
DISCLAIMER 

This report was prepared as an account of work sponsored by an 

agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor any of their employees, 

makes any warranty, express or implied, or assumes any legal liability 

or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents 

that its use would not infringe privately owned rights. Reference 

herein to any specific commercial product, process, or service by 

trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or 

favoring by the United States Government or any agency thereof. The 

views and opinions of authors expressed herein do not necessarily 

state or reflect those of the United States Government or any agency 

thereof.  Reference herein to any social initiative (including but not 

limited to Diversity, Equity, and Inclusion (DEI); Community Benefits 

Plans (CBP); Justice 40; etc.) is made by the Author independent of 

any current requirement by the United States Government and does 

not constitute or imply endorsement, recommendation, or support by 

the United States Government or any agency thereof. 



 

      

 

S 

Uncertainty and Sensitivity Analysis 
Methods and Applications in the 
GDSA Framework (FY2025) 
 
Spent Fuel and Waste Science and Technology 
Campaign 
 
Prepared for 
U.S. Department of Energy 
Office of Nuclear Energy 
By Sandia National Laboratories 
 
 
Laura P. Swiler1, Eduardo Basurto1, Dusty M. Brooks1, Tara LaForce1,  
Rosemary Leone1, Paul E. Mariner1, Teresa Portone1, Caitlin Condon2, Josh Hargraves2, 
Tristan Hay2 

August 22, 2025 
 
M3SF- 252SN010304072 
SAND2025-11744R 
 

 
 
 
 

 

 

 

 

 

 

 
1 Sandia National Laboratories 
2 Pacific Northwest National Laboratory 

SAND2025-11744R



 

      

 

 

 

 

 
 

 

 

 
Sandia National Laboratories is a multimission laboratory managed and 
operated by National Technology & Engineering Solutions of Sandia, LLC., a 
wholly owned subsidiary of Honeywell International, Inc., for the U.S. 
Department of Energy’s National Nuclear Security Administration under 
contract DE-NA0003525. 

 

 
 

DISCLAIMER 

This is a technical document that does not take into account 
contractual limitations or obligations under the Standard Contract 
for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive 
Waste (Standard Contract) (10 CFR Part 961).   
 
To the extent discussions or recommendations in this document 
conflict with the provisions of the Standard Contract, the Standard 
Contract governs the obligations of the parties, and this 
presentation in no manner supersedes, overrides, or amends the 
Standard Contract.  
 
This document reflects technical work which could support future 
decision making by the U.S. Department of Energy (DOE or 
Department).  No inferences should be drawn from this document 
regarding future actions by DOE, which are limited both by the 
terms of the Standard Contract and Congressional appropriations 
for the Department to fulfill its obligations under the Nuclear 
Waste Policy Act including licensing and construction of a spent 
nuclear fuel repository.  
 



       

Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2025) 

August 22, 2025 iii 

NFCSC DOCUMENT COVER SHEET1 

 
Name/Title of Deliverable/Milestone/Revision No. Uncertainty and Sensitivity Analysis Methods and Applications 

in the GDSA Framework (FY2025) 
  

Work Package Title and Number GDSA - Uncertainty and Sensitivity Analysis Methods – SNL 
SF-25SN01030407 

  
SF-25SN01030407 

Work Package WBS Number  

 

Laura P. Swiler   
Responsible Work Package Manager  

 (Name/Signature) 
  

Date Submitted 08/22/2025 
  

 

This deliverable was prepared in accordance with Sandia National Laboratories QA program, which meets the requirements of: 

☒ DOE Order 414.1 ☐ NQA-1 ☐ Other 
  
This deliverable was subjected to:  
☒ Technical Review (TR) ☐ Peer Review (PR) 
  
TR Documentation Provided PR Documentation Provided 
☐ Signed TR Report, or 
☐ Signed TR Concurrence Sheet, or 
☒ Signature of TR Reviewer(s) below 
 

☐ Signed PR Report, or 
☐ Signed PR Concurrence Sheet, or 
☐ Signature of PR Reviewers below 

Name and Signature of Reviewers  
   
 

Laura Price     

  

 

NOTE 1:  This form should be filled out and submitted with the deliverable. Or, if the PICS:NE system permits, completely enter all applicable information in the 
PICS:NE Deliverable Form.  The requirement is to ensure that all applicable information is entered either in the PICS:NE system or by using the NFCSC 
Document Cover Sheet. 

• In some cases, there may be a milestone where an item is being fabricated, maintenance is being performed on a facility, or a document is 
being issued through a formal document control process where it specifically calls out a formal review of the document. In these cases, 
documentation (e.g., inspection report, maintenance request, work planning package documentation or the documented review of the issued 
document through the document control process) of the completion of the activity, along with the Document Cover Sheet, is sufficient to 
demonstrate achieving the milestone.  

NOTE 2:  If QRL 1, 2, or 3 is not assigned, then the QRL 4 box must be checked, and the work is understood to be performed using laboratory QA 
requirements. This includes any deliverable developed in conformance with the respective National Laboratory / Participant, DOE or NNSA-approved QA 
Program. 

NOTE 3: If the lab has an NQA-1 program and the work to be conducted requires an NQA-1 program, then the QRL-1 box must be checked in the work 
Package and on the Appendix E cover sheet and the work must be performed in accordance with the Lab’s NQA-1 program. The QRL-4 box should not be 
checked. 

Quality Rigor Level for 
Deliverable/Milestone2 

☐ QRL-1 
☐ Nuclear Data 

☐ QRL-2 ☒ QRL-3 ☐ QRL-4 
Lab QA Program3 



       
Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2025) 

August 22, 2025 iv 

EXECUTIVE SUMMARY 

1 SUMMARY INTRODUCTION 

The Spent Fuel and Waste Science and Technology Campaign (SFWST) of the U.S. Department of 
Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development on geologic 
disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two priorities for SFWST are 
design concept development and disposal system modeling. These priorities are directly addressed in 
the Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a 
geologic repository system modeling and analysis capability, and the associated software, GDSA 
Framework, for evaluating disposal system performance for nuclear waste in geologic media. 

This report describes specific activities in the Fiscal Year (FY) 2025 associated with the GDSA 
Uncertainty and Sensitivity Analysis Methods work package. This report fulfills the GDSA Uncertainty 
and Sensitivity Analysis Methods work package (SF-25SN01030407) level 3 milestone, Uncertainty 
and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2025) (M3SF-
25SN010304072). This work was closely coordinated with the other Sandia National Laboratory GDSA 
work packages: the GDSA Framework Development work package (SF-25SN01030408), the GDSA 
Repository Systems Analysis work package (SF-25SN01030409), and the GDSA PFLOTRAN 
Development work package (SF-25SN01030410). This report builds on developments reported in 
previous GDSA Framework milestones, particularly M3SF-24SN010304072. 

1.1 HIGH-LEVEL PURPOSE OF THIS WORK:   
Performance assessment (PA) for underground geologic disposal of nuclear waste is an iterative 
process for determining the safety relevant set of features, events, and processes (FEPs) to include in 
a PA model. Probabilistic PA model simulations are performed to estimate the full range of behavior 
of the system including the pertinent variability and uncertainty in the system.  Results are evaluated 
against system performance metrics (e.g., for evaluating key sensitivities needing further constraints 
or for assessing performance against regulatory requirements). A fundamental use of uncertainty and 
sensitivity analyses is the determination of uncertain parameters that are most impactful to changes 
in performance.  This determination is useful for decision makers as they develop future development 
priorities for a given repository setting.  This use of SA/UQ will be fundamentally important to the U.S. 
program going forward. 

1.2 FY25 ACCOMPLISHMENTS  
1) Sensitivity analysis for a near-field shale case.  This was a simplified case, a “quarter waste 

package” case, that was highly refined around the waste package to better understand maximum 
temperatures and pressures at various points in and near the repository.  Ten uncertain input 
parameters were varied and 200 PFLOTRAN runs launched for the SA results.  

2) Sensitivity analysis for the biosphere model. The GDSA UQ/SA team worked closely with the GDSA 
Biosphere model development team at PNNL to demonstrate an integrated workflow where 
Dakota generated sample parameter values both for the PFLOTRAN model and for the Biosphere 
model and ran them in a coupled, sequential fashion as part of a sensitivity analysis.  

3) International activities. We continue to engage in and support international activities. This year, 
we are supported the UQ/SA activities for the crystalline task of the 2024-2027 phase of 
DECOVALEX.  We completed Volume 2 with the Joint Sensitivity Analysis Working Group (JOSA) 
summarizing the result of various SA studies on the case studies provided by the participating 
organizations and are continuing with new case studies and methods in Volume 3.  
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4) Additional activities. We support training sessions and seminars as requested, including on the 
Next Generation Workflow which integrates Dakota, PFLOTRAN, the Biosphere model, and 
potentially other codes and analysis tools.  We also continue investigation into state-of-the-art SA 
methods.    
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SPENT FUEL AND WASTE SCIENCE AND TECHNOLOGY CAMPAIGN, GEOLOGIC DISPOSAL 
SAFETY ASSESSMENT, SENSITIVITY ANALYSIS AND UNCERTAINTY QUANTIFICATION 

1 INTRODUCTION 

This report presents high level objectives and strategy for development of uncertainty and sensitivity 
analysis tools in Geologic Disposal Safety Assessment (GDSA) Framework, a software toolkit for 
probabilistic post-closure performance assessment (PA) of systems for deep geologic disposal of 
nuclear waste. GDSA Framework is supported by the Spent Fuel and Waste Science and Technology 
Campaign of the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE).  

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-
25SN01030407) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and Applications in 
GDSA Framework (FY2025) (M3SF-25SN010304072). It presents high level objectives and strategy 
for development and demonstration of uncertainty quantification (UQ) and sensitivity analysis (SA) 
tools in GDSA Framework in fiscal year 2025 (FY25).  

This work was closely coordinated with the other Sandia National Laboratory GDSA work packages: 
the GDSA Framework Development work package (SF-25SN01030408), the GDSA Repository 
Systems Analysis work package (SF-25SN01030409), and the GDSA PFLOTRAN Development work 
package (SF-25SN01030410). This report builds on developments reported in previous GDSA 
Framework milestones, including M3SF-24SN010304072 (Swiler L. P., et al., 2024), M3SF-
23SN010304072 (Swiler, et al., 2023),  M3SF-22SN01030482 (Swiler L. P. , et al., 2022), M3SF-
21SN010304042 (Swiler L. P., et al., 2021), M3SF-20SN010304032 (Swiler L. P., et al., 2020), and 
M3SF-19SN010304032 (Swiler, et al., 2019). 

Geologic repository performance assessment in the U.S. involves a code base that includes coupled, 
multiphysics modeling at high resolution. Due to the high computational cost of these models which 
require high performance computing systems (HPC) to run, relatively few simulation samples are 
available for analysis. This highlights the need to consider surrogate models to sample and explore 
the input parameter space more extensively. However, this must be done in a careful way so that 
surrogate accuracy can be tracked and understood in the context of UQ/SA results. Variance-based 
sensitivity indices are now a standard practice in the sensitivity analysis community but require many 
evaluations of the predictive model. Much research has focused on accurately calculating variance-
based sensitivity indices while keeping the computational cost reasonable. We note that other 
sensitivity analysis methods (Swiler, et al., 2019) may be better than variance-based methods at 
identifying patterns of behavior or trends. Another recent approach is to employ “multifidelity” UQ in 
which many low-fidelity simulation runs (e.g., coarser mesh, simpler physics) augment a small number 
of high-fidelity runs (Swiler L. P., et al. 2021; Swiler L. P., et al., 2020). Keeping abreast of 
improvements to existing UQ/SA methods as well as employing new methods is critical to performing 
sensitivity and uncertainty analysis of new repository systems which will involve large parameter 
spaces and computationally expensive simulations. The repository community must maintain 
awareness of and leadership in UQ/SA methods to best inform our assessment of costly computational 
models. 

