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EXECUTIVE SUMMARY

1 SUMMARY INTRODUCTION

The Spent Fuel and Waste Science and Technology Campaign (SFWST) of the U.S. Department of
Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development on geologic
disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two priorities for SFWST are
design concept development and disposal system modeling. These priorities are directly addressed in
the Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a
geologic repository system modeling and analysis capability, and the associated software, GDSA
Framework, for evaluating disposal system performance for nuclear waste in geologic media.

This report describes specific activities in the Fiscal Year (FY) 2025 associated with the GDSA
Uncertainty and Sensitivity Analysis Methods work package. This report fulfills the GDSA Uncertainty
and Sensitivity Analysis Methods work package (SF-25SN01030407) level 3 milestone, Uncertainty
and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2025) (M3SF-
25SN010304072). This work was closely coordinated with the other Sandia National Laboratory GDSA
work packages: the GDSA Framework Development work package (SF-25SN01030408), the GDSA
Repository Systems Analysis work package (SF-25SN01030409), and the GDSA PFLOTRAN
Development work package (SF-25SN01030410). This report builds on developments reported in
previous GDSA Framework milestones, particularly M3SF-24SN010304072.

1.1 HIGH-LEVEL PURPOSE OF THIS WORK:

Performance assessment (PA) for underground geologic disposal of nuclear waste is an iterative
process for determining the safety relevant set of features, events, and processes (FEPs) to include in
a PA model. Probabilistic PA model simulations are performed to estimate the full range of behavior
of the system including the pertinent variability and uncertainty in the system. Results are evaluated
against system performance metrics (e.g., for evaluating key sensitivities needing further constraints
or for assessing performance against regulatory requirements). A fundamental use of uncertainty and
sensitivity analyses is the determination of uncertain parameters that are most impactful to changes
in performance. This determination is useful for decision makers as they develop future development
priorities for a given repository setting. This use of SA/UQ will be fundamentally important to the U.S.
program going forward.

1.2 FY25 ACCOMPLISHMENTS

1) Sensitivity analysis for a near-field shale case. This was a simplified case, a “quarter waste
package” case, that was highly refined around the waste package to better understand maximum
temperatures and pressures at various points in and near the repository. Ten uncertain input
parameters were varied and 200 PFLOTRAN runs launched for the SA results.

2) Sensitivity analysis for the biosphere model. The GDSA UQ/SA team worked closely with the GDSA
Biosphere model development team at PNNL to demonstrate an integrated workflow where
Dakota generated sample parameter values both for the PFLOTRAN model and for the Biosphere
model and ran them in a coupled, sequential fashion as part of a sensitivity analysis.

3) International activities. We continue to engage in and support international activities. This year,
we are supported the UQ/SA activities for the crystalline task of the 2024-2027 phase of
DECOVALEX. We completed Volume 2 with the Joint Sensitivity Analysis Working Group (JOSA)
summarizing the result of various SA studies on the case studies provided by the participating
organizations and are continuing with new case studies and methods in Volume 3.

August 22, 2025



Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2025)

4) Additional activities. We support training sessions and seminars as requested, including on the
Next Generation Workflow which integrates Dakota, PFLOTRAN, the Biosphere model, and

potentially other codes and analysis tools. We also continue investigation into state-of-the-art SA
methods.
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SPENT FUEL AND WASTE SCIENCE AND TECHNOLOGY CAMPAIGN, GEOLOGIC DISPOSAL
SAFETY ASSESSMENT, SENSITIVITY ANALYSIS AND UNCERTAINTY QUANTIFICATION

1 INTRODUCTION

This report presents high level objectives and strategy for development of uncertainty and sensitivity
analysis tools in Geologic Disposal Safety Assessment (GDSA) Framework, a software toolkit for
probabilistic post-closure performance assessment (PA) of systems for deep geologic disposal of
nuclear waste. GDSA Framework is supported by the Spent Fuel and Waste Science and Technology
Campaign of the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE).

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-
25SN01030407) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and Applications in
GDSA Framework (FY2025) (M3SF-25SN010304072). It presents high level objectives and strategy
for development and demonstration of uncertainty quantification (UQ) and sensitivity analysis (SA)
tools in GDSA Framework in fiscal year 2025 (FY25).

This work was closely coordinated with the other Sandia National Laboratory GDSA work packages:
the GDSA Framework Development work package (SF-25SN01030408), the GDSA Repository
Systems Analysis work package (SF-25SN01030409), and the GDSA PFLOTRAN Development work
package (SF-25SN01030410). This report builds on developments reported in previous GDSA
Framework milestones, including M3SF-24SN010304072 (Swiler L. P., et al., 2024), M3SF-
23SN010304072 (Swiler, et al., 2023), M3SF-22SN01030482 (Swiler L. P., et al., 2022), M3SF-
21SN010304042 (Swiler L. P., et al., 2021), M3SF-20SN010304032 (Swiler L. P., et al., 2020), and
M3SF-19SN010304032 (Swiler, et al., 2019).

Geologic repository performance assessment in the U.S. involves a code base that includes coupled,
multiphysics modeling at high resolution. Due to the high computational cost of these models which
require high performance computing systems (HPC) to run, relatively few simulation samples are
available for analysis. This highlights the need to consider surrogate models to sample and explore
the input parameter space more extensively. However, this must be done in a careful way so that
surrogate accuracy can be tracked and understood in the context of UQ/SA results. Variance-based
sensitivity indices are now a standard practice in the sensitivity analysis community but require many
evaluations of the predictive model. Much research has focused on accurately calculating variance-
based sensitivity indices while keeping the computational cost reasonable. We note that other
sensitivity analysis methods (Swiler, et al.,, 2019) may be better than variance-based methods at
identifying patterns of behavior or trends. Another recent approach is to employ “multifidelity” UQ in
which many low-fidelity simulation runs (e.g., coarser mesh, simpler physics) augment a small number
of high-fidelity runs (Swiler L. P., et al. 2021; Swiler L. P., et al., 2020). Keeping abreast of
improvements to existing UQ/SA methods as well as employing new methods is critical to performing
sensitivity and uncertainty analysis of new repository systems which will involve large parameter
spaces and computationally expensive simulations. The repository community must maintain
awareness of and leadership in UQ/SA methods to best inform our assessment of costly computational
models.

1.1 OVERVIEW OF THIS REPORT

This report provides documentation of the UQ/SA work performed in FY 2025. The outline of this report
is as follows:

Chapter 2 provides sensitivity analysis results for PFLOTRAN coupled to the GDSA Biosphere Model.
The SA demonstrated the Dakota-PFLOTRAN-GDSA Biosphere modeling coupling, where PFLOTRAN
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provides radionuclide concentrations that are inputs to the Biosphere model which is then used to
calculate dose.

Chapter 3 summarizes a report we produced this year on spatial heterogeneity treatment (e.g. varying
discrete fracture networks) in sensitivity analysis for waste repositories.

Chapter 4 presents UQ and SA results for a near-field, quarter waste package shale case. This is a
case study we developed to better understand maximum temperatures and pressures in and around
the repository for our generic shale reference case. In this single waste package case, we examined
temperature, pressure, and liquid saturation at many observation points in the waste package, the
buffer, the disturbed rock zone, and the near-field shale region.

Chapter 5 covers international activities including participation of the GDSA UQ/SA team in the
international JOSA working group and in the next 2024-2027 DECOVALEX phase.

Chapter 6 presents a summary.

1.2 GDSA FRAMEWORK

GDSA Framework (Figure 1-1) capabilities include multi-physics simulation of coupled processes
affecting deep geologic repository performance, uncertainty and sensitivity analysis, pre- and post-
processing, and visualization. For a given performance assessment, these tools will be linked to a
version-controlled parameter database and an automated run-control system. The overall objectives
of GDSA Framework development are to:

e create a framework that is flexible enough to take advantage of future advances in hardware,
software, simulation, and analysis methods;

o leverage existing high-performance computing capabilities (e.g., meshing, simulation, analysis,
and visualization);

e enable increasingly coupled, mechanistic multi-physics modeling;
e provide analysis methods for prioritization of SFWST Disposal Research activities;
e provide transparent implementation of simulation and analysis methods;

e develop and distribute in an open-source environment so that software is freely available to
stakeholders (e.g. see GDSA reports from 2015 through 2024: (Mariner, Gardner, Hammond,
Sevougian, & Stein, 2015), (Mariner, et al.,, 2016), (Mariner, Stein, Frederick, Sevougian, &
Hammond,, 2017), (Swiler L. P., et al., 2021), (Swiler L. P., et al., 2024).
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Figure 1-1. The GDSA Framework

One objective of developing the UQ/SA capability in GDSA Framework is to standardize sampling-based
methods of uncertainty propagation, sensitivity analysis, and uncertainty quantification typically used
within U.S. nuclear waste disposal programs (e.g., (U.S. DOE, 2008), (U.S. DOE, 2014), RESS2000
(Helton & Marietta (Editors), Special Issue: The 1996 Performance Assessment for the Waste Isolation
Pilot Plant, 2000), RESS2014 (Helton, Hansen, & Swift (Editors), Special Issue: Performance
Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada,
2014)). Another objective is to enable future adoption of new methods consistent with the current
standard of practice in the UQ/SA community which are appropriate for high-dimensional, highly
coupled, nonlinear problems resulting from the implementation of mechanistic multi-physics
simulations. Having a consistent, common framework which enables a user to perform a range of
sensitivity analysis and UQ approaches for a particular problem or set of simulations allows for
reproducibility, comparative analyses, use of verified algorithms, and documentation of best practices.
These are important goals for performance assessments.

The following sections highlight the key components of GDSA Framework. More information about
each can be found by following the links at https://pa.sandia.gov.

121 PFLOTRAN

PFLOTRAN is an open source, state-of-the-art, massively parallel subsurface flow and reactive
transport simulator (Lichtner & Hammond, 2012; Hammond, Lichtner, Mills, & Lu,, 2008; Hammond,
Lichtner, & Mills, 2014) written in object-oriented Fortran. PFLOTRAN models subsurface flow using a
porous medium continuum approach, which includes capabilities for multicomponent systems,
multiphase flow and transport, heat conduction and convection, biogeochemical reactions,
geomechanics, and radionuclide decay and ingrowth. The software is developed under a GNU Lesser
General Public License, which allows third parties to interface PFLOTRAN with proprietary software.
The availability and continuing development of PFLOTRAN for GDSA are due to an ongoing
collaborative effort of several DOE laboratories led by Sandia. PFLOTRAN development for GDSA
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Framework is described by Mariner et al. (Mariner, et al., 2018; Mariner, Stein, Frederick, Sevougian,
& Hammond, 2017; Mariner, et al., 2016) and Sevougian et al. 2018. PFLOTRAN installation
instructions and documentation are available at https://www.pflotran.org/.

