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CONCLUSIONS
• Hyperparameter selection, 

especially of an accurate ODE 
solver, is crucial for learning 
the timing of the slope 
transition.

• Since training may involve 
local minima in the loss over 
the training epochs, training 
for long enough is important to 
ensure convergence.

• Neural ODEs have shown the 
ability to learn the dynamics of 
the FMDM data and predict a 
time trajectory from its initial 
condition, and therefore, have 
potential as a surrogate for 
this application.
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ABSTRACT
Assessment of subsurface nuclear waste repositories requires the simulation of 
uranium fuel degradation in thousands of waste packages over hundreds of 
thousands of years. A comprehensive simulation using a detailed process model 
would be too computationally expensive, so we employ machine learning 
surrogate models. Since the internal state of the waste package is a dynamical 
system, we use neural ordinary differential equations (neural ODEs) to learn the 
dynamics rather than the system state. Then, to evaluate the system state, we 
use an ODE solver and the initial conditions of the waste package. We examine 
the accuracy of the neural-ODE surrogate’s predictions of uranium flux.

COMPUTATIONAL MODELING OF SPENT NUCLEAR FUEL

TRAINING PROCESS

TRAINING DATA

• The US inventory of spent nuclear fuel is rapidly 
increasing.

• Spent nuclear fuel is moving from pool storage to 
dry storage in underground repositories.

Freeze et al. (2021, Figure 2-3)

• The Fuel Matrix Degradation Model (FMDM) is a one-
dimensional reactive transport model of a waste package 
(specifically, of water between the fuel surface and the bulk water 
in contact with the fuel).

• The FMD model is needed for each breached package in the 
repository at each time point for 100,000 years.

• It is computationally intensive to calculate the quantity of 
interest, UO2 degradation rates.

• Surrogate models map inputs to outputs with less 
computational cost

Jerden et al. (2015)

Jerden et al. (2015)

Parameter Distribution Min. Max.
Init. Temp. (K) Uniform 300 600
Burnup (Gwd/MTU) Uniform 40 80
Delay Time (years) Log-uniform 102 104

Env. CO3
2‑ (mol/m3) Log-uniform 10-3 2x10-2

Env. O2 (mol/m3) Log-uniform 10-7 10-5

Env. Fe2+ (mol/m3) Log-uniform 10-3 10-2

Env. H2 (mol/m3) Log-uniform 10-5 2x10-2

UO2 Degradation 
(Surface Flux)

• Process model input parameters are 
sampled from expected ranges in 
reservoir simulations to generate training 
data time-trajectories.
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“Neural Ordinary Differential Equations”, 
Chen et al.
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• Hyperparameters to tune: 
• Learning rate
• Number of layers
• Number of neurons per layer
• Number of batches (batch_size)
• Number of time steps to predict/integrate 

during training (batch_time)
• Amount of training data
• Number of time points to use from training 

data
• Choice of numerical ODE solver

• Neural ODEs approximate the derivative of the system state as a neural network.
• We predict the system state by putting the neural network through the ODE solver.
• Random points from a trajectory are selected to serve as batch initial conditions.

Mean 
Absolute 
Error

Normalized 
Root Mean 
Square Error 

Training 0.0038 0.097
Validation 0.0030 0.043

• For preliminary 
hyperparameter tuning, 
minimizing validation error, we 
use
• torchdiffeq.dopri5 solver
• 100 trajectories (80 training/ 

20 validation)
• 100 time steps

• Tuning shows the optimal 
hyperparameters are
• Learning rate = 0.01
• 2 layers
• 8 neurons per layer
• Batch_time = 10
• Batch_size = 90

ONGOING WORK
• Further hyperparameter tuning of the

• Number of trajectories to use as 
training data

• Number of time steps to use from the 
training data

• Choice of numerical solver
• 10-fold cross-validation for 

hyperparameter tuning
• Evaluation of trained surrogate on testing 

data
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