

# Uncertainty quantification of single and multi-parameter full-waveform inversion through a variational autoencoder

Abdelrahman Elmeliegy<sup>1\*</sup>, Mrinal Sen<sup>1</sup>,  
Jennifer Harding<sup>2</sup> and Hongkyu Yoon<sup>2</sup>

TEXAS  
The University of Texas at Austin

U.S. DEPARTMENT OF  
ENERGY

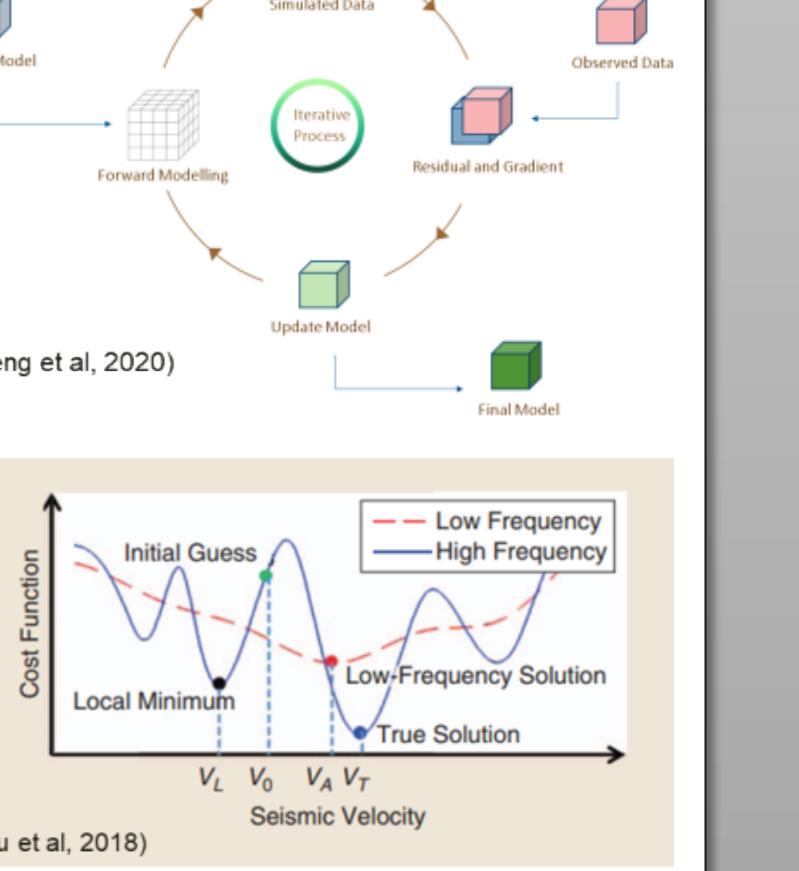
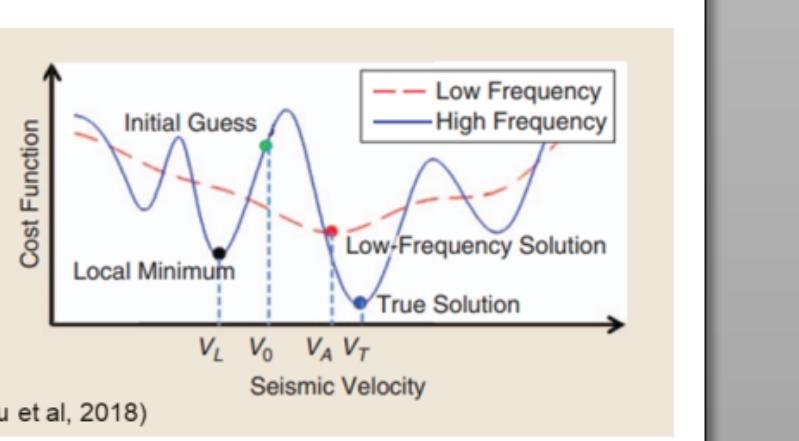
SAND2024-12569C