1.2.2 DAKOTA

Dakota is an open-source toolkit of algorithms that contains both state-of-the-art research and robust,
usable software for optimization and UQ. It is available at: https://dakota.sandia.gov (Adams, et al.,
2022). The Dakota software has parametric analysis methods that enable design exploration, model
calibration, optimization, uncertainty quantification, and sensitivity analysis with computational
models. Dakota is a C++ code which has been under development at Sandia since 1994. It has been
primarily sponsored by DOE’s Advanced Simulation and Computing (ASC) program. Dakota supports
computationally expensive simulations which require high performance computing and parallel
execution. Thus, a focus of the algorithm development in Dakota has been on methods that are as
efficient as possible and minimize the number of runs required of a high-fidelity simulation model.

Dakota contains the UQ/SA methods typically used in the U.S. repository program. Dakota implements
Latin Hypercube Sampling (LHS) with correlation control on input parameters. It calculates moments
on responses of interest as well as correlation matrices (simple, partial, and rank correlations)
between inputs and outputs. Dakota allows nested studies to perform an “outer loop” epistemic
sampling and an “inner loop” aleatory sampling to generate ensembles of distributions. Dakota
includes additional capabilities, such as the use of surrogate models, adaptive sampling approaches,
and multifidelity UQ methods. Dakota returns tables of input and output amenable to further
processing and visualization with additional tools developed within GDSA Framework or by an
individual user.

A graphical depiction of Dakota interfacing with a computational model such as a repository simulation
in PFLOTRAN is shown in Figure 1-2. Based on the type of study being performed (optimization,
uncertainty quantification, etc.), Dakota chooses the next set of parameters at which to evaluate the
simulator and runs the simulator, which returns the performance metrics of interest back to Dakota.
Dakota then generates the next set of parameters according to the algorithm being used for the study
and keeps iterating until the specified number of samples is reached.
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Figure 1-2. Dakota interfacing to a computational model such as a repository simulator

The UQ/SA methods implemented in Dakota have evolved as the standard of practice evolves. Over
the past ten years, the Dakota team has invested in methods which calculate the Sobol’ variance-
based sensitivity indices in an efficient manner. These indices estimate the proportion of variance in
a quantity of interest that can be attributed to variance in each uncertain input parameter. Currently,
a Dakota user can calculate these by extensive sampling of the simulation code, by using surrogate
methods such as regression or Gaussian process models, by the use of polynomial chaos expansions,
and by using multifidelity methods. Dakota is an actively maintained and developed code with formal
releases issued twice per year. Dakota uses formal software quality development processes including
advanced version control, unit and regression testing, agile programming practices, and software
quality assessment.

1.2.3 AUTOMATED ANALYSIS WORKFLOW DEVELOPMENT FOR GDSA

Uncertainty Quantification analysis workflows are not trivial to define and get running, even when using
tools such as Dakota to generate nested studies involving sampling loops over both aleatory and
epistemic samples. The analyst has to spend a significant amount of time writing scripts to interface
the sample values to PFLOTRAN, extract the results, and put the entire workflow on a high-performance
computing platform. Further, as the number of quantities of interest increases and many vectors of
results are generated for each simulation, plotting and aggregating the results in a variety of ways
(e.g., averaging over epistemic or aleatory slices as a function of time) becomes very involved. To
address this, a set of workflows which couple Dakota, PFLOTRAN, and NGW (the Next-Generation
Workflow software) were developed. The workflows present the user with a unified graphical user
interface (GUI) where the actual workflow can be dictated and automated in an easy-to-use graphical
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format. This workflow also allows greater reproducibility and traceability of the actual files and scripts
used for a particular study.

The Crystalline Reference Case UA Nested Workflow was developed in FY20, FY21, and FY22 (Swiler
L., etal., 2020; Swiler L., et al., 2021; Swiler L., et al., 2022). The portability and automation provided
by the workflow significantly speed up the overall analysis. This year, we used NGW to develop the
workflow to generate the shale case results presented in Chapter 4.

Also, additional training materials and modifications to the workflow were made this year to increase
the robustness of production UQ analyses that run over the span of several weeks. These runs are
typically orchestrated by a local compute resource that submits large-scale simulation runs to remote
HPC resources with job scheduling. Source files can be distributed across several shared filesystems.
The distributed nature of computation and source files means there are many points of failure in these
production runs: if any one of the filesystems or compute resources goes down, e.g., for maintenance,
the entire workflow fails. To mitigate this issue as much as possible, all source files are copied to the
scratch directory of the HPC resource where large-scale simulations will be completed prior to
launching the UQ analysis. By centralizing source files and computation to a single resource, the
workflow has fewer points of failure, making it more robust over the days-to-weeks timespans it must
run.

1.2.4 GDSA SOFTWARE STRATEGY

Developing GDSA Framework in an open-source environment promotes collaboration with regulators,
stakeholders, and the scientific community, facilitates development of the software, and enhances
communication in a regulatory environment. GDSA Framework is being developed currently for generic
disposal concepts so that it is poised to be applied efficiently in future programs to specific disposal
concepts that may be evaluated for comparison to regulatory safety criteria.
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2  SENSITIVITY ANALYSIS: BIOSPHERE MODEL

This chapter summarizes the result of a collaboration between the GDSA Biosphere modeling group
at Pacific Northwest National Laboratory (PNNL) and the UQ/SA team at Sandia National Laboratories
(SNL). This collaboration started in FY2024, when Dakota was integrated with the biosphere model to
“drive” various runs of the biosphere model with different parameter values (see Chapter 2 of (Swiler
L. P, et al.,, 2024). The PNNL and SNL teams performed sensitivity analyses to understand which
parameters were important for various scenarios. This year, the computational workflow has been
extended to include PFLOTRAN “in the loop.” We developed a workflow in which Dakota samples
uncertain parameters both for PFLOTRAN and the biosphere model. Further, each run of PFLOTRAN is
followed by a biosphere simulation to generate dose calculations.

Recall that the GDSA framework can incorporate Dakota as a “wrapper” around PFLOTRAN or another
simulation code to generate ensembles of simulations based on Monte Carlo sampling as shown in

Figure 2-1.
P bilit )>
ermeability, . .
porosit§ D AKOT Radionuclide
repository concentrations,

other quantities

roperties, etc. :
Prop of interest

_>[ PFLOTRAN ]—

Figure 2-1 Workflow with Dakota driving ensembles of PFLOTRAN simulations

This year, we have extended this workflow to include the biosphere model as shown in

Figure 2-2:
Permeability, )>
porosity, - Dose to RMEI
repository DAKOTA forvarious
properties AND exposure
biosphere Radionuclide pathways

parameters —)[ :PFE@IRiNJconcemrations= Biosphere Model

Figure 2-2 Workflow with Dakota driving coupled ensembles of PFLOTRAN simulations followed by
Biosphere model simulations

As seen in Figure 2-2, the workflow first involves running PFLOTRAN to generate radionuclide
concentrations at various observation points. These are then input to the biosphere model along with
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biosphere parameters defining exposure pathways (e.g. drinking water, flora or fauna consumption) to
calculate dose to a reasonably maximally exposed individual (RMEI).

This chapter provides a summary of the biosphere model, then describes the case study
demonstrating Dakota driving the coupled (PFLOTRAN-Biosphere) model calculations. Note that this
case study is not realistic: it is meant to establish and prove out the capability to use the GDSA
framework (specifically Dakota, PFLOTRAN, and the Biosphere model) to generate coupled simulation
ensemble results.

2.1 BIOSPHERE MODEL DESCRIPTION

The GDSA biosphere model is developed at PNNL. A detailed design document for the GDSA biosphere
model is available (Ghosh, et al., 2023). We summarize key concepts of the biosphere model that are
relevant to the sensitivity analysis performed herein. The biosphere model is a flexible, open-source
code designed for compatibility with PFLOTRAN. The GDSA biosphere model will be capable of
modeling a variety of climate scenarios and user exposure pathways, with the aim of supporting
performance assessment analyses for repositories. The biosphere model calculates annual dose of
dissolved radionuclides to a hypothetical RMEI living near the repository with repository-contaminated
groundwater as the sole source of water. The full biosphere model will include all the pathways of
exposure for the RMEI shown in Figure 2-3.

Figure 2-3 Biosphere model exposure pathways to reasonably maximally exposed individuals, which are
indicated by the terminus of the arrows in the illustration.

Properties that may impact the estimated dose to a RMEI include, but are not limited to: the
radionuclides to which the RMEI is exposed, the degree to which radionuclide concentrations are
diluted in surface water (fed from ground water), called the “dilution factor”; soil properties such as
soil thickness, weathering rate (how rapidly soil is depleted), infiltration rate, bulk density, and
moisture content; plant crop yield and holdup time (time between harvest and consumption); transfer
factors between environmental media in exposure pathways; and consumption rates of different
environmental media, such as leafy vegetables.
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The computational workflow coupling PFLOTRAN and the Biosphere model within an uncertainty
quantification study is illustrated in Figure 2-4. Dakota generates uncertain input samples for the
PFLOTRAN and Biosphere simulations. In the example presented in this chapter, we use the sample
framework of the generic crystalline reference case as described in (Swiler L., et al., 2022), where the
sampling involves both spatial heterogeneity (e.g. samples of discrete fracture networks) as well as
epistemic parameters such as porosity and permeability of the buffer, fractional dissolution rate of the
spent nuclear fuel, waste package corrosion rate, etc. After the PFLOTRAN simulation is completed,
the PFLOTRAN-computed groundwater radionuclide concentrations are postprocessed to be used as
input to the biosphere model. The radionuclides from the groundwater are introduced to the biosphere
environmental media through one or more of the exposure pathways shown in the biosphere model
exposure pathway matrix in Figure 2-5. Libraries of radionuclide-specific transfer factors are used to
model equilibrium transfer between media components such as groundwater or surface water to soil
to plant crops. The biosphere model also tracks radionuclide decay and progeny ingrowth. Total
effective dose (TED) is computed as the sum of annual doses over a specified time range. In this work,
TED was computed over 70 years, a typical human lifespan, using concentrations from the last 70
years of the PFLOTRAN simulation.
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Biosphere
template input file
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Figure 2-4 Building Blocks for the Dakota-PFLOTRAN-Biosphere model workflow.
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Figure 2-5 Biosphere model exposure pathway matrix. Note that the entries in the far-right column to not
feed into each other consecutively but all go directly to the “Humans” category.

