
DISCLAIMER

This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States

Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or any agency thereof. The

views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency

thereof. Reference herein to any social initiative (including but not

limited to Diversity, Equity, and Inclusion (DEI); Community Benefits

Plans (CBP); Justice 40; etc.) is made by the Author independent of

any current requirement by the United States Government and does

not constitute or imply endorsement, recommendation, or support by

the United States Government or any agency thereof.

LA-UR-25-29475
Approved for public release; distribution is unlimited.

Title: Parallel Programming in MCNP6

Author(s): Armstrong, Jerawan Chudoung

Intended for: Report

Issued: 2025-09-22

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

Parallel Programming in MCNP6

Jerawan Armstrong

Introduction

Monte Carlo N-Particle (MCNP)1 is a general-purpose Monte Carlo particle transport code devel-
oped by Los Alamos National Laboratory (LANL). To efficiently handle long simulations, MCNP
version 6 (MCNP6) supports parallel execution using two primary programming models:

• Shared-memory task-based threading using OpenMP (Open Multi-Processing)

• Distributed-memory calculations using MPI (Message Passing Interface)

The OpenMP and MPI programming models enable MCNP6 to scale from desktop systems to
high-performance computing (HPC) clusters, allowing users to run MCNP in one of three parallel
modes:

• OpenMP-only

• MPI-only

• Hybrid (MPI + OpenMP)

The choice of parallelization mode depends on the underlying computer architecture and the char-
acteristics of the simulation problem.

OpenMP-Only Mode

OpenMP is an Application Programming Interface (API) for shared-memory parallel programming
in C, C++, and Fortran. It enables multi-threading, where multiple threads of a single program run
in parallel, sharing the same memory space. OpenMP allows developers to write code that executes
tasks concurrently across multiple CPU cores within a single machine or a single node of an HPC
cluster. Developers identify which parts of the code should be parallelized using OpenMP directive,
and the OpenMP runtime takes care of creating and managing threads.

Implementing OpenMP can be more complex than writing serial code because developers must
ensure that the code is thread-safe, meaning that multiple threads do not simultaneously modify
shared memory in a way that leads to errors or data corruption.

To enable OpenMP threading in MCNP6, use the tasks option in the execution command:
mcnp6 i=input tasks n

Where n is the number of OpenMP threads to use. Some features in MCNP6 are not OpenMP-
threaded. If the input file uses features that are not threaded, MCNP6 will print a warning message
and automatically fall back to single-threaded mode (equivalent to tasks 1).

OpenMP applications are intended for shared-memory systems and should run within a single com-
pute node. Although MCNP6 may still execute if OpenMP threads are unintentionally distributed
across multiple HPC nodes, performance will degrade significantly, causing the simulation to run
extremely slowly and inefficiently.

1MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad National Security, LLC,
manager and operator of Los Alamos National Laboratory for the U.S. Department of Energy. Any third party use
of such registered marks should be properly attributed to Triad National Security, LLC, including the use of the
® designation as appropriate. Any questions regarding licensing, proper use, and/or proper attribution of Triad
National Security, LLC marks should be directed to trademark@lanl.gov. For the purposes of visual clarity, the
registered trademark symbol is assumed for all references to MCNP within the remainder of this report.

1

mailto:trademarks@lanl.gov

MPI-Only Mode

MPI is an API for distributed-memory parallel computing. It allows programs running on multiple
computers or multiple nodes of an HPC system to communicate and collaborate to solve large com-
putational problems. MPI applications run as multiple processes, each with its own memory space.
These processes exchange data using explicit communication, typically over high-speed interconnects
in HPC systems.

An MPI parallelization model in MCNP6 is based on a manager-worker design:

• Rank 0 (Manager): Does not perform particle transport calculations. It coordinates the
simulation, distributes work, collects partial results from worker ranks, and computes and
writes the final outputs.

• Ranks 1 and higher (Workers): Perform the actual particle transport simulations.

To run MCNP in MPI mode, use an MPI launcher such as mpirun or srun. The following example
launches 8 MPI ranks to run MCNP6 in MPI-only mode.

mpirun -np 8 mcnp6.mpi i=input

Note that the number of MPI ranks must be greater than 2. If you run with exactly 2 MPI ranks,
MCNP6 will disable MPI and revert to sequential mode. That is:

mpirun -np 2 mcnp6.mpi i=input

is equivalent to:
mcnp6 i=input

When running MCNP using MPI, it uses domain duplication; this means that the geometry and
input data are replicated across all MPI worker processes. This can lead to high memory usage,
especially for large problems. In such cases, users may need to use fewer MPI ranks than the number
of available cores to avoid exceeding memory limits.

