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Abstract. Binary Code Similarity Analysis (BCSA) has a wide spec-
trum of applications, including plagiarism detection, vulnerability dis-
covery, and malware analysis, thus drawing significant attention from
the security community. However, conventional techniques often face
challenges in balancing both accuracy and scalability simultaneously. To
overcome these existing problems, a surge of deep learning-based work
has been recently proposed. Unfortunately, many researchers still find
it extremely difficult to conduct relevant studies or extend existing ap-
proaches. First, prior work typically relies on proprietary benchmark
without making the entire dataset publicly accessible. Consequently, a
large-scale, well-labelled dataset for binary code similarity analysis re-
mains precious and scarce. Moreover, previous work has primarily fo-
cused on comparing at the function level, rather than exploring other
finer granularities. Therefore, we argue that the lack of a fine-grained
dataset for BCSA leaves a critical gap in current research. To address
these challenges, we construct a benchmark dataset for fine-grained bi-
nary code similarity analysis called BinSimDB, which contains equiva-
lent pairs of smaller binary code snippets, such as basic blocks. Specifi-
cally, we propose BMerge and BPair algorithms to bridge the discrep-
ancies between two binary code snippets caused by different optimization
levels or platforms. Furthermore, we empirically study the properties of
our dataset and evaluate its effectiveness for the BCSA research. The
experimental results demonstrate that BinSimDB significantly improves
the performance of binary code similarity comparison.

Keywords: Binary analysis · Benchmark dataset · Binary code similar-
ity analysis.

1 Introduction

The aim of binary code similarity analysis (BCSA) is to determine whether
two binary code snippets are equivalent or not. A technique for BCSA can be
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applied to many security-related applications. For example, we take the cross-
platform vulnerability search as a motivation problem. Given a patched binary
code snippet from one platform, by BCSA we can identify whether there exists
a vulnerability due to code reuse in the target binary coming from a different
platform. However, since the binary code snippets can be generated by using
distinct optimization levels or targeting different platforms, the two pieces of
code that need to be compared are usually too different to be matched. To
address this challenge, a surge of recent work shifts the focus to the popular
arsenal of deep learning. For example, graph-based learning methods [10, 15,
34, 37] extract graph information from binary code and use them as the basis
for similarity detection because a binary executable is intrinsically associated
with some graph representations such as control flow graphs (CFGs). Other
methods [2,9,17,20,31] consider the assembly code as a language, thus developing
NLP-inspired techniques to detect similarity.

However, high-quality datasets play a significant role in any data-driven ap-
plication. Thus, the construction of datasets for learning-based security studies
has raised awareness among prior researchers. They believe that the unavailabil-
ity of data is a widespread obstacle for security research [25,28,32]. This problem
is particularly severe in the field of BCSA. For example, after investigating 43
papers in this area, Kim et al. [14] found “only two of them opened their entire
dataset, which makes it difficult to reproduce or extend previous work ”.

Moreover, although a few previous researchers have started making their
dataset publicly available for the convenience of subsequent work, they primar-
ily focus on the similarity detection at the function level rather than other finer
granularities. Nevertheless, the function-level comparison is less useful for the
applications where subtle discrepancies matter. For example, when patching a
piece of vulnerable code, it is usually unnecessary to rewrite the entire function.
Therefore, we believe the unavailability of a fine-grained dataset for BCSA re-
quires sufficient attention but has not yet been well resolved. It is worth noting
that, as the first deep learning-based approach to detecting binary code simi-
larity at the basic block level, InnerEye [38] proposed a dataset construction
method. However, their method is limited by two drawbacks.

First, InnerEye extracts binary code directly from the backend of a specific
compiler, namely LLVM. However, the binary code obtained from the reverse
engineering tool is not exactly identical to the binary code generated by the
compiler, which creates a gap in practical application. Second, when matching
two equivalent basic block pairs, InnerEye relies on the annotations generated
by the LLVM facility to annotate every basic block. According to the official
manual [27], the formatted string used by LLVM to identify a basic block and
its parent function is “hopefully unique” but there is no guarantee. Hence, the
matching result of equivalent basic blocks is not exactly accurate. Especially
when compiling the source code using different optimization levels, it is highly
possible that basic blocks from a lower optimization level cannot successfully
find an exact match in a new binary obtained by using a higher optimization



BinSimDB: Benchmark Dataset Construction for Fine-Grained BCSA 3

level. InnerEye suffers from a failure to address this case, thus raising concerns
about the data quality.

Generating basic block-level equivalent pairs is never a trivial task. Previous
studies [2, 14, 17, 20] have focused on the similarity between functions, allowing
them to establish ground truth using function names. However, unlike func-
tions, basic blocks lack an off-the-shelf unique identifier. Therefore, we propose
using source code information to annotate every basic block. Still, establishing
a one-to-one mapping among basic blocks across different optimization levels
or platforms remains challenging even with source code information. The two
main challenges ahead are: ❶ A single line of source code may correspond to
multiple basic blocks, and the number of basic blocks originating from the same
line of source code may vary across different architectures; ❷ Compiling source
code with a higher optimization level may lead to the merging or reorganization
of original basic blocks generated at a lower optimization level due to compiler
optimization behavior. To address these challenges in dataset construction, we
have developed BMerge and BPair algorithm. We will shed light on our ob-
servations using a concrete motivation example and also the proposed solutions
in Section 3.

The key contributions of our work include:

– We construct a fine-grained dataset BinSimDB1, which consists of 4,426,258
equivalent assembly code pairs, for facilitating BCSA studies. To the best
of our knowledge, we are the first to release a diverse set of fine-grained
equivalent binary code pairs at this scale.

– Not only the comprehensive benchmark for BCSA, we also make our auto-
mated scripts publicly accessible, so that future academics are able to easily
reproduce or extend the dataset for various research purposes.