2.2 UNCERTAINTY CHARACTERIZATION

Inthe FY2024 uncertainty analysis for the biosphere model, we included over 40 uncertain parameters
and examined sensitivity of RMEI dose to these parameters for three radionuclides, 125, 137Cs, and
226Ra. This year, we simplified the uncertainty treatment in the biosphere model to focus on the
dominant uncertain parameters for 129]. These five important parameters were selected based on
running all parameters on an 129] case with a coupled PFLOTRAN/Biosphere/DAKOTA run and were
identified as being most impactful. We note that these parameters are important for this 129]
radionuclide for this particular set of exposure pathways; other radionuclides and variations of
exposure pathways may have different dominant uncertainty parameters. The five biosphere model
parameters that were varied are shown in Table 2-1 and include the weathering rate constant and four
different Translocation Factors expected to have the greatest impact on dose. All of the Translocation
factors are unitless; the weather rate is day. The data for the parameter ranges are from reports PNNL-
21950 and PNNL-13421.
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Table 2-1 Biosphere Model Parameters sampled as part of the UQ workflow

Variable Suggested Variable Label Lower Upper Reference
Bound Bound

Weathering Rate | DAK_WEATHERING_RATE_CONST | 10 20 PNNL-21950

Constant (day)

Translocation DAK_TF_TFLV 0.004 0.4 PNNL-13421

Factor (Leafy

Vegetables)

Translocation DAK_TF_TFRV 0.004 0.4 PNNL-13421

Factor (Root

Vegetables)

Translocation DAK_TF_TFF 0.004 0.4 PNNL-13421

Factor (Fruits)

Translocation DAK_TF_TFG 0.004 0.4 PNNL-13421

Factor (Grains)

2.3 SENSITIVITY ANALYSIS RESULTS

As mentioned above, this workflow and the corresponding results presented here are illustrative and
meant to demonstrate the coupled PFLOTRAN-Biosphere ensemble generation. They are not
representative of a realistic scenario. In this case study, we generated 1000 PFLOTRAN simulations
(varying the discrete fracture network and some epistemic parameters relating to the crystalline
reference case). Each of the 1000 PFLOTRAN sample realizations was followed by a Biosphere model
simulation. We performed the uncertainty analysis two different ways. In the first study, we generated
1000 PFLOTRAN sample runs and ran the Biosphere model for each of the 12000 PFLOTRAN runs, but
we did NOT vary any Biosphere model parameters. That is, all the Biosphere model parameters were
set to their nominal values: this is the “Nominal biosphere” study. This study demonstrates the
distribution of total effective dose (TED) resulting from uncertainties in the PFLOTRAN simulations
alone; these uncertainties are propagated through the 129] concentration to the Biosphere model. The
second case is very similar: again, we generated 1000 PFLOTRAN runs (we used the same PFLOTRAN
runs as in the nominal biosphere study), but each PFLOTRAN run was followed by a Biosphere model
run which did incorporate a sample realization of the five biosphere parameters shown in Table 2-1.
Note that we assumed no correlations existed between the sampled PFLOTRAN input parameters and
the sampled biosphere model parameters.

Figure 2-6 shows two histograms of outputs. Both histograms involve 1000 samples, where 1000
PFLOTRAN simulation realizations are followed by 1000 biosphere model realizations. The nominal
biosphere result does not involve sampling over the biosphere model parameters, but the biosphere
UQ result does involve sampling over the biosphere model parameters. Figure 2-6 shows that these
two histograms are essentially identical. This indicates that the TED uncertainties in these particular
studies were dominated by the PFLOTRAN input parameter uncertainties, not uncertainties in the
biosphere model parameters. Again, we emphasize that much more work is needed to develop a fully
realistic case study: these are only results demonstrating what could be done with such comparative
analyses. Our prior analysis of the generic crystalline reference case used in these studies indicated
that there were large uncertainties in 1291 concentration and much of the uncertainty was due to the
spatial heterogeneity introduced by the varying DFNs.
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Figure 2-6 Two studies involving coupled PFLOTRAN-Biosphere Model simulations, one with nominal
values of biosphere parameters and one varying biosphere model parameters. In both cases,
PFLOTRAN simulations involved sample variation.

To further verify differences between the nominal biosphere case and the biosphere model with
uncertainty, the two sets of TED results were plotted against each other. This is shown in Figure 2-7.
The straight line indicates that the results from both studies (with nominal biosphere model
parameters and uncertain biosphere model parameters) align very closely to each other.

Log-10 total effective dose [Sv]

With <
biosphere 0.001 s
UQ ,

0.000 /

0.000 0.001
Nominal biosphere

Figure 2-7 Total Effective Dose for the two studies driven by 1000 PFLOTRAN simulations: one with
nominal biosphere model parameters, the other with uncertain biosphere model parameters.

To further understand why the results are so strongly dominated by the PFLOTRAN model uncertainty,
we fixed the PFLOTRAN sample (e.g. a fixed DFN and one set of epistemic parameter values) and
generated 1000 samples of the biosphere model. The results are shown in Figure 2-8, which indicates
that the TED variation when sampling only the biosphere model parameters is extremely small, ranging
from 7.89E-6 to 7.91E-6. This is not surprising, since the 129 concentrations are very low and the
uptake of 129] by the receptor from the environmental media is low. Additionally, as shown in the
scatterplots in Figure 2-8, the TED exhibits linear dependence on biosphere parameters, so we do not
observe significant influence on dose over the realistic environmental ranges over which the
parameters were varied. Finally, we comment on the direction of influence of the translocation factors
for leafy vegetables, fruits and root vegetables (positive trend with respect to TED) compared to the
trend of the translocation factor for grains (negative trend with respect to TED). We expect the grain
component to always have a diminishing effect compared to all other plant forms, especially for a long
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lived and non-biologically necessary-equivalent radionuclide such as 129, The grain component
represents the reproductive sink of the plant, with the following properties:

lodine is not essential for seed development.

Transport to grain occurs late in plant development.

Grain filling competes with other physiological processes.

The seed coat can act as a partial barrier to iodine accumulation.

This creates inherently lower and more variable TFs for grain compared to vegetative tissues.

Poooo

For this model case (pathways and radionuclide), the other plant tissues show a positive correlative
with TF and TED as there are more opportunities for a “successful” uptake of the radionuclide in these

plant tissues.
Total 7.91e-6 oo aael :
PFLOTRAN run fixed effective ]q }m }m
dose (Sv) e Ty il
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Figure 2-8 Distribution of total effective dose varying only the biosphere model parameters (left) and
scatterplots of total effective dose vs. biosphere parameter sample values (right).

The particular uncertain parameters and ranges chosen for the biosphere model do not result in
significant differences in the total effective dose. This finding is summarized in Figure 2-9, where the
Sobol’ main effect index for the uncertainty from the PFLOTRAN radionuclide concentrations is 1 and
the main effect indices for the biosphere model parameters are all zero, indicating that all of the
uncertainty in TED arises from uncertainty in the PFLOTRAN input variables.

Log-10 total effective dose [Sv]

PFLOTRAN

TF grains

TF fruits

TF root vegetables

TF leafy vegetables
Weathering rate constant

0.00 0.25 0.50 0.75 1.00
Sobol' main effect index

Figure 2-9 Sobol’ main effect indices for the TED uncertainty due to the PFLOTRAN output concentrations
and the biosphere model parameters.
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2.4 CONCLUSIONS AND FUTURE WORK

This work is a demonstration of the integration of the GDSA biosphere model within the GDSA UQ/SA
framework. Coupled PFLOTRAN-biosphere simulations were generated with Dakota, and the
corresponding results were shown in histograms, scatterplots, and Sobol’ indices. Although the
dominant uncertainty in these results was from the 1000 PFLOTRAN runs of the generic crystalline
reference case, we emphasize that these results are not very realistic: the purpose of this study is to
demonstrate the coupled workflows and types of analyses that they can facilitate. We anticipate larger
and more realistic case studies in future projects, with the goal of generating an end-to-end uncertainty
quantification from repository to dose.
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3  TREATMENT OF SPATIAL HETEROGENEITY IN SENSITIVITY ANALYSIS

The last few years, we performed various analyses that highlighted the influence of spatial
heterogeneity (as captured by the effects of sampling various discrete fracture networks) in our nested
sampling workflows for the generic crystalline reference case. This year, we performed some additional
analyses and summarized all of the work in the report:

“Challenges in quantifying unparameterized spatial uncertainties in deep geologic repositories
for nuclear waste.” By Teresa Portone, Dusty Brooks, and Laura Swiler. SAND2025-11240.
Sandia National Laboratories Technical Report, Albuquerque NM. 2025.

The report describes novel methods to define and assess the quality of proxy variables that summarize
the influence of spatial heterogeneity on repository performance quantities of interest (Qols). These
proxy variables are incorporated into surrogate models that can be used for global sensitivity analysis
to measure the relative importance of sources of uncertainty to the Qols. However, in general it is not
expected that the proxy variables perfectly capture the influence of spatial heterogeneities, thus
impacting surrogate model accuracy. The report thus discusses methods to mitigate a surrogate
constructed with proxy variables overfitting to data, as well as methods to assess the accuracy of the
surrogate, namely scatterplots and R2 values between the surrogate and its build points and
comparing surrogate-based sensitivities to those computed directly from input-output samples. The
report also compares surrogate-based sensitivity results with sensitivity indices calculated by an
empirical binning method that does not require a surrogate. Finally, the report demonstrates the
importance of comparing sensitivity indices to input-output scatterplots as a further means of
assessing the veracity of the results. Understanding and separating the effect of spatial heterogeneity
on repository Qols has proven challenging, especially with the limited number of discrete fracture
networks and parameter samples that can be run for realistic problem sizes.
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4  SHALE REPOSITORY REFERENCE CASE

In 2024, we performed a detailed sensitivity analysis on a full-scale generic shale reference case
(Swiler L. P., et al., 2024) where the model domain was 7215 m (x-axis) x 2055 m (y-axis) x 1200 m
(z-axis), representing a shale-hosted repository system in a layered formation. The numerical domain
consisted of approximately 10 million unstructured grid cells with approximately half of the grid cells
having finer resolution around the repository. This case study had 2050 waste packages (WPs) that
each contained 37 assemblies of SNF from a pressurized water reactor (PWR).

