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Cross-Architecture
Binary Code Similarity Analysis (BCSA)
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From source code to binary code
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From source code to binary code




Source code is unavailable

®* Proprietary software

* |oT firmware

* Malware




Cross-architecture binary similarity analysis

* Plagiarism detection

* Malware family identification

* Vulnerability discovery




Current Status and Challenges

* Deep-learning-based methods have shown promise, where
dataset matters

* However, well-labelled, high-quality datasets are precious
or even scare in cross-architecture BCSA

* Eg. Afterinvestigating 43 papers, Kim et al. [TSE'22] found
“only two of them opened their entire dataset”.



Current Status and Challenges

* Dataset Construction
* Kimetal [TSE'22]
* Marcelli et al, [USENIX Security’22]
* Song et al, [IEEE loT Journal'22]

* Mainly focusing on function-level equivalent binary pairs

* Cannot support fine-grained analysis
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Current Status and Challenges

* Fine-grained analysis is useful for detecting subtle discrepancy
* Eg., There are 75 basic blocks in the unlzw function, while code

changes caused by the patch only take up approximately 5.3%

of the entire function.

diff ——git a/unlzw.c bfunlzw._c
index fb9%ff76._BfBckees 100644
a/unlzw._c
b/unlzw.c
240,7 +2
int o
tbuf:
ina =
po > 3
£ {i 0 i< e ; ++i) {
inbuf[ = irx flitel;

The patch in gzip for CVE-2010-0001

008ddabd - resetbuf
poeddacd MOV RAX, gqword [REBP + posbits]
Bee@dacd SAR RAX, @x3
Beeadda MOV dword ptr [ + 0], EAX
Beeadda MOV EDX, dword [REP + o]
eAeada MOV EAX, dword [insize]
poeadda CMP EDX, EAX
poedda JA LAB eeoad
3 edddarc
LAB_@00eda: B008da7c MOV EAX, dword ptr [insize]
MOV EAX #0P8daB2 MOV EDX, dword ptr [RBP + o]
il Beeadads SUB EAX, EDX
Bedadas7 JMP LAB @edodas
008@daBe - LAB_G@0odaBe
2] MOV dword ptr [RBP + e], EAX
2] MOV dword I 1, @x@
20 LAB_@eaad




Current Status and Challenges

* Unlike functions, which have names

* Constructing fine-grained equivalent binary code snippet

nairs (e.q. basic

vlock-level) is non-trivial

* Prior attempt [N

DSS'1g9] relies on the annotations generated

U)o

oy the LLVM, leaving a gap in practical application
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Current Status and Challenges

* More importantly, prior work cannot well address the

following two challenges:

1. Asingle line of source code may correspond to multiple basic
blocks, causing confusion w

——— a/unlzw.c
+++ b/unlzw.c

i
diff ——git afunlzw.c
index fb9ff76..8f8ckee 100644

bfunlzw.c

@@ -240,7 +240,8 @@ int unlzw(in, out)

nen pairing

e0e8dabd - resetbuf

gzip-1.12/unlzw.c:168
gzip-1.12/unlzw.c:161

/ \.

06e6da89 - LAB_P00Bdas9 eaeada7c

gzip-1.12/unlzw.c:161

161 -

- e = inasize—{o = (posbits=>3));
16@ + o = posbitas »> 3;

gzip-1.12/unlzw.c:161

“‘mthMEﬁhﬁi "#,,e“"’!’

oeeedase - LAB_eeeedaBe

gzip-1.12/unlzw.c:161

Ui,0
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Current Status and Challenges

* More importantly, prior work cannot well address the
following two challenges:

1.