– We construct the reliable ground truth by adopting source code information.
In particular, we propose BMerge and BPair algorithm to handle the issues
raised in the equivalent binary code matching at a fine granularity.

– We empirically investigate the properties of BinSimDB, and evaluate its
effectiveness for the BCSA research. The experimental results demonstrate
that our dataset can greatly help to improve the performance of binary code
similarity comparison.

2 Background

2.1 Binary Code Similarity Analysis

Binary code similarity analysis (BCSA) is the process of comparing two or more
binary code snippets to determine how similar they are. The goal of this anal-
ysis is to identify potential code reuse or plagiarism between different software
programs, as well as to discover potential security vulnerabilities or malware.
Note that in this paper, we will use the terms ‘binary code’ and ‘assembly code’
interchangeably, unless otherwise specified.
1 We share our dataset with the cybersecurity community in the following link: https:
//uco-cyber.github.io/research/#binsimdb.

https://uco-cyber.github.io/research/#binsimdb
https://uco-cyber.github.io/research/#binsimdb
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diff --git a/unlzw.c b/unlzw.c
index fb9ff76..8f8cbee 100644
--- a/unlzw.c
+++ b/unlzw.c

int o;

resetbuf:
- e = insize-(o = (posbits>>3));
+ o = posbits >> 3;
+ e = o <= insize ? insize - o : 0;

for (i = 0 ; i < e ; ++i) {
inbuf[i] = inbuf[i+o];

Fig. 1: A patch in gzip for CVE-2010-0001.

0000da7c  MOV EAX, dword ptr [insize]
0000da82  MOV EDX, dword ptr [RBP + o]
0000da85  SUB EAX, EDX
0000da87  JMP LAB_0000da8e

0000da7c

0000da7c  MOV EAX, dword ptr [insize]
0000da82  MOV EDX, dword ptr [RBP + o]
0000da85  SUB EAX, EDX
0000da87  JMP LAB_0000da8e

0000da7c

0000da64  MOV RAX, qword ptr [RBP + posbits]
0000da68  SAR RAX, 0x3
0000da6c  MOV dword ptr [RBP + o], EAX
0000da6f  MOV EDX, dword ptr [RBP + o]
0000da72  MOV EAX, dword ptr [insize]
0000da78  CMP EDX, EAX
0000da7a  JA  LAB_0000da89

0000da64 - resetbuf

0000da64  MOV RAX, qword ptr [RBP + posbits]
0000da68  SAR RAX, 0x3
0000da6c  MOV dword ptr [RBP + o], EAX
0000da6f  MOV EDX, dword ptr [RBP + o]
0000da72  MOV EAX, dword ptr [insize]
0000da78  CMP EDX, EAX
0000da7a  JA  LAB_0000da89

0000da64 - resetbuf

0000da89  MOV EAX, 0x0

0000da89 – LAB_0000da89

0000da89  MOV EAX, 0x0

0000da89 – LAB_0000da89

0000da8e – LAB_0000da8e

0000da8e  MOV dword ptr [RBP + e], EAX
0000da91  MOV dword ptr [RBP + i], 0x0
0000da98  JMP LAB_0000dac2

0000da8e – LAB_0000da8e

0000da8e  MOV dword ptr [RBP + e], EAX
0000da91  MOV dword ptr [RBP + i], 0x0
0000da98  JMP LAB_0000dac2

(a) Binary code in x86-64

0000f620  ldr   in,[sp, #posbits]
0000f624  asr   in,in,#0x3
0000f628  str   in,[sp, #o]
0000f62c  ldr   out,[sp, #o]
0000f630  adrp  in,0x12a000
0000f634  ldr   in,[in, #0xfe8]=>->insize
0000f638  ldr   in,[in]=>insize
0000f63c  cmp   out,in
0000f640  b.hi  LAB_0000f65c

0000f620 - resetbuf

0000f620  ldr   in,[sp, #posbits]
0000f624  asr   in,in,#0x3
0000f628  str   in,[sp, #o]
0000f62c  ldr   out,[sp, #o]
0000f630  adrp  in,0x12a000
0000f634  ldr   in,[in, #0xfe8]=>->insize
0000f638  ldr   in,[in]=>insize
0000f63c  cmp   out,in
0000f640  b.hi  LAB_0000f65c

0000f620 - resetbuf

0000f65c  mov in,#0x0

0000f65c – LAB_0000f65c

0000f65c  mov in,#0x0

0000f65c – LAB_0000f65c
0000f644  adrp in,0x12a000
0000f648  ldr  in,[in, #0xfe8]=>->insize
0000f64c  ldr  out,[in]=>insize
0000f650  ldr  in,[sp, #o]
0000f654  sub  in,out,in
0000f658  b    LAB_0000f660

0000f644

0000f644  adrp in,0x12a000
0000f648  ldr  in,[in, #0xfe8]=>->insize
0000f64c  ldr  out,[in]=>insize
0000f650  ldr  in,[sp, #o]
0000f654  sub  in,out,in
0000f658  b    LAB_0000f660

0000f644

0000f660 – LAB_0000f660

0000f660  str in,[sp, #e]
0000f664  str wzr,[sp, #i]
0000f668  b   LAB_0000f6a4

0000f660 – LAB_0000f660

0000f660  str in,[sp, #e]
0000f664  str wzr,[sp, #i]
0000f668  b   LAB_0000f6a4

(b) Binary code in AArch64

Fig. 2: A pair of equivalent binary code snippets from the same source code.