## 1. RESEARCH GAP, OBJECTIVE & SCOPE

**Motivation.** Quantify uncertainties of single and multi-parameter full waveform inversion

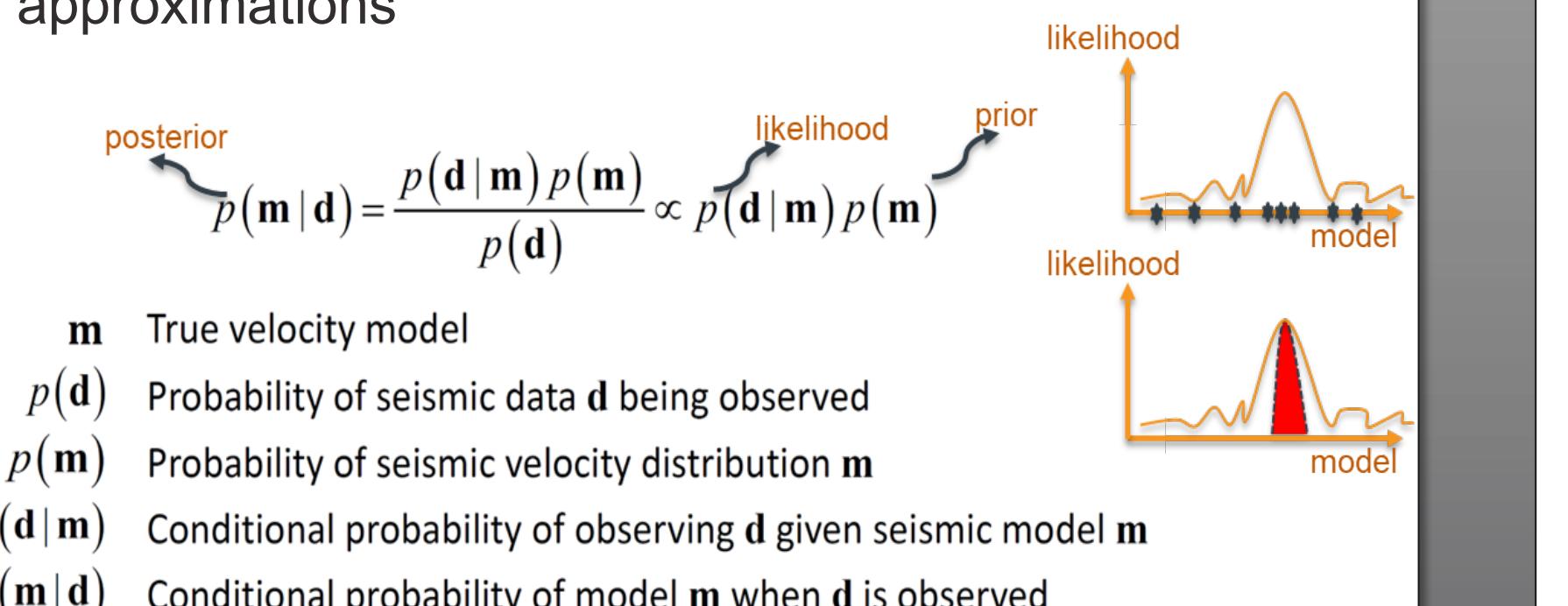
### Full waveform inversion

- Provides high resolution velocity model of subsurface
- Suffer from non-uniqueness, nonlinearity, noise and low-wavenumber content
- Problem: all these hinder the reliability of the FWI results
- Goal: assess the uncertainty of FWI



### State of the art. Bayesian Inversion

- Sampling methods: e.g., MCMC – robust but computationally expensive
- Variational methods: cheaper but comes with approximations



**Objective.** Provide a computationally affordable framework for the uncertainty quantification of FWI for both acoustic and elastic cases