2. Due to compiler optimization behavior, basic blocks can be
merged or reorganized when using different opt levels

aagadbs58 aaeaddfc Bedddccc Beaadabg eadddacc paeddea
gzip-1.12/unlzw.c:168 Ezip-1.12/unlzw.c:161 gzip-1.12/unlzw.c:161 gzip-1.12/unlzw.c:161 Ezip-1.12/unlzw.cC:168 Ezip-1.12/unlzw.cC:16@
Ezip-1.12/unlzw.c:163 Ezip-1.12/unlzw.c:284 gzip-1.12/unlzw.c 1285 Ezip-1.12/unlzw.c:161 Ezip-1.12/unlzw.c:164
Ezip-1.12/unlzw.c: 285 Ezip-1.12/unlzw.c:182 Ezip-1.12/unlzw.c:289
Ezip-1.12/unlzw.c: 286 I Ezip-1.13/unlzw.c:183
Ezip-1.12/unlzw.c:287 3 Ezip-1.12/unlzw.c:184
Ezip-1.12/unlzw.c:288 *| Bedadiat @ebedb34 Ezip-1.13/unlzw.c:185 Béeddeba
gzi?-l.lifuql?w.c:.?ﬁ? gzip-1.12/unlzw.c:168 gzip-1.12/unlzw.c:161 EI:!.FI-:I..].ZJ"IJI'I].EH.CZIEE Ezip-1.13/unlzw.c:168
string_fortified.h:59 gzip-1.12/unlzw.c:161 gzip-1.12/unlzw.c:163 grip-1.13/unlzw.c:198 gzip-1.12/unlzw.c:163
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Methodology

* Pipeline
* BMerge Algorithm
* BPair Algorithm

* Transformer-based Similarity Detector
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Methodology

* Pipeline

Annotate & Refine

A\

: s CFGe
SOurce - o Call Graphs
Binary
Code ' sFunctions

Compile Code Analvze Data Clean & Pair

#Basic Blocks

BINSIMDB
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Methodology

* BMerge Algorithm

x86

ARM

Algorithm 1: BMERGE Algorithm

Input: A set of basic blocks, denoted by &, wherein a basic block i is labeled
with a set .A;, and addr; represents the address of i.
Output: The refined basic blocks set S.

1 foreach i,j € §, where i # j, do
2 if .Ai = .Aj then
3 if addr; < addr; then
4 Update ¢ by merging j into 7
5 L S« 8—-1{j}
6 else
7 Update j by merging ¢ into j
8 L S+ S§—{i}
9 else if 4; C A; then
10 Update i by merging j into i
11 S« S-{j}
12 else if 4; C A; then
13 Update j by merging i into j
14 S+ S§—{i}

15 return S

Line 160
I 4

Line 160
I 4

Line 160

Line 161

Line 160 \

Line 160

~
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Methodology

* BMerge Algorithm

x86

Algorithm 1: BMERGE Algorithm

Input: A set of basic blocks, denoted by &, wherein a basic block i is labeled
with a set .A;, and addr; represents the address of i.
Output: The refined basic blocks set S.
1 foreach i,j € §, where i # j, do

2 1fA A; then
3 if addr; < addr; then
4 Update ¢ by merging j into 7
5 S« 8—-1{j}
6 else
7 Update j by merging ¢ into j
8 S+ S§—{i}
. elselfA ..... I
10 Update i by merging j into i
11 S« S-{j}
12 else if 4; C A; then
13 Update j by merging i into j
14 S« S-{i}

15 return S

Line 160
I 4

Line 160

L 7

\/

x86

Line 160

\/

7
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Methodology

* BMerge Algorithm

x86

~

Algorithm 1: BMERGE Algorithm

Input: A set of basic blocks, denoted by &, wherein a basic block i is labeled
with a set .A;, and addr; represents the address of i.
Output: The refined basic blocks set S.

1 foreach i,j € §, where i # j, do
2 if .Ai = .Aj then
3 if addr; < addr; then
4 Update ¢ by merging j into 7
5 L S« 8—-1{j}
6 else
7 Update j by merging ¢ into j
8 L S+ S§—{i}
o |{ else if A; C A; then
10 Update i by merging j into i
11 |i | S« S—{j}
12 else if 4; C A; then
13 Update j by merging i into j
14 | S+ S§—{i}

15 return S

Line 160 | ~

Line 160|

/

x86

~, | Line 160

/v Line 161
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Methodology

* BPair Algorithm

* Intuition: to transform the
problem of matching
equivalent basic blocks
into a graph problem.

Algorithm 2: BPAIr Algorithm

12
13
14
15
16
17

18
19

20

Input: Two sets of basic blocks, denoted by If and V, where a basic block i is
labeled with a set 4., and addr, represents the address of 1.
Output: A set M consisting of equivalent basic block pairs.