We regard two binary code snippets as similar if they come from the same
piece of source code. For example, Figure 1 shows a source code patch for CVE-
2010-0001. In detail, there is an integer underflow vulnerability in the unlzw
function of gzip before 1.4 on 64-bit platforms, thus possibly causing a denial of
service or allowing remote attackers to execute arbitrary code. We compiled the
above patch code for two different platforms, x86-64 and AArch64, resulting in
two equivalent binary code snippets, as shown in Figure 2(a) and Figure 2(b),
respectively. For the sake of presentation, we particularly use the optimization
level O0 when compiling the patched code. Though control flow graphs (CFGs)
across the two platforms remain similar, the binary code looks quite different be-
cause of distinct instruction set architectures (ISAs) and registers. Furthermore,
there are 75 basic blocks in the unlzw function overall, while code changes caused
by the patch only take up approximately 5.3% of the entire function. Hence, this
example showcases that considering fine-grained discrepancy in some practical
applications is of great necessity as well.
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2.2 Toolchain

It is noteworthy that the third-party applications utilized in this study are non-
proprietary, which provides sufficient flexibility for the academic community to
re-use all the research resources. In detail, we develop our system using Python in
Ubuntu 22.04. For the software reverse engineering tool, we choose the free and
open sourced framework Ghidra2, which is developed by the National Security
Agency (NSA) of the United States. Ghidra is capable of analyzing compiled
code on any platform, whether Linux, Windows, or macOS. On top of that,
Ghidra also enables users to perform automated analysis with scripts in Python
via Ghidrathon extension. Today, Ghidra has been widely used by the secu-
rity community [23] and is also regarded as well-matched in strength with its
expensive competitor IDA Pro3 [30].

Furthermore, the GNU binary utility addr2line4 is adopted to translate hex-
adecimal addresses in a executable into source code file names and line numbers.
Given an address in an executable or an offset in a section of a relocatable object,
it uses the debugging information to figure out which file name and line number,
in the source code, are associated with it. By this means, we can annotate every
basic block using source code information. As a result, basic block splitting and
combination, or function inline will not be a problem for building a self-evident
connection between two assembly code snippets even if they are from different
architectures or optimization levels. Besides, llvm-addr2line developed by the
LLVM project can be used as a drop-in replacement for GNU’s addr2line. The
two utilities are interchangeable in this project.

3 Methodology

3.1 Key Observations

To construct the ground truth using source code information, we traverse all
addresses for a given basic block i and leverage addr2line to obtain a label set
Ai, where each element corresponds to a source file and line number associated
with the basic block. For example, we annotate every basic block in Figure 2(b),
and the result is shown in Figure 3. However, we observe that a single line of
source code may correspond to multiple basic blocks. Consequently, there may be
two different basic blocks i and j in the same function, such that Ai ∩ Aj ̸= ∅.
This inevitably leads to confusion when pairing two basic blocks across different
optimization levels or platforms. To ensure the uniqueness of the annotation
for a binary code unit under a given setting, we propose using the BMerge
Algorithm (shown in Algorithm 1) to handle those overlapping basic blocks.

Our second observation is, due to the nature of compilers, multiple basic
blocks may be recombined or spread across other basic blocks when using higher

2 https://ghidra-sre.org/
3 https://hex-rays.com/ida-pro/
4 https://www.gnu.org/software/binutils/

https://ghidra-sre.org/
https://hex-rays.com/ida-pro/
https://www.gnu.org/software/binutils/
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gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:161

0000da64 - resetbuf

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:161

0000da64 - resetbuf

gzip-1.12/unlzw.c:161

0000da7c

gzip-1.12/unlzw.c:161

0000da7c

gzip-1.12/unlzw.c:161

0000da8e – LAB_0000da8e

gzip-1.12/unlzw.c:161

0000da8e – LAB_0000da8e

gzip-1.12/unlzw.c:161

0000da89 – LAB_0000da89

gzip-1.12/unlzw.c:161

0000da89 – LAB_0000da89

Fig. 3: Basic block annotation with corresponding source file and line numbers.

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:161

0000d8a8

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:161

0000d8a8

gzip-1.12/unlzw.c:161
gzip-1.12/unlzw.c:163

0000db34

gzip-1.12/unlzw.c:161
gzip-1.12/unlzw.c:163

0000db34

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:163

0000deb0

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:163

0000deb0

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:164
gzip-1.12/unlzw.c:209

0000de80

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:164
gzip-1.12/unlzw.c:209

0000de80

gzip-1.12/unlzw.c:161

0000dccc

gzip-1.12/unlzw.c:161

0000dccc

gzip-1.12/unlzw.c:161
gzip-1.12/unlzw.c:204
gzip-1.12/unlzw.c:205
gzip-1.12/unlzw.c:206
gzip-1.12/unlzw.c:207
gzip-1.12/unlzw.c:208
gzip-1.12/unlzw.c:209
string_fortified.h:59

0000ddfc

gzip-1.12/unlzw.c:161
gzip-1.12/unlzw.c:204
gzip-1.12/unlzw.c:205
gzip-1.12/unlzw.c:206
gzip-1.12/unlzw.c:207
gzip-1.12/unlzw.c:208
gzip-1.12/unlzw.c:209
string_fortified.h:59

0000ddfc

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:161
gzip-1.12/unlzw.c:182
gzip-1.12/unlzw.c:183
gzip-1.12/unlzw.c:184
gzip-1.12/unlzw.c:185
gzip-1.12/unlzw.c:188
gzip-1.12/unlzw.c:190

0000dacc

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:161
gzip-1.12/unlzw.c:182
gzip-1.12/unlzw.c:183
gzip-1.12/unlzw.c:184
gzip-1.12/unlzw.c:185
gzip-1.12/unlzw.c:188
gzip-1.12/unlzw.c:190

0000dacc

gzip-1.12/unlzw.c:161
gzip-1.12/unlzw.c:205

0000dab8

gzip-1.12/unlzw.c:161
gzip-1.12/unlzw.c:205

0000dab8

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:163

0000db58

gzip-1.12/unlzw.c:160
gzip-1.12/unlzw.c:163

0000db58

Fig. 4: Binary code in AArch64 obtained by using O3 as the optimization level.

optimization levels. For example, when compiling the patched code in Figure 2(a)
using O3 on the AArch64 platform, no specific basic blocks obtained are purely
derived from the patched code. Instead, the original four basic blocks in Fig-
ure 2(c) are recombined and spread across another nine basic blocks, as shown
in Figure 4. We can also see some isolated basic blocks. Note that they need to
connect to the CFG through some other basic blocks rather than being directly
linked. The basic blocks used to connect all the nodes in Figure 4 are not de-
picted if they are entirely generated from source code beyond the patch. This
phenomenon introduces ambiguity when paring two basic blocks across different
optimization levels. To this end, we propose the BPair Algorithm (as shown in
Algorithm 2) to match equivalent assembly code units.