1.1 OVERVIEW OF THIS REPORT 
This report provides documentation of the UQ/SA work performed in FY 2025. The outline of this report 
is as follows:  

Chapter 2 provides sensitivity analysis results for PFLOTRAN coupled to the GDSA Biosphere Model. 
The SA demonstrated the Dakota-PFLOTRAN-GDSA Biosphere modeling coupling, where PFLOTRAN 
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provides radionuclide concentrations that are inputs to the Biosphere model which is then used to 
calculate dose.   

Chapter 3 summarizes a report we produced this year on spatial heterogeneity treatment (e.g. varying 
discrete fracture networks) in sensitivity analysis for waste repositories.     

Chapter 4 presents UQ and SA results for a near-field, quarter waste package shale case.  This is a 
case study we developed to better understand maximum temperatures and pressures in and around 
the repository for our generic shale reference case.  In this single waste package case, we examined 
temperature, pressure, and liquid saturation at many observation points in the waste package, the 
buffer, the disturbed rock zone, and the near-field shale region.  

Chapter 5 covers international activities including participation of the GDSA UQ/SA team in the 
international JOSA working group and in the next 2024-2027 DECOVALEX phase.  

Chapter 6 presents a summary.  

1.2 GDSA FRAMEWORK 

GDSA Framework (Figure 1-1) capabilities include multi-physics simulation of coupled processes 
affecting deep geologic repository performance, uncertainty and sensitivity analysis, pre- and post-
processing, and visualization. For a given performance assessment, these tools will be linked to a 
version-controlled parameter database and an automated run-control system. The overall objectives 
of GDSA Framework development are to:  

• create a framework that is flexible enough to take advantage of future advances in hardware, 
software, simulation, and analysis methods;  

• leverage existing high-performance computing capabilities (e.g., meshing, simulation, analysis, 
and visualization);  

• enable increasingly coupled, mechanistic multi-physics modeling;  

• provide analysis methods for prioritization of SFWST Disposal Research activities; 

• provide transparent implementation of simulation and analysis methods; 

• develop and distribute in an open-source environment so that software is freely available to 
stakeholders (e.g. see GDSA reports from 2015 through 2024: (Mariner, Gardner, Hammond, 
Sevougian, & Stein, 2015), (Mariner, et al.,, 2016), (Mariner, Stein, Frederick, Sevougian, & 
Hammond,, 2017), (Swiler L. P., et al., 2021), (Swiler L. P., et al., 2024). 
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Figure 1-1. The GDSA Framework 

One objective of developing the UQ/SA capability in GDSA Framework is to standardize sampling-based 
methods of uncertainty propagation, sensitivity analysis, and uncertainty quantification typically used 
within U.S. nuclear waste disposal programs (e.g., (U.S. DOE, 2008), (U.S. DOE, 2014), RESS2000 
(Helton & Marietta (Editors), Special Issue: The 1996 Performance Assessment for the Waste Isolation 
Pilot Plant, 2000), RESS2014 (Helton, Hansen, & Swift (Editors), Special Issue: Performance 
Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada, 
2014)). Another objective is to enable future adoption of new methods consistent with the current 
standard of practice in the UQ/SA community which are appropriate for high-dimensional, highly 
coupled, nonlinear problems resulting from the implementation of mechanistic multi-physics 
simulations. Having a consistent, common framework which enables a user to perform a range of 
sensitivity analysis and UQ approaches for a particular problem or set of simulations allows for 
reproducibility, comparative analyses, use of verified algorithms, and documentation of best practices. 
These are important goals for performance assessments. 

The following sections highlight the key components of GDSA Framework. More information about 
each can be found by following the links at https://pa.sandia.gov. 

1.2.1 PFLOTRAN 

PFLOTRAN is an open source, state-of-the-art, massively parallel subsurface flow and reactive 
transport simulator (Lichtner & Hammond, 2012; Hammond, Lichtner, Mills, & Lu,, 2008; Hammond, 
Lichtner, & Mills, 2014) written in object-oriented Fortran. PFLOTRAN models subsurface flow using a 
porous medium continuum approach, which includes capabilities for multicomponent systems, 
multiphase flow and transport, heat conduction and convection, biogeochemical reactions, 
geomechanics, and radionuclide decay and ingrowth. The software is developed under a GNU Lesser 
General Public License, which allows third parties to interface PFLOTRAN with proprietary software. 
The availability and continuing development of PFLOTRAN for GDSA are due to an ongoing 
collaborative effort of several DOE laboratories led by Sandia. PFLOTRAN development for GDSA 
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Framework is described by Mariner et al. (Mariner, et al., 2018; Mariner, Stein, Frederick, Sevougian, 
& Hammond, 2017; Mariner, et al., 2016) and Sevougian et al. 2018. PFLOTRAN installation 
instructions and documentation are available at https://www.pflotran.org/.  

1.2.2 DAKOTA 

Dakota is an open-source toolkit of algorithms that contains both state-of-the-art research and robust, 
usable software for optimization and UQ. It is available at: https://dakota.sandia.gov (Adams, et al., 
2022). The Dakota software has parametric analysis methods that enable design exploration, model 
calibration, optimization, uncertainty quantification, and sensitivity analysis with computational 
models. Dakota is a C++ code which has been under development at Sandia since 1994. It has been 
primarily sponsored by DOE’s Advanced Simulation and Computing (ASC) program. Dakota supports 
computationally expensive simulations which require high performance computing and parallel 
execution. Thus, a focus of the algorithm development in Dakota has been on methods that are as 
efficient as possible and minimize the number of runs required of a high-fidelity simulation model.  

Dakota contains the UQ/SA methods typically used in the U.S. repository program. Dakota implements 
Latin Hypercube Sampling (LHS) with correlation control on input parameters. It calculates moments 
on responses of interest as well as correlation matrices (simple, partial, and rank correlations) 
between inputs and outputs. Dakota allows nested studies to perform an “outer loop” epistemic 
sampling and an “inner loop” aleatory sampling to generate ensembles of distributions. Dakota 
includes additional capabilities, such as the use of surrogate models, adaptive sampling approaches, 
and multifidelity UQ methods. Dakota returns tables of input and output amenable to further 
processing and visualization with additional tools developed within GDSA Framework or by an 
individual user.  

A graphical depiction of Dakota interfacing with a computational model such as a repository simulation 
in PFLOTRAN is shown in Figure 1-2. Based on the type of study being performed (optimization, 
uncertainty quantification, etc.), Dakota chooses the next set of parameters at which to evaluate the 
simulator and runs the simulator, which returns the performance metrics of interest back to Dakota. 
Dakota then generates the next set of parameters according to the algorithm being used for the study 
and keeps iterating until the specified number of samples is reached. 

https://dakota.sandia.gov/
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Figure 1-2. Dakota interfacing to a computational model such as a repository simulator 

The UQ/SA methods implemented in Dakota have evolved as the standard of practice evolves. Over 
the past ten years, the Dakota team has invested in methods which calculate the Sobol’ variance-
based sensitivity indices in an efficient manner. These indices estimate the proportion of variance in 
a quantity of interest that can be attributed to variance in each uncertain input parameter. Currently, 
a Dakota user can calculate these by extensive sampling of the simulation code, by using surrogate 
methods such as regression or Gaussian process models, by the use of polynomial chaos expansions, 
and by using multifidelity methods. Dakota is an actively maintained and developed code with formal 
releases issued twice per year. Dakota uses formal software quality development processes including 
advanced version control, unit and regression testing, agile programming practices, and software 
quality assessment. 

1.2.3 AUTOMATED ANALYSIS WORKFLOW DEVELOPMENT FOR GDSA 

Uncertainty Quantification analysis workflows are not trivial to define and get running, even when using 
tools such as Dakota to generate nested studies involving sampling loops over both aleatory and 
epistemic samples. The analyst has to spend a significant amount of time writing scripts to interface 
the sample values to PFLOTRAN, extract the results, and put the entire workflow on a high-performance 
computing platform. Further, as the number of quantities of interest increases and many vectors of 
results are generated for each simulation, plotting and aggregating the results in a variety of ways 
(e.g., averaging over epistemic or aleatory slices as a function of time) becomes very involved. To 
address this, a set of workflows which couple Dakota, PFLOTRAN, and NGW (the Next-Generation 
Workflow software) were developed. The workflows present the user with a unified graphical user 
interface (GUI) where the actual workflow can be dictated and automated in an easy-to-use graphical 
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format. This workflow also allows greater reproducibility and traceability of the actual files and scripts 
used for a particular study.  

The Crystalline Reference Case UA Nested Workflow was developed in FY20, FY21, and FY22 (Swiler 
L. , et al., 2020; Swiler L. , et al., 2021; Swiler L. , et al., 2022). The portability and automation provided 
by the workflow significantly speed up the overall analysis. This year, we used NGW to develop the 
workflow to generate the shale case results presented in Chapter 4.   

Also, additional training materials and modifications to the workflow were made this year to increase 
the robustness of production UQ analyses that run over the span of several weeks. These runs are 
typically orchestrated by a local compute resource that submits large-scale simulation runs to remote 
HPC resources with job scheduling. Source files can be distributed across several shared filesystems. 
The distributed nature of computation and source files means there are many points of failure in these 
production runs: if any one of the filesystems or compute resources goes down, e.g., for maintenance, 
the entire workflow fails. To mitigate this issue as much as possible, all source files are copied to the 
scratch directory of the HPC resource where large-scale simulations will be completed prior to 
launching the UQ analysis. By centralizing source files and computation to a single resource, the 
workflow has fewer points of failure, making it more robust over the days-to-weeks timespans it must 
run. 

1.2.4 GDSA SOFTWARE STRATEGY 

Developing GDSA Framework in an open-source environment promotes collaboration with regulators, 
stakeholders, and the scientific community, facilitates development of the software, and enhances 
communication in a regulatory environment. GDSA Framework is being developed currently for generic 
disposal concepts so that it is poised to be applied efficiently in future programs to specific disposal 
concepts that may be evaluated for comparison to regulatory safety criteria. 
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2 SENSITIVITY ANALYSIS:  BIOSPHERE MODEL 

This chapter summarizes the result of a collaboration between the GDSA Biosphere modeling group 
at Pacific Northwest National Laboratory (PNNL) and the UQ/SA team at Sandia National Laboratories 
(SNL). This collaboration started in FY2024, when Dakota was integrated with the biosphere model to 
“drive” various runs of the biosphere model with different parameter values (see Chapter 2 of (Swiler 
L. P., et al., 2024). The PNNL and SNL teams performed sensitivity analyses to understand which 
parameters were important for various scenarios. This year, the computational workflow has been 
extended to include PFLOTRAN “in the loop.” We developed a workflow in which Dakota samples 
uncertain parameters both for PFLOTRAN and the biosphere model. Further, each run of PFLOTRAN is 
followed by a biosphere simulation to generate dose calculations.  

