Random noise will be
considered in the second test example.

The inversion domain is a rectangular block, 600 m in the horizontal directions
and 500 m in the vertical direction. It is a subset of the forward modeling domain used to
compute functional gradients and predicted data, which is 1,000 m on a side. In this
example 1,764 and 21,952 cells were used to represent the inversion and forward

10



domains. Approximately 1 hour per inversion iteration was required on an IBM RS6000
590 workstation and compares with eight minutes when 125 processors of the teraflop
machine are dedicated to the problem.

The reconstruction shown in Figure 4 yields a smooth model, which compares
favorably with the test model shown in Figure 3. The cross sections centered on x and y
coordinate axis and the conductivity map, between 150 and 200 m depth demonstrate that
the lateral geometry of the target is well resolved. In Figure 5 we show plots of the

squared error against iteration count. A target misfit of one assumes a noise model based
on one percent of the impedance of a 0.01 S/m half-space. It indicates that the solution
matches the data to within observational errors if Gaussian noise was assumed. In' this
example we plot the results using a semi-log scale and ran the preconditioned solution
below the hypothetical noise level to more clearly demonstrate the improvement in
solution convergence obtained through preconditioning. From these results, it is clear that

equation (19) is an effective preconditioner, where at the first iteration Ma) is set to the

identity matrix. Curvature information built up by equation (19) scales and steers the
conjugate search direction to be a better prediction of the minimum. It is in the later
stages of the inversion procedure that the benefits of preconditioning become obvious.
This comes as no surprise, since equation (19) will converge to the Hessian of the cost
functional in the neighborhood about the minimum. Nevertheless, our findings on
effective preconditioners for the 3D inverse problem are preliminary. Rodi & Mackie
(1998) have shown that for the 2D problem, a fixed preconditioner is very effective; we
found this type of preconditioner ineffective for the 3D scheme presented here. Thus we
believe additional research is needed on effective preconditioners for the 3D problem.

The second test model is shown in Figure 6, where two near surface bodies
(conductive and resistive) have been added to demonstrate the inversion code’s capability
to invert data that are affected by static shifts. Here the depth of burial and extent for the
near surface conductor are 10 m. For the resistor they are 15 and 35 m, respectively.
Data for this model were simulated using the integral equation solution of Xiong (1992),
where 1 percent Gaussian random noise was added to the data. The data weights we -
assumed in the inversion are the same as before: one percent of the impedance of a
0.01S/m half-space. Because of the near surface bodies, a fine mesh was employed in the
near surface, where 2,548 and 28,224 cells were used to represent the respective
inversion and forward modeling domains. Three separate inversion runs ‘with
preconditioning were carried out for three different tradeoff parameters of 30, 3 and 0.3
and the corresponding images are shown in Figures 7, 8 and 9. The inversion runs
producing these images were also terminated at different iterations in Figure 10 to study
how small error reductions at the later iterations affect the final image.

For the three different regularization parameters (30, 3 and 0.3) we were not able
to drive the squared error to the assumed noise level in Figure 10. Nevertheless allifinal
error levels are quite close to one and given that there is a component of numerical noise
in the simulation of the data that is clearly non random and non Gaussian, we are not
surprised that we could not achieve the expected fit. It was also found that the tradeoff
parameter of 3 produced the model which that yielded the closest matched to the assumed
noise level. It would be a mistake, however, to say that this image is optimal, given the
non Gaussian nature of the noise. Finally, to successfully invert the data set required 6
hours of CPU time per inversion iteration on the IBM workstation. This compared with 30
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minutes for 125 nodes on the Teraflop machine, which is more than an order of magnitude
faster.

The reconstruction in Figure 7 (A=30) shows that we have clearly recovered
information on both near surface bodies. Not shown, however, is the image illustrating that
the near surface bodies have been projected onto the earth’s surface. Because the highest
frequency component in the data set is only 4 kHz, this frequency is insufficient to resolve
the true depths of the near surface bodies, since the skin depth is 79 m in 0.01 S/m material.
We have also recovered information on the deeper conductor’s geometry (depth of burial
and depth and lateral extents). The maximum conductivity estimates are, however, about a
factor of two too small.

The images employing the smaller tradeoff parameters (Figures 8 and 9) are not
nearly as smooth and show more variability in the conductivity structure, as expected.
Nevertheless, the images also show evidence of the near surface structures. The presence
of the deeper conductor is also clearly indicated, but the maximum conductivity estimates
are a factor two too large. An interesting difference between these two images is the
estimated depth to the base of the deeper conductor. The image along the Y-Z cross
section, based on A = 3, shows the conductor to extend to 500 m depth compared to 400
m depth when A = 0.3. This difference can be explained with the number of NLCG
iterations employed to construct the respective images. Fifty iterations were used to
construct the image in Figure 8, whereas 27 iterations were used in Figure 9. When 20
iterations are used to reconstruct the image for A = 3, the base of the deeper conductor is
better resolved as well as its conductivity (Figure 11). This indicates that the benefit of a
small reduction in the error level at the later iterations can be offset by extraneous
structure in the final image.

In Figure 12, we compare the convergence rate for the case A = 3, with and without
preconditioning. Preconditioning is found to be beneficial, as far fewer iterations are
necessary to drive the squared error to a given level at the later iterations, compared with a
solution that does not use it. The final error level for the solution without preconditioning

required 33 iterations This same error level was achieved in only 20 iterations when the
preconditioned form of the solution was employed. The image produced without
preconditioning is shown in Figure 13 and should be compared directly with Figure 11. In
this example, the image in Figure 11 resolves the deeper conductor somewhat better.

RESOLUTION ANALYSIS OF WMD FACILITIES

The resolution analysis for characterizing WMD facilities will be based on the
model shown in Figure 6. The deeper conductor in that figure can be considered to be a
hypothetical facility, which we desire to image in the presence of near surface geological
variations. The previous results indicate that it is possible to image the facility with
extensive data coverage. The question we pose here in this analysis is the number of
sounding locations and spatial coverage necessary to characterize WMD facilities.