As part of the 2024 generic shale reference case study (LaForce T. , et al., 2024), we added
observation points close to the centermost waste package to study the maximum pressure and
temperature conditions within the repository. The maximum pressure and temperature both peaked
at a few thousand years. Overall, the sensitivity analyses generally identified porosity of the host shale
rock as the driving uncertainty for maximum temperature and pressure values at an observation point
just east of the centermost waste package within the repository (see Section 4.3.4 of the (Swiler L. P.,
et al., 2024) report). The study indicated a maximum temperature slightly below 110 degrees C and a
maximum pressure slightly below 5 MPa. However, the sensitivity analysis results were dependent on
the particular uncertain parameters studied and their ranges. This year, we focused on a generic shale
case study with refinement in the near-field, to better understand conditions in which the repository
might get too hot with pressures that are too high.

The goal of the quarter waste package case is to assess subsurface conditions conducive to disposal
of high-heat load waste packages in shale host rock with a focus on pressures and temperatures.
While some of the parameters in the sensitivity analysis are the same as the 2024 report, this year’s
study has a highly refined single waste package model which allows us to investigate the sensitivity to
parameters in the engineered barrier system and the host rock near the waste (e.g. porosity,
permeability, and thermal conductivity of the buffer, DRZ and shale, DRZ extent, shale thickness
above/below the repository).

A short description of the quarter WP case is presented in Section 4.1, and the input parameters and
output quantities of interest are described in Section 4.2. Sensitivity analysis results are presented in
Section 4.3.

4.1 QUARTER WP SHALE REFERENCE CASE

The chapter covers the sensitivity analyses performed for a shale near-repository model. The full
description of the quarter WP shale case is given in (Basurto, et al., 2025). A literature review was
performed to inform properties regarding the geometry, waste package, buffer, disturbed rock zone
(DRZ), waste package and drift spacing, repository depth, etc. The findings of the literature review are
presented in (Basurto, et al., 2025). This study only has one waste package and is simplified in some
respects but has a highly refined mesh in and around the waste package. Additional observation
points were added near the waste package to study the maximum liquid pressure and temperature
conditions. We note that the material layers and thicknesses are the same for the quarter WP shale
model as those found in the half-symmetry shale model in (LaForce T. , et al., 2024) but differences
in the nearfield measurements of the waste package, buffer, and DRZ exist. Key differences between
the half-symmetry shale model and the quarter WP shale model in the nearfield are that:

¢ The half-symmetry shale model features a square mesh or grid in the nearfield, while the
quarter WP shale model has a fine to coarse radial mesh from the WP to the DRZ,

¢ The minimal radial distances for the half-symmetry shale model are 0.84 m, 2.5 m, and 4.18
m for the WP, buffer, and DRZ, respectively, while the corresponding radial distances for the
quarter WP shale model are 0.85 m, 2.55 m, 4.25 m for the WP, buffer, and DRZ as shown in
Figure 4-3.
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The geometry and mesh generation for the quarter WP shale model were generated using Cubit 17.02,
resulting in a total of 38,652 hexagonal cells. The model domain dimensions are 20 m x 15 m x 1200
m, with potential adjustments in the x- and y-directions depending on the initial temperature and
pressure simulation results. This quarter WP model incorporates a graded mesh in both the positive
and negative z-directions, facilitating a transition from fine to coarse mesh around the drift region. The
grid cell sizes vary throughout the model, with the smallest cells located in the WP, buffer, and DRZ
regions, gradually increasing in size as the distance from these areas increases. In the upper and lower
regions surrounding the drift area, a fixed grid cell size of 5 m is maintained in the x- and z-directions,
while the y-direction starts with a thickness of 0.833 m and primarily measures 0.962 m.

The quarter WP shale model has the full vertical extent implemented which includes several material
layers in addition to the shale host rock. Figure 4-1 shows a vertical slice through the model domain
for the full-scale shale model used in (LaForce T., et al., 2024). The same vertical layers were used
for the quarter WP model.

Figure 4-2 presents detailed views of the quarter WP shale model as rendered in Cubit software. The
left panel displays all volumes associated with the model in and around the WP region. The middle
panel includes both the volumes and the mesh of the model, providing a comprehensive overview of
its structure. The right panel features the Cubit mesh quality metric set to Scaled Jacobian, highlighting
a few lower-quality cells in the drift region. However, these cells remain within the generally acceptable
range, as values above 0.6 are typically considered satisfactory. Figure 4-3 provides a close-up view
of the mesh in the region in and around the waste package.

Sandstone

Shale
Siltstone

Shale

repository

Limestone

Lower Shale

Lower Sandstone

Lower Shale

Figure 4-1. Vertical view of the model domain for the shale case, spanning 1200 m depth. (LaForce
et al., 2024) Colored and Labeled by Material Showing Specified Thicknesses for the Full
Vertical Extent. The same vertical layer structure was used for the quarter WP shale
model.
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Figure 4-2. Zoomed-in visuals of the quarter WP shale model within the Cubit software are presented
as follows: 1) Left: A view displaying all volumes associated with the model in and around
the WP region; 2) Middle: A view showcasing all volumes along with the mesh of the
model; 3) Right: A representation of the Cubit mesh quality metric set to Scaled Jacobian.

[a]
DRZ =Z .
(o} DRZ in yellow,
K 4.25 min radial distance
Buffer EU (1.7 m thick)

Bufferin turquoise,
2.55 min radial distance
(1.7 m thick)

WP in red,
0.85 min radial distance

Figure 4-3. Close-up of meshed regions of interest within the quarter WP shale model.

Five base case PFLOTRAN simulations were run to test the initial workflow and the model. These
simulations are configured to operate with a subsurface flow process model, focusing specifically on
the effects of pressure and temperature resulting from varying model parameters, without considering
transport processes. Boundary conditions are applied solely at the top and bottom of the model, while
the north, west, south, and east boundaries are treated as reflective. This approach effectively
simulates an infinite array of waste packages.
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The initial gas saturations were set at 28.5% for the DRZ and 70% for both the buffer and WP. The
base case simulations were executed over a period of one million years using PFLOTRAN. We
developed an approach to generate generic heat output curves representing the thermal output of the
spent nuclear fuel that can be scaled to represent a wide range of inventory SNF (Basurto, et al.,
2025). The decay heat in these base case simulations was varied. The simulation results for these
five base case scenarios indicate that the highest calculated temperature at the WP was 209°C,
occurring in Run 5. This finding is consistent with expectations, as Run 5 featured the highest initial
WP wattage of 1750 W. Furthermore, Run 5 also exhibited the highest maximum pressure of 6.47
MPa at the WP, and dry out was observed in the WP region.

Visualizations were generated in ParaView. For a complete set of visualizations, see (Basurto, et al.,
2025). In this report, we show one example of the visualizations in Figure 4-4, which displays 70-year
illustrations colored by Material ID, Temperature (°C), Maximum Pressure (Pa), Liquid Saturation, and
additionally time series in the WP (red), buffer (turquoise), DRZ (yellow) and shale (dark blue). Note
that the time series indicate that the maximum temperature of 209°C has been reached at the waste
package region by year 10 and dry out can be seen as well. Figure 4-4H shows that liquid saturation in
the waste package falls to zero very early in the simulation (~ year 1) and begins to resaturate after
about year 1000. By year 70, the maximum pressure of 6.47 MPa is reached at the waste package
(Figure 4-4G). This illustration is just one example: the full ensemble of simulations performed for
sensitivity analysis is described in Section 4.2.

Time: 700y

(A)

Temperature (C)

5 88 38 8

Temperature (C)

8 8 3
Liquid Saturation
S s 8

Maximum Pressure (Pa)

Goo™ " T0000 " T00000 ™ Tess 10600100000 " Te+6

00010000 " T0000b " Teve T00™
Time (y)

o T [T
Time (y) Time (y)

Figure 4-4. Simulation results for Run 5 at year 70, illustrating the nearfield with the following color-coded
quantities: (A) Material ID, (B) Temperature [°C], (C) Maximum Pressure [Pa], and (D) Liquid
Saturation. Additionally, (E) provides a full view of the quarter WP model, colored by Material
ID. The three line plots depict observations over the entire one-million-year simulation at the
WP (red), buffer (turquoise), DRZ (yellow), and Shale (dark blue) for (F) Temperature [°C], (G)
Maximum Pressure [Pa], and (H) Liquid Saturation.
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4.2 SENSITIVITY ANALYSIS: INPUT PARAMETERS AND OUTPUT QOIS

This section describes the uncertain input parameters and the output quantities of interest that were
analyzed as part of a 200-sample study on the quarter WP shale reference case. While the base case
simulations were executed over a period of one million years using PFLOTRAN, simulations in the 200-
sample study were set with a final time of 50,000 years. In the 2024 full shale generic reference case,
nine epistemic parameters were treated as uncertain and independent: see (Swiler L. P., et al., 2024),
Section 4.1 for details. These are PFLOTRAN variables that were selected and implemented as
uncertain parameters in the Next Gen Workflow (NGW). In the quarter shale case study, we varied 10
parameters as described in Table 4-1. The parameters are uncorrelated. Correlations between input
parameters are not included because an evidence-based correlation structure has not been
developed.

The shale permeability anisotropy ratio is the ratio of the shale permeability in the vertical direction to
the shale permeability in the horizontal direction. When this ratio is low, it indicates greater horizontal
than vertical permeability (more anisotropic permeability). When the ratio is 1, it indicates the same
horizontal and vertical permeability. The shale thermal conductivity anisotropy ratio is similar, except
that it compares the thermal conductivity between the vertical and horizontal directions. Low values
indicate more horizontal than thermal conductivity in the shale and when the value is 1, the thermal
conductivity in the shale is the same in the vertical and horizontal directions.

Table 4-1 Input parameter distributions for the quarter shale reference case.

Input Description Range Units Distribution

Host Rock (Shale) Porosity 0.1-0.25 - uniform
pBuffer Buffer Porosity 0.3-0.5 - uniform
DRZ Porosity 0.05-0.25 - uniform
Host rock (shale) Permeability 1020 — 1017 m?2 log uniform
Buffer Permeability 1020 - 1016 m?2 log uniform
DRZ Permeability 1018 — 1016 m? log uniform

Thermal conductivity of buffer (wet).