Recall that the GDSA framework can incorporate Dakota as a “wrapper” around PFLOTRAN or another 
simulation code to generate ensembles of simulations based on Monte Carlo sampling as shown in 
Figure 2-1.  

 
 

Figure 2-1 Workflow with Dakota driving ensembles of PFLOTRAN simulations 

 

This year, we have extended this workflow to include the biosphere model as shown in  

Figure 2-2: 

  
 

Figure 2-2 Workflow with Dakota driving coupled ensembles of PFLOTRAN simulations followed by 
Biosphere model simulations 

As seen in Figure 2-2, the workflow first involves running PFLOTRAN to generate radionuclide 
concentrations at various observation points.  These are then input to the biosphere model along with 

Permeability, 
porosity, 

repository 
properties, etc.

Radionuclide 
concentrations, 
other quantities 
of interest

Permeability, 
porosity, 

repository 
properties AND 

biosphere 
parameters

Radionuclide 
concentrations Biosphere Model

Dose to RMEI 
for various 
exposure 
pathways



       
Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2025) 

August 22, 2025 8 

biosphere parameters defining exposure pathways (e.g. drinking water, flora or fauna consumption) to 
calculate dose to a reasonably maximally exposed individual (RMEI).  

This chapter provides a summary of the biosphere model, then describes the case study 
demonstrating Dakota driving the coupled (PFLOTRAN-Biosphere) model calculations. Note that this 
case study is not realistic:  it is meant to establish and prove out the capability to use the GDSA 
framework (specifically Dakota, PFLOTRAN, and the Biosphere model) to generate coupled simulation 
ensemble results.  

2.1 BIOSPHERE MODEL DESCRIPTION 
The GDSA biosphere model is developed at PNNL. A detailed design document for the GDSA biosphere 
model is available (Ghosh, et al., 2023). We summarize key concepts of the biosphere model that are 
relevant to the sensitivity analysis performed herein. The biosphere model is a flexible, open-source 
code designed for compatibility with PFLOTRAN. The GDSA biosphere model will be capable of 
modeling a variety of climate scenarios and user exposure pathways, with the aim of supporting 
performance assessment analyses for repositories. The biosphere model calculates annual dose of 
dissolved radionuclides to a hypothetical RMEI living near the repository with repository-contaminated 
groundwater as the sole source of water. The full biosphere model will include all the pathways of 
exposure for the RMEI shown in Figure 2-3.  

 
 

Figure 2-3 Biosphere model exposure pathways to reasonably maximally exposed individuals, which are 
indicated by the terminus of the arrows in the illustration. 

Properties that may impact the estimated dose to a RMEI include, but are not limited to: the 
radionuclides to which the RMEI is exposed, the degree to which radionuclide concentrations are 
diluted in surface water (fed from ground water), called the “dilution factor”; soil properties such as 
soil thickness, weathering rate (how rapidly soil is depleted), infiltration rate, bulk density, and 
moisture content; plant crop yield and holdup time (time between harvest and consumption); transfer 
factors between environmental media in exposure pathways; and consumption rates of different 
environmental media, such as leafy vegetables. 
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The computational workflow coupling PFLOTRAN and the Biosphere model within an uncertainty 
quantification study is illustrated in Figure 2-4.  Dakota generates uncertain input samples for the 
PFLOTRAN and Biosphere simulations. In the example presented in this chapter, we use the sample 
framework of the generic crystalline reference case as described in (Swiler L., et al., 2022), where the 
sampling involves both spatial heterogeneity (e.g. samples of discrete fracture networks) as well as 
epistemic parameters such as porosity and permeability of the buffer, fractional dissolution rate of the 
spent nuclear fuel, waste package corrosion rate, etc.  After the PFLOTRAN simulation is completed, 
the PFLOTRAN-computed groundwater radionuclide concentrations are postprocessed to be used as 
input to the biosphere model. The radionuclides from the groundwater are introduced to the biosphere 
environmental media through one or more of the exposure pathways shown in the biosphere model 
exposure pathway matrix in Figure 2-5. Libraries of radionuclide-specific transfer factors are used to 
model equilibrium transfer between media components such as groundwater or surface water to soil 
to plant crops. The biosphere model also tracks radionuclide decay and progeny ingrowth. Total 
effective dose (TED) is computed as the sum of annual doses over a specified time range. In this work, 
TED was computed over 70 years, a typical human lifespan, using concentrations from the last 70 
years of the PFLOTRAN simulation.  

 

 
 

Figure 2-4  Building Blocks for the Dakota-PFLOTRAN-Biosphere model workflow. 
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Figure 2-5 Biosphere model exposure pathway matrix. Note that the entries in the far-right column to not 

feed into each other consecutively but all go directly to the “Humans” category. 

2.2 UNCERTAINTY CHARACTERIZATION 
In the FY2024 uncertainty analysis for the biosphere model, we included over 40 uncertain parameters 
and examined sensitivity of RMEI dose to these parameters for three radionuclides, 125I, 137Cs, and 
226Ra. This year, we simplified the uncertainty treatment in the biosphere model to focus on the 
dominant uncertain parameters for 129I. These five important parameters were selected based on 
running all parameters on an 129I case with a coupled PFLOTRAN/Biosphere/DAKOTA run and were 
identified as being most impactful. We note that these parameters are important for this 129I 
radionuclide for this particular set of exposure pathways; other radionuclides and variations of 
exposure pathways may have different dominant uncertainty parameters. The five biosphere model 
parameters that were varied are shown in Table 2-1 and include the weathering rate constant and four 
different Translocation Factors expected to have the greatest impact on dose. All of the Translocation 
factors are unitless; the weather rate is day. The data for the parameter ranges are from reports PNNL-
21950 and PNNL-13421. 
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Table 2-1 Biosphere Model Parameters sampled as part of the UQ workflow  

Variable Suggested Variable Label Lower 
Bound 

Upper 
Bound 

Reference 

Weathering Rate 
Constant (day) 

DAK_WEATHERING_RATE_CONST 10 20 PNNL-21950 

Translocation 
Factor (Leafy 
Vegetables) 

DAK_TF_TFLV 0.004 0.4 PNNL-13421 

Translocation 
Factor (Root 
Vegetables) 

DAK_TF_TFRV 0.004 0.4 PNNL-13421 

Translocation 
Factor (Fruits) 

DAK_TF_TFF 0.004 0.4 PNNL-13421 

Translocation 
Factor (Grains) 

DAK_TF_TFG 0.004 0.4 PNNL-13421 

2.3 SENSITIVITY ANALYSIS RESULTS 
As mentioned above, this workflow and the corresponding results presented here are illustrative and 
meant to demonstrate the coupled PFLOTRAN-Biosphere ensemble generation. They are not 
representative of a realistic scenario. In this case study, we generated 1000 PFLOTRAN simulations 
(varying the discrete fracture network and some epistemic parameters relating to the crystalline 
reference case). Each of the 1000 PFLOTRAN sample realizations was followed by a Biosphere model 
simulation. We performed the uncertainty analysis two different ways. In the first study, we generated 
1000 PFLOTRAN sample runs and ran the Biosphere model for each of the 1000 PFLOTRAN runs, but 
we did NOT vary any Biosphere model parameters. That is, all the Biosphere model parameters were 
set to their nominal values:  this is the “Nominal biosphere” study. This study demonstrates the 
distribution of total effective dose (TED) resulting from uncertainties in the PFLOTRAN simulations 
alone; these uncertainties are propagated through the 129I concentration to the Biosphere model. The 
second case is very similar: again, we generated 1000 PFLOTRAN runs (we used the same PFLOTRAN 
runs as in the nominal biosphere study), but each PFLOTRAN run was followed by a Biosphere model 
run which did incorporate a sample realization of the five biosphere parameters shown in Table 2-1.  
Note that we assumed no correlations existed between the sampled PFLOTRAN input parameters and 
the sampled biosphere model parameters. 

Figure 2-6 shows two histograms of outputs. Both histograms involve 1000 samples, where 1000 
PFLOTRAN simulation realizations are followed by 1000 biosphere model realizations. The nominal 
biosphere result does not involve sampling over the biosphere model parameters, but the biosphere 
UQ result does involve sampling over the biosphere model parameters. Figure 2-6 shows that these 
two histograms are essentially identical. This indicates that the TED uncertainties in these particular 
studies were dominated by the PFLOTRAN input parameter uncertainties, not uncertainties in the 
biosphere model parameters. Again, we emphasize that much more work is needed to develop a fully 
realistic case study: these are only results demonstrating what could be done with such comparative 
analyses. Our prior analysis of the generic crystalline reference case used in these studies indicated 
that there were large uncertainties in 129I concentration and much of the uncertainty was due to the 
spatial heterogeneity introduced by the varying DFNs. 
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Figure 2-6 Two studies involving coupled PFLOTRAN-Biosphere Model simulations, one with nominal 

values of biosphere parameters and one varying biosphere model parameters.  In both cases, 
PFLOTRAN simulations involved sample variation.  

To further verify differences between the nominal biosphere case and the biosphere model with 
uncertainty, the two sets of TED results were plotted against each other. This is shown in Figure 2-7.  
The straight line indicates that the results from both studies (with nominal biosphere model 
parameters and uncertain biosphere model parameters) align very closely to each other.  
 

 
Figure 2-7 Total Effective Dose for the two studies driven by 1000 PFLOTRAN simulations: one with 

nominal biosphere model parameters, the other with uncertain biosphere model parameters.   

To further understand why the results are so strongly dominated by the PFLOTRAN model uncertainty, 
we fixed the PFLOTRAN sample (e.g. a fixed DFN and one set of epistemic parameter values) and 
generated 1000 samples of the biosphere model. The results are shown in Figure 2-8, which indicates 
that the TED variation when sampling only the biosphere model parameters is extremely small, ranging 
from 7.89E-6 to 7.91E-6. This is not surprising, since the 129I concentrations are very low and the 
uptake of 129I by the receptor from the environmental media is low. Additionally, as shown in the 
scatterplots in Figure 2-8, the TED exhibits linear dependence on biosphere parameters, so we do not 
observe significant influence on dose over the realistic environmental ranges over which the 
parameters were varied.  Finally, we comment on the direction of influence of the translocation factors 
for leafy vegetables, fruits and root vegetables (positive trend with respect to TED) compared to the 
trend of the translocation factor for grains (negative trend with respect to TED).  We expect the grain 
component to always have a diminishing effect compared to all other plant forms, especially for a long 
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lived and non-biologically necessary-equivalent radionuclide such as 129I. The grain component 
represents the reproductive sink of the plant, with the following properties: 

a. Iodine is not essential for seed development. 
b. Transport to grain occurs late in plant development. 
c. Grain filling competes with other physiological processes. 
d. The seed coat can act as a partial barrier to iodine accumulation. 
e. This creates inherently lower and more variable TFs for grain compared to vegetative tissues. 

 
For this model case (pathways and radionuclide), the other plant tissues show a positive correlative 
with TF and TED as there are more opportunities for a “successful” uptake of the radionuclide in these 
plant tissues. 

 
Figure 2-8 Distribution of total effective dose varying only the biosphere model parameters (left) and 

scatterplots of total effective dose vs. biosphere parameter sample values (right). 