### Scope

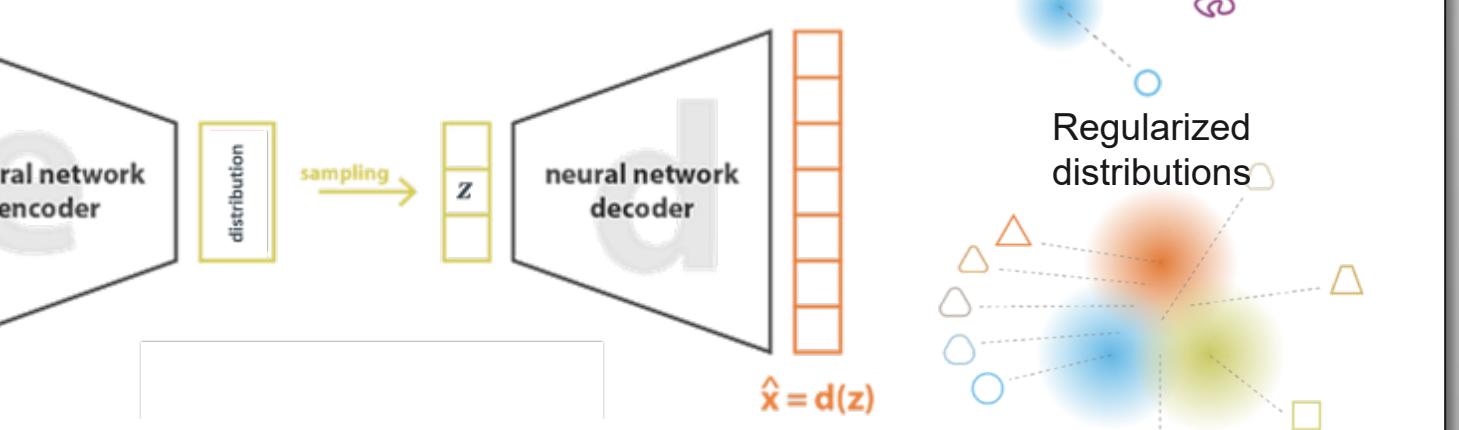
- Deep learning through convolutional Neural Network
- Generative artificial intelligence (Gen AI)

## 2. VARIATIONAL AUTO-ENCODER

**Inputs:** Seismic shot gathers

**Output:** All possible velocity models

### Neural network architecture:



- Encoder:** Compresses information into a distribution of features defined by some known distribution e.g., Gaussian. Those features are the most important
- Decoder:** Learns a inverse mapping function that maps the abstracted info such that the reconstructed data/image is close to the input data

