EAI
SecureComm

BinSimDB: Benchmark Dataset Construction for
Fine-Grained Binary Code Similarity Analysis

Fei Zuo?, Cody Tompkins?, Qiang Zeng?, Lannan Luo?,
Yung Ryn Choe3, Junghwan Rhee?

*University of Central Oklahoma

2George Mason University U m
3Sandia National Laboratories _

is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
ation under contract DE-NA0003525

Outline

* Background

* Related work
* Methodology
* Evaluation

* Case study

o Take-away message Uﬁm

Cross-Architecture
Binary Code Similarity Analysis (BCSA)

U)o

From source code to binary code

Source Code

T~

- NN

X86 ARM MIPS Uﬁm

4

From source code to binary code

Source code is unavailable

®* Proprietary software

* |oT firmware

* Malware

Cross-architecture binary similarity analysis

* Plagiarism detection

* Malware family identification

* Vulnerability discovery

Current Status and Challenges

* Deep-learning-based methods have shown promise, where
dataset matters

* However, well-labelled, high-quality datasets are precious
or even scare in cross-architecture BCSA

* Eg. Afterinvestigating 43 papers, Kim et al. [TSE'22] found
“only two of them opened their entire dataset”.

Current Status and Challenges

* Dataset Construction
* Kimetal [TSE'22]
* Marcelli et al, [USENIX Security’22]
* Song et al, [IEEE loT Journal'22]

* Mainly focusing on function-level equivalent binary pairs

* Cannot support fine-grained analysis

U)o

Current Status and Challenges

* Fine-grained analysis is useful for detecting subtle discrepancy
* Eg., There are 75 basic blocks in the unlzw function, while code

changes caused by the patch only take up approximately 5.3%

of the entire function.

diff ——git a/unlzw.c bfunlzw._c
index fb9%ff76._BfBckees 100644
a/unlzw._c
b/unlzw.c
240,7 +2
int o
tbuf:
ina =
po > 3
£ {i 0 i< e ; ++i) {
inbuf[= irx flitel;

The patch in gzip for CVE-2010-0001

008ddabd - resetbuf
poeddacd MOV RAX, gqword [REBP + posbits]
Bee@dacd SAR RAX, @x3
Beeadda MOV dword ptr [+ 0], EAX
Beeadda MOV EDX, dword [REP + o]
eAeada MOV EAX, dword [insize]
poeadda CMP EDX, EAX
poedda JA LAB eeoad
3 edddarc
LAB_@00eda: B008da7c MOV EAX, dword ptr [insize]
MOV EAX #0P8daB2 MOV EDX, dword ptr [RBP + o]
il Beeadads SUB EAX, EDX
Bedadas7 JMP LAB @edodas
008@daBe - LAB_G@0odaBe
2] MOV dword ptr [RBP + e], EAX
2] MOV dword I 1, @x@
20 LAB_@eaad

Current Status and Challenges

* Unlike functions, which have names

* Constructing fine-grained equivalent binary code snippet

nairs (e.q. basic

vlock-level) is non-trivial

* Prior attempt [N

DSS'1g9] relies on the annotations generated

U)o

oy the LLVM, leaving a gap in practical application

11

Current Status and Challenges

* More importantly, prior work cannot well address the

following two challenges:

1. Asingle line of source code may correspond to multiple basic
blocks, causing confusion w

——— a/unlzw.c
+++ b/unlzw.c

i
diff ——git afunlzw.c
index fb9ff76..8f8ckee 100644

bfunlzw.c

@@ -240,7 +240,8 @@ int unlzw(in, out)

nen pairing

e0e8dabd - resetbuf

gzip-1.12/unlzw.c:168
gzip-1.12/unlzw.c:161

/ \.