The particular uncertain parameters and ranges chosen for the biosphere model do not result in 
significant differences in the total effective dose.  This finding is summarized in Figure 2-9, where the 
Sobol’ main effect index for the uncertainty from the PFLOTRAN radionuclide concentrations is 1 and 
the main effect indices for the biosphere model parameters are all zero, indicating that all of the 
uncertainty in TED arises from uncertainty in the PFLOTRAN input variables.  
 

 
Figure 2-9 Sobol’ main effect indices for the TED uncertainty due to the PFLOTRAN output concentrations 

and the biosphere model parameters.   
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2.4 CONCLUSIONS AND FUTURE WORK 
This work is a demonstration of the integration of the GDSA biosphere model within the GDSA UQ/SA 
framework. Coupled PFLOTRAN-biosphere simulations were generated with Dakota, and the 
corresponding results were shown in histograms, scatterplots, and Sobol’ indices. Although the 
dominant uncertainty in these results was from the 1000 PFLOTRAN runs of the generic crystalline 
reference case, we emphasize that these results are not very realistic:  the purpose of this study is to 
demonstrate the coupled workflows and types of analyses that they can facilitate.  We anticipate larger 
and more realistic case studies in future projects, with the goal of generating an end-to-end uncertainty 
quantification from repository to dose.  
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3 TREATMENT OF SPATIAL HETEROGENEITY IN SENSITIVITY ANALYSIS 

The last few years, we performed various analyses that highlighted the influence of spatial 
heterogeneity (as captured by the effects of sampling various discrete fracture networks) in our nested 
sampling workflows for the generic crystalline reference case. This year, we performed some additional 
analyses and summarized all of the work in the report:  

“Challenges in quantifying unparameterized spatial uncertainties in deep geologic repositories 
for nuclear waste.”  By Teresa Portone, Dusty Brooks, and Laura Swiler.  SAND2025-11240. 
Sandia National Laboratories Technical Report, Albuquerque NM. 2025.  

The report describes novel methods to define and assess the quality of proxy variables that summarize 
the influence of spatial heterogeneity on repository performance quantities of interest (QoIs). These 
proxy variables are incorporated into surrogate models that can be used for global sensitivity analysis 
to measure the relative importance of sources of uncertainty to the QoIs. However, in general it is not 
expected that the proxy variables perfectly capture the influence of spatial heterogeneities, thus 
impacting surrogate model accuracy. The report thus discusses methods to mitigate a surrogate 
constructed with proxy variables overfitting to data, as well as methods to assess the accuracy of the 
surrogate, namely scatterplots and R2 values between the surrogate and its build points and 
comparing surrogate-based sensitivities to those computed directly from input-output samples.  The 
report also compares surrogate-based sensitivity results with sensitivity indices calculated by an 
empirical binning method that does not require a surrogate. Finally, the report demonstrates the 
importance of comparing sensitivity indices to input-output scatterplots as a further means of 
assessing the veracity of the results. Understanding and separating the effect of spatial heterogeneity 
on repository QoIs has proven challenging, especially with the limited number of discrete fracture 
networks and parameter samples that can be run for realistic problem sizes. 
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4 SHALE REPOSITORY REFERENCE CASE 

In 2024, we performed a detailed sensitivity analysis on a full-scale generic shale reference case 
(Swiler L. P., et al., 2024) where the model domain was 7215 m (x-axis) × 2055 m (y-axis) × 1200 m 
(z-axis), representing a shale-hosted repository system in a layered formation. The numerical domain 
consisted of approximately 10 million unstructured grid cells with approximately half of the grid cells 
having finer resolution around the repository. This case study had 2050 waste packages (WPs) that 
each contained 37 assemblies of SNF from a pressurized water reactor (PWR). 

As part of the 2024 generic shale reference case study (LaForce T. , et al., 2024), we added 
observation points close to the centermost waste package to study the maximum pressure and 
temperature conditions within the repository. The maximum pressure and temperature both peaked 
at a few thousand years.  Overall, the sensitivity analyses generally identified porosity of the host shale 
rock as the driving uncertainty for maximum temperature and pressure values at an observation point 
just east of the centermost waste package within the repository (see Section 4.3.4 of the (Swiler L. P., 
et al., 2024) report). The study indicated a maximum temperature slightly below 110 degrees C and a 
maximum pressure slightly below 5 MPa. However, the sensitivity analysis results were dependent on 
the particular uncertain parameters studied and their ranges. This year, we focused on a generic shale 
case study with refinement in the near-field, to better understand conditions in which the repository 
might get too hot with pressures that are too high.   

The goal of the quarter waste package case is to assess subsurface conditions conducive to disposal 
of high-heat load waste packages in shale host rock with a focus on pressures and temperatures.  
While some of the parameters in the sensitivity analysis are the same as the 2024 report, this year’s 
study has a highly refined single waste package model which allows us to investigate the sensitivity to 
parameters in the engineered barrier system and the host rock near the waste (e.g. porosity, 
permeability, and thermal conductivity of the buffer, DRZ and shale, DRZ extent, shale thickness 
above/below the repository). 

A short description of the quarter WP case is presented in Section 4.1, and the input parameters and 
output quantities of interest are described in Section 4.2.  Sensitivity analysis results are presented in 
Section 4.3.  

4.1 QUARTER WP SHALE REFERENCE CASE  
The chapter covers the sensitivity analyses performed for a shale near-repository model. The full 
description of the quarter WP shale case is given in (Basurto, et al., 2025). A literature review was 
performed to inform properties regarding the geometry, waste package, buffer, disturbed rock zone 
(DRZ), waste package and drift spacing, repository depth, etc.  The findings of the literature review are 
presented in (Basurto, et al., 2025). This study only has one waste package and is simplified in some 
respects but has a highly refined mesh in and around the waste package.  Additional observation 
points were added near the waste package to study the maximum liquid pressure and temperature 
conditions.  We note that the material layers and thicknesses are the same for the quarter WP shale 
model as those found in the half-symmetry shale model in (LaForce T. , et al., 2024) but differences 
in the nearfield measurements of the waste package, buffer, and DRZ exist. Key differences between 
the half-symmetry shale model and the quarter WP shale model in the nearfield are that:  

• The half-symmetry shale model features a square mesh or grid in the nearfield, while the 
quarter WP shale model has a fine to coarse radial mesh from the WP to the DRZ,  

• The minimal radial distances for the half-symmetry shale model are 0.84 m, 2.5 m, and 4.18 
m for the WP, buffer, and DRZ, respectively, while the corresponding radial distances for the 
quarter WP shale model are 0.85 m, 2.55 m, 4.25 m for the WP, buffer, and DRZ as shown in 
Figure 4-3. 
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The geometry and mesh generation for the quarter WP shale model were generated using Cubit 17.02, 
resulting in a total of 38,652 hexagonal cells. The model domain dimensions are 20 m x 15 m x 1200 
m, with potential adjustments in the x- and y-directions depending on the initial temperature and 
pressure simulation results. This quarter WP model incorporates a graded mesh in both the positive 
and negative z-directions, facilitating a transition from fine to coarse mesh around the drift region. The 
grid cell sizes vary throughout the model, with the smallest cells located in the WP, buffer, and DRZ 
regions, gradually increasing in size as the distance from these areas increases. In the upper and lower 
regions surrounding the drift area, a fixed grid cell size of 5 m is maintained in the x- and z-directions, 
while the y-direction starts with a thickness of 0.833 m and primarily measures 0.962 m. 

The quarter WP shale model has the full vertical extent implemented which includes several material 
layers in addition to the shale host rock.  Figure 4-1 shows a vertical slice through the model domain 
for the full-scale shale model used in (LaForce T. , et al., 2024).  The same vertical layers were used 
for the quarter WP model.  

Figure 4-2 presents detailed views of the quarter WP shale model as rendered in Cubit software. The 
left panel displays all volumes associated with the model in and around the WP region. The middle 
panel includes both the volumes and the mesh of the model, providing a comprehensive overview of 
its structure. The right panel features the Cubit mesh quality metric set to Scaled Jacobian, highlighting 
a few lower-quality cells in the drift region. However, these cells remain within the generally acceptable 
range, as values above 0.6 are typically considered satisfactory.  Figure 4-3 provides a close-up view 
of the mesh in the region in and around the waste package.  

 
Figure 4-1. Vertical view of the model domain for the shale case, spanning 1200 m depth. (LaForce 

et al., 2024) Colored and Labeled by Material Showing Specified Thicknesses for the Full 
Vertical Extent. The same vertical layer structure was used for the quarter WP shale 
model. 
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Figure 4-2. Zoomed-in visuals of the quarter WP shale model within the Cubit software are presented 

as follows: 1) Left: A view displaying all volumes associated with the model in and around 
the WP region; 2) Middle: A view showcasing all volumes along with the mesh of the 
model; 3) Right: A representation of the Cubit mesh quality metric set to Scaled Jacobian.  

 
Figure 4-3.  Close-up of meshed regions of interest within the quarter WP shale model. 

Five base case PFLOTRAN simulations were run to test the initial workflow and the model.  These 
simulations are configured to operate with a subsurface flow process model, focusing specifically on 
the effects of pressure and temperature resulting from varying model parameters, without considering 
transport processes. Boundary conditions are applied solely at the top and bottom of the model, while 
the north, west, south, and east boundaries are treated as reflective. This approach effectively 
simulates an infinite array of waste packages.  
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The initial gas saturations were set at 28.5% for the DRZ and 70% for both the buffer and WP. The 
base case simulations were executed over a period of one million years using PFLOTRAN.  We 
developed an approach to generate generic heat output curves representing the thermal output of the 
spent nuclear fuel that can be scaled to represent a wide range of inventory SNF (Basurto, et al., 
2025).  The decay heat in these base case simulations was varied.   The simulation results for these 
five base case scenarios indicate that the highest calculated temperature at the WP was 209°C, 
occurring in Run 5. This finding is consistent with expectations, as Run 5 featured the highest initial 
WP wattage of 1750 W. Furthermore, Run 5 also exhibited the highest maximum pressure of 6.47 
MPa at the WP, and dry out was observed in the WP region.  

Visualizations were generated in ParaView. For a complete set of visualizations, see (Basurto, et al., 
2025).  In this report, we show one example of the visualizations in Figure 4-4, which displays 70-year 
illustrations colored by Material ID, Temperature (℃), Maximum Pressure (Pa), Liquid Saturation, and 
additionally time series in the WP (red), buffer (turquoise), DRZ (yellow) and shale (dark blue). Note 
that the time series indicate that the maximum temperature of 209℃ has been reached at the waste 
package region by year 10 and dry out can be seen as well. Figure 4-4H shows that liquid saturation in 
the waste package falls to zero very early in the simulation (~ year 1) and begins to resaturate after 
about year 1000.  By year 70, the maximum pressure of 6.47 MPa is reached at the waste package 
(Figure 4-4G).  This illustration is just one example:  the full ensemble of simulations performed for 
sensitivity analysis is described in Section 4.2. 