UL LT T *Note dry TK = 0.5 * wet.

1.2-3.0 WI/(K-m)  uniform

Thermal conductivity of shale and DRZ

UL el ale ey (wet). *Note dry TK = 0.5 * wet.

0.68 - 1.42 WI/(K-m)  uniform

Shale permeability anisotropy ratio 0.1,0.5,0r 1.0 - discrete
values

TK_ani_shale Shgle thermal conductivity anisotropy 0.1,0.5, or 1.0 i discrete
ratio values

We generated 200 samples of these input parameters using LHS and ran the PFLOTRAN quarter WP
shale reference case model to obtain the Qols. The Qols are shown in Table 4-2. All Qols were
calculated at observation points at the WP, buffer in both horizontal directions, DRZ in the x-direction,
shale in z-and x-directions, and observation points vertically in the lower sandstone, limestone, shale,
silt, and upper sandstone.
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Table 4-2 Quantities of Interest for the quarter shale reference case

Quantity of Interest Description

Maximum Pressure Maximum over time of the liquid and gas pressure [Pa] at a fixed
observation point

Maximum Maximum over time of the temperature at a fixed observation point [°C]

Temperature

Liguid Saturation Liquid saturation at a fixed time and observation point, expressed as a
proportion between 0 and 1 of the pore space within the rock that is
filled with liquid

4.3 SENSITIVITY ANALYSIS RESULTS

This section discusses sensitivity analysis results for the shale repository reference case. We note that
of the 200 PFLOTRAN simulations, 195 completed successfully. The others had parameter
combinations that resulted in computationally infeasible runs with very rapid dry out. This study still
provided enough completed simulations (195) compared to the dimension of the input space (10) for
Sobol’ index estimation to be feasible. In analyses for previous cases, we have used multiple types of
surrogate models to estimate Sobol’ indices with a preference for polynomial chaos expansion (PCE)
models when such a model fits the simulation data well. This is because PCE models are flexible with
respect to input/output relationships and allow direct calculation of the Sobol’ indices via the
expansion model coefficients. PCE models cannot be fit with discrete variables, however, and the
anisotropy input variables (k_ani_shale and TK_ani_shale) in this quarter scale shale model are
discrete. A discrete distribution was chosen between three equally weighted outcomes due to a lack
of information for an empirical distribution. The three values covered by the discrete distribution
capture the assumption (a value of 1.0) from the FY24 Shale case analysis, a typical assumption for
sedimentary systems (0.1), and a middle value (0.5). To allow for surrogate model construction given
these discrete distributions, we chose second-order polynomial regression models to estimate the
Sobol’ indices. With this type of surrogate model, the Sobol’ indices are not calculated. Rather, the
surrogate model is sampled many times and the Sobol’ indices are approximated from the samples.
For these results we used LHS sampling on the polynomial surrogate models with 5000 samples for
the Sobol’ estimates.

Sensitivity analysis was performed for the maximum values (over time) of the quantities of interest at
each of the observation points shown in Figure 4-5. Because results are very similar for many of the
observation points, only some of the results are included here, and we note at which observation points
the sensitivity conclusions are the same. Observation points that are explicitly shown are discussed by
location, starting at the waste package, moving in the x-direction, then the y-direction, and then the z-
direction for each quantity of interest. Results are not included for the liquid saturation quantity of
interest because the maximum over time of the liquid saturation is 1 for all simulations and
observations. Plots of the time-dependent liquid saturation are discussed for qualitative sensitivity
analysis conclusions.

For time-dependent discussion, we only present qualitative graphical results in the form of time series
plots of the quantities of interest colored by influencing input variables.
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Figure 4-5 The left of the figure shows observation points within the z-direction; the right of the figure
shows observation points around the central waste package.

43.1 TEMPERATURE

Sobol’ indices for the maximum temperature over time at the waste package observation point are
shown in Figure 4-6. The total effect indices and main effect indices are similar, indicating few
interaction effects. The thermal conductivity parameters are all significant for this quantity of interest
(Qol) and no other parameters appear to have a significant effect at this observation point. These
effects make sense. Higher values of the shale thermal conductivity anisotropy ratio parameter
(TK_ani_shale) correspond to lower anisotropy which results in higher effective conductivity around
the drift, thus lower temperatures at the waste package. The thermal conductivity parameters in the
shale, DRZ, and buffer all have a negative correlation with waste package temperature; lower thermal
conductivity in the regions surrounding the waste package maintains higher temperatures at the waste
package.

Sobol’ indices for the maximum temperature at observation points 1 and 2 in the buffer in the x-
direction are shown in Figure 4-7. Closest to the waste package (left), the results are similar to the
results at the waste package observation point. Farther from the waste package, the shale thermal
conductivity anisotropy ratio dominates the results and the thermal conductivity of the shale and the
DRZ becomes more important than that of the buffer. Dominance of the shale thermal conductivity
anisotropy farther from the waste package makes sense because the domain has much more shale
than buffer and DRZ material.
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Figure 4-6 Maximum temperature Sobol’ indices at the waste package observation point
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Figure 4-7 Maximum temperature Sobol’ indices at lower buffer observation point 1 in the x-direction (left
figure) and buffer observation point 2 in the x-direction (right figure)

Sobol’ indices for the maximum temperature at the first observation point in the DRZ and the last
observation point in the shale (in the x-direction) are shown in Figure 4-8. These figures show increasing
importance of the shale thermal conductivity anisotropy ratio and decreasing importance of the
thermal conductivity of the shale and the DRZ at observation point farther in the x-direction. Only one
point is shown each in the DRZ and shale because the other DRZ and shale observation points have
the same interpretation. By these observation points, more than 80% of the variance is accounted for
by the shale thermal conductivity anisotropy. The buffer thermal conductivity no longer has a
significant effect at the first observation point in the DRZ and the DRZ/shale thermal conductivity no
longer has a significant effect at observation points within the shale.
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Figure 4-8 Maximum temperature Sobol’ indices at DRZ observation point 1 (left figure) and shale
observation point 3 in the x-direction (right figure)

Scatterplots support the Sobol’ index conclusions. The scatterplots in Figure 4-9 show the maximum
temperature at the waste package observation point plotted versus the input parameters. The purple
points in the scatterplots are the simulation results. The orange points in the plots are the results from
the surrogate second-order polynomial evaluated at the same input parameter values. These plots
help confirm the input/output relationships in the Sobol’ index results and the matching trends
between the simulation and surrogate points demonstrate the surrogate quality. This scatterplot
confirms the directionality of the input/output relationships; higher thermal conductivities result in
lower temperatures at the waste package and higher thermal conductivity anisotropy ratios (more
uniform thermal conductivity) also result in lower temperatures at the waste package.
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Figure 4-9 Scatterplots for the maximum temperature at the waste package observation point
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The scatterplots in Figure 4-10 through Figure 4-12 show the maximum temperature input/output
relationships in the x-direction at buffer observation point 1, buffer observation point 2, and shale

observation point 3.
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Figure 4-10 Scatterplots for the maximum temperature at buffer observation point 1 in the x-direction
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Figure 4-11 Scatterplots for the maximum temperature at buffer observation point 2 in the x-direction
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Comparison between the buffer observation points (Figure 4-10 and Figure 4-11) illustrates why the
Sobol’ index results differ between these observation points. At observation point 1, TK_ani_shale has
a slight effect, but the most noticeable trends are with respect to TK_buffer_wet and
TK_shale_DRZ_wet. At observation point 2, TK_buffer_wet has a significantly diminished effect on the
maximum temperature. However, TK_ani_shale and TK_shale_drz_wet both have much more
pronounced effects, which are actually an interaction effect. This effect is also seen in Figure 4-12.
TK_ani_shale causes a bifurcation in the maximum temperature at shale observation point 3 in the x-
direction. The three values for TK_ani_shale correspond to the three clusters of points in the plot of
temperature versus TK_shale_drz_wet. In essence, the shale thermal conductivity anisotropy ratio
determines whether the maximum temperature will be on average below 80°C, around 90°C, or around
160°C. Variation around this average value is then determined by the thermal conductivity of the shale
and DRZ. The bifurcation of points into a high temperature population and a low temperature
population is controlled by the thermal conductivity anisotropy ratio; there is no overlap in temperature
at this observation point between simulations with the ratio set to 0.1 and simulations with the ratio
set to either 0.5 or 1. Observation point 2 sees less distinct clustering, especially between realizations
with thermal conductivity anisotropy ratios of 0.5 and 1 because the trend with respect to
TK_ani_shale is weaker. Farther from the waste package, a higher anisotropy ratio allows heat to
spread more uniformly in all directions, reducing sensitivity to changes in thermal conductivity. At the
lowest anisotropy ratio, heat spreads less uniformly, which is why the cluster of points with the lowest
anisotropy ratio is still relatively highly sensitive to thermal conductivity at observation point 3.
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Figure 4-12 Scatterplots for the maximum temperature at shale observation point 3 in the x-direction

Time series plots of the temperature at the waste package observation point are shown in Figure 4-13
colored by TK_ani_shale (left), TK_buffer_wet (center), and TK_shale_drz_wet (right). These plots show
the effect of the thermal conductivity in the buffer (closest to the observation point) early in the
simulation and the effect of the thermal conductivity in the DRZ and shale (further from the observation
point) later in the simulation, which make sense. Additionally, note the clustering of simulations,
especially late, with respect to the shale thermal conductivity anisotropy ratio (left). This is the same
effect we observed in the scatterplots; the anisotropy determines the whether the temperature is low
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or high, on average. Observe in the plot on the right that within each cluster, the temperature is
negatively correlated with the thermal conductivity of the shale and the DRZ. As we saw with the
maximum temperatures farther from the waste package, we see interaction between the shale
thermal conductivity anisotropy ratio and other thermal conductivity parameters for late-simulation
temperatures at the waste package. Greater anisotropy (a lower anisotropy ratio) lowers effective
thermal conductivity around the drift. This results in a cluster of realizations with higher overall
temperatures and the temperature at the waste package decreases more slowly. For these
realizations, if the thermal conductivity in the DRZ and shale are also low, this further slows cooling,

explaining the interaction effect between the two parameters (Figure 4-13 right).
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Figure 4-13 Time series plots of the temperature at the waste package observation point colored by the

shale thermal conductivity anisotropy ratio (left), thermal conductivity of the buffer (center),

and thermal conductivity of the shale and DRZ (right)