06e6da89 - LAB_P00Bdas9 eaeada7c

gzip-1.12/unlzw.c:161

161 -

- e = inasize—{o = (posbits=>3));
16@ + o = posbitas »> 3;

gzip-1.12/unlzw.c:161

“‘mthMEﬁhﬁi "#,,e“"’!’

oeeedase - LAB_eeeedaBe

gzip-1.12/unlzw.c:161

Ui,0

12

Current Status and Challenges

* More importantly, prior work cannot well address the
following two challenges:

1.

2. Due to compiler optimization behavior, basic blocks can be
merged or reorganized when using different opt levels

aagadbs58 aaeaddfc Bedddccc Beaadabg eadddacc paeddea
gzip-1.12/unlzw.c:168 Ezip-1.12/unlzw.c:161 gzip-1.12/unlzw.c:161 gzip-1.12/unlzw.c:161 Ezip-1.12/unlzw.cC:168 Ezip-1.12/unlzw.cC:16@
Ezip-1.12/unlzw.c:163 Ezip-1.12/unlzw.c:284 gzip-1.12/unlzw.c 1285 Ezip-1.12/unlzw.c:161 Ezip-1.12/unlzw.c:164
Ezip-1.12/unlzw.c: 285 Ezip-1.12/unlzw.c:182 Ezip-1.12/unlzw.c:289
Ezip-1.12/unlzw.c: 286 I Ezip-1.13/unlzw.c:183
Ezip-1.12/unlzw.c:287 3 Ezip-1.12/unlzw.c:184
Ezip-1.12/unlzw.c:288 *| Bedadiat @ebedb34 Ezip-1.13/unlzw.c:185 Béeddeba
gzi?-l.lifuql?w.c:.?ﬁ? gzip-1.12/unlzw.c:168 gzip-1.12/unlzw.c:161 EI:!.FI-:I..].ZJ"IJI'I].EH.CZIEE Ezip-1.13/unlzw.c:168
string_fortified.h:59 gzip-1.12/unlzw.c:161 gzip-1.12/unlzw.c:163 grip-1.13/unlzw.c:198 gzip-1.12/unlzw.c:163

13

Methodology

* Pipeline
* BMerge Algorithm
* BPair Algorithm

* Transformer-based Similarity Detector

14

Methodology

* Pipeline

Annotate & Refine

A\

: s CFGe
SOurce - o Call Graphs
Binary
Code ' sFunctions

Compile Code Analvze Data Clean & Pair

#Basic Blocks

BINSIMDB

Ui,0

15

Methodology

* BMerge Algorithm

x86

ARM

Algorithm 1: BMERGE Algorithm

Input: A set of basic blocks, denoted by &, wherein a basic block i is labeled
with a set .A;, and addr; represents the address of i.
Output: The refined basic blocks set S.

1 foreach i,j € §, where i # j, do
2 if .Ai = .Aj then
3 if addr; < addr; then
4 Update ¢ by merging j into 7
5 L S« 8—-1{j}
6 else
7 Update j by merging ¢ into j
8 L S+ S§—{i}
9 else if 4; C A; then
10 Update i by merging j into i
11 S« S-{j}
12 else if 4; C A; then
13 Update j by merging i into j
14 S+ S§—{i}

15 return S

Line 160
I 4

Line 160
I 4

Line 160

Line 161

Line 160 \

Line 160

~

J

Methodology

* BMerge Algorithm

x86

Algorithm 1: BMERGE Algorithm

Input: A set of basic blocks, denoted by &, wherein a basic block i is labeled
with a set .A;, and addr; represents the address of i.
Output: The refined basic blocks set S.
1 foreach i,j € §, where i # j, do

2 1fA A; then
3 if addr; < addr; then
4 Update ¢ by merging j into 7
5 S« 8—-1{j}
6 else
7 Update j by merging ¢ into j
8 S+ S§—{i}
. elselfA I
10 Update i by merging j into i
11 S« S-{j}
12 else if 4; C A; then
13 Update j by merging i into j
14 S« S-{i}

15 return S

Line 160
I 4

Line 160

L 7

\/

x86

Line 160

\/

7

17

Methodology

* BMerge Algorithm

x86

~

Algorithm 1: BMERGE Algorithm

Input: A set of basic blocks, denoted by &, wherein a basic block i is labeled
with a set .A;, and addr; represents the address of i.
Output: The refined basic blocks set S.