3.2 Dataset Construction Approach Details

Figure 5 illustrates the construction method of BinSimDB, where all the five
steps can be automated by scripts. First, we compile all the binaries with debug-
ging information using the -g option. Specifically, source files are complied with
two representative compilers (GCC and Clang) across various optimization levels
(O0, O1, O2, and O3). Four popular ISAs are considered, including x86, x86-64,
ARM32, and AArch64. Users can easily extend the script through configuring it
to cover additional ISAs.

In the second step, we utilize the facilities provided by Ghidra to analyze the
compiled binaries. This allows us to collect static analysis results such as binary
functions, basic blocks, control flow graphs (CFGs), and call graphs. Notably, we
preliminarily sanitize the dataset to exclude external functions that lack actual
function bodies. However, for functions from widely-used third-party libraries
such as glibc, we maintain a dictionary D to record them. Modern reverse
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Fig. 5: System overview.

Algorithm 1: BMerge Algorithm
Input: A set of basic blocks, denoted by S, wherein a basic block i is labeled

with a set Ai, and addri represents the address of i.
Output: The refined basic blocks set S.

1 foreach i, j ∈ S, where i ̸= j, do
2 if Ai = Aj then
3 if addri < addrj then
4 Update i by merging j into i
5 S ← S − {j}
6 else
7 Update j by merging i into j
8 S ← S − {i}

9 else if Aj ⊂ Ai then
10 Update i by merging j into i
11 S ← S − {j}
12 else if Ai ⊂ Aj then
13 Update j by merging i into j
14 S ← S − {i}

15 return S

engineering applications like Ghidra and IDA Pro have developed techniques for
identifying library functions, so we do not focus on this aspect in our work.

Next, we utilize addr2line to annotate every basic block with the corre-
sponding information of source files and line numbers. Specifically, functions
generated by compilers rather than the application itself are discarded. This
can be easily achieved by referencing the source code information obtained from
addr2line. More concretely, we discard a basic block i if Ai = ∅, where Ai is the
label set consisting of source file names and line numbers. After that, we further
refine our dataset via the BMerge Algorithm (as shown in Algorithm 1). For
any two basic blocks i and j, they need to be merged into one block as long as
their label sets Ai and Aj can fulfill any following condition: ❶Ai and Aj are
identical (Line 2∼8); ❷Aj is the subset of Ai (Line 9∼11); ❸Ai is the subset
of Aj (Line 12∼14). For example, by applying this algorithm, the four basic
blocks shown in Figure 2(b) can be integrated into a new block. This resulting
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block exactly reflects the patched code in Figure 2 and does not overlap with
any other basic blocks. The BMerge Algorithm does not need to be applied
in the following two possible cases: 1) there is only one basic block in a given
function; 2) every basic block is obtained from a few lines of source code that
are not simultaneously used to generate any other basic blocks.

To control the vocabulary size and preserve the semantics of instructions,
many previous studies [10,11,18,38] perform normalization on instructions. Sim-
ilarly, we preprocess the instructions in the dataset according to the following
empirical rules: ❶ For numeric constants, according to the sign of the value,
we replace a numeric constant with <POSITIVE>, <NEGATIVE> or <ZERO>; ❷ For
function calls, if the library function can be identified (i.e. the function name is
collected by the dictionary D), we preserve the instruction as its original form.
Otherwise, the function names are uniformly replaced with <FOO>; ❸ The mem-
ory addresses, such as the local destination of a jump instruction, are replaced
by <ADDRESS>; ❹ Finally, we substitute the token <STRING> for all string literals.

Algorithm 2: BPair Algorithm
Input: Two sets of basic blocks, denoted by U and V, where a basic block i is

labeled with a set Ai, and addri represents the address of i.
Output: A set M consisting of equivalent basic block pairs.

1 Function Merge(p, q)
2 if addrp < addrq then
3 Update p by merging q into p
4 return p

5 else
6 Update q by merging p into q
7 return q

8 Initialize a bipartite graph G = (U ,V, E), where E = ∅
9 foreach u ∈ U , v ∈ V, do

10 if Au ∩ Av ̸= ∅ then
11 E ← E ∪ {⟨u, v⟩}

12 foreach connected sub-graph C ⊂ G do
13 Pick any basic block i from C, where i ∈ U
14 Pick any basic block j from C, where j ∈ V
15 foreach k ∈ C − {i, j} do
16 if k ∈ U then
17 i← Merge (k, i)

18 else if k ∈ V then
19 j ← Merge (k, j)

20 M←M∪ {(i, j)}
21 returnM
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Fig. 6: Architecture of the proposed binary code similarity detector.