Hybrid Mode (MPI+OpenMP)

In hybrid mode, MPI is used for distributing work across multiple nodes or NUMA domains, while
OpenMP provides multi-core parallelism within each node or NUMA domain. NUMA stands for
Non-Uniform Memory Access. The following example runs MCNP6 in hybrid mode:

mpirun -np m mcnp6.mpi i=input tasks n

Where m is the number of MPI processes (ranks), and n is the number of OpenMP threads per MPI
rank.

Examples of SLURM Commands

SLURM is a workload manager used to launch jobs on HPC systems. On systems using SLURM,
you must configure the appropriate sbatch directives in your job script. At LANL, srun is used to
launch jobs on HPC systems. Requesting fewer resources from SLURM than the number of processes
or threads launched by MCNP6 may result in job failure or the simulation hanging due to a resource
mismatch. The following are example SLURM job submission scripts for running MCNP on HPC
systems:

• OpenMP-only example script:

• MPI-only example script:

• MPI+OpenMP example script:

For LANL users, additional information on running MCNP on HPC systems can be found at: https:
//ddw-confluence.lanl.gov/spaces/MCPUB/pages/401343029/MCNP+Use+on+HPC+and+ADX+LAN

2

#!/bin/bash

Lines starting with '##' are comments.
Texts following '#' on '#SBATCH' are comments.

Set additional SBATCH directives below as needed.
Consult your HPC support team for the appropriate directives to use,
as configurations and policies can vary between organizations.

Set SBATCH directives for running the MCNP code in parallel using OpenMP
threading only.
##
MCNP supports OpenMP threading to enable shared-memory parallelism with in
a single node of an HPC system.
##
Should not run MCNP using OpenMP only on multiple nodes.
##
OpenMP is designed for shared-memory systems and is intended to run within
a single compute node. While MCNP may still execute when OpenMP threads are
unintentionally spread across multiple nodes, performance will degrade significantly,
and the simulation may run extremely slowly.
##
This example assumes an HPC cluster where each node has 8 NUMA domains.
Each NUMA domain contains 14 physical cores, and each physical core supports
1 virtual core (i.e., hyperthreading is enabled).
Thus, each node provides 112 physical cores and 112 virtual cores,
for a total of 224 logical cores.
##
#SBATCH --nodes=1 # Number of nodes.
#SBATCH --time=01:00:00 # Time limit (HH:MM:SS).
#SBATCH --ntasks=1 # One task (process); must be 1
#SBATCH --cpus-per-task=224 # Number of CPU cores per tasks; must be less than 224

Load the MCNP module if it is provided as a module on your HPC system.

Run MCNP in parallel using OpenMP theading only
tasks x is an MCNP keyword to enable OpenMP threading; x is the number of threads,
and it must be less than or equal to the number of cpus per task.
srun --cpu-bind=threads mcnp6 i=test.i tasks 224

More information on OpenMP Threading Execution in MCNP

Many features in MCNP are not OpenMP-threaded. If the input file uses non-threaded
features, MCNP will print a warning message and automatically fall back to
single-threaded mode (equivalent to tasks 1)
##
MCNP can be run in three parallelization modes: OpenMP-only, MPI-only, and
hybrid MPI+OpenMP. The choice of mode and the computing resources requested
should align with both the system architecture and the characteristics of the
simulation problem. Requesting fewer resources from Slurm than the number of
processes or threads launched by MCNP may result in job failure or the simulation
hanging due to a resource mismatch.

#!/bin/bash

Lines starting with '##' are comments.
Texts following '#' on '#SBATCH' are comments.

Set additional SBATCH directives below as needed.
Consult your HPC support team for the appropriate directives to use,
as configurations and policies can vary between organizations.

Set SBATCH directives for running the MCNP code in parallel using MPI only.

In MPI mode, MCNP runs on multiple processes, each with its own memory space.
##
This example assumes an HPC cluster where each node has 8 NUMA domains.
Each NUMA domain contains 14 physical cores, and each physical core supports
1 virtual core (i.e., hyperthreading is enabled).
Thus, each node provides 112 physical cores and 112 virtual cores,
for a total of 224 logical cores.
##
When running MCNP with MPI only, you should avoid using virtual cores.
##
#SBATCH --nodes=4 # Number of nodes.
#SBATCH --time=01:00:00 # Time limit (HH:MM:SS).
#SBATCH --hint=nomultithread # Indicate that no multithreading will be used.
#SBATCH --ntasks-per-node=112 # Number of tasks per node.
#SBATCH --cpus-per-task=1 # Number of CPU cores per task.