Time series plots of the temperature at DRZ observation point 1 and shale observation point 3 (both
in the x-direction) are plotted in Figure 4-14 and Figure 4-15. In both cases, coloration of the time series
by TK_ani_shale (left) and TK_shale_drz_wet (right) shows the same interaction effect as was
observed at the waste package. However, as the observation point moves farther into the shale, the
effect of the shale thermal conductivity anisotropy ratio becomes even more pronounced. These time
series results are also consistent with the maximum temperature Sobol’ index results at these
observation points; no other parameters had significant Sobol’ indices at these observation points and

no other parameters had clear effects when used to color the time series plots.
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Figure 4-14 Time series plots of the temperature at DRZ observation point 1 in the x-direction colored by
the shale thermal conductivity anisotropy ratio (left) and thermal conductivity of the shale and

DRZ (right)
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Figure 4-15 Time series plots of the temperature at shale observation point 3 in the x-direction colored by
the shale thermal conductivity anisotropy ratio (left) and thermal conductivity of the shale and
DRZ (right)

There are only two observation points located along the y-direction from the waste package, both in
the buffer. Sobol’ indices at these observation points are shown in Figure 4-16. These results are very
similar to those in the x-direction. Near the waste package, the shale thermal conductivity anisotropy
ratio is the most important parameter and the thermal conductivity within the buffer and DRZ and
shale are also significant. At the second observation point farther away, the shale thermal conductivity
anisotropy ratio dominates the results. Usually a Sobol’ index less than 0.1 would be considered
suspect; it is not necessarily spurious but could be. In this case, however, scatterplots suggest the
Sobol’ indices for TK_shale_DRZ_wet at observation point 2 in the buffer (y-direction) are meaningful,
though small.
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Figure 4-16 Maximum temperature Sobol’ indices at buffer observation point 1 in the y-direction (left
figure) and buffer observation point 2 in the y-direction (right figure)

Scatterplots for the first observation point do not provide addition insights beyond those already
discussed because of the similarity to the analysis in the x-direction, so only the scatterplots at
observation point 2 are included here, in Figure 4-17. We see the same interaction effect between
TK_ani_shale and TK_shale_drz_wet as observed in the x-direction analysis. Note that the negative
slopes with respect to TK_shale_drz_wet appear significant, also as in the x-direction. This is a
meaningful relationship, despite the small Sobol’ index in Figure 4-16. It is also notable that this is an
interaction effect and there is very little difference between the main and total effect Sobol’ indices.
Even though the scatterplots show good performance of the order 2 polynomial surrogate model, this
is an inconsistency between the graphical analysis and the Sobol’ index analysis. Time series plots in
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the y-direction yield the same insights as those in the x-direction, so no time-series plots are included

here.
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Figure 4-17 Scatterplots for the maximum temperature at observation point 2 in the buffer in the y-

There are ten observation points in the z-direction, however, there is little variation in results between
these observation points. As such, we only present results for the lowest and topmost layers (lower
sandstone observation point 1 and sandstone observation point 1), in Figure 4-18. The shale thermal
conductivity anisotropy ratio is the dominant parameter at both observation points and the shale and
DRZ thermal conductivity parameter has secondary importance. At the topmost observation point,
TK_shale_drz_wet accounts for almost 20% of the variance including the interaction effect with

direction

TK_ani_shale.
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Figure 4-18 Maximum temperature Sobol’ indices at lower sandstone observation point 1 (left figure) and
sandstone observation point 1 (right figure)

Comparing the scatterplots in Figure 4-19 and Figure 4-20, we see a different behavior at the topmost
observation point than at all other observation points. In Figure 4-19 we see the same negative
correlations between TK_ani_shale and temperature and TK_shale_drz_wet and temperature as at
observation point around the waste package. However, at the topmost observation point (Figure 4-20),
both correlations are positive. Notice, however, that the maximum temperatures are low with very little
variation at the topmost observation point. The interaction effect is limited to those realizations for
which the thermal conductivity is high enough that the temperature disturbance actually reaches this
observation point. For lower values of TK_ani_shale, the thermal conductivity in the z-direction is lower,
so fewer realizations result in elevated temperatures at sandstone observation point 1. For higher
values of TK_ani_shale, the thermal conductivity in the z-direction is high enough for some heat to
reach the upper sandstone observation point. The temperature will be higher here with higher thermal
conductivity in the z-direction through the DRZ and shale, hence the effect from TK_shale_drz_wet.
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Figure 4-19 Scatterplots of the maximum temperature at lower sandstone observation point 1 versus
TK_shale_drz_wet (left) and TK_ani_shale (right)
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Figure 4-20 Scatterplots of the maximum temperature at upper sandstone observation point 1 versus
TK_shale_drz_wet (left) and TK_ani_shale (right)

These behaviors are also observed in the time series data. The time series data are plotted in Figure
4-21 for the lower sandstone observation point (top) and upper sandstone observation point (bottom).
The interaction effects in the top plot, wherein each TK_ani_shale cluster of realizations has a strong
negative correlation pattern with the TK_shale_drz_wet color scale, are the opposite of the interaction
effects in the bottom plot.
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Figure 4-21 Time series plots of the temperature colored by the shale thermal conductivity anisotropy
ratio (left) and thermal conductivity of the shale and DRZ (right) at lower sandstone
observation point 1 (top figures) and upper sandstone observation point 1 (bottom figures)

4.3.2 PRESSURE

This section present sensitivity analysis results for the pressure. Some of these results are more
challenging to interpret than the temperature results because the relationships are less clear in
scatterplots and time series plots and there are more parameters with nonzero Sobol’ indices.

Sobol’ index results for the maximum pressure at the waste package observation point (left) and shale
observation point 3 in the x-direction are shown in Figure 4-22. The corresponding scatterplots are in
Figure 4-23 and Figure 4-24. Though the scatterplots show generally good agreement between the
simulation and the surrogate, the Sobol’ index results at the waste package observation point are
suggestive of overfitting because of the nonzero total effect indices on all parameters. While this is not
impossible, we often see this type of behavior in results where the surrogate model is overfit so the
total effect indices should be interpreted with caution. The R? for this model is also 0.77, which is
relatively low compared to most of the other observation points which have R? values over 0.9 (1.0
being a perfect fit). As in the maximum temperature results, TK_ani_shale is also the dominant
uncertainty for maximum pressure at the waste package observation point. The main effect indices
for TK_shale_drz_wet, TK_buffer_wet_and kBuffer are also potentially significant.

August 22, 2025



Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2025)

Max. Pres. [Pa] WP Obs. Pt. Max. Over Time

TK_ani_shale
k_ani_shale

kDRZ

kBuffer

kShale
TK_shale_drz_wet

TK_buffer_wet

Uncertain Parameter

pDRZ
pBuffer
pShale

tal | |

— i
|

Main| |

0 0.2

04

0.6 0.8
Index Value

Uncertain Parameter

TK_ani_shale
k_ani_shale

kDRZ

kBuffer

kShale
TK_shale_drz_wet
TK_buffer_wet
pDRZ

pBuffer

pShale

0 0.2

Max. Pres. [Pa] Shale Obs. Pt. 3 x Max. Over Time

I Total | |
I Viain | |

0.4 0.6 0.8 1
Index Value

Figure 4-22 Maximum pressure Sobol’ indices at the waste package observation point (left figure) and
shale observation point 3 in the x-direction (right figure)
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Figure 4-23 Scatterplots for the maximum pressure at the waste package observation point

The Sobol’ index results become clearer farther from the waste package. At shale observation point 3
in the x-direction (Figure 4-22, right), there appear to be three significant parameters: TK_ani_shale,
kShale, and pShale. These results are also much clearer in the scatter plots (Figure 4-24) than the
waste package observation point pressure results were. Within the shale, maximum pressure is driven
predominantly by the shale thermal conductivity anisotropy ratio and secondarily by the porosity and
permeability of the shale. Because the anisotropy ratio drives temperature variability at this
observation point, it makes sense that it would also affect the pressure. The negative correlation with
kShale also make sense with higher permeability preventing as much pressure from building up. The
relationship between pShale and pressure does not have a clear intuitive explanation; it is unclear why
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higher porosity would increase pressure. However, see Figure 4-25, which shows the plot of maximum
pressure at this observation point versus pShale colored by kShale. The points that comprise the
stronger positive trend with respect to porosity also have low permeability values. It is the combination
of high porosity with low permeability that creates this positive trend. This does not fully explain the
positive trend with respect to pShale as there is still a slight positive trend even at higher kShale

values.
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Figure 4-24 Scatterplots for the maximum pressure at shale observation point 3 in the x-direction
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Figure 4-25 Scatterplot of the maximum pressure at shale observation point 3 in the x-direction versus
pShale colored by kShale to show the interaction effect between shale porosity and
permeability.

The time series plots for maximum pressure at the waste package observation point are shown in
Figure 4-26. These plots show a more complex picture over time than the temperature plots. Early in
the simulation, there appears to be an effect from kBuffer (top left) and TK_buffer_wet (top right). The
effect of these parameters on the maximum pressure over time is less obvious: realizations with low
permeability and low conductivity seem to experience maximum pressure earlier in the simulation
time. This makes sense as low permeability in the buffer will lead to more pressure build up at the
waste package and low conductivity in the buffer will cause temperature to build up, further increasing
the pressure. There is also a clear effect late in the simulation from the shale thermal conductivity
anisotropy ratio (bottom left), which is consistent with the Sobol’ and scatterplot results. The shale
permeability (bottom right) has a non-monotonic effect late in the simulation. Large shale permeability
values are associated with earlier spikes in pressure at the waste package and the lowest shale
permeability values are generally associated with later increases in pressure.
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Figure 4-26 Time series plots of the maximum pressure at the waste package observation point colored
by buffer permeability (top left), the buffer thermal conductivity (top right), shale thermal
conductivity anisotropy ratio (bottom left), and shale permeability (bottom right)

The time series plots for the pressure at shale observation point 3 in the x-direction are shown in Figure
4-27 colored with respect to kshale (top left), TK_ani_shale (top right), and k_ani_shale (bottom left).
The trend with kShale is distinctive with respect to timing. At high kShale values, the pressure
decreases early at this observation point and gradually increases after around 10 years. For lower
values of kShale, this pattern is somewhat delayed, and some realizations see an increase in pressure
without a decrease. There is a clear effect from the shale thermal conductivity anisotropy ratio (top
right) late in the simulation, which may interact with kShale late in the simulation. This would explain
why the effect from kShale is less distinctive at the end of the simulation. The overall trend with respect
to kShale, however, makes sense. Higher permeability should create less pressure build up. The shale
permeability anisotropy ratio does not have a significant effect on the maximum pressure (thus why it
was not significant in the Sobol’ or scatterplot analysis). However, the time series plot shows that there
is some effect on pressure. The lowest values of the anisotropy ratio (indicating higher horizontal
permeability than vertical permeability within the shale) correspond to realizations that experience the
lowest minimum pressures within these simulations, but also the greatest variability in pressure; some
of the realizations with the highest pressure also have the lowest permeability anisotropy ratio. Though
this is not a quantity of interest in our analysis like the maximum pressure, it is still helpful for analyzing
the behavior of the model. This observation point is within the horizontal plane of waste package.
Higher permeability in this plane will lead to more flow and lower pressures. This model behavior
makes sense.
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Figure 4-27 Time series plots of the maximum pressure at shale observation point 3 in the x-direction

colored by shale permeability (top left), shale thermal conductivity anisotropy ratio (top right),

and shale permeability anisotropy ratio (bottom).