We now consider ten data sets where the spatial coverage varies and the number
of sounding locations range from thirty six to one in Figures 14 through 23. The noise
model we will employ in this analysis is again 1 percent Gaussian random noise with the
data sets once more produced by the integral equation code of Xiong (1992). Finally a
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tradeoff parameter of thirty will be used to invert the data; we selected a larger tradeoff
parameter to help avoid over fitting the data sets and producing reconstructions that are
non-physical. Plots of the squared error against iteration count for the different datalsets
are illustrated in Figures 24 to 33. -

The reconstruction in Figure 14 shows that with thirty six soundings over the
facility one can characterize the depth to the top of the facility and its lateral geometry.
On the other hand, the conductivity of the facility is underestimated and its base depth is
overestimated, as expected from previous results. In addition to the facility, the near
surface conductivity structures have been imaged. The results are quite similar to the
image in Figure 7, where the station density is more than three times greater. The plot of
the squared error (Figure 23) shows that the predicted data match closely with the
observations to within the assumed noise level. In Figure 15 the number of sounding
locations has been reduced to twenty five, where spatial coverage is similar to that in
Figure 14. Once again the facility has been imaged, including its depth of burial and
lateral extent. Estimates of its base depth are not so good, however. It appears that the
base facility extends to 500 m depth. The data fit for this example is also quite good
(Figure 25).

In the next example (Figure 16) we consider nine sounding locations, with eight
on the perimeter of the facility and one directly over it. In this instance it is still possible
. to infer information on the buried facility including its depth of burial and lateral extent.
The plot of the squared error against iteration count indicated that at thirty iterations that
the initial squared error has been reduced by more than a factor ten, but the final error
level is still about fifty percent larger than the assumed noise level (Figure 26).
Nevertheless the image in Figure 16 indicates that we can make clear inferences on the
facility location. In actual practice it may not be possible to make a sounding directly
over the facility. The next the next example, (Figure 17) we explore the resolving power
of the method when soundings are taken only around the perimeter of the facility. In this
situation it is still possible to infer the presence of the facility, including once more its
depth of burial and lateral extent, even though we still cannot fit the data to within the
assumed noise level (Figure 27). However, when fewer soundings are made on the

facility perimeter (Figures 18, 19, 20 and 21) it is not possible to make any clear

inferences about the facility. Plots of the squared error against iteration count for these
examples are illustrated in Figures 28, 29, 30 and 31.

Though it may not be practical, it is worthwhile to investigate the resolving power
of the MT method when a single MT sounding can be taken directly over the facility
(Figure 22). If such a measurement can be made it appears that it is possible to infer the
depth of burial of the facility as well as get a rough idea about the its lateral geometry.
Making inferences about the base depth of the facility is not possible, however. The plot
of the squared error in Figure 32 shows a significant reduction with iteration count
compared with the examples in Figures 28, 29, 30 and 31. This is expected since the
sounding location directly over the facility is greatly influenced by it, where as the
sounding locations on the perimeter are to a much lesser degree. This indicates that when
making these types of measurements it is critical, as well as obvious, to select sites where
the measurements will show the greatest sensitivity to the facility, but yet can be made in
a covert manner. To conclude this section, we consider the case where the single
sounding site is slightly offset from the position directly over the facility (Figure 23). In
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this event, the reconstruction of the facility is considerably degraded. One reason for the
degradation is that the measurement site was selected directly over the near surface
conductor and the image shows that while it is possible to infer the near-surface structure,
its presence may have contributed to the difficulties in imaging the facility. A plot of the

squared error against iteration count in Figure 33 also shows a steep decrease in the

squared error as in Figure 32, but it appears here that the large initial error is caused more
by the near-surface feature than the facility itself.

CONCLUSIONS AND RECOMMENDATIONS

The results of this analysis indicate the following: It is definitely possible to
image WMD facilities, including depth of burial and lateral extent if a sufficient number
of measurements are taken on the perimeter of the facility. Moreover if a station
measurement can be made directly over the facility then the resolution is improved
accordingly. In all cases it was not possible to image the base of the facility with any
confidence as well as provide any precise inferences on the facility electrical
conductivity. This later finding, however, is really not that critical since facility geometry
is far more important quantity to have precise knowledge of than its conductivity. The
results of the resolution analysis indicate that the MT method is capable of providing
geometrical information.

A key concern that should be address if the MT method is ever to be used in
characterizing WMD facilities is the logistics of field deployment. The field set up is
quite cumbersome and involves measurements of horizontal electric and magnetic field.
While the magnetic field measurements can be easily made with small induction coils,
the electric field measurements are far more problematic. Extensive electrical wiring, tens
of meters in length, is needed and this could make covert measurements next to
impossible. For the WMD problem it is recommended that MT measurements be made
solely with the magnetic field ratios. In this context it would then be possible to deploy
with far greater ease small coils about a suspected facility and would allow for the
measurements to be conducted in a more covert manner. Before testing such a
measurement system in the field, however, it would be necessary to carry out a similar
resolution analysis as was done with MT measurements based on electric and magnetic
fields. It is necessary to determine sensitivity of the proposed measurement to
underground facilities along with needed data coverage and quality. Such a study is
indispensable in producing useful reconstructions of underground facilities. Another issue
that needs to be addressed if MT measurements are to be used to characterize WMD
facilities is the electromagnetic response generated by the facility. Since the MT method
uses natural field emissions, the fields generated by the facility can be considered as a
source of noise for the MT measurement. Fortunately the spectral nature of this noise will
most likely be confined to the 50 Hz frequency band and signal processing steps could be
used for its removal before processing and converting the MT measurements into
impedances. On the other hand, direct measurement of this noise could be the basis of a
new approach to characterize WMD facilities.

14



ACKNOWLEDGMENTS

The authors would like to thank Louis Romero for his help in develoi)ing
estimates to gauge the performance of the new preconditioner developed in the Appendix
C and Appendix D of this report. Thurlow Caffey is also acknowledged for his assistance

in the model calculations. This work was performed at Sandia National Laboratories with
funding provided by the Laboratory Directed Research Development Office. Sandia is a
multi-program laboratory operated by the Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under Contract DE-AC04-
94A1.85000.