### Theory

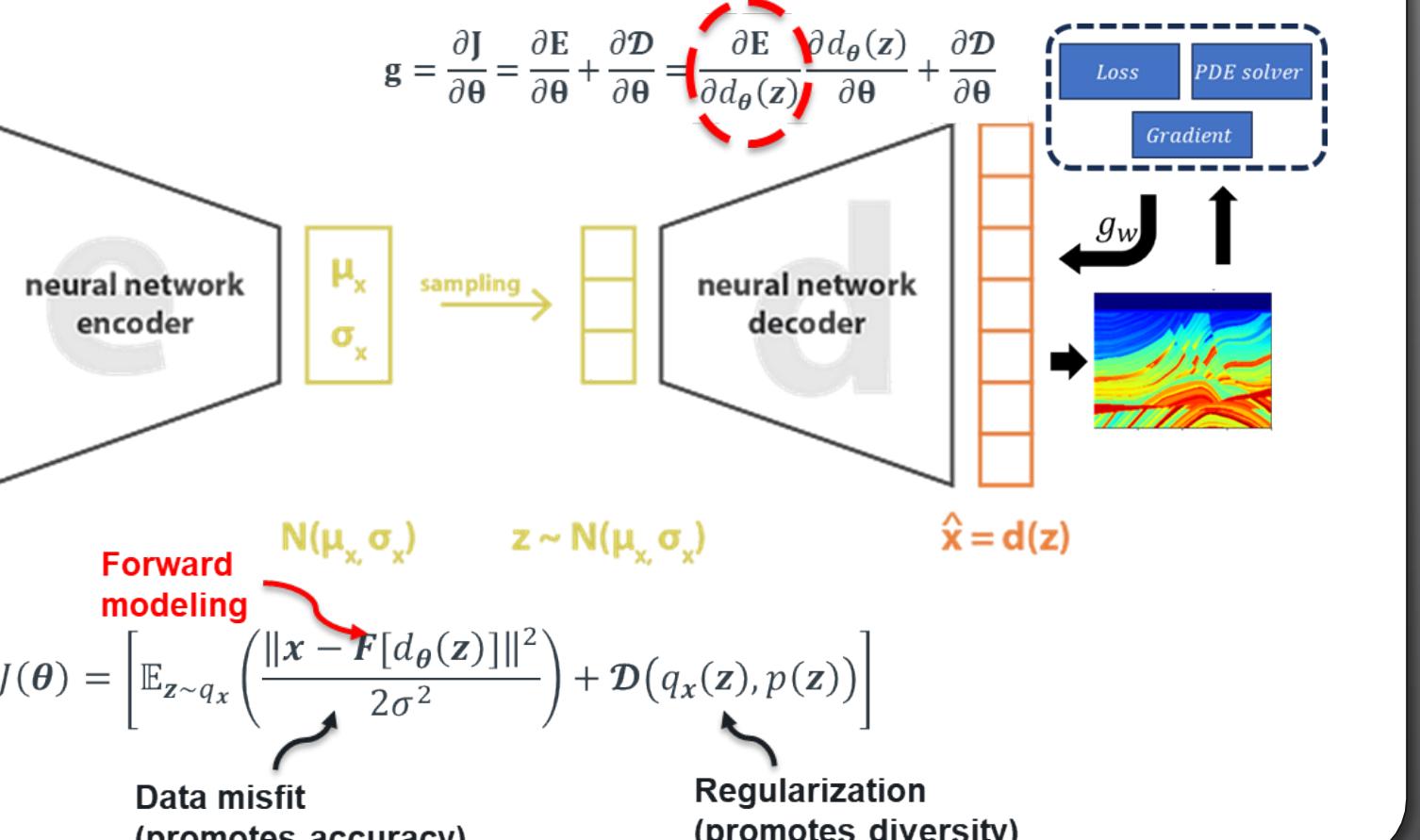
$$(\hat{g}, \hat{h}) = \underset{(g,h) \in G,H}{\operatorname{argmin}} \mathcal{D}[q_x(z), p(z|x)],$$

$$(\hat{g}_\theta, \hat{h}_\theta) = \underset{(g,h) \in G,H}{\operatorname{argmin}} \left[ \mathbb{E}_{z \sim q_x} \left( \frac{\|x - d_\theta(z)\|^2}{2\sigma^2} \right) + \mathcal{D}(q_x(z), p(z)) \right],$$

$$(\hat{d}_\theta, \hat{g}_\theta, \hat{h}_\theta) = \underset{(D,g,h) \in D,G,H}{\operatorname{argmin}} J(\theta)$$