Function Merge(p, g)
if addr, < addr, then
Update p by merging g into p
return p
else
Update g by merging p into g
return g

Initialize a bipartite graph G = (U, V,£), where £ =10
foreach u e i, v eV, do
if A,N A, # 0 then

L £+ EU{{u,v)}

foreach connected sub-graph C C G do

Pick any basic block i from C, where i € U4
Pick any basic block j from C. where j € V
foreach k € C — {i.j} do
if £ €U then

L i + Merge (k, i)
else if kL =V then

L j + Merge (k, j)

| M MU{(.5))

21 return M
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Methodology

unlzw.c:177, unlzw.c:178, unlzw.c:180
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Algorithm 2: BPAIr Algorithm

Input: Two sets of basic blocks, denoted by If and V, where a basic block i is
labeled with a set A., and addr, represents the address of 1.
Output: A set M consisting of equivalent basic block pairs.

1 Function Merge(p.q)
2 if addr, < addr, then
3 Update p by merging g into p
4 return p
5 else

Update g by merging p into g
T return g

8 IHltlﬂllZE‘ a b1part1te graph G = (U4, V, &), where £ = E'
9 ﬁ:nreach veld,veV, do

10; if A.n A, #0 then

11 L £+ EU{({u,v)}

12 foreach connected sub-graph C C G do

13 Pick any basic block i from C, where i € U4
14 Pick any basic block j from C. where j € V
15 foreach k € C — {i.j} do

16 if £ €U then

17 L i + Merge (k, i)

18 else if kL =V then

19 L j + Merge (k, j)

20 | ";[ — MU{(i,7)}

21 return M
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Methodology
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Algorithm 2: BPAIr Algorithm
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Input: Two sets of basic blocks, denoted by If and V, where a basic block i is
labeled with a set A., and addr, represents the address of 1.

Output: A set M consisting of equivalent basic block pairs.

Function Merge(p.q)

if addr, < addr, then

Update p by merging g into p

return p

else
Update g by merging p into g
return g

Initialize a bipartite graph G = (U, V,£), where £ =10
foreach u e i, v eV, do
if A,N A, # 0 then

| £+ U {{u,v)}

foreach connected sub- graph C C G do

Pick any basic block i from C, where i € U4
Pick any basic block j from C. where j € V
foreach k € C — {i.j} do
if £ €U then

L i + Merge (k, i)

else if £ =) then
| 7 Merge (k, j)

return M
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Methodology

* Transformer-based Similarity Detector

Transformer Block
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Fig. : Architecture of the proposed binary code similarity detector. U m
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Dataset Composition

* Source code of 30 binaries from 8 GNU software projects, i.e.,

binutils, datamash, findutils, grep, gzip, macchanger, tar, and which

* Involves 980,251 functions across 32 distinct combinations of
compilers, optimization levels, and target platform

* Four different ISAs: x86, x86-64, ARM32, and AArch64
* Two representative compilers, i.e., GCC and Clang
* Four optimization levels: Oo, O1, 02, O3

* Eventually, consisting of 4,426,258 equivalent assembly pairs Uﬁm
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Application in Similarity Detection

* Cross-ISAs & opt-levels evaluation

* Cross-ISAs, opt-levels & compilers evaluation

* Transferability evaluation
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Comparison Study

* Based on the same set of source code, we apply [NDSS'19] and
the proposed method to construct equivalent binary pairs

* More equivalent and complicated matching pairs can be found

by the proposed method

1.0 1.0 _
q’ . _.J.f_ - m \. .-.J-?.
€ | £ |
2060 Jool /| 2061 /ool |
"u:; 700 05 10 "t:n" 700 05- 10
Do. 0.4 ____ Prio 0 Iy njective pairs w/t 8 0.4 i D Iy njective pairs w/t
) mbg ity, AUC 88 99X ) mbg ity, AUC=90. 4/’
2 0.2 =7 iug Q?dS'?x’ ome ambiguity. 2 0.2 -7 iug 9?d5? ome ambiguity.
| - . | -
= . Proposed: Exclude injectiv = ... Proposed: Exclude injective

o. pairs, AUC=98.66% N pairs, AUC=97.98%

8.0 02 04 06 08 1.0 8.0 02 04 06 08 1.0

False Positive Rate
(a) x86(GCC) vs. ARM32(GCC)

False Positive Rate

(b) x86-64(Clang) vs. AArch64(GCC)

Ui,0
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Case Study

* Patch identification

* CVE-2019-5482 is a heap buffer
overflow vulnerability in the TFTP

[: Ixly

protocol handler of libcurl. —
* The affected versions range from
7.19.4 t0 7.65.3. : =

x86-64 (GCC) i —
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Case Study
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Take-away message

* We construct BinSimDB to facilitate fine-grained
BCSA research

* The dataset and script are available at
https://uco-cyber.github.io/research/#binsimdb
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