REFERENCES

Acton, F. S., 1990, Numerical Methods that Work, The Mathematical Association of
America, Washington D.C.

Alumbaugh, D. L., Newman G. A,, PrevostL., & Shadid, J. N., 1996, Three-dimensional
wideand electromagnetic modeling on massively parallel computers: Radio Science, 31,
1-23. :

Alumbaugh, D. L., & Newman G. A., 1996, Electromagnetic modeling of perfect
conductors in an arbitrary host: Extended Abstract of the Society of Exploration
Geophysicists Annual Meeting, Denver Colorado, 978-981.

Dennis, J. E., Jr., & Schnabel, R. B., 1996, Numerical methods for unconstrained
optimization and nonlinear equations, Society for Industrial and Applied Mathematics,
Philadelphia.

Druskin, V., Knizhnerman, L. & Lee, P., 1998, A new spectral Lanczos decomposition
method for induction modeling in arbitrary 3D geometry: Geophysics, in press.

Druskin, V., & Knizhnerman, L., 1994, Spectral Lappraoch to solving three-dimensional

Maxwell’s diffusion equations in the time and frequency domains: Radio Science, 29
937-953.

Druskin V., and Knizhnerman, L, 1988, A spectral semi-discrete method for the
numerical solution of 3-D non-stationary problems in electrical prospecting: Izv. Acad.
Sci. USSR, “Phys. Solid Earth”, 8, 63-74 (Russian; translated into English).

Fletcher R., & Reeves, C. M., 1964, Function minimization by conjugate gradients:
Computer Journal 7, 149-154.

Gill, P. E., Murray, W., & Wright, M. H., 1981, Practical Optimization, Academic Press,
London. ‘

15



Greenbaum, A., 1997, Iterative methods for solving linear systems, Society for Industrial
and Applied Mathematics, Philadelphia.

Hestenes, M. R. & Stiefel, E, 1952, Methods of conjugate gradients for solving linear
systems: J. Res. Nat. Bureau, 49, 409-436.

LaBrecque, D., 1995, A scalar-vector potential solution for 3D EM finite difference

modeling: Proceedings on the International Symposium on Three-dimensional
Electromagnetics, Schlumberger-Doll Research, Ridgefield, Connecticut, 143-152.

Mackie, R. L., & Madden T. R., 1993, Three-dimensional magnetotelluric inversion
using conjugate gradients: Geophy. J. Int., 115, 215-229.

Newman, G. A, & Alumbaugh, D. L, 1998, Three-dimensional magnetotelluric
inversion using non linear conjugate gradients: Submitted Geophysical Joumnal
International.

Newman, G. A., & Alumbaugh, D. L., 1997, Three-dimensional massively parallel
electromagnetic inversion - I. Theory: Geophysical Journal International, 128, 345-354.

Newman, G. A., & Alumbaugh, D. L., 1996, Electromagnetic modeling of subsurface 3D
structures: Proceedings of the International Geoscience and Remote Sensing Symposium
(IGARSS), Omaha, Nebraska, 1941-1944.

Newman, G. A., & Alumbaugh, D. L., 1995, Frequency-domain modeling of airborne
electromagnetic responses using staggered finite differences: Geophysical Prospecting,
43, 1021-1042.

Nocedal, J, 1996, Conjugate gradient methods and nonlinear optimization: In Linear and
Nonlinear Conjugate Related Methods, Edited by L. Adams and J. L. Nazareth: Society
for Industrial and Applied Mathematics, Philadelphia.

Polyak, E., & Ribiere, G., 1969, Note sur la convergence des méthods conjugées: Rev.
Fr. Inr. Rech. Oper., 16, 35-43.

Rodi, W., & Mackie R. L., 1998, Nonlinear Conjugate Gradients Algorithm for 2-D
Magnetotelluric Inversion: submitted to Geophysics.

Smith, J. T., 1996, Conserva;cive modeling of 3-D electromagnetic fields; Part II:
Biconjugate gradient solution and an accelerator: Geophysics, 61, 1319-1324.

Tikhonov, A. N. & Arsenin, V. Y., 1977, Solutions to ill-posed Problems, John Wiley
and Sons, New York NY.

Vozoff, K., 1986, The Maghetotelluﬁc,Methods, Edited by Keeva Vozoff, Geophsyical
Reprint Series, No. 5, Society of Exploration Geophysicists, Tulsa, OK.

14



Vozoff, K, 1972, The Magnetotelluric Method in the Exploration of Sedimentary Basins:
Geophysics, 37, 98-141. ' '

Xiong, Z., 1992, Electromagnetic modeling of 3-D structures by the method of system
iteration using integral equations: Geophysics, 57, 1556-1561. ]

Yee, K. S., 1966, Numerical solution of initial boundary problems involving Maxwell’s
equations in isotropic media: IEEE Transactions on Antennas and Propagation, AP-14,
302-3009.

FIGURE CAPTIONS

Fig. 1 Typical layout of the MT measurement configuration. Time series of the
horizontal electric (Ex and Ey) and magnetic (Hy and Hy) fields are measured at the
earth’s surface. Sometimes the vertical magnetic field (H;) is measured. After Fourier
transformation to the frequency domain, the field quantities are used to from ratios, called
impedances, which are then used to interpret the subsurface conductivity. Figure taken
from Vozoff, (1972).

Fig. 2 Mesh and staggered grid imposed upon the earth model to simulate 3D MT fields.
In the finite difference solution, the electric fields are sampled along cell edges and
magnetic fields, implicitly along the cell faces, while conductivity and permeability
values are assigned to each cell. ' |

Fig. 3 Three-dimensional test model used in the first synthetic example. The top two
panels show depth cross sections over the body, centered on x and y coordinate axis. In
the lower panels, a map view of the model is illustrated between 150 and 200 m depth
along with the station location map. In these panels, the red color indicates the 0.1 S/m
block, 200 m on a side with a depth of burial of 100 m. The blue color represents the 0.01

S/m host.