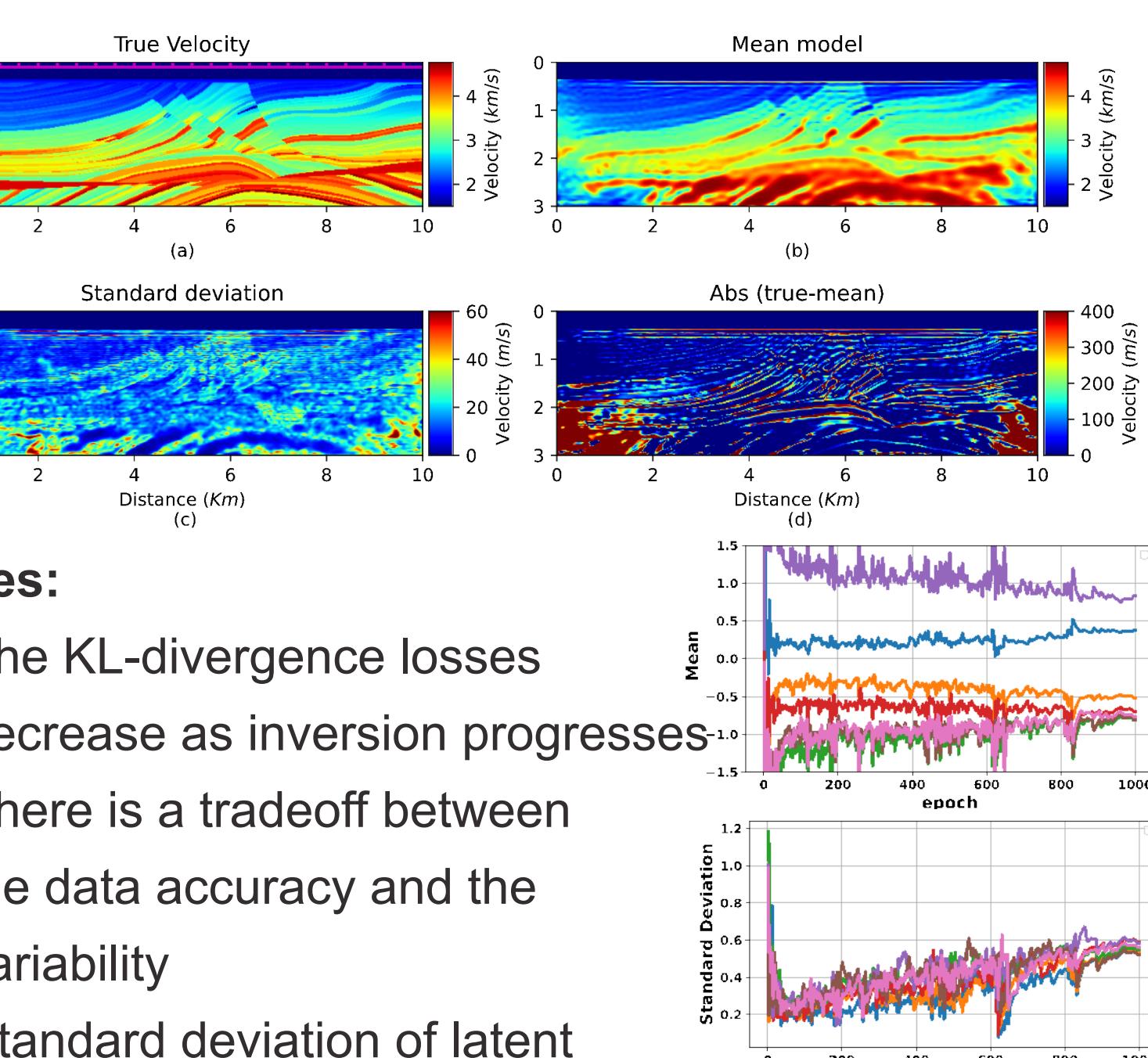
$$J(\theta) = \left[ \mathbb{E}_{z \sim q_x} \left( \frac{\|x - d_\theta(z)\|^2}{2\sigma^2} \right) + \mathcal{D}(q_x(z), p(z)) \right].$$