The plots in Figure 4-28 plot the time of the maximum pressure versus the time of the maximum
temperature at the waste package observation point (left) and shale observation point 3 in the x-
direction (right). The dashed line indicates equal timing. We generated these plots to investigate the
influence of temperature build up on pressure. At the waste package, the temperature peaks before
pressure, which indicates that changes in temperature may drive pressure at this observation point.
However, at observation points farther from the waste package, this is not always the case. The
clustering of points at observation point 3 in the x-direction is caused by kShale and TK_ani_shale;
kShale determines whether temperature peaks before pressure at this observation point and
TK_ani_shale explains the horizontal clustering (difference in timing of maximum temperature).
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Figure 4-28 Scatter plots of the time of maximum pressure versus the time of maximum temperature as

The Sobol’ index results for the maximum pressure at buffer observation point 2 in the y-direction are
shown in Figure 4-29. Results for the first observation point in the buffer in the y-direction are not
included here because the conclusions are the same for that observation point as for the waste
package observation point. At observation point 2, the shale permeability is the dominant uncertainty,
though there appear to be some interaction effects (some of which may be spurious since the total
effects indices are present for all parameters). The scatterplots in Figure 4-30 indicate a strong
relationship with kShale and a weaker relationship with kBuffer, which is consistent with the Sobol’
indices for these parameters. The trend with respect to kBuffer appears only to occur at lower values
of kBuffer, suggestive of an interaction effect. Another variable drives whether the maximum pressure
is relatively high and, if so, there is a negative correlation with kBuffer for these higher-pressure
realizations. The surrogate, however, seems to overestimate this trend. At high values of kBuffer, the
surrogate predicts lower values of maximum pressure than seen in any of the simulations. The Sobol’
index for kBuffer is likely an overestimate. More samples within the higher-pressure space could inform
whether the relationship to kBuffer in that regime is due to chance or is a physical result. The
interaction effect, however, is clearly between kShale and kBuffer. The scatter plot in Figure 4-31
shows the maximum pressure at this observation point plotted versus kBuffer colored by kShale.
kShale determines whether the pressure is in the higher regime, and within this regime the pressure
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Figure 4-30 Scatterplots for the maximum pressure at buffer observation point 2 in the y-direction
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Figure 4-31 Interaction plot showing the combined effects of kBuffer and kShale on the maximum
pressure at observation point 2 in the y-direction

Time series plots of the maximum pressure at this observation point are shown in Figure 4-32 colored
by the shale thermal conductivity anisotropy ratio (top left), kShale (top right), and kBuffer (bottom).
The shale permeability (kShale) affects the timing of pressure increases with higher permeability
values leading to earlier increases in pressure. This is consistent with the behavior between shale
permeability and pressure at the waste package and buffer observation points, though the effect is
particularly strong at this observation point. The permeability of the buffer has a less monotonic effect.
The peak pressures are associated with low buffer permeability, but some of the earliest realizations
to see an increase in pressure have the highest values of kBuffer. This may be due to interaction
effects between kShale and kBuffer.

The shale thermal conductivity anisotropy ratio has a similar effect at this observation point as it does
at the waste package observation point. Around 100 years, low anisotropy ratios (high anisotropy) lead
to higher pressures due to lower effective thermal conductivity and the highest anisotropy ratios (low
anisotropy) lead to lower pressures due to higher effective thermal conductivity.

Sobol’ index results for the maximum pressure at the lower sandstone observation point are shown in
Figure 4-33. The shale thermal conductivity anisotropy ratio is clearly the dominant uncertainty on with
some minor effect from the thermal conductivity of the shale and DRZ. Because the relationships
between the input parameters and maximum pressure at this observation point are so clear, only the
scatterplots for these two parameters are included in Figure 4-34; there are no significant input/output
relationships in the other scatterplots. This is a clear interaction effect; the anisotropy ratio determines
the relative magnitude of the maximum pressure; within that magnitude, the thermal conductivity of
the shale and DRZ accounts for variation. At the lowest anisotropy ratio value (highest anisotropy), the
thermal conductivity of the shale and DRZ has no effect; at a certain level, anisotropy dominates the
thermal effect. This relationship is persistent across the whole time series, as shown in Figure 4-35.
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Figure 4-32 Time series plots of the maximum pressure at buffer observation point 2 in the y-direction
colored by shale thermal conductivity anisotropy ratio (top left), shale permeability (top right),
and buffer permeability (bottom)
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Figure 4-35 Time series plots of the maximum pressure at lower sandstone observation point 1 colored
by shale thermal conductivity anisotropy ratio (left) and thermal conductivity of the shale and
DRZ (right)

The Sobol’ index results for the maximum pressure at limestone observation point 1 and shale
observation point 4 are shown in Figure 4-36. The shale thermal conductivity anisotropy ratio continues
to drive uncertainty at these observation points (and the point between them, which have similar
results), however there are also effects from pShale, kShale, and TK_shale_drz_wet, which can all be
observed is the scatterplots in Figure 4-37 and Figure 4-38. The shale porosity (pShale) has the clearest
effect of these parameters, with a distinct positive linear trend. The trends with respect to the shale
permeability (kShale) and the shale and DRZ thermal conductivity are both negative. The main
difference between the limestone observation point and shale observation point 4 is that the shale
thermal conductivity anisotropy ratio accounts for even more of the variance at the shale observation
point than at the limestone observation point, having Sobol’ index values approximately 0.1 greater in
magnitude. Comparing the last plot frame between Figure 4-37 and Figure 4-38 confirms this Sobol’
index result. Within the shale, the trend is stronger and the reduction in variance when the anisotropy
ratio is 1 (low anisotropy) is more pronounced.
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Figure 4-38 Scatterplots for the maximum pressure at shale observation point 4

The time series plots at limestone observation point 1 and sandstone observation point 4 give the
same conclusions for the maximum pressure, so only the limestone plots are shown in Figure 4-39.
High shale permeability is associated with earlier increases in maximum pressure and lower pressures
later in the simulation (top left). High permeability will allow liquid to move into the shale, building
pressure initially, but will also support movement through the shale, allowing the pressure to decrease
over the course of the simulation. The relationship with low kShale values is less clear, but this appears
to be an interaction effect with the shale thermal conductivity anisotropy ratio (top right). The
realizations that have low shale permeability but see early increases in pressure also have a high
thermal conductivity anisotropy ratio (low anisotropy), and hence higher effective thermal conductivity
leading to an initial increase in pressure but lower peak. The realizations with low shale permeability
that see an increase in pressure later also have the lowest thermal conductivity anisotropy ratio (most
anisotropic), and less effective thermal conductivity. Pressure builds later, but peaks higher. The
influences of pShale (shale porosity, bottom left) and TK_shale_drz_wet (shale and DRZ thermal
conductivity, bottom right) are much less distinct. We see the effects on the peak that we see in the
scatterplots, but trends over time are harder to discern because these variables are of secondary
importance.

Finally, Sobol results for sandstone observation point 1 are shown in Figure 4-40. The significant total
effect indices for almost all parameters with insignificant main effects for all but one parameter is
suggestive of overfitting. The scatterplots in Figure 4-41 show a few important things. First, there is
little variance in the maximum pressure at this topmost observation point. Second there are a handful
of simulations with higher maximum pressure points than the rest of the simulations; these results are
likely dominating the Sobol’ index results. For kShale, these points are all clustered at the highest
values of kShale.
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Figure 4-39 Time series plots of the maximum pressure at limestone observation point 1 colored by shale
permeability (top left), shale thermal conductivity anisotropy ratio (top right), shale porosity
(bottom left), and thermal conductivity of the shale and DRZ (bottom right)
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Figure 4-41 Scatterplots for the maximum pressure at sandstone observation point 1

The time series plots for maximum pressure at the sandstone observation point are shown in Figure
4-42 colored by the shale thermal conductivity anisotropy ratio (top left), shale and DRZ thermal
conductivity (top right), and shale permeability (bottom left). The anisotropy ratio has a similar
pronounced effect as at the other observation points. The interaction effect between the anisotropy
ratio and the shale and DRZ thermal conductivity is interesting. The interaction effect is similar to what
we saw at the lower sandstone observation point; TK_ani_shale determines the overall average
magnitude and TK_shale_drz_wet determines variation around that average. However, at the
sandstone observation point, that relationship does not always hold. There is also a significant effect
from the shale permeability (bottom left). High permeability values are associated with the realizations
that see an increase in pressure; these are the handful of realizations dominating the trend in the

scatterplots.
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Figure 4-42 Time series plots of the maximum pressure at sandstone observation point 1 colored by the
shale thermal conductivity anisotropy ratio (top left), shale/DRZ thermal conductivity (top
right), and shale permeability (bottom)

4.3.3 LIQUID SATURATION

The liquid saturation always peaks at 1.0, so we do not have a scalar liquid saturation quantity of
interest. Instead, we have time series plots of the liquid saturation colored by the different input
parameter to qualitatively analyze the effects of input uncertainty on liquid saturation.