Fig. 4 Three-dimensional reconstruction of test model in Figure 2, obtained with
preconditioning. The color bar provides the range of the parameter estimates in the
reconstruction, where conductivity estimates between 150 and 200 m depth approach that
of the test body at its center. |

Fig. 5 Plot of solution convergence for inversion runs with and without preconditioning
(solid and dashed curves). The squared error is determined by equation (5), where the
regularization term is not included in the calculation. A tradeoff parameter of twenty was
used in the inversion tests.

Fig. 6 Three-dimensional test model used in the second synthetic example. The two top
panels are X-Z and Y-Z cross sections centered between —75 and —50 m in the y
coordinate and 25 and 50 m in the x coordinate. They show cuts through the near surface
resistive body (violet) and conductive body (green), respectively as well as the deeper
conductor (red) at depth. The lower panel, to the left, shows the lateral positions of the
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near surface bodies between 12.5 and 18.75 m depth. The conductivity color bar scale is
located to the right.

Fig. 7 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of
30. The top two panels are images along the X-Z and Y-Z cross sections illustrated in
Figure 6. The lower right-hand panel is a map view of the reconstructed conductivity
between 150 and 200m depth and should be compared with the depth section in the lower
right hand panel of Figure 3. The conductivity color bar scale for the reconstruction is
shown in Figure 5.

Fig. 8 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of 3.
Conductivity estimates, indicated by the red color cells, range between 0.2 and 0.08 S/m.

Fig. 9 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of
0.3. Once again, conductivity estimates indicated by the red color cells, range between
0.2 and 0.08 S/m.

Fig. 10 A plot of solution convergence for three different tradeoff parameters of 30, 3 and .
0.3.

Fig. 11 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of

3 at 20 iterations. Red color cells indicate that the conductivity ranges between 0.13 and
0.08 S/m.

Fig. 12 A plot of solution convergence with and without preconditioning for the test
model in Figure 6, where the tradeoff parameter is set to 3.

Fig. 13 The 3D reconstruction of test model in Figure 6 based on a tradeoff parameter of
3 at 33 iterations without preconditioning. Red color cells indicate that the conductivity
ranges between 0.13 and 0.08 S/m. This image should be compared with that in Figure 11
to show differences in the respective images at approximately the same data misfit.

Fig. 14 3D reconstruction of a hypothetical facility based on thirty six soundings. The
image in the upper left-hand comer indicates near surface variability of the conductivity
as well as the survey layout. The image in the right hand comer is the reconstruction
between 150 and 200 m depth. The lower two images are cross-sectional images taken
between —75 and —50 in the y coordinate direction and 25 and 50 m in the x coordinate.
The conductivity color bar scale is located to the right.

Fig. 15 3D reconstruction of the facility based on twenty five soundings.
Fig. 16 3D reconstruction of the facility based on nine soundings

Fig. 17 3D reconstruction of the facility based on eight soundings located on the facility
perimeter.
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Fig. 18 3D reconstruction of the facility based on four soundings located on the facility
perimeter.

Fig. 19 3D reconstruction of the facility based on two soundings located on the fadility
perimeter.

Fig. 20 3D reconstruction of the facility based on a single sounding located on the fa&ility
perimeter.

Fig. 21 3D reconstruction of the facility based on a single sounding located on the facility
perimeter.

Fig. 22 3D reconstruction of the facility based on a single sounding located directly over
the facility.

Fig. 23 3D reconstruction of the facility based on a single sounding offset 71 m from the
site located directly over the facility. ‘

Fig. 24 Plot of squared error against iteration count for the reconstruction in Figure 14.
The assumed noise level is indicated by the dotted line.

Fig. 25 Plot of squared error against iteration count for the reconstruction in Figure 15.
Fig. 26 Plot of squared error against iteration count for the reconstruction in Figure 16.
Fig. 27 Plot of squared error against iteration count for the reconstruction in Figure 17. .
Fig. 28 Plot of squared error against iteration count for the reconstruction in Figure 18.
Fig. 29 Plot of squared error against iteration count for the reconstruction in Figure 1?.

Fig. 30 Plot of squared error against iteration count for the reconstruction in Figure 20.

Fig. 31 Plot of squared error against iteration count for the reconstruction in Figure 21.
Fig. 32 Plot of squared error against iteration count for the reconstruction in Figure 22.
Fig. 33 Plot of squared error against iteration count for the reconstruction in Figure 23

Fig. 34 Demonstration of the preconditioner effectiveness at 4 Hz. The test model is that
of Figure 3. The plot shows the number of iterations and computation time needed to
solve equation (C2) for a single source polarization using the gmr method for different

types of preconditioning. Preconditioning based on the approximate solution technique at
low induction numbers is far superior to Jacobi preconditioning. All times are for an IBM
RS-6000 590 workstation.

Fig. 35 Demonstration of the preconditioner effectiveness at 400 Hz.
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Appendix A

Model sensitivity elements for the MT impedance tensor

In order to derive the model sensitivities, we need the predicted impedance tensor,
where two orthogonal source polarizations are required. Following Mackie & Madden
(1993), let the electric and magnetic fields for the two polarizations be denoted by Ey;,

Eyj, Hx],Hyj and Exz, Eyz, sz,ffyz. Thus

Eu1 Hyz- E2 Hy,; E» Hy-Ey Hy
Zoe= , Zay=
Hy Hyy - Hep Hy Hy Hy - Hyy Hy;
(A1)
Ey1 Hys - Eys Hy; Ey Hyy-FEy Hyy
Zyx= s = 4
Hy Hy;-Heo Hy H. Hy-Ho Hy

Differentiating each tensor element in equation (Al) with respect to the kth model
parameter, my , yields

OZ /Oty = {(Hy1Hyy2 - Hyy Hyyp)( HyoOE1/Omy + FjOH,y2/0my - Hy1OF /Oy - Ex20H,; /0my)
-(Exijz - Exz Hy]) q{yzaﬂxj/amk + HxIGHyz/amk - HyJasz/aﬂh( - ijaHyJ/amk)}/
( HziHy2 - Hy Hyy)