1 foreach i,j € §, where i # j, do
2 if .Ai = .Aj then
3 if addr; < addr; then
4 Update ¢ by merging j into 7
5 L S« 8—-1{j}
6 else
7 Update j by merging ¢ into j
8 L S+ S§—{i}
o |{ else if A; C A; then
10 Update i by merging j into i
11 |i | S« S—{j}
12 else if 4; C A; then
13 Update j by merging i into j
14 | S+ S§—{i}

15 return S

Line 160 | ~

Line 160|

/

x86

~, | Line 160

/v Line 161

7

18

Methodology

* BPair Algorithm

* Intuition: to transform the
problem of matching
equivalent basic blocks
into a graph problem.

Algorithm 2: BPAIr Algorithm

12
13
14
15
16
17

18
19

20

Input: Two sets of basic blocks, denoted by If and V, where a basic block i is
labeled with a set 4., and addr, represents the address of 1.
Output: A set M consisting of equivalent basic block pairs.

Function Merge(p, g)
if addr, < addr, then
Update p by merging g into p
return p
else
Update g by merging p into g
return g

Initialize a bipartite graph G = (U, V,£), where £ =10
foreach u e i, v eV, do
if A,N A, # 0 then

L £+ EU{{u,v)}

foreach connected sub-graph C C G do

Pick any basic block i from C, where i € U4
Pick any basic block j from C. where j € V
foreach k € C — {i.j} do
if £ €U then

L i + Merge (k, i)
else if kL =V then

L j + Merge (k, j)

| M MU{(.5))

21 return M

19

Methodology

unlzw.c:177, unlzw.c:178, unlzw.c:180

‘ unlzw.c:181

unlzw.c:167, unlzw.c:177, unlzw.c:180 ‘

unlzw.c:167, unlzw.c:181, unlzw.c:234 ‘

unlzw.c:177, unlzw.c:178, unlzw.c:18@ ‘

‘ unlzw.c:199

‘ unlzw.c:234

unlzw.c:180, unlzw.c:199

‘ unlzw.c:160, unlzw.c:161 |

—

unlzw.c:16@, unlzw.c:163, unlzw.c:164

’ S
&
‘ unlzw.c:161, unlzw.c:163 |—

‘ unlzw.c:163, unlzw.c:164

unlzw.c:182, unlzw.c:183, unlzw.c:184,
unlzw.c:185, unlzw.c:186

|

|

|

|

|

|

|

|

|

| |

g— -c: ’ -c: s -

1 - ! unlzw.c:161, unlzw.c:163 ‘
-

unlzw.c:160, unlzw.c:161, unlzw.c:182,
unlzw.c:183, unlzw.c:184, unlzw.c:185,
unlzw.c:188, unlzw.c:198

|
|
|
‘ unlzw.c:188 :
|
|
‘ unlzw.c:190 :
I”,// unlzw.c:193, unlzw.c:196 ‘
1
T \
unlzw.c:193, unlzw.c:196 J ' unlzw.c:193, unlzw.c:212
! | L]
T
e

‘ unlzw.c:214 ‘

AArch64

Algorithm 2: BPAIr Algorithm

Input: Two sets of basic blocks, denoted by If and V, where a basic block i is
labeled with a set A., and addr, represents the address of 1.
Output: A set M consisting of equivalent basic block pairs.

