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ABSTRACT

Assessment of subsurface nuclear waste repositories requires the simulation of
uranium fuel degradation in thousands of waste packages over hundreds of
thousands of years. A comprehensive simulation using a detailed process model
would be too computationally expensive, so we employ machine learning
surrogate models. Since the internal state of the waste package is a dynamical
system, we use neural ordinary differential equations (neural ODESs) to learn the
dynamics rather than the system state. Then, to evaluate the system state, we
use an ODE solver and the initial conditions of the waste package. We examine
the accuracy of the neural-ODE surrogate’s predictions of uranium flux.

COMPUTATIONAL MODELING OF SPENT NUCLEAR FUEL

* The US inventory of spent nuclear fuel is rapidly
Increasing.
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e Surrogate models map inputs to outputs with less
computational cost
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TRAINING DATA
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Log-uniform  10° 100 reservoir simulations to generate training

Log-uniform 10> 2x10~ data time-trajectories.

TRAINING PROCESS

Neural ODEs approximate the derivative of the system state as a neural network.
We predict the system state by putting the neural network through the ODE solver.
Random points from a trajectory are selected to serve as batch initial conditions.
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* Number of neurons per layer ~ |
 Number of batches (batch_size)

»  Number of time steps to predict/integratel 821210 = (7 ) ——
during training (batch_time)
 Amount of training data

* Number of time points to use from trainingm\
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* Choice of numerical ODE solver
“Neural Ordinary Differential Equations”,

Chen et al.
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NEURAL-ODE SURROGATES FOR FUEL DEGRADATION PROCESSES IN
NUCLEAR WASTE REPOSITORY SIMULATIONS

Caitlin Curry, Calvin Madsen, Bert Debusschere, Paul Mariner

* For preliminary
hyperparameter tuning,
minimizing validation error, we
use

 Tuning shows the optimal
hyperparameters are
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torchdiffeq.dopri5 solver
100 trajectories (80 training/
20 validation)

100 time steps

Learning rate = 0.01
2 layers

8 neurons per layer
Batch time =10
Batch_size = 90

Validation Predictions

Mean Normalized 10-2.
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Error Square Error S
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CONCLUSIONS
Hyperparameter SeleCtion’ 10-64{ ~——- Neural ODE prediction
especially of an accurate ODE | — FMD data
solver, is crucial for learning 10-'  10° 10! 102 10° 10%  10°
the timing of the slope Time [years]
transition.
Since training may involve
local minima in the loss over ONGOING WORK
the training epochs, training - Further hyperparameter tuning of the
for long enough is important to » Number of trajectories to use as
ensure convergence. training data
Neural ODEs have shown the »  Number of time steps to use from the
ability to learn the dynamics of training data
the FMDM data and predict a » Choice of numerical solver
time trajectory from its initial e 10-fold cross-validation for
condition, and therefore, have hyperparameter tuning
potential as a surrogate for » Evaluation of trained surrogate on testing
this application. data
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