OZyy 10my ={(Hy1Hys - Hyz Hyp)( Hy10Fsy/0m0y + Er20H:1/0my - Hy20E1/0my - Fx1OH2 /0my)
'(ExZHxI - Ex] Hx?) a{ yZaHxl/amk + Hx] OH, y2/ aInk -H, -yl aHxZ/ aﬂlk - Hx2aH y]/ amk)} /

(HyiHy2 - Hy Hy)?
(A2)

azyx/ amk ={(-HxIHy2 - HxZ H, yJ) (-HyZBEyI/ amk + EyI OH, y2/ amk" Hy]aEyZ/ amk - Eyzaij /6mk)
~(EyiHyz - Ey» H,y) (Hy20Hy1/0my + Hy0Hy /0y - Hy 0Hyo/Omy - Hyz0Hy1/0my) )/
(I{xIH y2 < HxZ H y1)2

OZyy [0y ={(Hy1Hy - Hxp Hyy)( HOEyo/0my + EypOHy1/0my - Hyz0E,/Omy, - Ey10Hyo /0my)

~(EyoHy; - Eyy Hyp) (Hy20H,1/0my + H.10H,5/0my - Hyy0Ho/Omy - He20H,,1/0my) Y/
(HxiHyz - Hxz Hy)?

An easy check is available on these expressions for a 2D earth model. For both field
polarizations we would have

&y, Hu)=0
and (A3)

(Eyz, sz) %0
(Ex2, Hy)=0.

Thus equations (A2) reduce to
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0Lyl Omy =0
azxylamk= {HyjaExz/amk - ExjaHyI/amk}/ .Hy12
Oyl Oy = {Hi20Ey/0t0y - Eyp0H o/ Oy} Hed

A )

which are identical to expressions derived directly for the 2D MT problem.

The model sensitivities in equation (A2) involve partial derivatives of the electric
and magnetic fields. Following the derivation of Newman & Alumbaugh (1997) we can
relate these derivatives to the forward problem. Consider as an example the x-component
of the magnetic field at location j for a given source polarization, which can be
represented as

(A4

Hy="g"i»E. (AS)

In this expression E is an electric field vector arising from a 3D earth model for a specific
source polarization and has dimension of NTx1, where NT represents the number of electric
field unknowns that are determined from the finite difference forward solution. The vector
hgTj(x) is an interpolator vector for the x-component of the magnetic field at the jth
measurement point and is of dimension 1xNT (T here denotes the transpose operator). This
vector will interpolate the sampled fields on the forward modeling grid to the measurement
point and numerically includes a curl operator that is applied to the electric field. With this
definition an element of the Jacobian matrix is written for x-component of magnetic field as

OHg/Omy, = g i) OE/Omy.. (A6)

From the forward problem, the electric fields are determined from the linear system given
by equation (2). Thus differentiating equation (2) with respect to my yields,

oE/om =K 0K /omE), (AT)
and an element of the Jacobian matrix for the x-component of magnetic field is written as

BHJom, =- "¢ K oK/omE). (49)

Similar expressions can be derived for the other electric and magnetic field componénts.
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Using the above results, terms involving the electric and magnetic field partial
derivatives can be substituted for in equation (A2) to yield

s fom, = e K ORIBIE) - %8 0e K (OKIOMES)

Oy 10imy, = g K (OKIOMEY) - 287, K (0K/mis) -

e /Oy, = g e K (OKIOME) - g7 K (OKIOMLES)

OZyy; /oy, = g%y K (ORIOMES) g7y K (OK/OmE),

where E; and E; are the two electric field polarizations needed to define the impedance
tensor and

g jx= {mx]H y2 - -Hy H}’J) ("HJ’Z J(x) + Exz J(Y)) +
(ExiHy2 - Exp Hy)(-Hez "8 ity + Hy2"g oo J( HuiHyz - Hez Hy))’

%g "= {(HuHy2 - Ho Hy)( 'ExI 2 J(Y)+H 1°8500) +
(BtHy - Exo Hy))(-Hyr 2% + Her 859 )W/ HeaHy - Hyz Hyy)?

gJ xy = {(Hx1Hyz - Hxz Hyp)( "Exz g f{ey) +Hx2 g J(X)) +
(ExoHt - Exy Heo)(-Heo "gity) + Hy2 "8 it )}/ HeaHyz - Heo Hyy)’

gJ xy—{(HxJHyZ - Hy; Hy))( "Hxl g i +Ex1 £ J(x)) +
(ExoHeet - Exy Hyp)(-Hy1 "8V + Her "8 ity )} HeaHlyz - Hep Hyl)’

(A10)

"gi'yx= {(Hx1Hy2 - Heo Hy)(-H, 2 2oy + Eye g i) +
(EyiHyz - Eyp Hy)( -Heo "8 ity + Hy2 "8 09 N HeiHyz - Her Hy)?

%8 yx—{GIxJHy - Hyz Hy))(-E 1 g J(Y)+Hy1 g'ip)) +
(Ey1Hy2 - Eyz Hy)( -Hyi g i® "'Hxl g i)W HxHyz - He Hyl)

"g 1"y ={(HaHy2 - Hoo Hy)( 'ExZ glico + sz g'io) +
(EyoHyr - By Hep) ( 'sz g J(Y)+H}’2 g J(x))}/( H.H,y - Hep Hyl)

’gi'yy= {(HuHy2 - Ho Hy)( -sz gJ(Y)+ 1 gj(x))+
(EyoHzi - Byt He)(-Hyt "8y + He "8 ity )M HuiHyz - Hio Hy)?

The eight vectors in equation (A10) can be interpreted as generalized interpolator vectors,
which involve linear combinations of vectors which interpolate the electric and magnetic
fields from the forward modeling grid to the receiver at location j. These latter vectors
are weighted by the combinations of electric and magnetic fields produced by the
different source polarizations.
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APPENDIX B

The line search algorithm ‘

The line search procedure is to find o such that ¢(m + o) is sufficiently
decreased along the search direction, u. Quadratic curve fitting is also employed in an
attempt to refine o so that an even greater reduction in ¢ is possible. To determine let
us first normalize u, so that

v=u/||ul], B

where || u || is the Euclidean length and define o’=|lu |lc.. The parameter o has the
dimension of S/m, whereas a. is dimensionless. We are now required to find o’ such that
e(m + o’v) is sufficiently decreased along the search direction, v. Thus, the critical
condition that o” must satisfy is

!

o(m +o’v) <e(m) +8 o’ Vo (m) - v, (B2)

where & is a small positive constant that insures a sufficient decrease in ¢(m + o’v). The
test in equation (B2) is necessary since the simpler test,

o(m + o’'v) < (m), B3)

can lead to the possibility of oscillation about the solution without convergence (Dennis
& Schnabel, 1996). In choosing § we follow recent optimization literature and set
§=10"%0.’. To launch the procedure we need to select a trial value for o’ and carry out the
test required by equation (B2).