At the final stage, we generate equivalent pairs by adopting the BPair Al-
gorithm (as shown in Algorithm 2). The intuition behind this algorithm is to
transform the problem of matching equivalent basic blocks into a graph problem.
First, the source code of a function can be compiled under different platforms
or using different optimization levels, resulting in two sets of basic blocks de-
noted by U and V. Based on this, we can build a disconnected bipartite graph
G with partitions U and V (Line 8), where the basic blocks u ∈ U , v ∈ V are
considered as vertices. Then, we create edges continuously to connect vertices
(i.e. basic blocks) in U to those in V, according to the ground truth regarding
basic blocks (Line 9∼11). In other words, for basic blocks u ∈ U and v ∈ V that
are from two different architectures or optimization levels, if their source code
overlaps, i.e., the intersection of Au and Av is not empty (Line 10), then an
edge is established between the two vertices u and v (Line 11). After traversing
every connected sub-graph of G based on a disjoint set, we can generate a set
of equivalent pairs M (Line 12∼20). Additionally, all the duplicate pairs are
removed from this set to maintain the dataset quality.

3.3 Similarity Detection Model

The success of OpenAI’s ChatGPT [5] has sparked significant interest in the aca-
demic and industry sectors regarding Large Language Models (LLMs). Herein,
the transformer architecture plays a crucial role [29], thus was considered as
the fundamental building blocks of LLMs. To demonstrate the benefits of Bin-
SimDB in supporting the future BCSA research, we introduce a Transformer-
based binary code similarity detector, as depicted in Figure 6.

At first, a pair of assembly code snippets under different architectures are
represented by two embedding matrices. The concatenated input of the two ma-
trices and the corresponding positional encoding are provided to a Transformer-
based model. The position encoding aims to capture the order information of
each instruction within a code snippet. These generated positional embeddings
are added to the concatenated matrix, then sent together to the subsequent
Transformer blocks. The embedding input, in the form of three learnable weight
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matrices including queries Q, keys K of dimension dk, and values V of dimen-
sion dv, is passed through a scaled dot-product attention. Formula (1) clearly
describes the performance of an attention model.

Attention(Q,K,V) = Softmax

(
QKT

√
dk

)
V (1)

Then, the results are concatenated through a multi-head attention, where each
result of the parallel computations of attention is called a head.

MultiHead(Q,K,V) = [head1, · · · , headh]WO (2)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ), and every W represents a

learnable parameter matrix. In addition, we also place the layer normalization
between the residual blocks inside a transformer block as Formula (3) and (4)
show.

Output = LayerNorm(Input+MultiHead(Input)) (3)
Output = LayerNorm(Output+ FFN(Output)) (4)

where FFN represents the fully connected feed forward layer.
In a nutshell, we use the Transformer blocks as an encoder that can analyse

the assembly code pair and generates a series of hidden states that capture the
semantics and global context of the inputs. The subsequent linear layers finalize
the prediction with outputting a similarity score. When training the model, we
utilize Adam optimizer [16] with a sparse categorical cross-entropy loss function
to improve the learning rate.

It is necessary to emphasize that the focus of this paper is on the construction
of the dataset. Consequently, the the binary code similarity detector presented
herein serves solely as a means to demonstrate BinSimDB’s usage in reality.
Based on this, we will showcase the advantage of our dataset over prior com-
petitors in Section 4.3.

4 Evaluation

Employing the methodology introduced in Section 3, we build a fine-grained
dataset BinSimDB as a benchmark for BCSA study. In this section, empirical
studies are conducted to investigate the dataset properties. Also, the extensive
evaluations showcase the strength of BinSimDB for the related research.

4.1 Dataset Properties and Composition

Diversity and Scalability. To generate binary samples, we collect source code
of 30 binaries from 8 GNU software projects [12], i.e., binutils, datamash,
findutils, grep, gzip, macchanger, tar, and which. They are all real programs



BinSimDB: Benchmark Dataset Construction for Fine-Grained BCSA 11

O0 O1 O2 O3
Optimization level

40%

50%

60%

70%

80%
Ra

tio
gcc clang

(a) x86-64

O0 O1 O2 O3
Optimization level

40%

50%

60%

70%

80%

Ra
tio

gcc clang

(b) x86

O0 O1 O2 O3
Optimization level

40%

50%

60%

70%

80%

Ra
tio

gcc clang

(c) AArch64

O0 O1 O2 O3
Optimization level

40%

50%

60%

70%

80%

Ra
tio

gcc clang

(d) ARM32

Fig. 7: The average ratio of the functions that need to be processed by BMerge
to all functions, where the error bars indicate the 95% confidence intervals.

and widely deployed in the current software ecosystem. More importantly, be-
cause their source code is publicly accessible, GNU packages have became a very
popular research resource for BCSA [2, 17, 31, 38]. Our comprehensive BCSA
benchmark BinSimDB involves 980,251 functions across 32 distinct combina-
tions of compilers, optimization levels, and target platforms. These functions
will be used to further generate equivalent assembly code pairs. More specifi-
cally, we include binaries compiled for four different ISAs such as x86, x86-64,
ARM32, and AArch64. Two representative compilers, i.e., GCC and Clang, are
involved. We also consider four optimization levels from O0 to O3. On top of
that, we develop automated scripts to compile the collected source code and dis-
assemble the resulting binaries for all designated architectures and optimization
levels. Therefore, other researchers can extend the existing dataset with little ef-
fort, or customize their dataset generation towards diverse application scenarios
such as IoT applications analysis.
Fine Granularity. Unlike other existing work [38], we do not drop any assembly
code obtained from the disassembler, so our dataset provides a good coverage.
Not only that, owing to our proposed algorithms, we can generate semantically
equivalent assembly code pairs at a finer granularity.

