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Atomic Precision Advanced Manufacturing (APAM)2

Manufacturing  process of dopant incorporation with atomic 
precision to create planar structures (δ-layers) in 
semiconductors
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Atomic Precision Advanced Manufacturing (APAM)3

STM = Scanning 
Tunneling Microscope

• Novel quantum sensing

APAM APAM Applications

• Quantum Computing 

• Beyond Moore Computing 

APAM devices
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FET-based sensors4

Advantages of FET-based sensors:

• Label-free electrical detection
• Small size and weight
• Low-cost mass production
• Possibility of on-chip integration 

TFET based-sensors can 
reach a sensitivity of up to 
1000, but for molar 
concentration higher than 10-8 

mol/L



Tunneling current is strongly affected by impurities5

Single impurity

Electric dipole

• high-moment dipoles exhibit anisotropic 
behavior !!

• tunneling current can increase up to 60 
times higher ( Lgap =12 nm) !!Si: P δ-layer tunnel junction



Open-system quantum transport simulator 6

 Our quantum transport simulator is based on Non-
Equilibrium Green’s function (NEGF) formalism

 Fully charge self-consistent solution of 
Poisson-open system Schrödinger equation

 Contact Block Reduction (CBR) method 
for fast numerical efficiency

 Predictor-corrector approach and 
Anderson mixing scheme 



Excellent agreement with experiments!7



δ-layer tunnel junctions: two conductivity regimes8

ND=1.0×1014 cm-2, 
NA=5.0×1017 cm-3, 
t=1.0nm, Lgap=10nm
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δ-layer tunnel junctions: two conductivity regimes9

ND=1.0×1014 cm-2, 
NA=5.0×1017 cm-3, 
t=1.0nm, Lgap=10nm Local Density of States (LDOS(x,E))
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δ-layer TJs are ultrasensitive to charges! 10
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Why is a δ-layer based FET highly sensitive to charges?
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Influence of the δ-layer thickness 12

t• The thinner δ-layer, the more sensitive 
to the presence of charges

t↑ → S↓ !!



Final remarks13

• Atomic Precision Advanced Manufacturing (APAM) opens new opportunities to 

fabricate nanoscale devices for charge sensing

• We have used our Quantum Transport Simulator (based on NEGF+Contact Block 

Reduction method) to investigate FET sensors based on δ-layer tunnel junctions

• We have found that the presence of a single charge near the tunnel junction results in 

a significant variation of the tunneling current

• FETs based on δ-layers could detect small signals, thus significantly enhancing 

sensitivity for low concentrations compared to TFET-based sensors

• Applications: chemical/biological detection, gas detection, and radiation detection



THANK YOU
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