Unlike Newton and quasi Newton methods, which accept a unit step (o’=1) most
of the time, it is common to see step lengths that vary by one to two orders of magnitude
with NLCG methods (Nocedal, 1996). Therefore, we resort to a heuristic approach, -
which works well in practice for our problem. For the the ki, model parameter, my, and its

perturbed value, my+ Amy, for some point along the descent direction, v, we have from
equation (21) that

me = m, €75+ Ib, (B4)

and
myt Amy = mee™ #47t + b, (B5)

Subtracting equation (B5) from (B4) produces
Amje= mae™s (et 1), ®6)
and solving for Am’, yields

Am’g=In {(Amy/mo)e ™+ 1}, ®B7)
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where “In” denotes the natural logarithm. By selecting the model parameter, mmay, that
corresponds to the largest component in v that satisfies the infinity norm,

V.= max | v;|. 8
[tvll lsing i B8)

we define the trial step based on equation (B7) to be

O v = In{(1.6Mpan/mo)e™ ™ +1}, B9)

where, Mg.x changes by a factor of 1.6 . The factor 1.6 is empirical and is based upon the
numerical experiments, which always demonstrated a sufficient decrease in the cost
functional (equation (B2)). ,

If equation (B2) is satisfied with o’gia, let £5=¢ (m) and = @(m + ozl v) and
employ a quadratic model to find an o’ that leads to an even greater reduction in f. Four
pieces of information are required to define the quadratic: the two functional values ¢(m)

and Q(m+a’waV), U wia, and the directional derivative g=Vo(m).v. Note that the
directional derivative and functional at the point m are available from the prior NLCG
iteration at no additional cost. Thus, if £, defines the functional minimum we are seeking,

then
£(X) = fmin+ b (X - &) /0 tsiat” B10)

where,

b=(fi-fo) - 8o Oua, ' B11)
then the candidate step is given by
O = oW /2b < OUmax . B12)

Here o’ max sets an upper bound on the step, such that m + o’v leads to a realizable model
and does not leave the domain of interest. For the step in equation (B12) to be acceptable
two conditions must be meet. The first is b>0, which insures that the quadratic model has
positive curvature and o’ defines its minimum and not its maximum and the second that
flo’) is in actually less than f; by explicitly computing ¢(m + a’v). If b < 0 or if f; <
fla’), we set &’ = Oww and exit the line search algorithm since we have already
determined that o’ leads to a sufficient decrease in (m + o’ v).

If at the trial step, fi, fails to satisfy equation (B2), a quadratic backtracking
strategy is invoked from o’ until a sufficient decrease in f is observed. Backtracking is
effective because v is a descent direction since g, = v .V@ < 0 at ¢(m). The quadratic
formula used to backtrack is given by

f(x) = f,+ go x + cX2, ‘B15)
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where

c=(f1- f5- 8o O wiat)/ O’ (ﬁ16)

and the candidate step is determined to be

-2 a,trialz
o= — B17)
2(f1- fo- 8o Oui)

Note that the curvature, c, in equation (B16) is always positive, hence the quadratic
model will always interpolate to a minimum. For o’ to be acceptable, we must verify that
equation (B2) is satisfied. If not, we set o’ = 0" and continue backtracking until an
acceptable step is found. |

A danger of estimating o’ using any type of polynomial approximation is that o’
may be too near zero to be of much use in reducing ¢ and the inverse solution can
stagnate as a result. Polynomial safeguarding prevents against this (cf, Dennis &
Schnabel, 1996). When o’<0.10s , in any of the quadratic modeling procedures
discussed above, we always set ’=0.1 &’ . |

APPENDIX C

Preconditioning for 3D EM scattering problems

A fast preconditioner has been developed at low induction numbers to accelerate
the convergence rate for solving the electromagnetic (EM) scattering problems with finite
difference methods using iterative Krylov methods. We demonstrate a reduction of up too
two orders of magnitude in the number of iterations and an order of magnitude speed up
in time needed to solve a series of test problems. The preconditioner is very effective
over 2 wide class of EM measurement configurations ranging from magnetotellurics to
induction logging. Simple relations have also been developed to show when the
preconditioner will be effective. ‘

Over the last ten years finite difference methods using iterative Kyrlov methods
have become a popular method for solving large scale 3D electromagnetic induction
problems (Druskin et. al., 1998; Druskin and Knizhnerman, 1983 and 1994; Newman and
Alumbaugh, 1995; Smith 1996; Alumbaugh et al; 1996). From these works, it has been
established that iterative solution becomes more computer intensive as frequency falls
due to ill conditioning of the underlying linear system used to approximate the 3D
electromagnetic (EM) wave equation. For magnetotelluric applications, Smith 1996,
demonstrated that the ill conditioning could be overcome using a static divergence
correction that periodically reinforces the conservation of current during the solution
process. Recently Druskin et al. 1998, developed a new spectral Lanczos decomposion
method with Krylov subspaces generated from the inverse powers of the Maxwell
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operator to overcome the problem for well logging applications. Here we consider the
problem from a preconditioning point of view to provide an alternative solution, which
we believe is easier to understand than the previous approaches and leads to a deeper
understanding of the problem. Our solution is also applicable to a wider class of
induction modeling problems and we provide some simple measures when it will be
effective.