It is worth noting that not all functions need to be handled by the BMerge.
If the source code snippets used to generate basic blocks are mutually exclusive,
it is surely unnecessary to merge any such basic blocks. To quantitatively study
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Fig. 8: The changes in the number of basic blocks after applying BMerge (Ratio
= # of original basic blocks

# of resulting basic blocks ).

the cases where a one-to-one mapping cannot be established between basic blocks
and source code, we conducted program-level statistics on the proportion of the
functions containing such basic blocks among all the functions. The results are
shown in Figure 7. As is evident, the ratio of the functions that need to be
processed by the BMerge to all functions is around 45% ∼ 65%, by average.
On the ARM32 platform, when using O3 as the optimization level, this ratio
even reaches 70.9%. Therefore, it can be concluded that the phenomenon of
lacking one-to-one mapping between basic blocks and source code is widespread
in practice.

We also count the number of functions, on which we conduct BMerge, and
show the statistics in Table 1. Based on this, we investigate the impact of apply-
ing the BMerge algorithm on the number of basic blocks, as Figure 8 shows.
It can be seen that the distribution of changes in the number of basic blocks is
diverse in terms of different architectures and optimization levels. However, the
majority of functions are likely to see a reduction in the number of their basic
blocks to approximately 80% or below of the original count.

For the same function coming from different architectures, optimization levels
or compilers, we can efficiently extract equivalent basic blocks pairs by invoking
the BPair algorithm. Table 2 and Table 3 show the resulting equivalent as-
sembly code pairs targeting 64-bit and 32-bit platforms, respectively. It’s worth
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Table 1: The number of functions that need to be processed by BMerge. These
functions are leveraged to investigate the impact of our proposed algorithm.

ISAs Compilers
Optimization levels

O0 O1 O2 O3

x86
GCC 19,765 15,492 16,909 16,358

Clang 18,565 17,571 13,529 14,067

x86-64
GCC 19,784 16,075 16,945 16,300

Clang 19,061 19,167 14,513 14,942

ARM32
GCC 19,404 14,376 15,201 14,685

Clang 25,349 16,348 12,525 13,620

AArch64
GCC 22,167 17,805 18,780 18,031

Clang 21,720 20,196 15,218 15,906

Table 2: The number of equivalent pairs that are generated by the BPair algo-
rithm under 64-bit architectures.

ISAs
ISAs
(Compilers)

AArch64
(GCC)

AArch64
(Clang)

(Compilers) Opt levels O0 O1 O2 O3 O0 O1 O2 O3

x86-64

(GCC)

O0 35,691 34,364 32,632 31,303 39,760 44,917 31,073 30,331

O1 34,702 42,953 36,911 39,557 33,844 33,384 36,420 35,538

O2 34,148 40,884 39,750 37,134 32,658 32,068 35,188 34,239

O3 32,440 37,926 37,397 41,367 30,909 30,279 35,667 34,841

x86-64

(Clang)

O0 35,961 32,430 30,559 29,253 38,640 44,452 30,488 29,799

O1 44,603 32,212 30,187 28,706 45,092 45,550 31,263 30,478

O2 30,895 35,327 33,538 33,801 30,973 31,461 42,820 41,626

O3 30,032 34,238 32,646 33,008 30,084 30,563 41,553 41,763

Table 3: The number of equivalent pairs that are generated by the BPair algo-
rithm under 32-bit architectures.

ISAs
ISAs
(Compilers)

ARM32
(GCC)

ARM32
(Clang)

(Compilers) Opt levels O0 O1 O2 O3 O0 O1 O2 O3

x86

(GCC)

O0 38,833 32,740 31,099 32,639 40,515 43,235 29,914 28,684

O1 33,052 38,410 38,124 35,414 31,744 30,601 32,998 31,484

O2 31,474 35,606 36,512 34,443 29,950 28,413 31,526 30,217

O3 30,310 33,167 33,845 37,675 28,733 27,306 31,860 30,585

x86

(Clang)

O0 37,095 31,599 31,686 30,161 37,773 44,006 30,506 29,446

O1 44,589 31,719 30,935 29,336 44,758 44,195 30,686 29,438

O2 30,995 34,734 34,584 35,203 31,029 30,613 42,247 40,385

O3 30,227 33,785 33,581 34,291 30,281 29,697 40,825 40,469
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noting that all resulting assembly pairs shown in Table 2 and Table 3 have been
normalized and all duplicates have also been eliminated.

4.2 Application in Similarity Detection

The important application of BinSimDB is that it can be used to train machine
learning models capable of detecting fine-grained similarities between binary
code snippets. To illustrate this point, we attempt different data combinations
from the proposed dataset, and train the Transformer-based detector introduced
in 3.3. It should be clarified that, the basic blocks that have more than 100 in-
structions will be truncated when training the machine learning model, because
we found only 0.45% of cases in our dataset fall into this category. Please note
that what we do herein will also lay the groundwork for the subsequent experi-
ments in Section 4.3 and Section 4.4.

We first extract datasets towards 32-bit platforms, denoted as D-x86(GCC)/
ARM32(GCC). In total, there are 750,000 basic block pairs in this dataset, where
half are equivalent pairs while the other half are not. We randomly choose 80%
instances as the training set and the remaining 20% as the testing set. Two
basic blocks in a pair are across different optimization levels, and also different
architectures, i.e., x86 and ARM32. Additionally, GCC is leveraged as a control
variable, so all binaries in this dataset are built using the same compiler. Besides,
we re-use the method proposed in [38] to produce nonequivalent basic block pairs.
The evaluation result shows a well-trained model can finally achieve an AUC
value as high as 99.4% over the testing set. The AUC (Area Under the Curve)
value is a scale-invariant performance measurement for classification models.
Specifically, it is used with Receiver Operating Characteristic (ROC) curves. A
higher AUC value indicates a better measure of separability, that is the model
effectively differentiates between the positive and negative classes.

Following the similar setting, we can obtain another dataset, which is to-
wards 64-bit platforms, namely D-X86-64(Clang)/AArch64(Clang). Herein, the
different aspect is two basic blocks in a pair are from x86-64 and AArch64 ar-
chitectures, respectively. Plus, all binaries in the dataset are built using Clang.
The evaluation result shows the model can achieve an AUC value as 99.3% over
the testing set. The ROC curve is shown in Figure 9(a).

