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2‘ Atomic Precision Advanced Manufacturing (APAM)

APAN devices

Manufacturing process of dopant incorporation with atomic
precision to create planar structures (&-layers) in
semiconductors
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3‘ Atomic Precision Advanced Manufacturing (APAM)

APAM Applications
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Section A-A
Monolithic Three-Dimensional Tuning of an Atomically Defined
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Advantages of FET-based sensors:

FET-based sensors

Label-free electrical detection
Small size and weight

Low-cost mass production
Possibility of on-chip integration
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Fig. 6 Schematic structure of an ImmunoFET with immobilised antibody
(Ab) molecules. Ag, antizen molecules

Recent advances in biologically sensitive field-effect transistors
(BioFETs)

Michael J. Schoning*<> and Arshak Poghossian®
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APPLIED PHYSICS LETTERS 100, 143108 (2012)

Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free
biosensors
Deblina Sarkar® and Kaustav Banerjee®’

Department of Electrical and Computer Engineering, University of California, Santa Barbara,
California 93106, USA
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TFET based-sensors can
reach a sensitivity of up to
1000, but for molar
concentration higher than 10-8
mol/L




5‘ Tunneling current is strongly affected by impurities

Single impurity

* tunneling current can increase up to 60
times higher ( L_,, =12 nm) !!

Si: P &-layer tunnel junction ” gap
Yx PHYSICAL REVIEW APPLIED 20, 054021 (2023)

Influence of imperfections on tunneling rate in d-layer junctions

Juan P. Mendez®,” Shashank Misra, and Denis Mamaluy®
Sandia National Laboratories, Albuquerque, New Mexico 87123, USA

Electric dipole
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* high-moment dipoles exhibit anisotropic

X
: behavior !!
dipole
d I_(i\/ > cond-mat > arxXiv:2310.06704
- Condensed Matter > Mesoscale and Nanoscale Physics
X

[Submitted on 10 Oct 2023 (v1), last revised 11 Oct 2023 (this version, v2)]
Uncovering anisotropic effects of electric high-moment
dipoles on the tunneling current in j-layer tunnel junctions

Juan P. Mendez, Denis Mamaluy




6‘ Open-system quantum transport simulator ml

O Our quantum transport simulator is based on Non- ‘
Equilibrium Green’s function (NEGF) formalism
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] Quantum transport simulator
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7‘Excellent agreement with experiments!

Tunneling resistance (MQ)
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8‘ O0-layer tunnel junctions: two conductivity regimes
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scientific reports

[ ) Check for updates
OPEN Conductivity and size quantization
effects in semiconductor §-layer
systems

Juan P. Mendez™* & Denis Mamaluy™*

PHYSICAL REVIEW APPLIED 20, 054021 (2023)

Influence of imperfections on tunneling rate in §-layer junctions

Juan P. Mendez®,” Shashank Misra, and Denis Mamaluy®
Sandia National Laboratories, Albuguergue, New Mexico 87123, USA




9‘ O-layer tunnel junctions: two conductivity regimes

LDOS(E, )
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10‘G-Iayer TJs are ultrasensitive to charges!

Tunneling current: Current (A)
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+IWhy is a d-layer based FET highly sensitive to charges? @4

TFET-based sensor 5-layer based FET sensor

Target molecules




»lInfluence of the d6-layer thickness

* The thinner &-layer, the more sensitive
to the presence of charges
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s|Final remarks m

« Atomic Precision Advanced Manufacturing (APAM) opens new opportunities to
fabricate nanoscale devices for charge sensing
« We have used our Quantum Transport Simulator (based on NEGF+Contact Block
Reduction method) to investigate FET sensors based on d-layer tunnel junctions
« We have found that the presence of a single charge near the tunnel junction results in
a significant variation of the tunneling current
 FETs based on d-layers could detect small signals, thus significantly enhancing
sensitivity for low concentrations compared to TFET-based sensors I

« Applications: chemical/biological detection, gas detection, and radiation detection |
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