The three dimensional electromagnetic wave equation
Our development begins with the 3D EM wave equation for the electric field,
where

VxVxE+io g6 E=-io J; (C1D

note that this equation will reduce to the standard Helmholtz equation when the electric
field is divergence free. In equation (C1), the electrical conductivity, &, is a three-
dimensional function of the spatial coordinates, W, is the magnetic permeability of free
space, o is the angular frequency and i = v-1. For controlled source applications, J is the
impressed source used to excite the fields, where Dirichlet boundary conditions are used
to set the tangential component of the electric field, E, to zero on the boundaries of the
modeling domain. For magnetotelluric applications, J is set to zero, and appropriate
Dirichlet boundary conditions are the tangential electric-field boundary values defined by
the source field polarization. These boundary values arise from plane waves propagating
in layered or 2D geologic media assigned at the boundaries of the 3D problem. The

modeling problem can be summarized as solving for the electric fields within prism in
Figure 2, given appropriate boundary conditions and source field excitation J.

When equation (C1) is approximated with (non-uniform) finite differences using a
Yee (1966) staggered grid a linear system results where,

KE=S. (C2)

The matrix K is complex-symmetric and sparse with 13 non-zero entries per row and S
comprises the right hand side in equation (C1) and also includes the appropriate boundary
conditions on the discrete electric field. It has been determined that at the higher
frequencies, this system can be efficiently solved using the quasi-minimum residual
(gmr) method, which belongs to the class of Krylov sub-space techniques that are highly
efficient in iteratively solving sparse linear systems. It is well known, however, (cf.
Alumbaugh et al., 1996; Smith, 1996) that difficulties will be encountered when attempts
are made to solve equation (C2) as frequencies approach the static limit. Similar
difficulties have been reported by Druskin et al. (1998) when finite difference
approximations and the spectral Lanczos methods are applied directly to equation (1) for
multiple frequency responses.
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Divergence and curl free projections of the electric field

Following, LaBrecque, (1995) and Druskin et. al. (1998), we assume that the
electric field can be decomposed into curl free and divergence free projections using the
Helmholtz theorem, where

E=(+Vo, (C3)

and
V-£=0. (C9)

Upon substitution into equation (C1) we find that

V2 +io poo( £+ Vo) =-io o J, (C5)

where we used the vector identity
VxViE=-V*(, (Ce)

since V' {=0and V x V x V¢ = 0. The key idea behind the splitting of the electric field
into curl free and divergence free projections is to deflate the null space of the curl-curl
operator. When Krylov methods are applied directly to equation (C2), this null space is
responsible for the poor convergence properties as frequency approaches the static limit.
It is also responsible for the spurious mode problem, where the gradient of a scalar
potential can be added to the electric field and still satisfy equation (C1), when the
frequency is sufficiently small.

Approximate solutions at low frequencies
To develop an approximate finite difference solutions to equations (C1 and thus
C2) at low frequencies we take the Euclidean norm of equation (C1) where

(VA + 0 poo) [EP 2 || VX VX E+io oo E |- (CT)

Here A is the characteristic grid size employed in the finite difference mesh. Thus the
following inequality is deduced from the first factor in equation (C7) as frequency falls

and the grid size is reduced,

15> A2 @ o Gpmax, (C8)

where Gmax is the maximum conductivity in the mesh. When the finite difference grid is
non-uniform, A should be replaced by Amax, the maximum grid size used to approximate
equation (1). Note that the right hand side of equation (C8) is dimensionless number and
its square root is an induction number, which is an invariant parameter for diffusive
electromagnetic fields; when frequency falls we increase the scale length and/or
conductivity accordingly to have the fields remain invariant. Thus it appears that the
induction number is more important in determining when equation (C8) holds more so
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than frequency alone. It is important to note that even at moderate frequencies equation
(C8) may still hold if the grid size needed for the problem is sufficiently small. Now
when equation (C8) is satisfied we can decouple equation (CS5), such that

V:(=-inJ. (C9)

Druskin et al., (1998), shows that the boundary conditions required to solve equation (C9)
are a mixture of Dirichlet and Neumann types. Dirichlet conditions are applied to the
tangential components of { on the mesh boundaries and Neumann conditions on the
normal components.

¢ is not a complete solution to Maxwell’s equations since it does not satisfy the
auxiliary divergence conditions on the current density with in the earth and the
divergence free conditions of the electric field in the air. To derive these conditions we
take the divergence of equation (C1) and substitute in equation (C3) to arrive at

V'o(Vop)=-V°'o(L) -V'J (C10)

for the current density in the earth. In the air, assuming V - E = 0, the corresponding
divergence condition becomes in the limit as 6 — 0,

V'Vo=-V-C. (C11)

In equation (C4) we have assumed that V - { = 0. However in the numerical realization of
L it is in general not divergence free due to numerical round off errors. While this error is
not critical in the earth it can be in the air. We therefore consider the right hand side in
equation (C11) to be a correction term which is necessary to enforce the electric field to
be divergence free in the air; namely V - E = 0. Two types of boundary conditions apply
to equation (C10) depending whether air is present. When it is not, we have the Dirichlet
conditions, where ¢=0 on the mesh boundaries. When the air-earth interface is present,
however, we employ the Neumann condition, d¢/0n = 0, where n specifies the direction
normal at the interface. Finally, the boundary conditions on equation (C11) are of the
Dirichlet type, where ¢=0 on the mesh boundaries and @ = Qiuermee at the air-earth
interface. Note that @ierace is provided by the solution of equation (C10). It is noteworthy
that when J =0 and { =E as given in equation (C1), equations (C10) and (C11) replicate
the static divergence correction of Smith (1996) that was applied to accelerate the
convergence rate of equation (C1) for magnetotelluric applications at low frequencies.
Given equation (C8), approximate solutions of the full 3D EM wave equation
(equation (C2)) can be obtained by first solving equation (C9) followed by equation
(C10). Depending if air-earth interface is present, we would also solve equation (C11).
Solution to these equations can be efficiently obtained using finite difference methods
with conjugate gradient methods to iteratively solve the systems to predetermined errors.