We further investigate the performance of models targeting cross-compiler
challenge. To this end, we consider a dataset, D-x86(GCC)/ARM32(Clang). The
size and distribution proportion of this dataset follow the same settings as afore-
mentioned. However, two basic blocks in a pair not only come from different
architectures, but also are obtained by different compilers. Namely, x86 and
ARM32 binaries are built with GCC and Clang, respectively. The evaluation
result shows the model can achieve a high AUC value as 99.27% over the testing
set. Based on another dataset focusing on 64-bit platforms, D-x86-64(Clang)/
AArch64(GCC), we also can observe an analogous performance, as Figure 9(b)
shows. All in all, the performance of our models remains stable no matter which
compilers or architectures are involved, proving that the models manifest better
generalization ability.
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Fig. 9: Similarity detection among basic blocks based on BinSimDB.
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Transferability. Different compilers will likely end up emitting noticeably dis-
tinct assembly code, though the obtained programs should still behave in ex-
actly the same way. The discrepancy among compilers usually poses challenge
in discovering semantic equivalence between binaries especially in the cross-
architecture scenario. Therefore, we are interested in understanding the extent of
transferability of a learning-based model can demonstrate when faced with pre-
viously unseen samples generated by a different compiler. For this purpose, we
first construct two dis-joint datasets towards 32-bit platforms, DTrain-x86/ARM32
(GCC) and DTest-x86/ARM32(Clang). The size and distribution proportion of
datasets follow the same settings as aforementioned. The change is that all bi-
naries in the training set are compiled by GCC. In contrast, all binaries in the
testing set are compiled by Clang. The evaluation result shows the model can
achieve an AUC value of 95.22% over the testing set. If the binaries in the train-
ing set are compiled by Clang, while the binaries in the testing set are compiled
by GCC. We can observe a very close AUC value of 93.75%, as Figure 9(c) shows.

We additionally conduct a complementary study to assess the extent to which
this compiler-agnostic character can be maintained by a learning-based model
towards binaries on 64-bit platforms. We first involve two dis-joint datasets, that
is DTrain-x86-64/AARCH64(GCC) and DTest-x86-64/AARCH64(Clang). In other
words, all binaries in the training set are compiled by GCC. However, the binaries
in the testing set are compiled by Clang. The evaluation result shows the model
can achieve an AUC value of 92.59% over the testing set. If we swap the compilers
for the training and testing sets, the AUC value remains relatively stable, i.e.,
92.81%, as Figure 9(d) shows.

4.3 Comparison Study

In the previous study such as [38], a pair of semantically equivalent basic blocks
under distinct architectures across different optimization levels rely on simplified
evidence to build a connection, that is the two basic blocks exclusively come from
certain lines of source code and such source code are not used to generate any
other basic blocks. If there is any ambiguity that cannot be straightforwardly
handled, the basic blocks will be directly abandoned. Hence, a large number of
semantically intense code gadgets may ultimately be excluded from the resulting
dataset, such as the ternary operator expression shown in Figure 2.

To verify our insights, we extract such complicated cases to form a testing set
towards 32-bit platforms, consisting of 43,000 basic block pairs. As Figure 10(a)
shows, if we adopt the approach [38] to construct a training set, the classifier
trained with this dataset can achieve an AUC value as 88.99% on the testing set.
If we use the proposed BMerge and BPair to overcome the ambiguity, thus
obtained training set can evidently improve the AUC value of the classifier to
97.87%. If the injective mapping between two cross-architecture basic blocks can
be easily inferred, such a basic block pair is considered as a simple case. Even
though we further exclude those simple cases from training set, the performance
of trained model remains stable, with an AUC value of 98.66%. The size of all
training sets is 172,000, so that the testing set takes up 20% of the overall data.
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When considering 64-bit platforms, and cross-compiler scenarios, we can ob-
serve a similar result. As Figure 10(b) shows, by using BMerge and BPair to
construct the training set, we can achieve an AUC value at 97.88% and 97.5%
depending on whether the simple cases are removed or not. This is obviously
higher than the comparative group with an AUC value of 90.4%. Therefore, we
can conclude that the proposed dataset construction approach can greatly help
to improve the performance of binary code similarity comparison.

4.4 Case Study

Again, the focus of this work is on the construction of the dataset, rather than
developing new advanced BCSA techniques. To demonstrate the application of
the fine-grained binary code similarity comparison in real-world scenarios, we
conducted an experiment for the purpose of patch detection. CVE-2019-5482 is
a heap buffer overflow vulnerability in the TFTP protocol handler of libcurl.
The affected versions range from 7.19.4 to 7.65.3. Figure 11(a) shows the CFG
of tftp_connect function from the upgraded version 7.66.0, where the patched
basic block is highlighted in color. The binary is built in GCC towards an x86-64
platform, and the default optimization level is adopted. Locating the patch in a
function with hundreds of basic blocks is a time-consuming task, but it is crucial
for security engineers. The existing function-level BCSA approaches have diffi-
culties in solving this kind of problems. Figure 11(b) shows the CFG of a patched
function but from the version 7.67.0. We build the binary towards an AArch64
platform using Clang as the compiler. Our experiment shows that a detector in-
troduced in Section 3.3, trained using the proposed fine-grained dataset, is able to
quickly and accurately identify the affected basic block, namely the highlighted
one. Moreover, we leverage the bogus control flow insertion [13] to generate an
obfuscated binary, as Figure 11(c) shows. Still, our method can rapidly locate
the corresponding basic block. This definitely could save a significant amount of
time in security analysis. By contrast, we cannot find well-matched basic blocks
in an earlier version such as 7.65.0 because it is unpatched. All the results are
manually verified.