 
Figure 4-4. Simulation results for Run 5 at year 70, illustrating the nearfield with the following color-coded 

quantities: (A) Material ID, (B) Temperature [°C], (C) Maximum Pressure [Pa], and (D) Liquid 
Saturation. Additionally, (E) provides a full view of the quarter WP model, colored by Material 
ID. The three line plots depict observations over the entire one-million-year simulation at the 
WP (red), buffer (turquoise), DRZ (yellow), and Shale (dark blue) for (F) Temperature [°C], (G) 
Maximum Pressure [Pa], and (H) Liquid Saturation. 
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4.2 SENSITIVITY ANALYSIS:  INPUT PARAMETERS AND OUTPUT QOIS 
This section describes the uncertain input parameters and the output quantities of interest that were 
analyzed as part of a 200-sample study on the quarter WP shale reference case. While the base case 
simulations were executed over a period of one million years using PFLOTRAN, simulations in the 200-
sample study were set with a final time of 50,000 years. In the 2024 full shale generic reference case, 
nine epistemic parameters were treated as uncertain and independent: see (Swiler L. P., et al., 2024), 
Section 4.1 for details. These are PFLOTRAN variables that were selected and implemented as 
uncertain parameters in the Next Gen Workflow (NGW). In the quarter shale case study, we varied 10 
parameters as described in Table 4-1. The parameters are uncorrelated. Correlations between input 
parameters are not included because an evidence-based correlation structure has not been 
developed.  

The shale permeability anisotropy ratio is the ratio of the shale permeability in the vertical direction to 
the shale permeability in the horizontal direction. When this ratio is low, it indicates greater horizontal 
than vertical permeability (more anisotropic permeability). When the ratio is 1, it indicates the same 
horizontal and vertical permeability. The shale thermal conductivity anisotropy ratio is similar, except 
that it compares the thermal conductivity between the vertical and horizontal directions. Low values 
indicate more horizontal than thermal conductivity in the shale and when the value is 1, the thermal 
conductivity in the shale is the same in the vertical and horizontal directions. 

Table 4-1  Input parameter distributions for the quarter shale reference case.   

 
We generated 200 samples of these input parameters using LHS and ran the PFLOTRAN quarter WP 
shale reference case model to obtain the QoIs. The QoIs are shown in Table 4-2. All QoIs were 
calculated at observation points at the WP, buffer in both horizontal directions, DRZ in the x-direction, 
shale in z-and x-directions, and observation points vertically in the lower sandstone, limestone, shale, 
silt, and upper sandstone.   

 

 

 

Input Description Range Units Distribution 

pShale Host Rock (Shale) Porosity 0.1 – 0.25 - uniform 
pBuffer Buffer Porosity 0.3 – 0.5 - uniform 
pDRZ DRZ Porosity 0.05 – 0.25 - uniform 

kShale Host rock (shale) Permeability 10-20 – 10-17 m2 log uniform 

kBuffer Buffer Permeability 10-20 – 10-16 m2 log uniform 
kDRZ DRZ Permeability 10-18 – 10-16 m2 log uniform 

TK_buffer_wet Thermal conductivity of buffer (wet). 
*Note dry TK = 0.5 * wet.  1.2 - 3.0 W/(K-m) uniform 

TK_shale_drz_wet Thermal conductivity of shale and DRZ 
(wet). *Note dry TK = 0.5 * wet.  0.68 - 1.42 W/(K-m) uniform 

k_ani_shale Shale permeability anisotropy ratio 0.1, 0.5, or 1.0 - discrete 
values 

TK_ani_shale Shale thermal conductivity anisotropy 
ratio 0.1, 0.5, or 1.0 - discrete 

values 
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Table 4-2 Quantities of Interest for the quarter shale reference case  

Quantity of Interest Description 
Maximum Pressure Maximum over time of the liquid and gas pressure [Pa] at a fixed 

observation point 
Maximum 
Temperature 

Maximum over time of the temperature at a fixed observation point [°𝐶𝐶] 

Liquid Saturation Liquid saturation at a fixed time and observation point, expressed as a 
proportion between 0 and 1 of the pore space within the rock that is 
filled with liquid 

 

 

4.3 SENSITIVITY ANALYSIS RESULTS 
This section discusses sensitivity analysis results for the shale repository reference case. We note that 
of the 200 PFLOTRAN simulations, 195 completed successfully. The others had parameter 
combinations that resulted in computationally infeasible runs with very rapid dry out.  This study still 
provided enough completed simulations (195) compared to the dimension of the input space (10) for 
Sobol’ index estimation to be feasible. In analyses for previous cases, we have used multiple types of 
surrogate models to estimate Sobol’ indices with a preference for polynomial chaos expansion (PCE) 
models when such a model fits the simulation data well. This is because PCE models are flexible with 
respect to input/output relationships and allow direct calculation of the Sobol’ indices via the 
expansion model coefficients. PCE models cannot be fit with discrete variables, however, and the 
anisotropy input variables (k_ani_shale and TK_ani_shale) in this quarter scale shale model are 
discrete. A discrete distribution was chosen between three equally weighted outcomes due to a lack 
of information for an empirical distribution. The three values covered by the discrete distribution 
capture the assumption (a value of 1.0) from the FY24 Shale case analysis, a typical assumption for 
sedimentary systems (0.1), and a middle value (0.5). To allow for surrogate model construction given 
these discrete distributions, we chose second-order polynomial regression models to estimate the 
Sobol’ indices. With this type of surrogate model, the Sobol’ indices are not calculated. Rather, the 
surrogate model is sampled many times and the Sobol’ indices are approximated from the samples. 
For these results we used LHS sampling on the polynomial surrogate models with 5000 samples for 
the Sobol’ estimates. 

Sensitivity analysis was performed for the maximum values (over time) of the quantities of interest at 
each of the observation points shown in Figure 4-5. Because results are very similar for many of the 
observation points, only some of the results are included here, and we note at which observation points 
the sensitivity conclusions are the same. Observation points that are explicitly shown are discussed by 
location, starting at the waste package, moving in the x-direction, then the y-direction, and then the z-
direction for each quantity of interest. Results are not included for the liquid saturation quantity of 
interest because the maximum over time of the liquid saturation is 1 for all simulations and 
observations. Plots of the time-dependent liquid saturation are discussed for qualitative sensitivity 
analysis conclusions.  

For time-dependent discussion, we only present qualitative graphical results in the form of time series 
plots of the quantities of interest colored by influencing input variables.  
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Figure 4-5 The left of the figure shows observation points within the z-direction; the right of the figure 

shows observation points around the central waste package. 

 

 

4.3.1 TEMPERATURE 
Sobol’ indices for the maximum temperature over time at the waste package observation point are 
shown in Figure 4-6. The total effect indices and main effect indices are similar, indicating few 
interaction effects. The thermal conductivity parameters are all significant for this quantity of interest 
(QoI) and no other parameters appear to have a significant effect at this observation point. These 
effects make sense. Higher values of the shale thermal conductivity anisotropy ratio parameter 
(TK_ani_shale) correspond to lower anisotropy which results in higher effective conductivity around 
the drift, thus lower temperatures at the waste package. The thermal conductivity parameters in the 
shale, DRZ, and buffer all have a negative correlation with waste package temperature; lower thermal 
conductivity in the regions surrounding the waste package maintains higher temperatures at the waste 
package.  
Sobol’ indices for the maximum temperature at observation points 1 and 2 in the buffer in the x-
direction are shown in Figure 4-7. Closest to the waste package (left), the results are similar to the 
results at the waste package observation point. Farther from the waste package, the shale thermal 
conductivity anisotropy ratio dominates the results and the thermal conductivity of the shale and the 
DRZ becomes more important than that of the buffer. Dominance of the shale thermal conductivity 
anisotropy farther from the waste package makes sense because the domain has much more shale 
than buffer and DRZ material.  
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Figure 4-6 Maximum temperature Sobol’ indices at the waste package observation point 

 
 

 
Figure 4-7 Maximum temperature Sobol’ indices at lower buffer observation point 1 in the x-direction (left 

figure) and buffer observation point 2 in the x-direction (right figure) 

 
Sobol’ indices for the maximum temperature at the first observation point in the DRZ and the last 
observation point in the shale (in the x-direction) are shown in Figure 4-8. These figures show increasing 
importance of the shale thermal conductivity anisotropy ratio and decreasing importance of the 
thermal conductivity of the shale and the DRZ at observation point farther in the x-direction. Only one 
point is shown each in the DRZ and shale because the other DRZ and shale observation points have 
the same interpretation. By these observation points, more than 80% of the variance is accounted for 
by the shale thermal conductivity anisotropy. The buffer thermal conductivity no longer has a 
significant effect at the first observation point in the DRZ and the DRZ/shale thermal conductivity no 
longer has a significant effect at observation points within the shale.  
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Figure 4-8 Maximum temperature Sobol’ indices at DRZ observation point 1 (left figure) and shale 

observation point 3 in the x-direction (right figure) 

 
Scatterplots support the Sobol’ index conclusions. The scatterplots in Figure 4-9 show the maximum 
temperature at the waste package observation point plotted versus the input parameters. The purple 
points in the scatterplots are the simulation results. The orange points in the plots are the results from 
the surrogate second-order polynomial evaluated at the same input parameter values. These plots 
help confirm the input/output relationships in the Sobol’ index results and the matching trends 
between the simulation and surrogate points demonstrate the surrogate quality. This scatterplot 
confirms the directionality of the input/output relationships; higher thermal conductivities result in 
lower temperatures at the waste package and higher thermal conductivity anisotropy ratios (more 
uniform thermal conductivity) also result in lower temperatures at the waste package.  

 
Figure 4-9 Scatterplots for the maximum temperature at the waste package observation point 
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The scatterplots in Figure 4-10 through Figure 4-12 show the maximum temperature input/output 
relationships in the x-direction at buffer observation point 1, buffer observation point 2, and shale 
observation point 3.  

 
Figure 4-10 Scatterplots for the maximum temperature at buffer observation point 1 in the x-direction 

 
Figure 4-11 Scatterplots for the maximum temperature at buffer observation point 2 in the x-direction 
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Comparison between the buffer observation points (Figure 4-10 and Figure 4-11) illustrates why the 
Sobol’ index results differ between these observation points. At observation point 1, TK_ani_shale has 
a slight effect, but the most noticeable trends are with respect to TK_buffer_wet and 
TK_shale_DRZ_wet. At observation point 2, TK_buffer_wet has a significantly diminished effect on the 
maximum temperature. However, TK_ani_shale and TK_shale_drz_wet both have much more 
pronounced effects, which are actually an interaction effect. This effect is also seen in Figure 4-12. 
TK_ani_shale causes a bifurcation in the maximum temperature at shale observation point 3 in the x-
direction. The three values for TK_ani_shale correspond to the three clusters of points in the plot of 
temperature versus TK_shale_drz_wet. In essence, the shale thermal conductivity anisotropy ratio 
determines whether the maximum temperature will be on average below 80°C, around 90°C, or around 
160°C. Variation around this average value is then determined by the thermal conductivity of the shale 
and DRZ. The bifurcation of points into a high temperature population and a low temperature 
population is controlled by the thermal conductivity anisotropy ratio; there is no overlap in temperature 
at this observation point between simulations with the ratio set to 0.1 and simulations with the ratio 
set to either 0.5 or 1. Observation point 2 sees less distinct clustering, especially between realizations 
with thermal conductivity anisotropy ratios of 0.5 and 1 because the trend with respect to 
TK_ani_shale is weaker. Farther from the waste package, a higher anisotropy ratio allows heat to 
spread more uniformly in all directions, reducing sensitivity to changes in thermal conductivity. At the 
lowest anisotropy ratio, heat spreads less uniformly, which is why the cluster of points with the lowest 
anisotropy ratio is still relatively highly sensitive to thermal conductivity at observation point 3.  