Preconditioning

If it turns out that we cannot obtain a good approximate solution to equation (C2)
with a reasonable number of Krylov subspace iterations, or if such an approximate
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solution cannot be easily computed, we consider modifying the original problem to
obtain a faster solution. This is the idea behind preconditioning, where we specify a

preconditioning matrix, M ,and effectively solve the modified problem

M KEM'S. : (C12)

At each step of the preconditioned algorithm, it is necessary to compute the product of
M’ with a vector, or, equivalently, to solve a linear system with the coefficient matrix
M, so M should be chosen so that such linear systems are much easier to solve thap the
original problem. Moreover, the properties we desire in a preconditioner for non-
Hermitian matrix iterations, including qmr and other related methods, are that the
preconditioned matrix should somehow approximate the identity (Greenbaum, 1997). It is
therefore obvious that the approximate scheme discussed above could be very effective in
preconditioning equation (C2) at moderate to low induction numbers. If this idea is to be
practical, however, it will be necessary to find fast methods to solve the approximate
equations. A good preconditioner is not simply based on a relatively low dimensional
Krylov subspace, but on the time required to construct it.

Implementation of the low induction number (LIN) preconditioner is straight
forward. We first convert equations (C9), (C10) and (C11) into discrete matrix equations
via staggered finite differences. In the preconditioned qmr algorithm, at each iteration, we
then substitute the source vector used to solve the linear system involving the coefficient
matrix M, into the right hand side of the discrete version of equation (C9). Equation (C9)
is then solved followed by equations (C10) and (C11). Fast preconditioned conjugate
gradient techniques employing incomplete Cholesky factorization have proven quite
effective in solving these equations. Furthermore we have determined that it is not
necessary to precisely solve these equations. It is only necessary to solve these equations
approximately. |

Measuring the effectiveness of the preconditioner

Equation (C8) provides only a rough measure on the effectiveness of the
preconditioner. We need to estimate the largest and smallest non-zero eigenvalue of the
discrete curl-curl operator to determine when the preconditioner will be the most and

least effective. Consider the equation (C2), when ¢ =0. We estimate the maximum row
sum as

Amax 13/ Amin?, (C13)

where Amin is the minimum grid size used in the mesh. The corresponding minimum
eigenvalue is estimated in Appendix D, where

Amin = 270 Mmax >, (C14)

with L.y as the largest dimension of the prismatic modeling domain.
Given the largest eigenvalue, the inequality in equation (C8) becomes
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1>> @ Mo Gmax Amin> /13, (C15)

which provides the optimistic case when the preconditioner will be most effective. In the
worst case, which corresponds to the smallest non-zero eigenvalue, we have, however,

1>> © Ho Gumax Lmax >/ 2. (C16)

Unfortunately, equation (C16) shows that reducing the grid size (A) does not provide any
additional benefit in accelerating the solution of equation (C12).

1t is well known that Krylov methods tend to first resolve solution components
related to eigenvectors with the largest eigenvalues of the finite-difference stiffness
matrix K. As frequency falls these eigenvalues will correspond closely to those of the
curl-curl operator. If only the large eigenvalues are needed to produce an accurate
solution to the problem, then the inequality in equation (C15) will provide a good
measure on the effectiveness of the preconditioner. On the other hand, if eigenvectors
corresponding to the smallest non-zero eigenvalues are necessary to capture the solution,
then equation (C16) would provide a better measure. :

Demonstration of the preconditioner

In Figure. 34 we demonstrate the preconditioner effectiveness at 4 Hz for the test
model shown in Figure 3. A speed up of more than a factor of ten is demonstrated
compared to preconditioning employing simple Jacobi preconditioning. When the new
preconditioning method is compared with the static-divergence correction procedure of
Smith (1996), the solution time is still a factor of three faster. When the frequency is
increased to 400 Hz, Figure 35 shows that the preconditioner is still effective, but its
benefits are not nearly as great, as expected from our prior analysis.

APPENDIX D

Estimate of the smallest non-zero eigenvalue of the discrete curl-curl operator
First, consider the curl-curl operator in the continuous case,

VxVxv=2_iyv, (5]}

where v and A are the corresponding eigenvector and eignevlaue pairs. If we apply the
divergence operator to equation (D1) we immediately see that

0=A V-v. D2)
Since we are interested in the case where A # 0, we conclude that

Vv=o. D3)
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Thus the eigenvalue problem can be simplified to
Viv=Av (D4)

where we seek solutions to this problem where the eigenvector v is divergence free.
When we consider the discrete case, we need to impose boundary conditions on v, where
its tangential components vanish on boundaries of the modeling grid. Specifically

nxv=0, D5)

where n is the unit outward normal. Candidate eigenfunctions that satisfy the boundary
conditions requirements are

vx= Acos(ax)sin(By)sin(6z),
vy= Bsin(ax)cos(By)sin(5z)

and (D6)
vz= Csin(ox)sin(By)cos(6z),

where a= 7/Ly, p= m/Ly and &= 7/L, where Ly Ly and L, are the dimensions of the
modeling domain in the x, y and z directions indicated in Figure 1. A, B and C are not

arbitrary coefficients in equation (D6) because V-v = 0. Thus, once two components 'of v
are specified, the final component must be selected such that v is divergence free. For
example, if A=B8 and B=ad then C=-2aB.

If we consider the discrete version of equation (D4) on a mesh with uniform grid
size A, one can show that with discrete version of equation (D6) that

A = 4/AX(sin*(17tA/2Ly) + sin®(mmA/2Ly) + sin’(nwA/2L,)). o7

The range of the indices 1, m and nare

1=0,1,.....,N

m=0,1,.....,Ny
and

n=0,1,.....,.N;,

where Ly =As Ny, Ly=As Ny and L, = As N;, . To estimate the smallest non-zero value A,
we set Ly , Lyand L, to the largest dimension of the prism in Figure 1; Lpax. Now if we
select one of the indices, 1, m or n to be zero and the others to be one (here we arbitrarily
set 1=0, and m=1 and n=1) and employ a small argument expression for the sin function
(sin(x)~x, when x—0), we find an estimate of the smallest non-zero eigenvalue to be:

A2 Lina’. D93)

Note that we can not set two of the indices to be zero in equation (D7) as this would
result in a zero eigenvector, which is a trivial solution to the eigenvalue problem.
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