5 Related Work

5.1 Binary Similarity Analysis

The advances in applied deep learning, such as graph learning and natural lan-
guage processing (NLP), have inspired many new methods for comparing the
binary code similarity. Given a large body of research in the pertinent area, our
literature review is not intended to be exhaustive.
Code Learning. Assembly code can be considered as a sequence of tokens,
therefore numerous researchers shift their focus to the arsenal of NLP techniques
when tackling the binary function similarity problem. For example, BinDNN [17],
Asm2Vec, and SAFE [20], etc. Later, Yu et al. utilized the BERT model pre-trained
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(a) x86-64 (GCC) (b) AArch64 (Clang)

(c) AArch64 (Clang) with obfuscation

Fig. 11: The CFGs of tftp_connect function in libcurl.
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on four tasks to learn semantics of assembly code [37]. Similarly, BinShot [2]
is also based on BERT model to detect binary code similarity. In addition,
jTrans [31] proposed a binary function embedding method using the jump-aware
Transformer-based model. However, all of these approaches detect similarity be-
tween functions, and cannot tackle the case when only partial code within a
function is under consideration.
Graph Learning. There are a surge of works on binary code similarity analysis,
which adopt existing graph based techniques. For example, Structure2Vec [8]
is adapted by Xu et al. to learn CFG embeddings [34]. Besides, Yu et al. [37]
use an adjacency matrix to represent a function CFG, then a CNN is further
applied to generate embeddings. However, these methods suffer from a failure to
capture the rich contextual information in assembly code (e.g., intra- or inter-
procedural control flows). To address this problem, DeepBinDiff [10] builds
inter-procedural CFG (ICFG) based on the call graph and CFGs to provide
program-wide contextual information. In particular, Text-associated DeepWalk
algorithm (TADW) [35] is used to learn vector representation for each vertex in
a graph. Furthermore, Kim et al. [15] leverage the graph convolutional networks
based graph alignment technique [33] to learn contextual information. However,
this method relies on partial cross-platform alignment information as a priori.

5.2 Dataset Construction

Unlike computer vision and natural language which have a large body of well-
labelled data, high-quality datasets are a kind of precious or even scare resource
in cybersecurity. Many researchers consider the unavailability of well maintained
data is a common barrier in the area of cybersecurity [28, 32, 39]. Therefore,
we have seen a few recent works focusing on dataset construction, for exam-
ple, system provenance dataset ProvSec [25], and source code patch dataset
PatchDB [32]. However, the datasets targeting binary analysis are still a remain-
ing issue which needs to be addressed by the security community. While some
groups open-sourced their datasets, the contamination or degradation of data
quality has been observed. For example, previous work [3] studied the dataset [4],
which is used for the function boundaries detection in binary code, and “found
many functions to be duplicated across the training and testing sets, thus artifi-
cially increasing their F1-score” [24]. In addition, the datasets for binary code
similarity research are very rare. After investigating 43 papers in this area, Kim
et al. [14] found “only two of them opened their entire dataset”, which leads to
be often infeasible for reproducing the previous results. In our previous research,
we also encountered similar issues. For example, CrossMal [26] is a dataset con-
sisting of cross-architecture function pairs based on IoT binaries. The download
link provided in the paper had became inaccessible when we wrote this article.

A few new datasets for the binary similarity analysis task have been proposed
in recent years [14,19,40]. However, these datasets cannot support a fine-grained
study such as the similarity comparison at a basic block level. By contrast, Zuo et
al. [38] propose an approach, which can automatically generate equivalent basic
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block pairs. But, their method extracts binary code directly from the backend
of compilers, which still has a certain gap from practical application because the
binary code obtained from decompilation is not exactly identical to the binary
code generated by the compiler.

5.3 Usage Cases of Binary Similarity

Binary similarity has been used for multiple usage cases. Vulnerability detection
and patch detection is one of well-known application cases. We presented a case
study to detect a vulnerability and a patch in our paper in the evaluation sec-
tion. Another popular application is the detection and correlation of malicious
software which are found in various fields across Enterprise [1, 36], IoT [7, 22],
and Energy fields [6,21]. To reach out to a large scope of targets, there are even
types of malware that work across platforms (e.g., OS) and architectures. Bi-
nary similarity techniques will be a useful foundational technique to extend the
applicability of the defense techniques.

6 Discussion and Future Work

The main purpose of BinSimDB is to facilitate BCSA research. However, be-
cause we have established a strong connection between assembly code and cor-
responding source information as the ground truth, the current dataset can be
easily extended for diverse research purposes. For example, we can further build
up a dataset containing semantically meaningful code gadgets, such as a loop
structure. This dataset can be used to investigate the loop detection problem in
binary analysis. We consider this as an interesting exploration direction.

Large Language Models (LLMs) have achieved remarkable success in various
natural language processing tasks. As we have developed automated scripts that
can continuously generate large volumes of high-quality data, this also paves the
way for binary analysis research based on LLMs. We believe the intersection of
LLMs and binary analysis has the potential to inspire further advancements in
relevant areas, and accordingly plan to conduct more related study in the future.

7 Conclusion

This paper presents the construction of BinSimDB, a fine-grained dataset for
research on binary code similarity analysis. To maintain the high quality of
data, we extract ground truth from source code information. We propose two
algorithms, BMerge and BPair, specifically designed to address the challenges
of matching semantically equivalent binary code snippet pairs across different
architectures and optimization levels. The proposed algorithms can preserve a
good coverage and provide fine granularity to the greatest degree. Furthermore,
we conduct comprehensive experiments to investigate the properties of the con-
structed dataset and demonstrate the strength of our proposed algorithms. The
evaluation results show that BinSimDB is promising to facilitate the binary
code similarity analysis.
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