 
Figure 4-12 Scatterplots for the maximum temperature at shale observation point 3 in the x-direction 

Time series plots of the temperature at the waste package observation point are shown in Figure 4-13 
colored by TK_ani_shale (left), TK_buffer_wet (center), and TK_shale_drz_wet (right). These plots show 
the effect of the thermal conductivity in the buffer (closest to the observation point) early in the 
simulation and the effect of the thermal conductivity in the DRZ and shale (further from the observation 
point) later in the simulation, which make sense. Additionally, note the clustering of simulations, 
especially late, with respect to the shale thermal conductivity anisotropy ratio (left). This is the same 
effect we observed in the scatterplots; the anisotropy determines the whether the temperature is low 
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or high, on average. Observe in the plot on the right that within each cluster, the temperature is 
negatively correlated with the thermal conductivity of the shale and the DRZ. As we saw with the 
maximum temperatures farther from the waste package, we see interaction between the shale 
thermal conductivity anisotropy ratio and other thermal conductivity parameters for late-simulation 
temperatures at the waste package. Greater anisotropy (a lower anisotropy ratio) lowers effective 
thermal conductivity around the drift. This results in a cluster of realizations with higher overall 
temperatures and the temperature at the waste package decreases more slowly. For these 
realizations, if the thermal conductivity in the DRZ and shale are also low, this further slows cooling, 
explaining the interaction effect between the two parameters (Figure 4-13 right).  
 

 
Figure 4-13 Time series plots of the temperature at the waste package observation point colored by the 

shale thermal conductivity anisotropy ratio (left), thermal conductivity of the buffer (center), 
and thermal conductivity of the shale and DRZ (right)  

Time series plots of the temperature at DRZ observation point 1 and shale observation point 3 (both 
in the x-direction) are plotted in Figure 4-14 and Figure 4-15. In both cases, coloration of the time series 
by TK_ani_shale (left) and TK_shale_drz_wet (right) shows the same interaction effect as was 
observed at the waste package. However, as the observation point moves farther into the shale, the 
effect of the shale thermal conductivity anisotropy ratio becomes even more pronounced. These time 
series results are also consistent with the maximum temperature Sobol’ index results at these 
observation points; no other parameters had significant Sobol’ indices at these observation points and 
no other parameters had clear effects when used to color the time series plots.  

 

 
Figure 4-14 Time series plots of the temperature at DRZ observation point 1 in the x-direction colored by 

the shale thermal conductivity anisotropy ratio (left) and thermal conductivity of the shale and 
DRZ (right) 
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Figure 4-15 Time series plots of the temperature at shale observation point 3 in the x-direction colored by 

the shale thermal conductivity anisotropy ratio (left) and thermal conductivity of the shale and 
DRZ (right) 

There are only two observation points located along the y-direction from the waste package, both in 
the buffer. Sobol’ indices at these observation points are shown in Figure 4-16. These results are very 
similar to those in the x-direction. Near the waste package, the shale thermal conductivity anisotropy 
ratio is the most important parameter and the thermal conductivity within the buffer and DRZ and 
shale are also significant. At the second observation point farther away, the shale thermal conductivity 
anisotropy ratio dominates the results. Usually a Sobol’ index less than 0.1 would be considered 
suspect; it is not necessarily spurious but could be. In this case, however, scatterplots suggest the 
Sobol’ indices for TK_shale_DRZ_wet at observation point 2 in the buffer (y-direction) are meaningful, 
though small.  
 

 
Figure 4-16 Maximum temperature Sobol’ indices at buffer observation point 1 in the y-direction (left 

figure) and buffer observation point 2 in the y-direction (right figure) 

 
Scatterplots for the first observation point do not provide addition insights beyond those already 
discussed because of the similarity to the analysis in the x-direction, so only the scatterplots at 
observation point 2 are included here, in Figure 4-17. We see the same interaction effect between 
TK_ani_shale and TK_shale_drz_wet as observed in the x-direction analysis. Note that the negative 
slopes with respect to TK_shale_drz_wet appear significant, also as in the x-direction. This is a 
meaningful relationship, despite the small Sobol’ index in Figure 4-16. It is also notable that this is an 
interaction effect and there is very little difference between the main and total effect Sobol’ indices. 
Even though the scatterplots show good performance of the order 2 polynomial surrogate model, this 
is an inconsistency between the graphical analysis and the Sobol’ index analysis. Time series plots in 
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the y-direction yield the same insights as those in the x-direction, so no time-series plots are included 
here.  

 
Figure 4-17 Scatterplots for the maximum temperature at observation point 2 in the buffer in the y-

direction 

 
There are ten observation points in the z-direction, however, there is little variation in results between 
these observation points. As such, we only present results for the lowest and topmost layers (lower 
sandstone observation point 1 and sandstone observation point 1), in Figure 4-18. The shale thermal 
conductivity anisotropy ratio is the dominant parameter at both observation points and the shale and 
DRZ thermal conductivity parameter has secondary importance. At the topmost observation point, 
TK_shale_drz_wet accounts for almost 20% of the variance including the interaction effect with 
TK_ani_shale.  
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Figure 4-18 Maximum temperature Sobol’ indices at lower sandstone observation point 1 (left figure) and 

sandstone observation point 1 (right figure) 

Comparing the scatterplots in Figure 4-19 and Figure 4-20, we see a different behavior at the topmost 
observation point than at all other observation points. In Figure 4-19 we see the same negative 
correlations between TK_ani_shale and temperature and TK_shale_drz_wet and temperature as at 
observation point around the waste package. However, at the topmost observation point (Figure 4-20), 
both correlations are positive. Notice, however, that the maximum temperatures are low with very little 
variation at the topmost observation point. The interaction effect is limited to those realizations for 
which the thermal conductivity is high enough that the temperature disturbance actually reaches this 
observation point. For lower values of TK_ani_shale, the thermal conductivity in the z-direction is lower, 
so fewer realizations result in elevated temperatures at sandstone observation point 1. For higher 
values of TK_ani_shale, the thermal conductivity in the z-direction is high enough for some heat to 
reach the upper sandstone observation point. The temperature will be higher here with higher thermal 
conductivity in the z-direction through the DRZ and shale, hence the effect from TK_shale_drz_wet.  
 

 
Figure 4-19 Scatterplots of the maximum temperature at lower sandstone observation point 1 versus 

TK_shale_drz_wet (left) and TK_ani_shale (right) 
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Figure 4-20 Scatterplots of the maximum temperature at upper sandstone observation point 1 versus 

TK_shale_drz_wet (left) and TK_ani_shale (right) 

 
These behaviors are also observed in the time series data. The time series data are plotted in Figure 
4-21 for the lower sandstone observation point (top) and upper sandstone observation point (bottom). 
The interaction effects in the top plot, wherein each TK_ani_shale cluster of realizations has a strong 
negative correlation pattern with the TK_shale_drz_wet color scale, are the opposite of the interaction 
effects in the bottom plot.  
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Figure 4-21 Time series plots of the temperature colored by the shale thermal conductivity anisotropy 

ratio (left) and thermal conductivity of the shale and DRZ (right) at lower sandstone 
observation point 1 (top figures) and upper sandstone observation point 1 (bottom figures) 

 

4.3.2 PRESSURE 
This section present sensitivity analysis results for the pressure. Some of these results are more 
challenging to interpret than the temperature results because the relationships are less clear in 
scatterplots and time series plots and there are more parameters with nonzero Sobol’ indices.  

Sobol’ index results for the maximum pressure at the waste package observation point (left) and shale 
observation point 3 in the x-direction are shown in Figure 4-22. The corresponding scatterplots are in 
Figure 4-23 and Figure 4-24. Though the scatterplots show generally good agreement between the 
simulation and the surrogate, the Sobol’ index results at the waste package observation point are 
suggestive of overfitting because of the nonzero total effect indices on all parameters. While this is not 
impossible, we often see this type of behavior in results where the surrogate model is overfit so the 
total effect indices should be interpreted with caution. The 𝑅𝑅2 for this model is also 0.77, which is 
relatively low compared to most of the other observation points which have 𝑅𝑅2 values over 0.9 (1.0 
being a perfect fit). As in the maximum temperature results, TK_ani_shale is also the dominant 
uncertainty for maximum pressure at the waste package observation point. The main effect indices 
for TK_shale_drz_wet, TK_buffer_wet_and kBuffer are also potentially significant.  



       
Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2025) 

August 22, 2025 33 

 
Figure 4-22 Maximum pressure Sobol’ indices at the waste package observation point (left figure) and 

shale observation point 3 in the x-direction (right figure) 

 

 
Figure 4-23 Scatterplots for the maximum pressure at the waste package observation point 

The Sobol’ index results become clearer farther from the waste package. At shale observation point 3 
in the x-direction (Figure 4-22, right), there appear to be three significant parameters: TK_ani_shale, 
kShale, and pShale. These results are also much clearer in the scatter plots (Figure 4-24) than the 
waste package observation point pressure results were. Within the shale, maximum pressure is driven 
predominantly by the shale thermal conductivity anisotropy ratio and secondarily by the porosity and 
permeability of the shale. Because the anisotropy ratio drives temperature variability at this 
observation point, it makes sense that it would also affect the pressure. The negative correlation with 
kShale also make sense with higher permeability preventing as much pressure from building up. The 
relationship between pShale and pressure does not have a clear intuitive explanation; it is unclear why 
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higher porosity would increase pressure. However, see Figure 4-25, which shows the plot of maximum 
pressure at this observation point versus pShale colored by kShale. The points that comprise the 
stronger positive trend with respect to porosity also have low permeability values. It is the combination 
of high porosity with low permeability that creates this positive trend. This does not fully explain the 
positive trend with respect to pShale as there is still a slight positive trend even at higher kShale 
values.  
 

 
Figure 4-24 Scatterplots for the maximum pressure at shale observation point 3 in the x-direction  
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Figure 4-25 Scatterplot of the maximum pressure at shale observation point 3 in the x-direction versus 

pShale colored by kShale to show the interaction effect between shale porosity and 
permeability.  