Load the MCNP module if it is provided as a module on your HPC system.

--
Total number of MPI ranks used to run MCNP = number of nodes * ntasks-per-node.
srun -n 448 --cpu-bind=cores mcnp6.mpi i=test.i

More information on MPI Execution in MCNP
##
An MPI parallelization model in MCNP is based on a manager-worker design:
- Rank 0 is the **manager**: it does NOT perform particle transport
calculations. Instead, it coordinates the simulation, distributes work,
collects partial results from worker ranks, and writes the final output.
- Ranks 1 and higher are **workers**: they perform the actual particle
transport simulations.
##
To run MCNP using MPI, the number of MPI ranks (x) must be greater than 2.
If x is equal to 2, MCNP disables MPI mode and runs in sequential mode.
Therefore, the command:
srun -n 2 mcnp6.mpi i=test.i
is effectively equivalent to:
mcnp6 i=test.i
##
When running MCNP using MPI, it uses domain duplication; this means that
the geometry and input data are replicated across all MPI worker processes.
This can lead to high memory usage, especially for large problems.
In such cases, you may need to use fewer MPI ranks than the number of
available cores to avoid exceeding memory limits.
This can be done by adjusting the number of tasks per node specified
in your SBATCH directives. For example, the following sbatch directives configure
the job to use only 16 MPI ranks per node.
##
#SBATCH --nodes=10 # Number of nodes.
#SBATCH --time=10:00:00 # Time limit (HH:MM:SS).
#SBATCH --hint=nomultithread # Indicate that no multithreading will be used.
#SBATCH --ntasks-per-node=16 # Number of tasks per node.
#SBATCH --cpus-per-task=1 # Number of CPU cores per task.
##
Load the MCNP module if it is provided as a module on your HPC system.
##
Total number of MPI ranks used to run MCNP = number of nodes * ntasks-per-node.
srun -n 160 mcnp6.mpi i=test.i
##
MCNP can be run in three parallelization modes: OpenMP-only, MPI-only, and
hybrid MPI+OpenMP. The choice of mode and the computing resources requested
should align with both the system architecture and the characteristics of the
simulation problem. Requesting fewer resources from Slurm than the number of
processes or threads launched by MCNP may result in job failure or the simulation
hanging due to a resource mismatch.

#!/bin/bash

Lines starting with '##' are comments.
Texts following '#' on '#SBATCH' are comments.

Set additional SBATCH directives below as needed.
Consult your HPC support team for the appropriate directives to use,
as configurations and policies can vary between organizations.

Set SBATCH directives for running the MCNP code in parallel using both MPI and
OpenMP threading.
##
This example assumes an HPC cluster where each node has 8 NUMA domains.
Each NUMA domain contains 14 physical cores, and each physical core supports
1 virtual core (i.e., hyperthreading is enabled).
Thus, each node provides 112 physical cores and 112 virtual cores,
for a total of 224 logical cores.
##
#SBATCH --nodes=5 # Number of nodes.
#SBATCH --time=01:00:00 # Time limit (HH:MM:SS).
#SBATCH --ntasks-per-node=8 # Number of tasks per node; optimal if it is a multiple of 8 (8, 16, ...).
#SBATCH --cpus-per-task=28 # Number of CPU cores per tasks; ntasks-per-node*cpus-per-task <= 224.

Load the MCNP module if it is provided as a module on your HPC system.

Run MCNP in parallel using both MPI and OpenMP theading
Total number of MPI ranks used to run MCNP = number of nodes * ntasks-per-node.
Each MPI rank uses 28 OpenMP threads.
srun -n 40 --cpu-bind=ldoms mcnp6.mpi i=test.i tasks 28

More information on running MCNP in parallel on an HPC systems

MCNP can be run in three parallelization modes: OpenMP-only, MPI-only, and
hybrid MPI+OpenMP. The choice of mode and the computing resources requested
should align with both the system architecture and the characteristics of the
simulation problem. Requesting fewer resources from Slurm than the number of
processes or threads launched by MCNP may result in job failure or the simulation
hanging due to a resource mismatch.
##

https://ddw-confluence.lanl.gov/spaces/MCPUB/pages/401343029/MCNP+Use+on+HPC+and+ADX+LAN
https://ddw-confluence.lanl.gov/spaces/MCPUB/pages/401343029/MCNP+Use+on+HPC+and+ADX+LAN