1 Function Merge(p.q)
2 if addr, < addr, then
3 Update p by merging g into p
4 return p
5 else

Update g by merging p into g
T return g

8 IHltlﬂllZE‘ a b1part1te graph G = (U4, V, &), where £ = E'
9 ﬁ:nreach veld,veV, do

10; if A.n A, #0 then

11 L £+ EU{({u,v)}

12 foreach connected sub-graph C C G do

13 Pick any basic block i from C, where i € U4
14 Pick any basic block j from C. where j € V
15 foreach k € C — {i.j} do

16 if £ €U then

17 L i + Merge (k, i)

18 else if kL =V then

19 L j + Merge (k, j)

20 | ";[— MU{(i,7)}

21 return M

20

Methodology

unlzw.c:167, unlzw.c:177, unlzw.c:180

unlzw.c:177, unlzw.c:178, unlzw.c:180

unlzw.c:167, unlzw.c:181, unlzw.c:234

‘ unlzw.c:181

unlzw.c:177, unlzw.c:178, unlzw.c:18@

‘ unlzw.c:199

unlzw.c:180, unlzw.c:199

‘ unlzw.c:234

‘ unlzw.c:160, unlzw.c:161 |

unlzw.c:16@, unlzw.c:163, unlzw.c:164

— =
‘ unlzw.c:161, unlzw.c:163 |— L 1 =
-

unlzw.c:161, unlzw.c:163 ‘

‘ unlzw.c:163, unlzw.c:164

unlzw.c:182, unlzw.c:183, unlzw.c:184,
unlzw.c:185, unlzw.c:186

unlzw.c:160, unlzw.c:161, unlzw.c:182,
unlzw.c:183, unlzw.c:184, unlzw.c:185,
unlzw.c:188, unlzw.c:198

unlzw.c:193, unlzw.c:196

|
|
|
‘ unlzw.c:188 :
|
|
‘ unlzw.c:190 :
|
1
‘ 1 i
‘ unlzw.c:193, unlzw.c:196 ‘ ; : /”/T
T
e

unlzw.c:193, unlzw.c:212

unlzw.c:214 ‘

AArch64

Algorithm 2: BPAIr Algorithm

P I I

o

10
11

12

13
14
15
16

18
19

20,

21

Input: Two sets of basic blocks, denoted by If and V, where a basic block i is
labeled with a set A., and addr, represents the address of 1.

Output: A set M consisting of equivalent basic block pairs.

Function Merge(p.q)

if addr, < addr, then

Update p by merging g into p

return p

else
Update g by merging p into g
return g

Initialize a bipartite graph G = (U, V,£), where £ =10
foreach u e i, v eV, do
if A,N A, # 0 then

| £+ U {{u,v)}

foreach connected sub- graph C C G do

Pick any basic block i from C, where i € U4
Pick any basic block j from C. where j € V
foreach k € C — {i.j} do
if £ €U then

L i + Merge (k, i)

else if £ =) then
| 7 Merge (k, j)

return M

21

Methodology

* Transformer-based Similarity Detector

Transformer Block

Positional p-—m==m=mmmmmm s m e e e)

Representation Matrix ;
P Encoding E Residual Connections

-]
= | . | .
[" | 1
2 = = A/
8 : : | i
= i i i l
= : = g z E ! Z
E E‘] E % o : o = : =i
= o i 2 O g B O 3
g & £ 2 LELLz1118) 1z1ilelilel |8 &
& "5 o @ | R 3 =] S =] =] 5 a
o & S [S 3 S =N e e - - o
; = = =]
g — = P& 5 a 5 = o a 8
ﬁ = i = & % a o o]
: = = =
: - -
o |
§ — :
g N S G D / (S I W S S
2% 2%

Fig. : Architecture of the proposed binary code similarity detector. U m

22

Dataset Composition

* Source code of 30 binaries from 8 GNU software projects, i.e.,

binutils, datamash, findutils, grep, gzip, macchanger, tar, and which

* Involves 980,251 functions across 32 distinct combinations of
compilers, optimization levels, and target platform

* Four different ISAs: x86, x86-64, ARM32, and AArch64
* Two representative compilers, i.e., GCC and Clang
* Four optimization levels: Oo, O1, 02, O3