### Physics Informed Neural Network



## 3. ACOSTIC FULL WAVEFORM INVERSION

**Example :** Marmousi

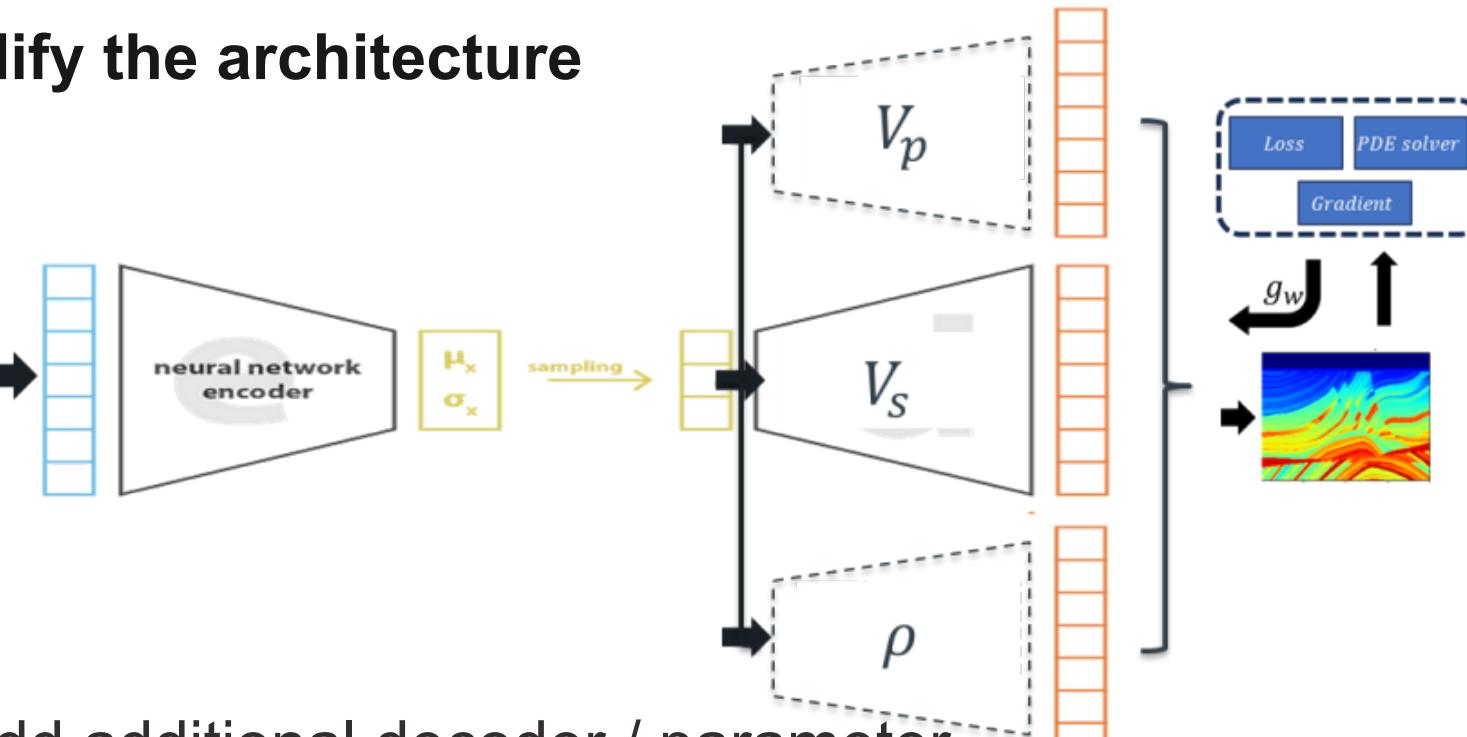


### Notes:

- The KL-divergence losses decrease as inversion progresses
- There is a tradeoff between the data accuracy and the variability
- Standard deviation of latent variables increases over epoch (to match the standard Gaussian)
- The mean latent variables are getting clustered as inversion advances