The liquid saturation over time at the waste package observation point is shown in Figure 4-43 colored
by the buffer thermal conductivity (top left), buffer permeability (top right), and shale permeability
(bottom). The buffer parameters both appear to have an effect early. Low thermal conductivity and
high permeability are associated with the earliest reductions in liquid saturation. This effect of low
thermal conductivity may be due to increasing temperature creating a gas phase. Thermal conductivity
also drives pressure early in the simulation at this observation point, which can increase gas or liquid
flow into and through the buffer. The buffer permeability has more of an effect than the buffer thermal
conductivity on the subsequent increase in liquid saturation. Both the buffer and shale permeabilities
are negatively correlated with the timing of liquid saturation increase; higher permeabilities lead to
earlier increases in liquid saturation.
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Figure 4-43 Time series plots of the liquid saturation at the waste package observation point colored by

the buffer thermal conductivity (top left), buffer permeability (top right), and shale permeability
(bottom)

At buffer observation point 1 in the x-direction, the two parameters that appear to drive liquid
saturation are the buffer permeability (Figure 4-44, left) and the shale permeability (Figure 4-44, right).
The buffer permeability has the early effect, with higher permeabilities leading to earlier saturation at
the buffer observation point. A more permeable buffer will allow fluid to flow into the buffer, saturating
the material at this observation point earlier in the simulation. Low permeability in the shale is
associated with realizations that see a subsequent decrease in liquid saturation, with some
realizations seeing dry out at this observation point.

The liquid saturation at buffer observation point 2 in the x-direction is not plotted because the
sensitivity analysis conclusions are the same. However, note that the liquid saturation at observation
point 2 in the buffer does not decrease to zero as it does at observation point 1. There are no
realizations for which dry out occurs at observation point 2 in the buffer.

The time series plot of the liquid saturation at DRZ observation point 2 in the x-direction is shown in
Figure 4-45 colored by the shale permeability (left) and the DRZ permeability (right). The liquid
saturation is strongly dominated by the shale permeability but there is some effect from the DRZ
permeability. This far from the waste package, there is no more effect from thermal conductivity; the
liquid saturation is driven by permeabilities. We note also that the shale permeability parameter varies
more than the DRZ permeability and there is more shale than DRZ in the model.
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Figure 4-44 Time series plots of the liquid saturation at buffer observation point 1 in the x direction
colored by the buffer permeability (left) and the shale permeability (right)
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Figure 4-45 Time series plot of the liquid saturation at DRZ observation point 2 in the x-direction colored
by the shale permeability (left) and the DRZ permeability (right)

4.3.4  SENSITIVITY ANALYSIS SUMMARY

Overall, the shale thermal conductivity anisotropy ratio was a driving uncertainty on maximum pressure
and temperature at many observation points. Temperatures were affected by uncertainty in this
anisotropy ratio as well as other uncertain thermal conductivity parameters, but not by parameters
associated with other physical processes (e.g., permeabilities, porosities). Though temperatures
affected pressure, especially near the waste package, the SA results for pressure were more varied
and appear to reflect the complex interaction of multiple physical processes. The shale thermal
conductivity anisotropy ratio was also a dominant uncertainty for pressure, but had significant
interaction effects with thermal conductivity parameters, permeabilities, and porosities, depending on
the observation point. Variation in liquid saturation at all observation points was dominated by
permeability parameters, but the more interesting result for liquid saturation was the lack of complete
dry out in the buffer region. Some realizations experienced dry out at observation point 1 in the x-
direction and y-directions in the buffer, but none of the realizations experienced dry out at observation
point 2 in these directions.
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5 INTERNATIONAL ENGAGEMENTS

In addition to the work outlined in Chapters 2-5, the UQ/SA team participated in JOSA and DECOVALEX
this year. These activities are described in sections 5.1 and 5.2, respectively.

5.1 JOSA VOLUME 2 REPORT

Laura Swiler and Dusty Brooks continued their involvement in the Joint Sensitivity Analysis (JOSA)
international working group. Laura co-leads this group with Klaus Rohlig and Dirk Becker from
Germany. This group held a series of virtual meetings over the past year on the following dates: August
21, September 25, November 20 (in 2024) and January 15, February 26, May 7, June 18, and July 31
(in 2025). The purpose of these meetings is to demonstrate and apply the latest state-of-the art
sensitivity analysis methods to realistic case studies provided by the participating organizations. These
organizations include GRS and TU-Clausthal in Germany, POSIVA in Finland, SCK-CEN in Belgium, and
Enresa in Spain.

This year, we completed and published Volume 2 of the JOSA case studies (Swiler L. P., et al., 2025):

Laura P. Swiler, Dirk-Alexander Becker, Dusty Brooks, Lasse Koskinen, Pekka
Kupiainen, Elmar Plischke, Klaus-Jirgen Roéhlig, Javier Samper, Sabine M. Spiessl.
“Sensitivity Analysis Comparisons on Geologic Case Studies: An International
Collaboration, Volume 2” SAND2025-00230.

Volume 2 had three case studies: a Low- and Intermediate-Level Waste (LILW) repository installed in
an abandoned former salt production mine from the GRS team, a generic crystalline reference case
for High Level Waste (HLW) with varying discrete fracture networks as well as epistemic parameters
provided by Sandia, and a reactive transport case involving HLW provided by Enresa. The culmination
of the Volume 2 report was the final chapter which summarized best practices and recommendations
for a practitioner employing sensitivity analyses to real application studies. These best practices are
now being prepared for a journal article.

The JOSA team has started a new set of case studies which will be the basis for Volume 3. The first of
these case studies is a geochemical model developed by SCK-CEN. The model was developed in the
PHREEQC code to simulate the sorption of Americium on organic matter-containing Boom Clay. The
model incorporates cation exchange and surface complexation on clay minerals, along with sorption
on organic substances. It employs the Tipping model, a widely used mathematical framework for
describing metal sorption on organic acids. Simulations were conducted across a range of initial
Americium concentrations, producing a sorption isotherm (log(Ka)) as a function of Am-concentration.
The model requires 50 inputs, and SCK-CEN provided the JOSA team with one million simulation runs
(a table with one million samples of 50 inputs and log(Kad) output values). This case study has been
very interesting for JOSA and SNL to consider as it pushes the boundaries of scaling our sensitivity
analysis methods: we have not tackled a problem with 1M samples in 50 input dimensions previously.
Our preliminary findings are that we need to be cautious when utilizing surrogate models in such high-
dimensional problems as they may mis-represent or under-represent the actual variance, as we
demonstrated with the PCE method which underrepresented the variance and thus over-estimated the
Sobol’ sensitivity indices.

We plan to continue investigation of this geochemistry case study as well as other case studies that
will be investigated by the JOSA participants for Volume 3 in the coming year.
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5.2 DECOVALEX

The DECOVALEX (DEvelopment of COupled Models and their VAlidation against EXperiments) is a large,
multi-year, multi-organization international project focused on thermal-hydraulic-mechanical-chemical
processes and their influence on repository performance and safety. In the last four-year DECOVALEX
project (DECOVALEX-2023), Sandia participated in tasks related to generic salt and crystalline
reference case model development and analyses.

For the current four-year DECOVALEX project (running from 2024-2027, referred to as DECOVALEX-
2027), Sandia serves as the task lead for the crystalline portion of Task F, which involves crystalline
generic reference case modeling. In DECOVALEX-2027, a primary focus for Task F is on uncertainty
quantification and sensitivity analysis. Members of the GDSA UQ/SA team have supported the initial
Task F specification for DECOVALEX-2027 and are participating in this exercise. UQ studies on a simple
benchmark problem have been completed, and the sampling procedure for a larger, realistic
uncertainty analysis on the full DECOVALEX crystalline reference case has been defined (contact the
authors for the initial Task specification). The UQ/SA studies focus on a nested sampling plan with
outer loop sampling of discrete fracture networks and inner loop sampling of epistemic parameters
including waste package properties and backfill and buffer permeabilities and porosities. These
studies will be run by participating organizations during the next year of DECOVALEX-2027.
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6 SUMMARY

This report described activities performed in fiscal year 2025 associated with the GDSA Uncertainty
and Sensitivity Analysis Methods work package, as summarized below.

The GDSA UQ/SA team worked closely with the GDSA Biosphere model development team at PNNL to
perform sensitivity analysis for the Biosphere model (see Chapter 2). Dakota was integrated in a
coupled sensitivity analysis, where Dakota first ran a PFLOTRAN model which generated radionuclide
concentrations that were input to the Biosphere model. Parameters of both the PFLOTRAN and the
Biosphere model were sampled, and a SA study was performed to identify the dominant parameters
contributing to total effective dose. The study paves the way for larger coupled PFLOTRAN-Biosphere
model analyses.

This year, we summarized various approaches to characterizing the effects of spatial heterogeneity
with proxy variables in a SAND report. This report outlines progress to date and remaining challenges.

A main focus of our work package this year was sensitivity analysis for a quarter WP shale case with
increased resolution in the modeling domain near the waste package. The quantities of interest were
the liquid saturation, temperature, and maximum pressure at observation points at the waste package,
and in the buffer, DRZ, shale, lower sandstone, limestone, silt, and sandstone. The majority of the
observation points were in the near-field because the study focused on understanding conditions in
which the repository might get too hot with pressures that are too high. Sensitivity analysis was
performed using Sobol’ indices estimated with polynomial chaos expansion, scatterplots, and time
series plots colored by uncertain input parameters. We found that the shale thermal conductivity
anisotropy ratio was the dominant uncertainty driving maximum temperature variability; there are also
significant effects from the other thermal conductivity parameters, but no parameter related to other
physical processes. The shale thermal conductivity anisotropy ratio was also a prominent driving
uncertainty on the maximum pressure, however, there were interaction effects between this ratio and
either thermal conductivity or permeability and porosity parameters depending on the observation
point. Liquid saturation was affected by thermal conductivity at the waste package, but elsewhere it is
driven by the uncertain permeabilities. We found that dry out did not occur for any realizations at
observation point 2 in the buffer and only for some realizations at observation point 1 in the buffer.
The entire buffer region does not dry out.

In terms of our international engagements, we are supporting the next four-year phase of DECOVALEX
which has an emphasis on UQ/SA for the crystalline reference case. We continue to work with the Joint
Sensitivity Analysis Working Group: we issued the Volume 2 SAND report summarizing the result of
various SA studies on the case studies provided by the participating organizations and are now working
on Volume 3 with new case studies.
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