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Motivation

Goal: reconstruct reliable velocity models of subsurface

Problems: noisy measurements, absence of low
frequency data, etc.

UQ methods are used to quantify the uncertainties in the
reconstructed models

UQ families
— Sampling methods: e.g., MCMC - robust but very expensive

— Variational based methods on the other hand can provide cheaper UQ

solutions but comes with some assumptions 5
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Overview

* Introduce Auto-encoder
« Variational Auto-encoder
* Physics-informed VAEs
« Example

« On going work on INN

« Conclusion
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What is Auto-encoder?

Encoder: Compresses Decoder: Learns a function/map that
information by extracting maps the abstracted info such that the
only the important one reconstructed data/image is close to the

X

initial data
in space R"

—

encoder

e

input data

—

decoder

d

e(x) d(e(x))
encoded data encoded-decoded data
in latent space R™(with m<n) back in the initial space R"

WHAT STARTS HERE CHANGES THE WORLD




TEX_A.S WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Austin

PINN+AE for FWI

Elastic FWI - AE

Acoustic FWI - AE

Dhara and Sen (2022)

Dhara and Sen (2023)
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Can we use AE to generate new data?

| O A
1

encoded data can be decoded
O without loss if the autoencoder
has enough degrees of freedom

encoder decoder

ls‘mﬂ from bt O

“training” data for fv‘* mﬂ;.m{. W without explicit regularisation,

the autoencoder some points of the latent space
are“meaningless” once decoded
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Generative Models: Regularization

what can happen without regularisation x

V what we want to obtain with regularisation
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Variational Auto-encoder

neural network
decoder

neural network
encoder

. 2
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Physics-informed VAE —

neural network neural network

encoder

decoder

X x=d(z)

. 2
](9) = [Ez~qx<”x zd;Z(Z)” >+ D(CIx(Z),p(Z))]
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FWI-VAE Marmousi

e 200 x 150 pixels

« Synthetic data with noise
« 18 sources, 200 receivers
« Additive Gaussian noise

« UQ procedure

— After reconstructing the net (establish the mean and variance
latent vector), we reload the network, generate 1000 samples
(resample the latent vector) and compute the mean and the
standard deviation of the output (posterior).

10
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Convergence
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Reconstruction

True velocity
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FWI-VAE SEA

True Abs (true - mean)
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UQ-FWI through INN

( ) |mo+mk
Z: sample in latent space « Fim) 'lgk&J(m)l

F(Z): forward mapping = Noommomeoo
F-1(2): reverse mapping

mg,M,: initial and current model

O« FWI gradient at epoch k

J(m,): data misfit

[ ] [ ] [ ] [ ]
o m—————
solver
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UQ-FWI through INN
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UQ-FWI through INN
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Conclusion

« We developed VAE framework for UQ-FWI
— Synthetic examples shows promise in terms of accuracy of the mean model and the
distribution of uncertainty
« Although uncertainty distribution agrees with expectations, their amplitude
seems to be underestimated
— We plan to investigate this issue in near future
« We also is exploring INN as an alternative for the UQ-FWI

— Initial results shows promise, however, the amplitude of standard deviation seems to
be underestimated

 We plan to extend the work to multiparameter FWI (e.g., Elastic FWI)
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Why PINN?
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Why VAE, INN seem to produce much lower
uncertainty when compared to MCMC?

MCMC does not alter the VAE, INN regularize the FWI
parameterization of FWI, problem, which may remove
leaving all non uniqueness in mostof the non uniqueness

. the fwi objective function in the fwi objective function

v
v
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Keep an Eye on the Latent Dimension

H living
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near optimal encoding near optimal encoding
in one dimension in two dimensions
(too much information lost) initial data with many features (less information lost)
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