* Eventually, consisting of 4,426,258 equivalent assembly pairs Uﬁm

23

Application in Similarity Detection

* Cross-ISAs & opt-levels evaluation

* Cross-ISAs, opt-levels & compilers evaluation

* Transferability evaluation

. —~ 1.0 1.0

o N 9 g

T © 081 p < 0.8 £0.81 .

o : o 0. 95 1 ',/ o o ‘;

Q a ()] A |

> 0.6 golt 20.6{, 0L 0.6 206

B 09%0 o5 .10 = 0-9%0 65 .10 3 2

80.4 L S04 P 80.4 0.4 __

m o w - ‘..' - - -.." X

B02| — e 2 02| — Mmmeien Y 05| — Foming: S rresting: cns 3 o o | — ming sz et v

2 emee iag—:__ﬁ;;sjﬂ:mchm (Clang), = - iﬁ%gggcﬁﬂg} vs. AARChG4(GCC), = 0.2 .. Training: Clang / Testing: GCC, = 0.2 ____ Training: Clang / Testing: GCC,
080 02 04 06 08 1.0 030 02 04 06 08 1.0 0.9 ;;C:?:’fno 6 08 10 0.9'5 ;;@;2.11%0 08 1o

False Positive Rate False Positive Rate " False Positive Rate " False Positive Rate
(a) Cross-ISAs & opt-levels (b) Cross-ISAs, opt-levels & com- (c) x86 vs. ARM32 (d) x86-64 vs. AArch6d
pilers ' ' '

24,

Comparison Study

* Based on the same set of source code, we apply [NDSS'19] and
the proposed method to construct equivalent binary pairs

* More equivalent and complicated matching pairs can be found

by the proposed method

1.0 1.0 _
q’ . _.J.f_ - m \. .-.J-?.
€ | £ |
2060 Jool /| 2061 /ool |
"u:; 700 05 10 "t:n" 700 05- 10
Do. 0.4 ____ Prio 0 Iy njective pairs w/t 8 0.4 i D Iy njective pairs w/t
) mbg ity, AUC 88 99X) mbg ity, AUC=90. 4/’
2 0.2 =7 iug Q?dS'?x’ ome ambiguity. 2 0.2 -7 iug 9?d5? ome ambiguity.
| - . | -
= . Proposed: Exclude injectiv = ... Proposed: Exclude injective

o. pairs, AUC=98.66% N pairs, AUC=97.98%

8.0 02 04 06 08 1.0 8.0 02 04 06 08 1.0

False Positive Rate
(a) x86(GCC) vs. ARM32(GCC)

False Positive Rate

(b) x86-64(Clang) vs. AArch64(GCC)

Ui,0

25

Case Study

* Patch identification

* CVE-2019-5482 is a heap buffer
overflow vulnerability in the TFTP

[: Ixly

protocol handler of libcurl. —
* The affected versions range from
7.19.4 t0 7.65.3. : =

x86-64 (GCC) i —

26

Case Study

1
&]
- LT 1]
]
* — 1 (-
] | |]
— T
- ']
| []
1 | |
=eEgil S
| 1 | | —
e C3] o3 AArch6y (Clang) with U B:]m
AArch6y (Clang) L — bogus control flow insertion

27

Take-away message

* We construct BinSimDB to facilitate fine-grained
BCSA research

* The dataset and script are available at
https://uco-cyber.github.io/research/#binsimdb

28

https://uco-cyber.github.io/research/#binsimdb

	BinSimDB: Benchmark Dataset Construction for�Fine-Grained Binary Code Similarity Analysis
	Outline
	Cross-Architecture �Binary Code Similarity Analysis (BCSA)
	From source code to binary code
	From source code to binary code
	Source code is unavailable
	Cross-architecture binary similarity analysis
	Current Status and Challenges
	Current Status and Challenges
	Current Status and Challenges
	Current Status and Challenges
	Current Status and Challenges
	Current Status and Challenges
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Dataset Composition
	Application in Similarity Detection
	Comparison Study
	Case Study
	Case Study
	Take-away message
	Slide Number 29

