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Motivation
• Goal: reconstruct reliable velocity models of subsurface

• Problems: noisy measurements, absence of low

frequency data, etc.

• UQ methods are used to quantify the uncertainties in the

reconstructed models

• UQ families
– Sampling methods: e.g., MCMC – robust but very expensive

– Variational based methods on the other hand can provide cheaper UQ

solutions but comes with some assumptions
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Overview

• Introduce Auto-encoder

• Variational Auto-encoder

• Physics-informed VAEs

• Example

• On going work on INN

• Conclusion
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What is Auto-encoder?
Encoder: Compresses 
information by extracting 

only the important one

Decoder: Learns a function/map that 
maps the abstracted info such that the 

reconstructed data/image is close to the 

input data
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PINN+AE for FWI
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Can we use AE to generate new data?
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Generative Models: Regularization
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Variational Auto-encoder
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Physics-informed VAE
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FWI-VAE Marmousi

• 200 × 150 pixels 

• Synthetic data with noise

• 18 sources, 200 receivers

• Additive Gaussian noise 

• UQ procedure
– After reconstructing the net (establish the mean and variance 

latent vector), we reload the network, generate 1000 samples 
(resample the latent vector) and compute the mean and the 
standard deviation of the output (posterior).
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Convergence
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Reconstruction
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FWI-VAE SEAM

𝓩~𝓝(𝟎,𝜤)

𝓩~𝓝 𝟎,𝟏𝟎 × 𝜤
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UQ-FWI through INN

• Z: sample in latent space

• F(Z): forward mapping

• F-1(Z): reverse mapping

• m0,mk: initial and current model

• gk: FWI gradient at epoch k

• J(mk): data misfit
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UQ-FWI through INN
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UQ-FWI through INN
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Conclusion

• We developed VAE framework for UQ-FWI 
– Synthetic examples shows promise in terms of accuracy of the mean model and the 

distribution of uncertainty

• Although uncertainty distribution agrees with expectations, their amplitude 
seems to be underestimated
– We plan to investigate this issue in near future

• We also is exploring INN as an alternative for the UQ-FWI
– Initial results shows promise, however, the amplitude of standard deviation seems to 

be underestimated

• We plan to extend the work to multiparameter FWI (e.g., Elastic FWI)
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Why PINN?



Why VAE, INN seem to produce much lower 

uncertainty when compared to MCMC?

MCMC does not alter the 

parameterization of FWI, 
leaving all non uniqueness in 
the fwi objective function

VAE, INN regularize the FWI 

problem, which may remove 
most of the non uniqueness 
in the fwi objective function



Keep an Eye on the Latent Dimension
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