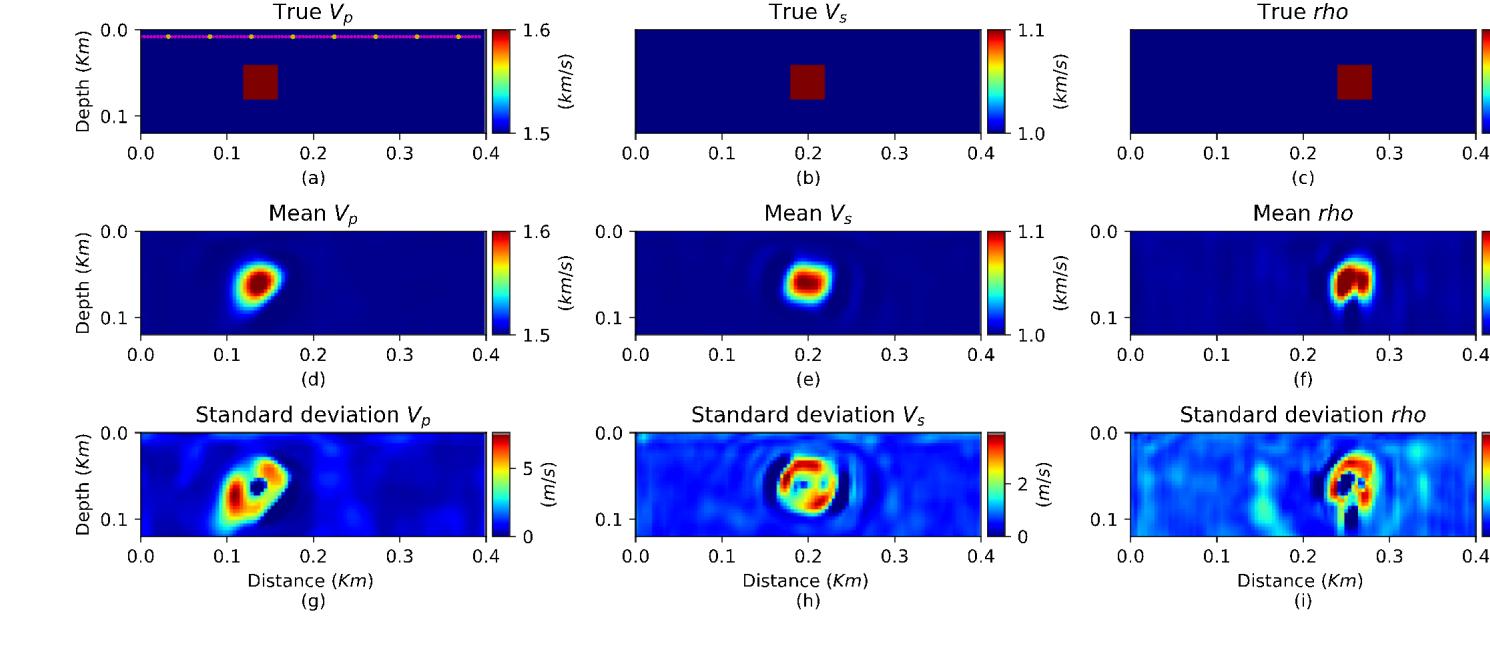
## 4. ELASTIC FULL WAVEFORM INVERSION

### Modify the architecture

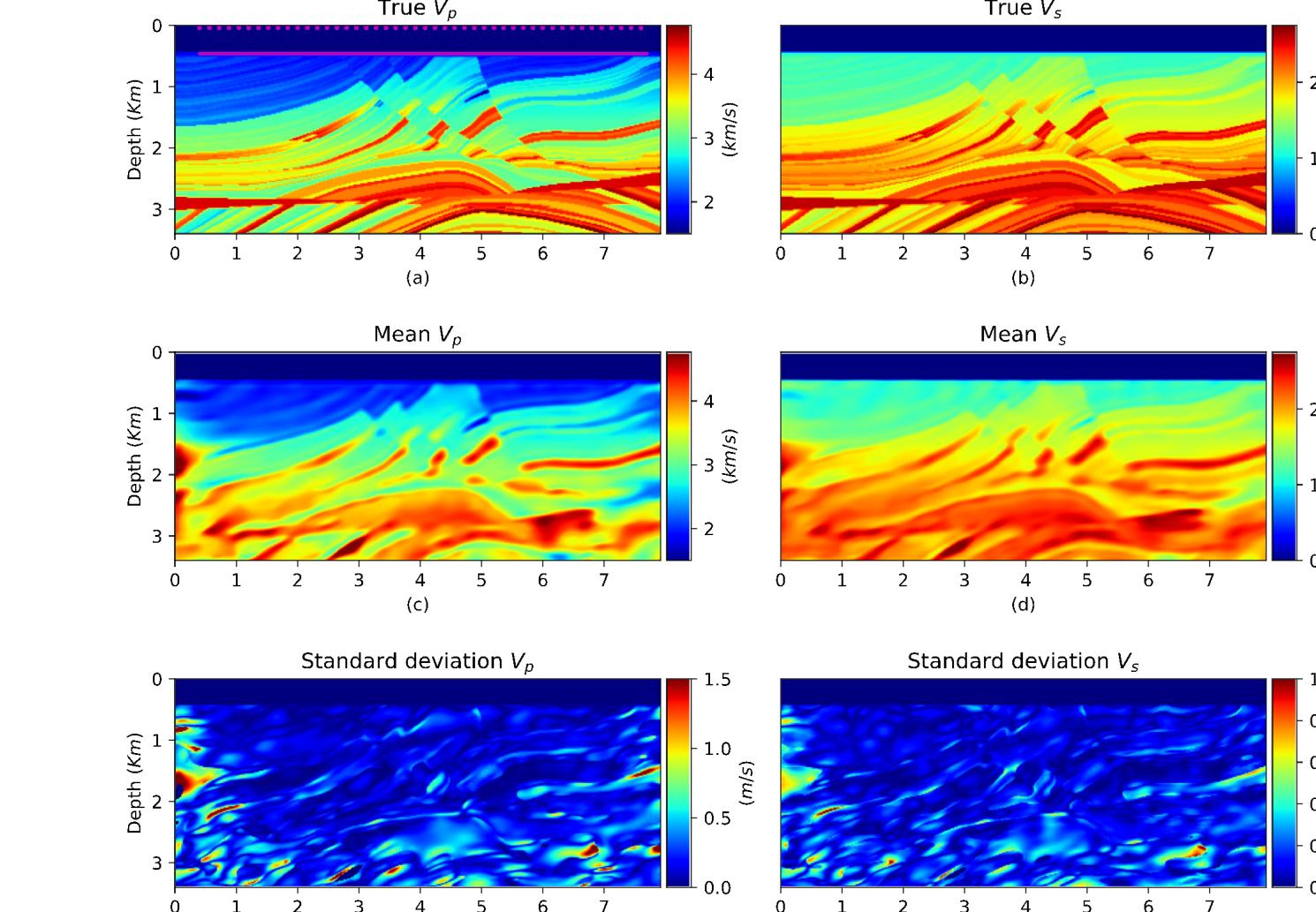


- Add additional decoder / parameter
- This helps in resolving the crosstalk between parameters

## Example: Toy model (inclusion)



## Example: Marmousi



## 5. SUMMARY

- VAE framework is a promising approach for quantifying FWI uncertainties.
- Results show that the framework is cheap and can handle single and multi-parameter inversion
- Results should be carefully interpreted especially with the variance since it seems to be underestimated

## 6. REFERENCES

- Elmeliegy et al, IMAGE Extended Abstract, (2024).
- Dhara and Sen. The Leading Edge 2022 and IEEE Transactions on Geosci. and Remote Sensing 2023.

## 7. Acknowledgments