 

The time series plots for maximum pressure at the waste package observation point are shown in 
Figure 4-26. These plots show a more complex picture over time than the temperature plots. Early in 
the simulation, there appears to be an effect from kBuffer (top left) and TK_buffer_wet (top right). The 
effect of these parameters on the maximum pressure over time is less obvious: realizations with low 
permeability and low conductivity seem to experience maximum pressure earlier in the simulation 
time. This makes sense as low permeability in the buffer will lead to more pressure build up at the 
waste package and low conductivity in the buffer will cause temperature to build up, further increasing 
the pressure. There is also a clear effect late in the simulation from the shale thermal conductivity 
anisotropy ratio (bottom left), which is consistent with the Sobol’ and scatterplot results. The shale 
permeability (bottom right) has a non-monotonic effect late in the simulation. Large shale permeability 
values are associated with earlier spikes in pressure at the waste package and the lowest shale 
permeability values are generally associated with later increases in pressure.  
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Figure 4-26 Time series plots of the maximum pressure at the waste package observation point colored 

by buffer permeability (top left), the buffer thermal conductivity (top right), shale thermal 
conductivity anisotropy ratio (bottom left), and shale permeability (bottom right)  

The time series plots for the pressure at shale observation point 3 in the x-direction are shown in Figure 
4-27 colored with respect to kshale (top left), TK_ani_shale (top right), and k_ani_shale (bottom left). 
The trend with kShale is distinctive with respect to timing. At high kShale values, the pressure 
decreases early at this observation point and gradually increases after around 10 years. For lower 
values of kShale, this pattern is somewhat delayed, and some realizations see an increase in pressure 
without a decrease. There is a clear effect from the shale thermal conductivity anisotropy ratio (top 
right) late in the simulation, which may interact with kShale late in the simulation. This would explain 
why the effect from kShale is less distinctive at the end of the simulation. The overall trend with respect 
to kShale, however, makes sense. Higher permeability should create less pressure build up. The shale 
permeability anisotropy ratio does not have a significant effect on the maximum pressure (thus why it 
was not significant in the Sobol’ or scatterplot analysis). However, the time series plot shows that there 
is some effect on pressure. The lowest values of the anisotropy ratio (indicating higher horizontal 
permeability than vertical permeability within the shale) correspond to realizations that experience the 
lowest minimum pressures within these simulations, but also the greatest variability in pressure; some 
of the realizations with the highest pressure also have the lowest permeability anisotropy ratio. Though 
this is not a quantity of interest in our analysis like the maximum pressure, it is still helpful for analyzing 
the behavior of the model. This observation point is within the horizontal plane of waste package. 
Higher permeability in this plane will lead to more flow and lower pressures. This model behavior 
makes sense.  
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Figure 4-27 Time series plots of the maximum pressure at shale observation point 3 in the x-direction 

colored by shale permeability (top left), shale thermal conductivity anisotropy ratio (top right), 
and shale permeability anisotropy ratio (bottom). 

The plots in Figure 4-28 plot the time of the maximum pressure versus the time of the maximum 
temperature at the waste package observation point (left) and shale observation point 3 in the x-
direction (right). The dashed line indicates equal timing. We generated these plots to investigate the 
influence of temperature build up on pressure. At the waste package, the temperature peaks before 
pressure, which indicates that changes in temperature may drive pressure at this observation point. 
However, at observation points farther from the waste package, this is not always the case. The 
clustering of points at observation point 3 in the x-direction is caused by kShale and TK_ani_shale; 
kShale determines whether temperature peaks before pressure at this observation point and 
TK_ani_shale explains the horizontal clustering (difference in timing of maximum temperature).  
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Figure 4-28 Scatter plots of the time of maximum pressure versus the time of maximum temperature as 

the waste package observation point (left) and shale observation point 3 in the x-direction 
(right and bottom). 

The Sobol’ index results for the maximum pressure at buffer observation point 2 in the y-direction are 
shown in Figure 4-29. Results for the first observation point in the buffer in the y-direction are not 
included here because the conclusions are the same for that observation point as for the waste 
package observation point. At observation point 2, the shale permeability is the dominant uncertainty, 
though there appear to be some interaction effects (some of which may be spurious since the total 
effects indices are present for all parameters). The scatterplots in Figure 4-30 indicate a strong 
relationship with kShale and a weaker relationship with kBuffer, which is consistent with the Sobol’ 
indices for these parameters. The trend with respect to kBuffer appears only to occur at lower values 
of kBuffer, suggestive of an interaction effect. Another variable drives whether the maximum pressure 
is relatively high and, if so, there is a negative correlation with kBuffer for these higher-pressure 
realizations. The surrogate, however, seems to overestimate this trend. At high values of kBuffer, the 
surrogate predicts lower values of maximum pressure than seen in any of the simulations. The Sobol’ 
index for kBuffer is likely an overestimate. More samples within the higher-pressure space could inform 
whether the relationship to kBuffer in that regime is due to chance or is a physical result. The 
interaction effect, however, is clearly between kShale and kBuffer. The scatter plot in Figure 4-31 
shows the maximum pressure at this observation point plotted versus kBuffer colored by kShale. 
kShale determines whether the pressure is in the higher regime, and within this regime the pressure 
has a negative correlation to kBuffer. 
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Figure 4-29 Maximum pressure Sobol’ indices at buffer observation point 2 in the y-direction 

 
Figure 4-30 Scatterplots for the maximum pressure at buffer observation point 2 in the y-direction 
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Figure 4-31 Interaction plot showing the combined effects of kBuffer and kShale on the maximum 
pressure at observation point 2 in the y-direction 

Time series plots of the maximum pressure at this observation point are shown in Figure 4-32 colored 
by the shale thermal conductivity anisotropy ratio (top left), kShale (top right), and kBuffer (bottom). 
The shale permeability (kShale) affects the timing of pressure increases with higher permeability 
values leading to earlier increases in pressure. This is consistent with the behavior between shale 
permeability and pressure at the waste package and buffer observation points, though the effect is 
particularly strong at this observation point. The permeability of the buffer has a less monotonic effect. 
The peak pressures are associated with low buffer permeability, but some of the earliest realizations 
to see an increase in pressure have the highest values of kBuffer. This may be due to interaction 
effects between kShale and kBuffer.  

The shale thermal conductivity anisotropy ratio has a similar effect at this observation point as it does 
at the waste package observation point. Around 100 years, low anisotropy ratios (high anisotropy) lead 
to higher pressures due to lower effective thermal conductivity and the highest anisotropy ratios (low 
anisotropy) lead to lower pressures due to higher effective thermal conductivity. 

Sobol’ index results for the maximum pressure at the lower sandstone observation point are shown in 
Figure 4-33. The shale thermal conductivity anisotropy ratio is clearly the dominant uncertainty on with 
some minor effect from the thermal conductivity of the shale and DRZ. Because the relationships 
between the input parameters and maximum pressure at this observation point are so clear, only the 
scatterplots for these two parameters are included in Figure 4-34; there are no significant input/output 
relationships in the other scatterplots. This is a clear interaction effect; the anisotropy ratio determines 
the relative magnitude of the maximum pressure; within that magnitude, the thermal conductivity of 
the shale and DRZ accounts for variation. At the lowest anisotropy ratio value (highest anisotropy), the 
thermal conductivity of the shale and DRZ has no effect; at a certain level, anisotropy dominates the 
thermal effect. This relationship is persistent across the whole time series, as shown in Figure 4-35.  
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Figure 4-32 Time series plots of the maximum pressure at buffer observation point 2 in the y-direction 

colored by shale thermal conductivity anisotropy ratio (top left), shale permeability (top right), 
and buffer permeability (bottom) 

 
 

 
Figure 4-33 Maximum pressure Sobol’ indices at lower sandstone observation point 1 
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Figure 4-34 Scatterplots for the maximum pressure at lower sandstone observation point 1 

 
Figure 4-35 Time series plots of the maximum pressure at lower sandstone observation point 1 colored 

by shale thermal conductivity anisotropy ratio (left) and thermal conductivity of the shale and 
DRZ (right) 

The Sobol’ index results for the maximum pressure at limestone observation point 1 and shale 
observation point 4 are shown in Figure 4-36. The shale thermal conductivity anisotropy ratio continues 
to drive uncertainty at these observation points (and the point between them, which have similar 
results), however there are also effects from pShale, kShale, and TK_shale_drz_wet, which can all be 
observed is the scatterplots in Figure 4-37 and Figure 4-38. The shale porosity (pShale) has the clearest 
effect of these parameters, with a distinct positive linear trend. The trends with respect to the shale 
permeability (kShale) and the shale and DRZ thermal conductivity are both negative. The main 
difference between the limestone observation point and shale observation point 4 is that the shale 
thermal conductivity anisotropy ratio accounts for even more of the variance at the shale observation 
point than at the limestone observation point, having Sobol’ index values approximately 0.1 greater in 
magnitude. Comparing the last plot frame between Figure 4-37 and Figure 4-38 confirms this Sobol’ 
index result. Within the shale, the trend is stronger and the reduction in variance when the anisotropy 
ratio is 1 (low anisotropy) is more pronounced.   
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Figure 4-36 Maximum pressure Sobol’ indices at limestone observation point 1 (left) and shale 

observation point 4 (right) 

 

 

 
Figure 4-37 Scatterplots for the maximum pressure at limestone observation point 1 
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Figure 4-38 Scatterplots for the maximum pressure at shale observation point 4 

The time series plots at limestone observation point 1 and sandstone observation point 4 give the 
same conclusions for the maximum pressure, so only the limestone plots are shown in Figure 4-39. 
High shale permeability is associated with earlier increases in maximum pressure and lower pressures 
later in the simulation (top left). High permeability will allow liquid to move into the shale, building 
pressure initially, but will also support movement through the shale, allowing the pressure to decrease 
over the course of the simulation. The relationship with low kShale values is less clear, but this appears 
to be an interaction effect with the shale thermal conductivity anisotropy ratio (top right). The 
realizations that have low shale permeability but see early increases in pressure also have a high 
thermal conductivity anisotropy ratio (low anisotropy), and hence higher effective thermal conductivity 
leading to an initial increase in pressure but lower peak. The realizations with low shale permeability 
that see an increase in pressure later also have the lowest thermal conductivity anisotropy ratio (most 
anisotropic), and less effective thermal conductivity. Pressure builds later, but peaks higher. The 
influences of pShale (shale porosity, bottom left) and TK_shale_drz_wet (shale and DRZ thermal 
conductivity, bottom right) are much less distinct. We see the effects on the peak that we see in the 
scatterplots, but trends over time are harder to discern because these variables are of secondary 
importance.  

Finally, Sobol results for sandstone observation point 1 are shown in Figure 4-40. The significant total 
effect indices for almost all parameters with insignificant main effects for all but one parameter is 
suggestive of overfitting. The scatterplots in Figure 4-41 show a few important things. First, there is 
little variance in the maximum pressure at this topmost observation point. Second there are a handful 
of simulations with higher maximum pressure points than the rest of the simulations; these results are 
likely dominating the Sobol’ index results. For kShale, these points are all clustered at the highest 
values of kShale.  
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Figure 4-39 Time series plots of the maximum pressure at limestone observation point 1 colored by shale 

permeability (top left), shale thermal conductivity anisotropy ratio (top right), shale porosity 
(bottom left), and thermal conductivity of the shale and DRZ (bottom right) 

 
 

 
Figure 4-40 Maximum pressure Sobol’ indices at sandstone observation point 1 
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Figure 4-41 Scatterplots for the maximum pressure at sandstone observation point 1 

The time series plots for maximum pressure at the sandstone observation point are shown in Figure 
4-42 colored by the shale thermal conductivity anisotropy ratio (top left), shale and DRZ thermal 
conductivity (top right), and shale permeability (bottom left). The anisotropy ratio has a similar 
pronounced effect as at the other observation points. The interaction effect between the anisotropy 
ratio and the shale and DRZ thermal conductivity is interesting. The interaction effect is similar to what 
we saw at the lower sandstone observation point; TK_ani_shale determines the overall average 
magnitude and TK_shale_drz_wet determines variation around that average. However, at the 
sandstone observation point, that relationship does not always hold. There is also a significant effect 
from the shale permeability (bottom left). High permeability values are associated with the realizations 
that see an increase in pressure; these are the handful of realizations dominating the trend in the 
scatterplots.  



       
Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2025) 

August 22, 2025 47 

 
Figure 4-42 Time series plots of the maximum pressure at sandstone observation point 1 colored by the 

shale thermal conductivity anisotropy ratio (top left), shale/DRZ thermal conductivity (top 
right), and shale permeability (bottom) 

4.3.3 LIQUID SATURATION 
The liquid saturation always peaks at 1.0, so we do not have a scalar liquid saturation quantity of 
interest. Instead, we have time series plots of the liquid saturation colored by the different input 
parameter to qualitatively analyze the effects of input uncertainty on liquid saturation.  

The liquid saturation over time at the waste package observation point is shown in Figure 4-43 colored 
by the buffer thermal conductivity (top left), buffer permeability (top right), and shale permeability 
(bottom). The buffer parameters both appear to have an effect early. Low thermal conductivity and 
high permeability are associated with the earliest reductions in liquid saturation. This effect of low 
thermal conductivity may be due to increasing temperature creating a gas phase. Thermal conductivity 
also drives pressure early in the simulation at this observation point, which can increase gas or liquid 
flow into and through the buffer. The buffer permeability has more of an effect than the buffer thermal 
conductivity on the subsequent increase in liquid saturation. Both the buffer and shale permeabilities 
are negatively correlated with the timing of liquid saturation increase; higher permeabilities lead to 
earlier increases in liquid saturation.  
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Figure 4-43 Time series plots of the liquid saturation at the waste package observation point colored by 

the buffer thermal conductivity (top left), buffer permeability (top right), and shale permeability 
(bottom) 

At buffer observation point 1 in the x-direction, the two parameters that appear to drive liquid 
saturation are the buffer permeability (Figure 4-44, left) and the shale permeability (Figure 4-44, right). 
The buffer permeability has the early effect, with higher permeabilities leading to earlier saturation at 
the buffer observation point. A more permeable buffer will allow fluid to flow into the buffer, saturating 
the material at this observation point earlier in the simulation. Low permeability in the shale is 
associated with realizations that see a subsequent decrease in liquid saturation, with some 
realizations seeing dry out at this observation point.  

The liquid saturation at buffer observation point 2 in the x-direction is not plotted because the 
sensitivity analysis conclusions are the same. However, note that the liquid saturation at observation 
point 2 in the buffer does not decrease to zero as it does at observation point 1. There are no 
realizations for which dry out occurs at observation point 2 in the buffer. 

The time series plot of the liquid saturation at DRZ observation point 2 in the x-direction is shown in 
Figure 4-45 colored by the shale permeability (left) and the DRZ permeability (right). The liquid 
saturation is strongly dominated by the shale permeability but there is some effect from the DRZ 
permeability. This far from the waste package, there is no more effect from thermal conductivity; the 
liquid saturation is driven by permeabilities. We note also that the shale permeability parameter varies 
more than the DRZ permeability and there is more shale than DRZ in the model.  
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Figure 4-44 Time series plots of the liquid saturation at buffer observation point 1 in the x direction 

colored by the buffer permeability (left) and the shale permeability (right) 

 
Figure 4-45 Time series plot of the liquid saturation at DRZ observation point 2 in the x-direction colored 

by the shale permeability (left) and the DRZ permeability (right) 

4.3.4 SENSITIVITY ANALYSIS SUMMARY 
Overall, the shale thermal conductivity anisotropy ratio was a driving uncertainty on maximum pressure 
and temperature at many observation points. Temperatures were affected by uncertainty in this 
anisotropy ratio as well as other uncertain thermal conductivity parameters, but not by parameters 
associated with other physical processes (e.g., permeabilities, porosities). Though temperatures 
affected pressure, especially near the waste package, the SA results for pressure were more varied 
and appear to reflect the complex interaction of multiple physical processes. The shale thermal 
conductivity anisotropy ratio was also a dominant uncertainty for pressure, but had significant 
interaction effects with thermal conductivity parameters, permeabilities, and porosities, depending on 
the observation point. Variation in liquid saturation at all observation points was dominated by 
permeability parameters, but the more interesting result for liquid saturation was the lack of complete 
dry out in the buffer region. Some realizations experienced dry out at observation point 1 in the x-
direction and y-directions in the buffer, but none of the realizations experienced dry out at observation 
point 2 in these directions.   
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5 INTERNATIONAL ENGAGEMENTS 

In addition to the work outlined in Chapters 2-5, the UQ/SA team participated in JOSA and DECOVALEX 
this year. These activities are described in sections 5.1 and 5.2, respectively. 

5.1 JOSA VOLUME 2 REPORT 
Laura Swiler and Dusty Brooks continued their involvement in the Joint Sensitivity Analysis (JOSA) 
international working group. Laura co-leads this group with Klaus Röhlig and Dirk Becker from 
Germany. This group held a series of virtual meetings over the past year on the following dates:  August 
21, September 25, November 20 (in 2024) and January 15, February 26, May 7, June 18, and July 31 
(in 2025). The purpose of these meetings is to demonstrate and apply the latest state-of-the art 
sensitivity analysis methods to realistic case studies provided by the participating organizations. These 
organizations include GRS and TU-Clausthal in Germany, POSIVA in Finland, SCK-CEN in Belgium, and 
Enresa in Spain.   

This year, we completed and published Volume 2 of the JOSA case studies (Swiler L. P., et al., 2025):  

Laura P. Swiler, Dirk-Alexander Becker, Dusty Brooks, Lasse Koskinen, Pekka 
Kupiainen, Elmar Plischke, Klaus-Jürgen Röhlig, Javier Samper, Sabine M. Spiessl.  
“Sensitivity Analysis Comparisons on Geologic Case Studies: An International 
Collaboration, Volume 2” SAND2025-00230. 

Volume 2 had three case studies: a Low- and Intermediate-Level Waste (LILW) repository installed in 
an abandoned former salt production mine from the GRS team, a generic crystalline reference case 
for High Level Waste (HLW) with varying discrete fracture networks as well as epistemic parameters 
provided by Sandia, and a reactive transport case involving HLW provided by Enresa. The culmination 
of the Volume 2 report was the final chapter which summarized best practices and recommendations 
for a practitioner employing sensitivity analyses to real application studies. These best practices are 
now being prepared for a journal article.  
The JOSA team has started a new set of case studies which will be the basis for Volume 3. The first of 
these case studies is a geochemical model developed by SCK-CEN. The model was developed in the 
PHREEQC code to simulate the sorption of Americium on organic matter-containing Boom Clay. The 
model incorporates cation exchange and surface complexation on clay minerals, along with sorption 
on organic substances. It employs the Tipping model, a widely used mathematical framework for 
describing metal sorption on organic acids. Simulations were conducted across a range of initial 
Americium concentrations, producing a sorption isotherm (log(Kd)) as a function of Am-concentration. 
The model requires 50 inputs, and SCK-CEN provided the JOSA team with one million simulation runs 
(a table with one million samples of 50 inputs and log(Kd) output values). This case study has been 
very interesting for JOSA and SNL to consider as it pushes the boundaries of scaling our sensitivity 
analysis methods:  we have not tackled a problem with 1M samples in 50 input dimensions previously.  
Our preliminary findings are that we need to be cautious when utilizing surrogate models in such high-
dimensional problems as they may mis-represent or under-represent the actual variance, as we 
demonstrated with the PCE method which underrepresented the variance and thus over-estimated the 
Sobol’ sensitivity indices.  
 
We plan to continue investigation of this geochemistry case study as well as other case studies that 
will be investigated by the JOSA participants for Volume 3 in the coming year.  
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5.2 DECOVALEX 
The DECOVALEX (DEvelopment of COupled Models and their VAlidation against EXperiments) is a large, 
multi-year, multi-organization international project focused on thermal-hydraulic-mechanical-chemical 
processes and their influence on repository performance and safety. In the last four-year DECOVALEX 
project (DECOVALEX-2023), Sandia participated in tasks related to generic salt and crystalline 
reference case model development and analyses.   

For the current four-year DECOVALEX project (running from 2024-2027, referred to as DECOVALEX-
2027), Sandia serves as the task lead for the crystalline portion of Task F, which involves crystalline 
generic reference case modeling. In DECOVALEX-2027, a primary focus for Task F is on uncertainty 
quantification and sensitivity analysis. Members of the GDSA UQ/SA team have supported the initial 
Task F specification for DECOVALEX-2027 and are participating in this exercise. UQ studies on a simple 
benchmark problem have been completed, and the sampling procedure for a larger, realistic 
uncertainty analysis on the full DECOVALEX crystalline reference case has been defined (contact the 
authors for the initial Task specification). The UQ/SA studies focus on a nested sampling plan with 
outer loop sampling of discrete fracture networks and inner loop sampling of epistemic parameters 
including waste package properties and backfill and buffer permeabilities and porosities. These 
studies will be run by participating organizations during the next year of DECOVALEX-2027.    
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6 SUMMARY 

This report described activities performed in fiscal year 2025 associated with the GDSA Uncertainty 
and Sensitivity Analysis Methods work package, as summarized below.  

The GDSA UQ/SA team worked closely with the GDSA Biosphere model development team at PNNL to 
perform sensitivity analysis for the Biosphere model (see Chapter 2). Dakota was integrated in a 
coupled sensitivity analysis, where Dakota first ran a PFLOTRAN model which generated radionuclide 
concentrations that were input to the Biosphere model. Parameters of both the PFLOTRAN and the 
Biosphere model were sampled, and a SA study was performed to identify the dominant parameters 
contributing to total effective dose. The study paves the way for larger coupled PFLOTRAN-Biosphere 
model analyses. 

This year, we summarized various approaches to characterizing the effects of spatial heterogeneity 
with proxy variables in a SAND report.  This report outlines progress to date and remaining challenges. 

A main focus of our work package this year was sensitivity analysis for a quarter WP shale case with 
increased resolution in the modeling domain near the waste package. The quantities of interest were 
the liquid saturation, temperature, and maximum pressure at observation points at the waste package, 
and in the buffer, DRZ, shale, lower sandstone, limestone, silt, and sandstone. The majority of the 
observation points were in the near-field because the study focused on understanding conditions in 
which the repository might get too hot with pressures that are too high. Sensitivity analysis was 
performed using Sobol’ indices estimated with polynomial chaos expansion, scatterplots, and time 
series plots colored by uncertain input parameters. We found that the shale thermal conductivity 
anisotropy ratio was the dominant uncertainty driving maximum temperature variability; there are also 
significant effects from the other thermal conductivity parameters, but no parameter related to other 
physical processes. The shale thermal conductivity anisotropy ratio was also a prominent driving 
uncertainty on the maximum pressure, however, there were interaction effects between this ratio and 
either thermal conductivity or permeability and porosity parameters depending on the observation 
point. Liquid saturation was affected by thermal conductivity at the waste package, but elsewhere it is 
driven by the uncertain permeabilities. We found that dry out did not occur for any realizations at 
observation point 2 in the buffer and only for some realizations at observation point 1 in the buffer. 
The entire buffer region does not dry out.  

In terms of our international engagements, we are supporting the next four-year phase of DECOVALEX 
which has an emphasis on UQ/SA for the crystalline reference case. We continue to work with the Joint 
Sensitivity Analysis Working Group: we issued the Volume 2 SAND report summarizing the result of 
various SA studies on the case studies provided by the participating organizations and are now working 
on Volume 3 with new case studies. 
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